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changes at higher elevations. We find that changes in surface 
albedo, atmospheric humidity and downward longwave radi-
ation are relevant factors for EDW in the Tibetan Plateau-
Himalayas, with surface albedo being the leading driver.
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uncertainty

1 Introduction

Mountains are regions which are most sensitive to climate 
change and where climate impacts represent a threat to 
essential ecosystem services (e.g., Beniston 2003; Viviroli 
et al. 2007). One of the important questions related to cli-
mate change in the mountains is whether they are warming 
more than adjacent lowlands or compared to the global mean, 
similarly to the warming amplification observed in the Arctic 
(e.g., Screen and Simmonds 2010; Serreze and Barry 2011).

In recent years, the number of studies that have ana-
lyzed elevation-dependent warming (EDW)—the altitudi-
nal dependence of warming rates—has increased (see MRI 
2015 for a comprehensive review on this topic). These stud-
ies differ in the type of data that have been employed—in-
situ observations, satellite data, reanalyses or climate model 
simulations—in the considered mountain ranges, and in the 
methods of analysis used to identify and quantify EDW. A 
majority of studies on EDW is based on the analysis of in-
situ observations and points toward a general amplification 
of the warming rates with elevation. However, there is not a 
general consensus and some studies exist that show no rela-
tionship between warming rates and the elevation or that 
highlight a more complex situation whose understanding 
still requires further investigations (MRI 2015).

Abstract We use the output of twenty-seven Global Climate 
Models participating in the Coupled Model Intercompari-
son Project phase 5 (CMIP5) to investigate the temperature 
changes and their dependence on the elevation in the Tibetan 
Plateau, Himalaya and Karakoram mountains and in the sur-
rounding areas in historical model simulations and in future 
projections. The aim of this study is to explore if and to what 
extent the CMIP5 models show elevation-dependent warm-
ing (EDW) in this part of the globe and to investigate what 
are the driving factors at play and their relative importance. 
Our results indicate that the models show enhanced rates of 
warming at higher elevations in the Tibetan Plateau-Himala-
yan region in the twentieth century, and this phenomenon is 
projected to strengthen by the end of the twenty-first century 
under a high-emission scenario. We find a nonlinear relation-
ship between the warming rates and the elevation, for both 
the minimum and the maximum temperature: regions with 
temperatures below the freezing level of water show more 
warming than the regions with temperatures above, likely 
suggesting a key role of mechanisms involving water phase 
changes, the presence/absence of snow and the snow-albedo 
feedback. We consider the main variables simulated by the 
CMIP5 models whose change may be related to temperature 
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On the observational side, a homogeneous and dense net-
work of meteorological stations would be required to clearly 
document the rate and the spatial distribution of warming as 
a function of elevation, but this is very seldom the actual sit-
uation encountered in high-altitude regions. The number of 
high-elevation stations providing long-term records (longer 
than at least 20 years) is still not adequate to allow evalu-
ating statistically significant temporal trends, which is the 
first step for the assessment and quantification of EDW. Fur-
thermore, mountain observations are known to be biased by 
altitude, since most in-situ stations are installed in valleys 
rather than on mountain slopes and on the tops, with the risk 
of undersampling these regions where the possible conse-
quences of enhanced warming are expected to be more seri-
ous than elsewhere. Regions above 5000 m above sea level 
(a.s.l.) are mostly unexplored (Lawrimore et al. 2011), even 
if stations installed at such high altitudes would be crucial 
to fully understand hydro-climatic processes in the moun-
tains and to document the small-scale temperature varia-
tions driven by topography, slope, vegetation coverage and 
exposure. Monitoring of land surface temperatures from sat-
ellite is another possible approach for studying EDW. The 
clear advantage of satellite observations over in-situ station 
data is their homogeneous spatial coverage; the disadvan-
tage is that their temporal coverage is still quite short for 
detecting climatic trends and their statistical significance. 
These data are also still poorly validated in high-elevation 
regions where cloud occurrence represents an obstacle for 
satellite monitoring and data interpretation. There have been 
very few studies which have investigated the evidence for 
EDW using satellite observations (as shown in MRI 2015 
see, in particular, Table S1 of their supplementary infor-
mation). Qin et al. (2009), for example, performed a study 
using land surface temperatures measured by the satellite-
borne MODIS sensor over the Tibetan Plateau in the period 
2000–2006 and found that the warming rate increases in 
the altitude band from 3000 to 4800 m above sea level, 
and becomes then quite stable above those altitudes, with a 
slight decline at the highest elevations.

Model simulations are not affected by many of the 
inadequacies inherent in all kinds of observations, such 
as sparseness and limited temporal extension of the data, 
and they represent useful tools to investigate the possible 
mechanisms responsible for EDW, both in historical simu-
lations and future projections. Of course they are generally 
limited in spatial resolution and require observational data 
for validation, making it difficult to be sure that simulations 
are accurate enough to be confident on future projections. 
Most of the existing model studies on EDW are based on 
the use of global climate models (e.g., Rangwala et al. 
2010; Rangwala and Miller 2012) even though the response 
to large-scale greenhouse gas forcing in topographically 
complex mountain regions could be more adequately 

captured using higher-resolution non-hydrostatic regional 
models. Few studies exist in which climate change experi-
ments have been performed with very high-resolution 
models (Hawkins et al, 2012; Kinter et al. 2013) and typi-
cally meteorological timescales have been considered to 
simulate specific aspects of the hydrological cycle, such as 
rainfall extremes (Kendon et al. 2014) and the response of 
the cryosphere system to changes in the hydrological cycle 
(Rasmussen et al. 2014).

GCMs have been used to assess the mechanisms that 
drive the elevational dependence of surface warming trends 
in the Tibetan Plateau, one of the regions showing the most 
striking evidence of EDW in the observations (Yan and Liu 
2014). Since temperature at the Earth’s surface is primarily 
a response to the energy balance, potential EDW drivers are 
the factors that affect the net flux of energy at the surface 
and include, but are not limited to, albedo, clouds, water 
vapour and the related feedbacks. In a recent model study, 
Rangwala et al. (2013) analyzed the output of several GCMs 
from the Coupled Model Intercomparison Project phase 
5 (CMIP5) experiment to investigate whether the moun-
tains in the latitude band between 27.5◦N and 40◦N—the  
Tibetan Plateau in Asia and the Rocky Mountains in North 
America—are projected to warm at a faster rate relative 
to the low-lying areas of that latitude band by the end of 
the twenty-first century for three different greenhouse 
gas emission scenarios. They found an amplification of 
the warming rates in the Tibetan Plateau, particularly 
true for the minimum temperatures in the cold season. 
They ascribed the high correlation of enhanced warming 
with elevation in that region to an increase in downward 
longwave radiation at higher elevations, associated with 
increases in water vapour content in the atmosphere. A pre-
vious study by Liu et al. (2009) used both observations and 
model projections for the Tibetan Plateau region and the 
results were in line with the aforementioned findings: an 
amplified positive trend in minimum temperatures at higher 
elevations, particularly in winter and spring, likely caused 
by a combination of cloud-radiation and snow-albedo feed-
backs. Another recent study by Yan et al. (2016) inves-
tigates the mechanisms driving EDW in and around the 
Tibetan Plateau using simulations of the CCSM3 GCM and 
concludes that the effects of changes in the snow depth and 
in cloud cover in response to the increase in CO2 concen-
trations (4× CO2 experiment) lead to greater heat storage 
at higher elevations and therefore to EDW in that region.

The study presented here aims to analyze elevation-
dependent warming in a wider region than the Tibetan Pla-
teau only, encompassing also the Hindu-Kush, Karakoram, 
Himalayan mountains and the surrounding lower-lying 
regions using a selected ensemble of CMIP5 GCMs. We 
analyze the climate warming simulated by the models for 
this region and its dependence on elevation in the historical 
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simulations and in the future projections under a high-range 
emission scenario (RCP 8.5). The possible mechanisms 
leading to EDW in this region are identified in the indi-
vidual models and in their multi-model mean (MMM) and 
a multiple linear regression model is used to evaluate their 
relative contribution to the simulated change in the mini-
mum and in the maximum surface temperature. In short, 
we select as variables of interest for EDW those which pre-
sent a significant correlation with elevation (once having 
verified that also warming rates vary significantly with the 
elevation) and whose dependence on the elevation is physi-
cally consistent with the sign of the elevational gradient of 
warming rates. Then we identify as actual EDW drivers the 
variables which, independently of elevation, still correlate 
with temperature changes at each grid point. This approach 
has the advantage that the spatial information inherent in 
the climate models is to some extent “preserved” and repre-
sents an alternative or complementary way of approaching 
the issue of identifying the EDW mechanisms with respect 
to other approaches found in the literature (e.g., Rangwala 
et al. 2016).

The paper is organized as follows. Section 2 describes the 
area of study and the model data and provides an overview 
of the methodology used in the analysis. Section 3 reports 
the results of the analyses performed to assess an elevation-
dependent warming signal in the Tibetan Plateau-Himalayan 
region using the historical and projection simulations of the 
CMIP5 model ensemble considered in this study. Section 4 
discusses the driving mechanisms associated with EDW 
through the use of the multiple linear regression model 
including a number of processes/variables as predictors, the 
predictands being the minimum and the maximum tempera-
ture change between the end and the beginning of the cen-
tury, focusing on the twenty-first century. Section 5 finally 
discusses the results and concludes the paper. We include as 
additional online resource material a Supplementary Infor-
mation (SI) file devoted to a closer inspection of the results 
obtained from the individual CMIP5 models. We think that 
this is important to provide a measure of the spread of the 
CMIP5 models in representing EDW in the Tibetan Plateau-
Himalayas. As shown in other studies which analyzed GCMs 
with various purposes, given the large differences which can 
be found in the basic model outputs, a multi-model ensem-
ble estimate should in fact be regarded with extreme caution 
(e.g., Tebaldi and Knutti 2007; Palazzi et al. 2015).

2  Study area, data and methodology

2.1  Study area

The area under study extends from 70◦E to 105◦E longitude 
and from 25◦N to 40◦N latitude covering predominantly 

the high-altitude regions of the Tibetan Plateau, with an 
average elevation exceeding 4500 m (a.s.l.), surrounded by 
the highest mountain peaks of the world such as the Him-
alayas, Hindu-Kush, Karakoram, Pamir and others, and 
also includes flatter regions of central Pakistan and north-
western India, south of the Himalayan chain (Fig. 1a). The 
Tibetan Plateau-Himalayan region is often referred to as 
the “Third Pole” of the Earth because it hosts the largest 
amount of snow and ice outside the polar regions providing 
a very large reserve of fresh water. This region has a unique 
topography and landscape compared to other high elevation 
regions of the world, and is prone to different circulation 
regimes (e.g., Palazzi et al. 2013; Filippi et al. 2014) which 
strongly affect its hydrological cycle and climate.

2.2  Data and methods

We analyze the output of twenty-seven models participat-
ing in the Coupled Model Intercomparison Project phase 5 
(CMIP5), available from the Earth Science Grid Federation 
archive data portals (http://esgf.llnl.gov). We select only 
those GCMs providing the following set of variables which 
are relevant for the study of EDW: surface altitude (orog), 
daily minimum and maximum near surface air temperature 
(tasmin and tasmax, respectively), surface downwelling 
longwave radiation (rlds), surface downwelling short-
wave radiation (rsds), surface upwelling shortwave radia-
tion (rsus), near surface specific humidity (huss). We cal-
culate the surface albedo as the ratio between the upward 
and downward shortwave radiation at the surface. For each 
GCM we analyze the output of only one ensemble member, 
“r1i1p1” (each CMIP5 model is run producing an ensemble 
including different members, such as “r1i1p1” or “r2i1p1” 
or so, where “r” is an abbreviation for realization, “i” for 
initialization method, and “p” for physics version). Each of 
the global climate models has associated orographic data. 
Table 1 lists the CMIP5 models used in this study, along 
with their horizontal resolution, the number of grid points 
in the study area, and a key reference. The models are 
ranked in order of decreasing horizontal resolution. Fur-
ther model details and information on their configuration 
or features can be found in the PCMDI data portal (http://
www-pcmdi.llnl.gov/) and in Chapter 9 of the latest IPCC 
Assessment Report (AR5, IPCC 2013).

We analyze the historical simulation outputs (1870–
2005) and the projection outputs (2006–2100) for the Rep-
resentative Concentration Pathway emission scenario RCP 
8.5 corresponding to an anthropogenic radiative forcing 
of 8.5 Wm−2 by the end of the twenty-first century (Riahi 
et al. 2011). We decided to analyze the model projections 
for only one scenario based on previous studies (e.g., Rang-
wala et al. 2013) showing that the spatial patterns of the 
seasonal temperature changes between the end and the 

http://esgf.llnl.gov
http://www-pcmdi.llnl.gov/
http://www-pcmdi.llnl.gov/
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beginning of the twenty-first century in the Tibetan Plateau 
region are similar among different RCPs, with differences 
found just in the magnitude of the changes (being strongest 
in the most extreme RCP 8.5 scenario).

Most analyses presented in this paper refer to the ele-
vation-dependent warming signal found in the multi-model 
mean (MMM) of the considered ensemble. The MMM is 
calculated after regridding all individual model outputs 
onto a common 2× 2 degrees resolution grid before com-
puting the average. The Supplementary Information shows 
and discusses some of the results obtained using the out-
puts of the individual models at their native resolution.

To investigate possible seasonal differences in the 
EDW signal suggested by previous studies on this topic 
(e.g.,Rangwala and Miller 2012; Rangwala et al. 2013 
and references therein), the analysis presented here refers 
to seasonal averages, using the standard definition of the 
seasons for the Northern Hemisphere mid-latitudes: winter 
(December–February, DJF), spring (March–May, MAM), 
summer (June–August, JJA), and autumn (September–
November, SON). We also analyze the warming and EDW 
signal found in the minimum and maximum tempera-
tures separately, because different mechanisms which are 

possible drivers of EDW can be at work during day and 
night.

To quantify warming signals we calculate, for each 
model and for the MMM, the changes between the 30-year 
climatology of the minimum and maximum temperatures 
between the periods 1971–2000 and 1871–1900 (“his-
torical” changes) and between the periods 2071–2100 and 
1971–2000 (future changes under the RCP 8.5 scenario). 
The relationship between temperature changes and eleva-
tion is explored by using simple linear regressions and 
assessing their statistical significance. The latter is deter-
mined using a Monte Carlo method based on creating a 
large number (typically 1000) of surrogate series in which 
the data have been shuffled randomly with respect to the 
heights. The linear fits of these surrogate datasets allow 
to test against the null-hypothesis of no elevational gradi-
ents in the original series (Pollard et al. 1987; Schreiber 
and Schmitz 2000). A significance level of 95% is always 
used.

To study the mechanisms leading to EDW, we consider 
the seasonal changes of rlds, rsds, huss, and albedo and we 
analyze their dependence on the elevation. Their relative 
importance in driving the temperature change in the study 

(a) Topography of the Study Area
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(b) CMIP5 MMM OROG

0 1000 2000 3000 4000 5000 6000 7000 8000

m

(c) CMIP5 STDDEV OROG

0 100 200 300 400 500

m

Fig. 1  (Top panel) Topographic map of the study area from a high-resolution Digital Elevation Model (0.008 degrees resolution). (Bottom pan-
els) CMIP5 model ensemble orography at 2× 2 degrees spatial resolution: multi-model mean (left) and inter-model standard deviation (right)
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area is assessed using a multiple linear regression model as 
discussed in Sect. 4.

For the observed elevation data shown in Fig. 1a, we 
use the ETOPO1 Global Relief Model from the NOAA’s 
National Geophysical Data Center (NGDC) available 
at http://www.ngdc.noaa.gov/mgg/global/global.html. 
ETOPO1 is a digital elevation model (DEM) available 
for the whole globe with a grid spacing of 1 arc-minute 
(approximately 0.008◦). Figure 1b shows the average eleva-
tion of the CMIP5 ensemble (MMM, 2 degrees resolution) 
while the inter-model standard deviation is shown in panel 
(c). As expected, the models agree less with each other in 
the regions of strongest altitudinal gradients, for example 
along the Himalayan chain, while their standard devia-
tion is smaller in the more homogeneous regions (central 
Tibetan Plateau and flatter regions of central Pakistan and 
northern India). Figure 2 shows the fraction of grid cells in 
each 800 m bin across the latitude and longitude range of 
the study area (Fig. 1) shown for the CMIP5 MMM (black 

line), the CMIP5 range (defined by 1 standard deviation 
greater and less than the mean, grey shading), and observed 
(DEM) elevation (red line). The figure also shows the mean 
elevation distribution of the three highest resolution mod-
els (CCSM4, CESM1-BGC, CESM1-CAM5, dashed blue 
line) and of the six lowest resolution models (MIROC-
ESM-CHEM, MIROC-ESM, bcc-csm1-1, BNU-ESM, 
CanESM2, FGOALS-g2, dashed orange line). Square and 
star symbols are used to indicate, for each elevation bin, the 
maximum and minimum fraction of grid cells across the 
whole CMIP5 model ensemble. Of course, the higher the 
model resolution, the greater the number of high-elevation 
grid points in the region of interest. The highest-resolution 
GCMs have an elevation distribution that is closer to obser-
vations than the CMIP5 average. The CMIP5 MMM over-
estimates the fraction of grid points in the altitudinal bins at 
elevations between about 1000 and 4000 m above sea level, 
while it underestimates the fraction of grid points at lower 
and higher elevations.

Table 1  The CMIP5 models used in this study

Model ID Institution ID Resolution lon ×lat◦ Lev Grid points (TP-Him) Key references

CCSM4 NCAR 1.25 × 0.9L27 (T63) 435 Meehl et al. (2012)

CESM1-BGC NSF-DOE-NCAR 1.25 × 0.9L27 435 Hurrell et al. (2013)

CESM1-CAM5 NSF-DOE-NCAR 1.25 × 0.9L27 435 Hurrell et al. (2013)

bcc-csm1-1-m BCC 1.125 × 1.125L26 (T106) 434 Wu et al. (2013)

MRI-CGCM3 MRI 1.125 × 1.125L48 (T159) 434 Yukimoto et al. (2012)

CNRM-CM5 CNRM-CERFACS 1.40625 × 1.40625L31 (T127) 275 Voldoire et al. (2013)

MIROC5 MIROC 1.40625 × 1.40625L40 (T85) 275 Watanabe et al. (2010)

ACCESS1-0 CSIRO-BOM 1.875 × 1.25L38 (N96) 247 Bi et al. (2013)

ACCESS1-3 CSIRO-BOM 1.875 × 1.25L38 247 Bi et al. (2013)

HadGEM2-CC MOHC 1.875 × 1.24L60 (N96) 247 Martin et al. (2011)

IPSL-CM5A-MR IPSL 2.5 × 1.2587L39 180 Hourdin et al. (2013)

INM-CM4 INM 2 × 1.5L21 180 Volodin et al. (2010)

CSIRO-Mk3-6-0 CSIRO-QCCCE 1.875 × 1.875L18 (T63) 152 Rotstayn et al. (2012)

NorESM1-M NCC 2.5 × 1.9L26 (F19) 120 Bentsen et al. (2013)

GFDL-CM3 GFDL 2.5 × 2L48 (C48) 112 Delworth et al. (2006)

GFDL-ESM2G GFDL 2.5 × 2L24 (M45) 112 Delworth et al. (2006)

GFDL-ESM2M GFDL 2.5 × 2L24 (M45) 112 Delworth et al. (2006)

GISS-E2-H NASA/GISS 2.5 × 2L24 112 Schmidt et al. (2006)

GISS-E2-R NASA/GISS 2.5 × 2L24 112 Schmidt et al. (2006)

IPSL-CM5A-LR IPSL 3.75 × 1.89L39 80 Hourdin et al. (2013)

IPSL-CM5B-LR IPSL 3.75 ×1.9L39 80 Hourdin et al. (2013)

MIROC-ESM-CHEM MIROC 2.8125 × 2.8125L80 (T42) 65 Watanabe et al. (2011)

MIROC-ESM MIROC 2.8125 × 2.8125L80 (T42) 65 Watanabe et al. (2011)

bcc-csm1-1 BCC 2.8125 × 2.8125L26 (T42) 65 Wu et al. (2013)

BNU-ESM GCESS-BNU 2.8125 × 2.8125L26 (T42) 65 Ji et al. (2014)

CanESM2 CCCMA 2.8125 × 2.8125L35 (T63) 65 Arora et al. (2011)

FGOALS-g2 LASG-CESS 2.8125 × 2.8125L26 65 Li et al. (2013)

http://www.ngdc.noaa.gov/mgg/global/global.html
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3  The simulated elevational dependence of surface 
warming

3.1  Historical period: 1871–2000

Figure 3 shows, for the four seasons, the difference 
between the average in the period 1971–2000 and the aver-
age in the period 1871–1900 of the minimum temperature 
(left panels) and of the maximum temperature (right pan-
els) as a function of elevation for the MMM of the CMIP5 
ensemble. The data points have been fitted with a linear 
regression over the whole altitude range (red line) and from 
1500 m upwards (blue line); the slopes of the two regres-
sion lines (in ◦C km−1) are reported in each panel (a star 
symbol in parentheses indicates a statistical significant 
trend) and summarized in Table 2. Figure 3 shows that, 
for both tasmin and tasmax, all grid points show positive 
changes (i.e., warming) and the absolute value of these 
changes is larger at higher elevations (positive elevational 
gradients of warming rates). The elevational gradients are 
generally enhanced when assessed over an altitude range 
that excludes elevations lower than 1500 m (a.s.l.). The 
minimum temperature shows the strongest elevational gra-
dients of warming in spring and autumn and the weakest in 
summer. For the maximum temperature the seasonal differ-
ences in the elevation dependent warming are, in general, 
less important than for the minimum temperature. Overall, 

the EDW signal is stronger for tasmin than for tasmax in 
spring, while the opposite is found in summer. Figure 3 
also highlights that, beyond considerations about the eleva-
tional gradients of warming rates, the minimum tempera-
tures exhibit a stronger absolute change than the maximum 
temperatures. This finding is consistent with previous stud-
ies showing the asymmetric nature of warming rates during 
daytime and nighttime over the Tibetan Plateau (e.g., Liu 
et al. 2009). The seasons showing the strongest changes – 
averaged over the study area—of both tasmin and tasmax 
during the historical period are DJF and MAM.

A similar analysis is performed for each model sepa-
rately at its native spatial resolution: the models exhibit 
noticeable differences with each other (not shown here), 
such that some of them agree very well with the MMM 
while others do not and even exhibit an elevational gradi-
ent of warming rates of opposite sign (indicating decreased 
warming as elevation increases). The slope of the linear 
regression between the minimum (maximum) temperature 
changes and elevation for the individual models is reported 
in Table S1 (S2) of the Supplementary Information. We 
find that the inter-model spread, measured as one standard 
deviation greater and less than the mean, overall increases 
as the elevation increases, particularly from 3000 m above 
sea level upward (shown in Figures S1 and S2 of the SI, as 
well as in Fig. 4 discussed later).

Figure 3 suggests that a simple linear fit describing 
the relationship between the temperature changes and the 
elevation over the whole range of altitudes is likely to be 
a simplistic approach. A more complex situation, in fact, 
arises in which the (either minimum or maximum) tem-
perature change tends to slightly decrease as a function 
of the elevation or to remain almost constant, depending 
on the season, until about 1500 m above sea level. It then 
increases with elevation giving rise to a positive and sta-
tistically significant slope. Finally, above about 4500 m 
(a.s.l.), the elevational gradient reverses indicating a reduc-
tion of the warming rate with elevation (in agreement 
with results found by Qin et al. 2009). In order to make 
the non-linearity of the relationship between the tempera-
ture changes and the elevation clearer, Fig. 4 shows the 
minimum and maximum temperature change between the 
1971–2000 climatology and the 1871–1900 climatology as 
a function of the surface elevation in the CMIP5 ensemble 
for the four seasons. Data have been averaged in bins with 
width 150 m, to compute the elevational distribution of the 
MMM and the range of variability in the models (inter-
model spread, calculated as one standard deviation greater 
and less than the MMM). The figure highlights the complex 
regime mentioned above, which is more evident in winter, 
spring, and autumn particularly for the minimum tempera-
ture: the elevational gradient of the minimum temperature 

Fig. 2  Elevation distribution across the region. Fraction of grid 
cells in each 800 m bin across the Tibetan Plateau-Himalaya region 
(Fig. 1) shown for observations (red line), the CMIP5 MMM (black 
line), the CMIP5 range (grey shading), the GCMs with the highest 
number of grid points in the area (dashed blue line), and the GCMs 
with the lowest number of grid points in the area (dashed orange 
line). Empty squares and star symbols indicate the maximum and 
minimum fraction of grid point found across the whole model 
ensemble
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change is observed to vary and even be reversed at altitudes 
around 1500–2000 m above sea level, as also discernible 
from the slopes of the linear fit calculated over the two dif-
ferent altitude ranges shown in Fig.  3 (red and blue lines 
and figures in the legend). Figure  4 also reiterates, in a 

very clear way, that the temperature changes between the 
last three decades of the twentieth century and the last three 
decades of the nineteenth century are more pronounced 
for the minimum than for the maximum temperature, cor-
roborating previous studies that identified the asymmetric 

Fig. 3  Change between the period 1971–2000 and the period 1871–
1900 of the minimum temperature (left panels) and of the maximum 
temperature (right panels) as a function of surface elevation for each 
season and for the CMIP5 MMM (2× 2 degrees horizontal resolu-

tion). The slope of linear regression (◦C km
−1) is indicated (see text 

for details); a star in parentheses indicates the statistical significance 
of the elevational gradients
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nature of warming rates in the Tibetan Plateau (e.g., Liu 
et al. 2009). A stronger warming trend in the daily mini-
mum than maximum temperatures was also reported for 
other mountain areas, for example the Alpine region, as 
described in (Jungo and Beniston 2001).

3.2  Projected changes: 1971–2100

The same analyses performed for the historical period are 
repeated to assess the simulated elevational gradients of 
warming by the end of the twenty-first century. Figure 5 
shows the same as Fig. 3 but the minimum and maxi-
mum temperature changes are calculated as the difference 
between the 2071–2100 climatology and the 1971–2000 
climatology using the model projections under the RCP 8.5 
scenario (from 2006 onwards). A marked elevation-depend-
ent warming signal is found for the minimum temperature 
in all seasons; the strongest signal for the maximum tem-
peratures is found in autumn.

The elevational gradients of warming rates in the sce-
nario simulations are higher than in the historical period: 
the slopes calculated over the whole range of altitudes (red 

lines and the corresponding figures in the legend of Fig. 5) 
are from about 10 (minimum temperatures in spring and 
maximum temperatures in winter) to about 30 (minimum 
temperatures in winter and maximum temperatures in sum-
mer) times higher than those evaluated for the historical 
period. The absolute value of warming in itself is consider-
ably higher than in the historical model simulations.

As already pointed out for the elevational gradients of 
warming rates in the twentieth century, the relationship 
between the temperature change and the elevation emerg-
ing from Fig. 5 is far from simply linear, which is also well 
visible in the top panels of Fig. 6 (the same as Fig. 4, but 
for the future scenarios). The two-fold behaviour observed 
in the historical period is emphasized in the future projec-
tions and the stronger absolute value of warming likely 
allows to better separate the actual signals from the back-
ground noise. The inter-model spread of the minimum 
and maximum temperature changes at different elevations 
is relatively large, larger in the scenario simulations than 
in the historical ones (Fig. 6 compared to Fig. 4). Interest-
ingly, the inter-model spread tends to increase as the eleva-
tion increases, particularly from ∼3000 m above sea level 

Table 2  Summary of the modeled elevational gradient (slope of the 
linear regression, in ◦C km

−1, describing the temperature changes as 
a function of the elevation in the twentieth and twenty-first centuries) 

in the Tibetan Plateau-Himalayas for the multi-model mean of the 
CMIP5 ensemble. Values in parentheses indicate the slope of the lin-
ear regression for the data points fitted from 1500 m upwards

All values are statistically significant (p < 0.05)

1871–2000 DJF MAM JJA SON

tasmin 0.0135 (0.0327) 0.0348 (0.0783) 0.0106 (0.0185) 0.0173 (0.0482)

tasmax 0.0262 (0.0445) 0.0165 (0.0473) 0.0154 (0.0417) 0.0164 (0.0273)

 1971–2100 DJF MAM JJA SON

tasmin 0.3701 (0.3908) 0.2803 (0.4631) 0.2807 (0.1612) 0.2789 (0.4402)

tasmax 0.2635 (0.3661) 0.2231 (0.2491) 0.3816 (0.1324) 0.4584 (0.3098)

Fig. 4  Minimum and maximum temperature change between the 
1971–2000 climatology and the 1871–1900 climatology as a function 
of surface elevation for the multi model mean data averaged in bins 
with width 150 m, for the four seasons. The blue (red) lines show the 

multi-model mean of the GCM ensemble while the line-filled (solid-
filled) areas represent the range of variability of the models measured 
as one standard deviation greater and less than the MMM for the min-
imum temperature (maximum temperature)
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upward (see also Figure S2 of the Supplementary Informa-
tion). This highlights that model simulations tend to be in 
less agreement with each other at higher altitudes, possible 
owing to problems in representing the complex orography 
of high-elevation regions. Figure 6, as well as Fig. 4, shows 

the results for the MMM and the inter-model standard devi-
ation, but the same conclusions can be drawn if the multi-
model median and the percentiles are used instead.

The two-fold behaviour mentioned above is clearly evi-
dent in the bottom panels of Fig. 6, where the minimum and 

Fig. 5  Change between the period 2071–2100 and the period 1971–
2000 of the minimum temperature (left panels) and of the maximum 
temperature (right panels) as a function of surface elevation for each 
season and for the CMIP5 MMM (2× 2 degrees horizontal resolu-

tion). The slope of linear regression (◦C km
−1) is indicated (see text 

for details); a star in parentheses indicates the statistical significance 
of the elevational trend
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maximum temperature changes are plotted as a function of 
the mean surface temperature, rather than as a function of 
the mean elevation. The mean temperature is calculated as 
the average between tasmin and tasmax also averaged over 
the 30-years long time periods. In particular, the wintertime 
signal in the minimum temperature is strongly emphasized 
and the switch between the two regimes occurs close to the 
0◦C isotherm. It is interesting to note that these considera-
tions hold true not only for the MMM and the inter-model 
spread, but also for each individual model (not shown 
here), which gives robustness to these findings. The exist-
ence of different temperature responses in regions with 
temperatures above and below the freezing point observed 
for tasmin in winter seems to occur also in the other sea-
sons and for tasmax (Fig. 6) even if the signal is gener-
ally less evident and the switch between the two regimes 
is smoother and less localized across the zero-degree iso-
therm. The two-fold behaviour in the relationship between 
temperature change and elevation is not evident during 
summer: the bottom panels of Fig. 6 suggest that the two 
regimes might not exist in this season simply because there 
are almost no points with mean temperatures below zero.

Interestingly, Fig. 6 shows that daily asymmetry in 
warming rates observed in the historical period is strongly 
reduced and almost disappears in the projections. The 

winter season represents the only notable exception: from 
about 1500 m upward, in fact, the minimum temperatures 
are projected to warm much more than the maximum 
temperatures.

Looking at the individual model outputs presented in the 
SI (Tables S3 and S4), it is interesting to note that, unlike 
in the historical simulations, almost all models simulate 
positive elevational gradients of temperature changes in the 
future and in the various seasons, particularly true for the 
maximum temperature (Table S4). Despite that, the inter-
model spread remains very high and it increases at higher 
elevations (Figures S3 and S4). Table 2 summarizes the 
slopes of the linear regression between the minimum/maxi-
mum temperature changes and the elevation for the CMIP5 
MMM in the future projections (as observed for the histori-
cal simulations, all values are statistically significant).

4  Mechanisms

The analyses reported in Sect. 3 indicate that the CMIP5 
models and their multi-model mean depict a situation in 
which warming is amplified with elevation and this is 
found both in the historical simulations and in the projec-
tions under the RCP 8.5 scenario, the signal being much 

Fig. 6  Minimum and maximum temperature change between the 
2071–2100 climatology and the 1971–2000 climatology as a function 
of surface elevation for the multi model mean data averaged in bins 
of width 150 m (top panels) and as a function of the mean tempera-
ture for the multi model mean data averaged in bins of width 1◦C for 

the four seasons (bottom panels). The blue (red) lines show the multi 
model mean of the GCM ensemble while the line-filled (solid-filled) 
areas represent the range of variability of the models measured as one 
standard deviation greater and less than the MMM for the minimum 
temperature (maximum temperature)
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stronger in the latter case. Also, the link between tempera-
ture changes and elevation is described by a more complex 
relationship than a simple linear one and two main regimes 
can be distinguished, corresponding to temperatures above 
and below the zero-degree isotherm. This would suggest a 
leading role of mechanisms exhibiting enhanced sensitiv-
ity around 0 ◦C and therefore likely involving water phase 
changes, the presence/absence of snow and the snow-
albedo feedback.

In this section we explore further the mechanisms lead-
ing to EDW in the Tibetan Plateau-Himalayas. For the 
sake of conciseness, we consider only the cases (i.e. vari-
ables, seasons and periods) showing the strongest EDW 
signal, namely the minimum temperature during winter 
and the maximum temperature during autumn in the RCP 
8.5 scenario (see in particular Table 2). We analyze other 
CMIP5 model variables whose variations may be important 
for determining temperature variations and their depend-
ence on the elevation. The variables which we focus on are 
albedo, surface downwelling longwave radiation, surface 
downwelling shortwave radiation, and near-surface spe-
cific humidity, which may affect the minimum and maxi-
mum surface temperature changes both directly and indi-
rectly by means of, e.g., feedback mechanisms involving 
clouds. Changes of these variables between the end and 
the beginning of the twenty-first century (hereafter called 
∆albedo, ∆rlds, ∆rsds, and ∆huss) are computed in the 
same way as the minimum and maximum temperature 
changes and are considered as possible drivers of EDW. In 
addition, we include three other possible drivers, namely 
the normalized changes (i.e., the fractional changes rela-
tive to the averaged climatology between the mean in the 
years 1971–2000 and the mean in the years 2071–2100) 
in surface downwelling longwave and shortwave radiation 
(∆rlds/rlds0, ∆rsds/rsds0) and in near-surface specific 
humidity (∆huss/huss0) since they could be more effective 
in determining elevation-dependent temperature signals, as 
highlighted in previous studies (e.g., Rangwala et al. 2013; 
Rangwala et al. 2016). In particular, the authors of those 
studies pointed out that the normalized change in specific 
humidity is a more appropriate metric than the absolute 
change, because of the sensitivity of the downward long-
wave radiation to water vapour changes. For the same 
increase in atmospheric water vapour amount, indeed, the 
downward longwave radiation increases more, as percent-
age, when the mean state is drier (as in the high-elevation 
sites) and less when it is wetter (as in lower-elevation sites), 
leading to higher warming rates at higher elevations. Sum-
marizing, we identify the following seven possible driv-
ers of EDW: ∆albedo, ∆rlds, ∆rsds, ∆huss, ∆rlds/rlds0,  
∆rsds/rsds0, ∆huss/huss0. In order to understand if 
these changes are actually driving EDW in the study area 

considered here, we check if they satisfy the following 
three conditions:

1. they have to exhibit a significant dependence on eleva-
tion, as the temperature change does

2. the sign of this dependence has to be consistent with 
the observed changes in surface temperatures, i.e. with 
the amplification of the warming rate at higher eleva-
tions

3. they have to spatially correlate with temperature 
changes even when the dependence on elevation is 
removed.

Since we select as variables of interest those which present 
significant correlations with elevation (condition 1), they 
will also all be correlated with temperature changes, which 
also have been found to correlate with altitude. Condition 3 
is useful to identify those variables which, independently of 
elevation, still correlate with temperature changes. Condi-
tion 2 represents a check if there is a known physical mech-
anism which can link their variations with altitude with the 
altitudinal dependence of temperature changes.

The first step is to check for the existence of a signifi-
cant relationship between ∆albedo, ∆rlds, ∆rsds, ∆huss, 
∆rlds/rlds0, ∆rsds/rsds0, ∆huss/huss0 and elevation. Fig-
ure 7 shows, for each individual GCM and for the MMM, 
the correlation coefficients between each of the seven pos-
sible drivers and elevation during winter; the correlation 
coefficient between ∆tasmin and the elevation is also dis-
played for completeness. White boxes appear when the cor-
relations are not statistically significant. The MMM shows 
that all correlations are statistically significant except those 
involving the changes of the surface downward shortwave 
radiation (both absolute and normalized). This is consistent 
with the signal emerging from the individual GCMs, show-
ing a general consensus in the sign of the correlation coef-
ficients involving all variables but ∆rsds and ∆rsds/rsds0, 
for which correlations of either signs occur. The same result 
is found in autumn (Fig. 8), the season in which the strong-
est EDW signal is observed in tasmax. Another interesting 
feature emerging from Fig. 7 is that, in spite of the signifi-
cant correlation found in the MMM between ∆albedo and 
the elevation in DJF, the lowest resolution models (from 
IPSL-CM5B-LR to FGOALS-g2, except bcc-csm1-1) show 
no significant correlations instead, suggesting that their 
poorer depiction of the topography in the Tibetan Plateau-
Himalayas hampers an accurate representation of surface 
processes in these models. This first-level analysis suggests 
not to include the changes (both absolute and normalized) 
of rsds in the successive steps, since they do not show a 
clear dependence on the elevation (i.e., they do not satisfy 
the first condition listed above).
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To verify the fulfilment of the second condition, the sign 
of the correlation coefficients has to be considered. Basic 
physical considerations imply that, in order to be consistent 

with the elevational gradient of the temperature change, 
changes of rlds and huss have to exhibit the same eleva-
tional dependence as the temperature change does, since an 

Fig. 7  Correlation coefficient 
between the following variables - 
∆rsds, ∆rlds, ∆huss, ∆albedo, 
∆rsds/rsds0, ∆rlds/rlds0, 
∆huss/huss0, ∆tasmin - and the 
elevation for all CMIP5 models 
and for the multi-model mean 
(MMM) in DJF and in the study 
area
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in SON. In this case the cor-
relation between the change in 
tasmax and elevation is shown
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increase in these variables determines an increase in tem-
perature as well. Vice versa, albedo changes have to exhibit 
an elevational gradient of opposite sign, since an increase 
in albedo causes less absorption of heat by the surface and 
a decrease in surface temperature. Figures 7 and 8 confirm 
that the temperature changes are positively correlated with 
elevation. This holds true for both ∆tasmin and ∆tasmax . 
The figures also show that ∆rlds/rlds0 and ∆huss/huss0 
are positively correlated with elevation, while ∆albedo, 
∆rlds and ∆huss are negatively correlated. This excludes 
from the ensemble of the possible EDW predictors the 
absolute changes of rlds and huss since their negative cor-
relation with the elevation is not physically consistent with 
the enhanced warming at higher elevations.

The considerations made so far suggest that the three fol-
lowing variables may drive the positive elevational gradient 
of ∆tasmin in winter and of ∆tasmax in autumn: ∆albedo, 
∆rlds/rlds0, and ∆huss/huss0. However, although all of them 
vary with elevation and their elevational gradient has the “right 
sign”, their correlation with the temperature change could 
arise simply because they exhibit a dependence on the eleva-
tion as the temperature change does, without any causal corre-
lation with temperature changes and the associated EDW. For 
this reason, we check for the third condition to be satisfied: 
∆albedo, ∆rlds/rlds0, and ∆huss/huss0 have to spatially 
correlate with the temperature change even when we “control 
for” elevation (i.e., when we remove the linear dependence of 
these variables and of the temperature change on the elevation) 
in order to be considered actual drivers of EDW. To this end, 
a multiple regression model is used where the three possible 
EDW drivers are used as predictors for the seasonal change in 
either tasmin or tasmax (the predictand). The resulting multi-
ple linear regression model can be written as:

where the apex is used to indicate that both the predictors and 
the predictand are “altitude-detrended” by removing their lin-
ear fit on elevation and that they are standardized variables 
(each change is divided by its standard deviation over the 
whole spatial domain). ∆T indicates the seasonal change in 
either tasmin or tasmax. This approach allows to test all the 
possible combinations of the three predictors including all or 
part of them. Each combination leads to a different regression 
model. Overall, the possible models are (2n − 1) = 7, with 
n = 3 predictors and include the three regression models with 
one single predictor, the three models with the combinations 
of two predictors and the model with all three predictors. The 
predictive ability of the seven regression models is assessed 
by examining the proportion of the variance they can explain, 
which can be measured by the coefficient of determination R2:  
the closer R2 is to 1, the better the model predictive ability 
is. Since by construction the regression model including all 

(1)

∆T
′
= a1∆albedo

′
+ a2(∆huss/huss0)

′
+ a3(∆rlds/rlds0)

′
+ η

predictors is associated with the highest value of R2, the Akaike 
information criterion corrected for finite sample sizes is used 
to measure the relative quality of the models (AICc, Burnham 
and Anderson 2003). This metric allows to rank the regression 
models with different number of predictors penalizing those 
with more and favoring those with less predictors. The lower 
the AICc, the better the model. The seven multiple regression 
models are applied to all 27 GCMs and to their MMM.

The resulting coefficients of determination are graphi-
cally shown in Fig. 9 (prediction of the minimum tem-
perature change in DJF) and in Fig. 10 (prediction of the 
maximum temperature change in SON). For completeness, 
the average of the R2 values across the different GCMs is 
also reported, 

〈

R
2
〉

. The bottom part of Figs. 9 and 10 indi-
cates which predictors are “switched on” (black squares) or 
“switched off” (blank) in each regression model. To facili-
tate the interpretation of the results, Table 3 summarizes 
the results for the MMM. In this table, the seven regres-
sion models are ranked in order of increasing AICc values. 
As a starting point, we consider the prediction of ∆tasmin 
in DJF and focus on the MMM of the CMIP5 models 
for conciseness (Fig. 9 and upper part of Table 3). In this 
case, ∆albedo emerges as the driver having a leading role 
for EDW. In fact, the four models including ∆albedo as a 
predictor show the highest values of R2 among the seven 
regression models for the MMM. In particular, among the 
three single-predictor models, the one with ∆albedo shows 
the highest R2. The three multi-predictor models includ-
ing ∆albedo in conjunction with any other variable are 
capable of accounting for most of the variance of the pre-
dictand (more than 75%). The other predictors are gener-
ally less relevant than ∆albedo but nonetheless they play 
a role in the performance of the regression model at hand. 
As mentioned, indeed, the multi-predictor models includ-
ing ∆huss/huss0 and/or ∆rlds/rlds0 in addition to ∆albedo 
are the ones showing the best (i.e. the lowest) AICc values.

Similar considerations can be drawn for the prediction of 
∆tasmax in SON (Fig. 10 and lower part of Table 3). Also 
in this case the four regression models including ∆albedo 
as a predictor show the highest values of R2 for the MMM. 
Again, the other predictors are less relevant than ∆albedo 
but their presence still increases the variance explained by 
the regression model. However, in this case lower R2 val-
ues are found. This holds true for both the MMM as well 
as for most of the individual GCMs. The only exception 
is for a group of GCMs including CNRM-CM5 and the 
GFDL and GISS “model families”, for which the R2 val-
ues of the regression models including ∆albedo are rather 
high. The low R2 values shown by the regression models 
during SON indicate that the three predictors are not able 
to explain much of the variance of ∆tasmax in this season, 
and that some other relevant drivers may be at work. In this 
regard, it has to be noted that the predictors considered here 
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Fig. 9  Top coefficient of determination R2 of the seven regression 
models for each GCM and for the MMM. The averaged value of R2 
across the GCMs is also reported 
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. Bottom the seven regression 

models obtained through the combinations of the three predictors, a 
black box indicating which predictor is included in each model
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Fig. 10  The same as Fig. 9 but for ∆tasmax in SON
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have been chosen also considering processes and variables 
suggested by previous studies which have mainly focused 
on minimum temperatures, the winter season, and slightly 
different areas (see for example Liu et al. 2009; Rangwala 
et al. 2016). As such, lower R2 for prediction of the maxi-
mum temperature changes in other seasons can be expected 
and are not so surprising.

It is worth noting that the GCMs exhibit very large differ-
ences with each other (see Figs. 9, 10). This significant inter-
model spread suggests that the processes associated with the 
positive temperature anomalies and driving the EDW signal 
in different GCMs are treated differently. It is interesting to 
note that the GCMs belonging to the same “model family” 
provide more similar signals with each other than with other 
independent models (see Knutti et al. 2013 for an overview of 
the lineage connections among the climate models used in this 
study). The reasons for such inter-model discrepancies are not 
explored in the present study, but could be related, among the 
others, to a different description and treatment of aerosols and 
clouds that can affect the radiation transfer in the atmosphere.

5  Conclusions

Elevation-dependent warming (EDW) in the Tibetan Pla-
teau-Himalayan region has been investigated using twenty-
seven global climate models of the CMIP5 ensemble. 
Results indicate higher warming rates at higher elevations 

in this region, both in the historical model simulations and 
in the projections under the RCP 8.5 emission scenario. 
The EDW signal is amplified in the future simulations with 
respect to the historical period, and it is particularly strong 
for the minimum temperatures in winter and spring and for 
the maximum temperatures in summer and autumn. While 
being in many aspects consistent with previous modeling 
studies (e.g., Rangwala et al. 2013; Liu et al. 2009 and 
others) which analyzed EDW in the high-altitude regions 
of the Tibetan Plateau (and therefore in a smaller region 
than that taken into account in our study), in this paper we 
emphasize specific aspects not much discussed previously. 
First of all we show that the relationship between the maxi-
mum and minimum temperature changes and the elevation 
is not simply linear. At least two different regimes can be 
identified occurring at temperatures below and above the 
zero-degree isotherm: the regions with temperatures below 
freezing show a much stronger warming than the regions 
with temperatures above, suggesting that the phase of water 
and/or the presence of snow play a key role.

To better understand the mechanisms that drive EDW in 
this region, a number of variables that may be relevant in 
determining the stronger warming of higher elevations have 
been investigated. These variables are: ∆albedo, ∆rlds , 
∆rsds, ∆huss, ∆rlds/rlds0, ∆rsds/rsds0, ∆huss/huss0 . 
Only three of them, however, – ∆albedo, ∆rlds/rlds0 , 
∆huss/huss0 – satisfy the necessary conditions to act as 
possible EDW drivers: (1) to exhibit a significant depend-
ence on the elevation, as the temperature change does; (2) 
to be correlated with the elevation in such a way that they 
can support the amplification of warming rates at higher 
elevations; and (3) to spatially correlate with the temper-
ature change even when the dependence on the elevation 
is removed. The relative importance of these variables in 
determining temperature changes has been assessed using 
a multiple regression model. ∆albedo emerges as the 
driver having a leading role for EDW. For both prediction 
of ∆tasmin in DJF and ∆tasmax in SON, in fact, the four 
models including ∆albedo as a predictor show the highest 
values of explained variance (R2) among the seven regres-
sion models for the MMM. In particular, among the three 
single-predictor models, the one with ∆albedo shows the 
highest R2. The three multi-predictor models including 
∆albedo in conjunction with any other variable are capa-
ble of accounting for most of the variance of the predictand 
(more than 75% in winter). The other two predictors are 
generally less relevant than ∆albedo but nonetheless they 
have a non-negligible impact on the performance of the 
regression model. More extensive analysis is needed to 
include other possible drivers of EDW, such as aerosol par-
ticles or clouds. Another important aspect would include 
the analysis of the potential correlations between the driv-
ers—for example between changes in downward shortwave 

Table 3  For each of the seven regression models, the top (bottom) 
part of the table shows the values of the coefficients a1, a2, and a3 
of the regression (see Eq. 1) for the prediction of ∆tasmin in DJF 
(∆tasmax in SON). For each model the coefficient of determination 
R2 and the AICc are shown. The models are ranked according to the 
AICc values. The results refer to the MMM

Model a1 a2 a3 R2 AICc

∆tasmin DJF

1 −0.76 0.23 0.51 0.84 −0.87

2 −0.79 0.71 0.82 −0.80

3 −0.68 0.71 0.77 −0.53

4 −0.60 0.36 0.48

5 0.56 0.32 0.54

6 0.49 0.09 0.32 0.55

7 0.50 0.25 0.64

∆tasmax SON

1 −0.37 0.25 0.26 −0.08

2 −0.38 0.57 −0.33 0.28 −0.08

3 −0.39 0.19 0.25 −0.05

4 −0.46 – – 0.21 −0.02

5 – 0.73 −0.37 0.15 0.06

6 – 0.38 – 0.14 0.06

7 – – 0.32 0.10 0.10
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radiation and changes in downward longwave radiation, 
both associated with the presence and type of clouds, or 
changes in downward shortwave radiation and consequent 
changes in surface albedo—because they might lead to 
compensation or amplification of the individual effect 
of the drivers on the enhanced warming rates at higher 
elevations.

More research is needed to understand the inherent 
complexity of mountain regions in general and of the 
elevation-dependent warming in particular, especially 
given the environmental and socio-economical impacts of 
a changing climate in mountains. The model studies per-
formed so far to investigate the processes associated with 
EDW have employed global climate models mainly. The 
change in surface albedo turns out to be a main driving 
factor for EDW in the Tibetan Plateau-Himalayas, sug-
gesting the urgency of further developing models of those 
Earth system components which affect albedo, including 
(but not limited to) snow cover and mountain glaciers. 
Proper simulation of snow cover requires appropriate sim-
ulation of snowfall and hence of clouds and cloud dynam-
ics and processes, which are subgrid-scale phenomena in 
state-of-the-art GCMs. Also, the implementation of proper 
parameterizations for the dependence of snow albedo on 
snow age, depth, terrain characteristics, aerosol deposition 
and others is of major importance. The study by Essery 
(2013), for example, found that snow-covered albedo sim-
ulations depend much more on the choice of the param-
eters than on the specific scheme implemented in the land-
surface model itself. They suggested that a correction of 
the albedo-related parameters to constrain the simulated 
albedo on the basis of satellite observations could reduce 
the inter-model spread for snow-covered albedo and 
should be applied in the next generation of CMIP mod-
els. Modelling glaciers, their dynamics, and the effects 
of climate change on them is quite complex, too. Glacier 
expansion and retreat depend on the balance between 
accumulation and ablation and, therefore, winter snowfall 
and summer temperatures are key ingredients to assess the 
future glacier conditions. Previous studies (e.g., Su et al. 
2013) highlighted that there is a deficiency in the way 
the CMIP5 models represent snow and ice albedo, which 
is mentioned as one of the main causes for the cold bias 
that still affects many GCM simulations. The largest cold 
biases just appear in areas with varying topography and 
permanent ice (Mao and Robock 1998). The standard out-
put of the CMIP5 GCM simulations includes information 
on the fraction of grid cell occupied by permanent ice (i.e, 
glaciers), as well as other snow-related variables like snow 
cover, snow depth or snow water equivalent, snow melt 
fluxes, and others. These variables are land fields and are 
produced by the land vegetation models that are coupled 
to the other model components in the state-of-the-art Earth 

System models. Therefore, besides improving the param-
eterizations for subgrid-scale processes, also improving 
the land-surface models would lead to a better description 
of the high-mountain cryosphere system. Besides that, the 
use of finer resolution models would be useful to depict 
the complex topography of mountain regions in a more 
realistic way and therefore improve the way the models 
represent the changes of snow at ground (e.g., Terzago 
et al. 2014). The same considerations apply for other radi-
ation-related processes (involving clouds in particular) and 
other surface processes which would benefit from the use 
of high-resolution climate models (possibly including non-
hydrostatic approximations for the atmospheric vertical 
motions). At the same time, however, analyzing the capa-
bilities of the GCMs in reproducing EDW and its driving 
mechanisms is important, since global climate models are 
the large-scale drivers of regional models and are crucial 
for many climate change assessments and impact studies 
(IPCC 2013).

Our results do not still have a solid observational coun-
terpart because of the inadequacy or even the lack of 
ground-based station networks in (some portions of) these 
regions. More in-situ observatories, complemented by sat-
ellite data and appropriate analysis methods, would be nec-
essary to measure EDW and to evaluate and validate the 
CMIP5 model performances, in order to be more confident 
of their projections on future elevation-dependent warming 
and its consequences.
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