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Abstract

The value of different strategies for consolidating the information in European Centre for
Medium Range Weather Forecasting (ECMWF) forecasts to wind energy generators is investi-
gated. Simulating the performance of generators using the different strategies in the context
of a simplified electricity market revealed that ECMWF forecasts in production decisions
improved the performance of generators at lead times of up to 6 days. Basing half-hourly
production decisions on a production forecast generated by condtioning the climate on the
ECMWF operational ensemble forecast yields the best results of all the strategies tested.
 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the challenges faced by wind energy producers is the variation in power
output caused by unpredictable fluctuations in wind velocity over a time scale of
hours or days. As wind energy increases its penetration of the overall electricity
market, it comes into competition with other forms of electricity generation that are
less susceptible to output variations. To maintain the total power supply equal to
total demand, it is necessary to compensate for fluctuations in wind energy pro-
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duction with other forms of generation; this uncertainty in output reduces the value
of wind generation.

Weather forecasts can, in principle, be used by wind energy producers to make
better decisions. These decisions can have genuine value in the context of an elec-
tricity market.

The fact that weather forecasts are imperfect affects how they can be used in
making wind prediction decisions. For very short lead times (�1 hour) time series
forecasting methods can be used to forecast power production [18]. In this paper,
we focus on forecasts for lead times from 1 to 10 days, so-called “medium-range”
forecasts. We consider the forecasts from the numerical weather prediction (NWP)
computer model run by the European Centre for Medium Range Weather Forecasting
(ECMWF). This model has a spatial resolution of about 60 km and forecasts are
issued every 12 h. These forecasts must be converted into the corresponding power
output of a wind farm. The forecast end product should be a probabilistic description
of wind energy production for each period for which a production decision must be
made (e.g. 30 minutes in the UK market). Given that producers must specify pro-
duction levels 3.5 h before delivery in the UK market and 12 to 36 h before delivery
in Nordpool, readers might question the value of medium-range forecasts, even very
accurate ones, to the wind energy sector. The purpose of this paper is to explore the
potential value of wind forecasts in a fully commoditized energy market, with active
future and forward contract trading.

In the meteorological literature there are several methods for assessing the value
of probabilistic forecasts [10]. These methods include the Brier Score [2], Ranked
Probability Score [4,11], Relative Operating Characteristics (ROC) [19,8] and Rank
Histograms [1,5,20,6] and information content [16]. The above methods are general
methods for assessing forecast skill and are largely user-independent.

The value of a forecast, however, does not stem solely from the forecast’s accu-
racy, but from how the forecast can be used to improve decision making. Previous
studies of the impact on decision making of ECMWF forecasts have focused on
binary decision scenarios [15], although the framework for how they might be used
in continuous decision-making situations has been outlined [17]. In this report, we
consider several strategies for consolidating the information in an ECMWF medium-
range forecast with other information available to the decision maker. These stra-
tegies are evaluated in the context of a specific decision-making environment, namely
a simple model of an electricity market. While the market model we used is very
artificial, the synthetic power production data were generated from measured wind
speed data from the CLRC Rutherford Appleton Laboratory, Energy Research Unit
(ERU) test site in Oxfordshire, UK. We show that the information consolidation
strategy can have a substantial impact on the value of a wind generation pro-
duction facility.

While the specific decision model we consider here may not be appropriate to all
wind energy producers, the general framework we provide for consolidating forecast
information with other sources of information and the method of evaluation the stra-
tegies should prove useful in a variety of decision-making situations. The framework
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should also be of interest to meteorologists, as it is within decision-making contexts
that their forecasts must perform.

2. A model of wind energy decision making

In deregulated markets, it is crucial for electricity generators to be able to make
reliable promises of energy for delivery to the grid at a future time. In this respect
wind generators are at a disadvantage compared with other types of generators
because of the inherent unpredictability of their production levels. Partly for this
reason some deregulated markets exempt wind energy producers from penalty pay-
ments for failure to satisfy supply obligations. The exact rules differ between markets
and such exemptions may not be sustainable as wind energy penetration increases.
In a fully liberalized market the ability to forecast future production levels could
yield substantial financial advantage.

We model the mechanism by which producers promise to deliver energy to the
grid in terms of a contract to provide a target amount of electricity, Ec, for a particular
half-hour in the future. The producer is paid a fixed unit price, Pc, for this promised
electricity. If, when the half-hour arrives, wind production at the generator’s wind
farm is not sufficient to satisfy the contract, then the generator must satisfy the
contract by purchasing the shortfall on the spot market at a cost of Ps per unit. If
Ea is the actual amount of electricity produced by the wind farm for the half-hour
in question, then the net income, I, of the wind farm for the period is given by

I � �Ec·Pc when Ea�Ec

Ec·Pc�(Ec�Ea)·Ps when Ea � Ec

. (1)

The actual production level, Ea, and the spot price, Ps, are both unknown when the
contract is written.1 We assume that the user is risk-neutral, with the sole aim of
maximizing their expected income.2 In making its decision, the producer needs to
balance two factors: the income Ec·Pc that comes from promising to deliver energy
Ec versus the risk of a penalty if Ea falls short of Ec. Given the values of Ea and Ps,
the income, I, of the wind farm for the contract period is given by Eq. (1).

Consider first a simplified situation where the spot price, Ps, is known and only
the actual production Ea is uncertain. Presumably, Ps � Pc, otherwise there would
be no incentive for the wind energy producer to keep Ec at realizable levels.

From the wind energy producer’s perspective, the uncertainty in Ea at the time the
contract is agreed to can be summarized by a probability distribution. This probability

1 Note that overproduction, i.e. Ea � Ec, has no value in this model, but the model could be changed
to incorporate a value or a penalty for production beyond Ec.

2 Risk-averse users may build a risk penalty into their utility function. In this case, access to alternative
generation can be used to reduce this risk penalty, but it will not affect the decision made by a risk-
neutral user—it merely changes the actual cost of having to buy any shortfall on the spot market into
the opportunity cost of having excess capacity. Aggregation of wind energy production will also reduce
the risk penalty.
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distribution can be represented as a density p(Ea), or, equivalently, in terms of a

cumulative distribution P(Ea) � �
Ea

0

p(x)dx, that gives the probability of Ea being less

than any indicated value. For reasons that will become clear, we prefer the cumulat-
ive format for describing probabilities.

The general form of P(Ea) is shown in Fig. 1. From fundamental considerations,
we know that P(0) � 0 and that P(Ea,max) � 1, where Ea,max is the maximum capacity
of the wind energy generating facility. Between these two extremes we know that
P(Ea) is a non-decreasing function, but the details of its shape depend on the specific
information I available to the wind energy producer, and we prefer to write P(Ea)
as a conditional probability, conditioned on the information I and denoted P(Ea|I).
We shall consider how weather forecast information can be consolidated with other
information to produce an overall I and the consequent P(Ea|I) in Section 3, but
for now we merely stipulate that the generator has some P(Ea|I).

To maximize total expected income the producer will set Ec at the level that maxi-
mizes I. But, since Ea and Ps are uncertain when the contract is signed, the producer
sets Ec to maximize the expected value of net income, I.

The optimal value of Ec is such that the marginal income from an additional unit
of promised electricity is exactly balanced by the expected penalty from failing to
meet Ec for that unit. This balance occurs when

Pc�P(Ec)·Ps � 0 or, equivalently, P(Ec) �
Pc

Ps

. (2)

Since Ps � Pc, the ratio Pc /Ps is always between 0 and 1. The optimal level, Ec,
can be calculated from inverting P(Ea|I) at the level Pc /Ps, i.e. setting Ec at the
100 × Pc /Ps percentile of P(Ea|I), as shown in Fig. 1. This is actually the familiar

Fig. 1. The general form of P(Ea|I), the cumulative distribution of the probability of Ea conditioned on
information I.
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binary cost–loss scenario [7]. In this case the decision that must be made is whether
to promise to supply the next unit of electricity.

An alternative way of deriving the same result is to consider the total expected
income. This is

�I� � Ec·Pc��
Ec

0

Ps·(Ec�Ea)p(Ea|I)dEa. (3)

The generator seeks to maximize �I� by adjusting Ec. Taking the derivative of �I�
with respect to Ec gives

d�I�
dEc

� Pc�Ps�
Ec

0

p(Ea|I)dEa � Pc�PsP(Ea|I). (4)

Setting d�I� /Ec � 0 yields the maximum value of �I� in agreement with Eq. (2).
In the more general case, Ps is also unknown at the time the contract is signed.

The income maximization problem then involves Ps in the integral; we need to con-
sider the joint distribution p(Ea, Ps|I) rather than p(Ea|I), and integrate over the poss-
ible values of Ps:

�I� � Ec·Pc��
�

0

�
Ec

0

Ps·(Ec�Ea)p(Ea,Ps|I)dEadPs. (5)

In the special case when Ps is independent of Ea, this reduces to

d�I�
Ec

� Pc��
�

0

Psp(Ps|I)dPs�
Ec

0

p(Ea|I)dEa � Pc��Ps�P(Ea|I). (6)

Only the expectation value of Ps enters into the decision. It is this special case that
we consider here, since we have no data indicating a relationship between Ea and
Ps. However, any hypothesized dependence of Ps on Ea could easily be incorporated
into our method. Note that while the Ec decision depends only on �Ps�, the actual
income depends on Ps itself.

3. Constructing P(Ea|I)

In the conditional probability P(Ea|I) that is used to set the production level Ec,
the conditioning variable I is the totality of information available to the decision
maker. Information I might include specialized knowledge of local conditions and
past performance of the wind energy generator, information from local monitoring
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of wind and atmospheric conditions; knowledge of the season and seasonal trends,
weather forecasts from numerical weather prediction (NWP) models, and so on.

An important component of I is information about how to combine these various
sources of information: we call these “ information consolidation strategies” . In this
paper, we compare six different strategies which involve information that we expect
would be generally available to wind energy decision makers. These different stra-
tegies lead to different probability distributions and therefore potentially different
production decisions. In Section 4 we use a simulation method to evaluate the conse-
quences of these decisions in terms of the total income produced by the wind energy
generation facility.

The strategies are described below.

3.1. Climatology

We assume that the wind generator has a record of past energy output organized
by time. Since energy output is highly correlated with wind velocity (cubed), a finely
sampled time series of wind velocity might provide the requisite information. Such
a historical record is considered climatological information by meteorologists since
it is conditioned on time and not on the measured state of the atmosphere. We
therefore adopt the term “climatology” to describe this strategy. Typically there is
a regular diurnal variation in the strength of the wind, so we normalized the power
production with respect to this diurnal cycle. The normalized power production is

W∗(day,hour) �
W(day,hour)

�W(hour)�
, (7)

where W(day,hour) is the power production on a given day at a given hour and
�W(hour)� is the power production at the given hour averaged over the data set.

For this report, we generate P(Ea|I(climate)) by fitting a parametric model to the
historical data of W∗, where the parameters vary according to calendar date. This
model assumes that, for a given day of the year, the normalized, average half-hourly
production is a random variable with a gamma distribution given by

r(W∗) �
lr

�(r)
Wr�1

∗ e�lW∗,W∗ � 0. (8)

For the CLRC ERU site used in our study, the parameter values used were

r � 0.6 (9)

and

l � �0.095sin� 2pd
365.25��0.51cos� 2pd

365.25� � 0.73, (10)

where d is the day of the year. Fig. 2 compares the distribution of half-hourly pro-
duction given by Eqs. (8) and (10) with the histogram of half-hourly productions
for six days of the year. In each case the histogram was constructed using a two-
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Fig. 2. A comparison of the distribution of mean half-hourly power production given by the climatolog-
ical model (thick line) [Eqs. (8) and (10)] and the actual distribution of synthetic half-hourly production
constructed using the high-frequency ERU wind data (thin line). The actual distributions were constructed
using the two-week period centred on the date in question.

week period centered on the date in question. The value of W∗ was then converted
to a value of Ea by multiplying by �W(hour)� corresponding to the time of day
being predicted.

The simple conditioning on calendar date reflects the relative paucity of historical
detailed wind measurements available to us. With a richer database, the conditioning
might be extended to include the prevailing wind direction, and so on.
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3.2. Persistence

As is well known, tomorrow’s weather tends to be like today’s. Extending this
principle to wind generation, we can set P(Ea|I(persistence)) to be based on the
recent few days’ past history of power production. Time series analysis techniques
for this are described in Ref. [18].

In this report, we construct P(Ea|I(persistence)) as the empirical distribution of
diurnally normalized half-hourly energy production, W∗, for the 24 h prior to the
production decision multiplied by the value of �W(hour)� corresponding to the time
of day being predicted.

3.3. ECMWF best-guess forecast

The ECMWF (T319) NWP model forecasts atmospheric conditions at a set of
grid points spaced horizontally by approximately 60 km. We selected the surface
wind speed at the nearest station for which the ECMWF separately archives its fore-
casts. Systematic biases between the wind at the simulated wind farm and at the
station were corrected and the corrected wind was converted to a power production
using a turbine output profile described in Section 4. The ECMWF forecasts are
issued every 12 h although for this study we only used the forecasts issued for
midday; for each half-hour interval the forecast was taken to be that of the closest-
in-time ECMWF forecast.

The high-resolution ECMWF forecast is a single point, not a probability distri-
bution. For the purposes of decision making, we set the target production level Ec

to be the forecast production level. This simple scheme corresponds to a step-shaped
P(Ea|I(ECMWFhires)). It is easy to imagine other ways of translating the best-guess
forecast to a decision, for instance adjusting it based on past local experience. One
such method will be described below that conditions climate data on the best-
guess forecast.

3.4. ECMWF ensemble prediction system

In addition to generating a traditional single, high-resolution, best-guess forecast,
ECMWF also run an ensemble prediction system (EPS). This consists of an ensemble
of 51 forecasts made at a lower resolution. The leading ensemble member is
initialized with an initial condition corresponding to the one used to initialize the
high-resolution forecast, while the other 50 members have initial conditions obtained
by perturbing this condition. The ensemble prediction system is an attempt to quan-
tify the state-dependent predictability of the atmosphere [9]. This state-dependent
predictability can manifest itself as a sensitivity to initial conditions popularly known
as the “butterfly effect” .

As with the best-guess forecast, the wind velocity ensemble from the ECMWF
model was translated to power output using the function described in Section 4.
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3.5. Climate conditioned on the ECMWF high-resolution forecast

Rather than treating the ECMWF output as an actual forecast of physically observ-
able variables, we treat it as a concise description of the state of the atmosphere and
we use it as a conditioning variable into the climate data.

For this paper, using a database of historical NWP forecasts, we searched the
historical forecasts for the 10 days whose historical forecasts were closest to the
current ECMWF high-resolution forecast (smallest absolute difference). The 480
points of diurnally normalized half-hourly wind production for these 10 days were
extracted from the climate record and multiplied by �W(hour)� to produce
P(Ea|I(ECMWFhiresclimate)).

3.6. Climate conditioned on the ECMWF ensemble forecast

This is quite similar to climate conditioned on the best-guess forecast. Each ensem-
ble of windspeed forecasts was converted into a 3-vector, F, by ordering the ensemble
members, Vi, and then using the 5th, 25th and 46th members of the ensemble as coor-
dinates

F � [V5,V25,V46]. (11)

The coordinates were thus the 10th percentile, median and 90th percentile of the 51
member ensemble. The historical forecasts were then searched to find the 10 days
that had the smallest Euclidean distance between their own F-vector and the F-
vector of the current forecast. These 480 diurnally normalized half-hour points were
multiplied by �W(hour)� to generate a 480-step form for P(Ea|I(ECMWFepsclimate)).

4. Evaluating the strategies

Each information consolidation strategy leads to a probability distribution
P(Ea|I). The six strategies we consider here have I corresponding to one of
I(climate), I(persistence), I(ECMWFhires), I(ECMWFeps), I(ECMWFhiresclimate)
or I(ECMWFepsclimate). The probability distribution, which reflects the generator’s
knowledge, determines the optimal level of Ec for each half-hour contract by setting
P(Ec|I) � Pc / �Ps�. The income or loss that results from the chosen Ec depends on
the actual energy production Ea and the spot price Ps for the half-hour.

If we know the true probability distribution for each half-hour,
P(Ea|I(Omniscience)), we could readily compute the difference between the decision
made based on each strategy’s P(Ea|I) and the omniscient-optimal decision based
on P(Ea|I(Omniscience)). Pricing out the cost of the strategy’s decision using Pc and
Ps would give the relative value of each strategy.

Since we lack omniscience, we take a different approach: a simulation calculation
where we use actual measurements of wind velocity at the wind energy production
site and actual spot prices to calculate the income generated by each strategy. This
can be thought of, somewhat abstractly, as a kind of Monte Carlo simulation using
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Fig. 3. A one-week sample of the high-frequency wind data from the CLRC Rutherford Appleton Lab-
oratory Energy Research Unit in Oxfordshire. The data were taken at a height of 10 m and sampled at
1-m intervals.

P(Ea|I(Omniscience)), where we use the actual record during the simulation period
in place of truly random samples from the unknown P(Ea|I(Omniscience)).

We simulated a wind energy production site using high sampling frequency wind
speed data from the CLRC Rutherford Appleton Laboratory, Energy Research Unit
(ERU) test site in Oxfordshire, UK (51°34	9
N, 1°19	16
W). This data was measured
at a height of 7 m and at intervals of 1 minute. Fig. 3 shows a sample of these data.
The wind speed at the site showed a clear diurnal cycle, as revealed in Fig. 4. To
convert the high-frequency wind speed data into a wind turbine output level we used

Fig. 4. The average diurnal cycle in the windspeed at the ERU test site.
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the idealized power production profile shown in Fig. 5. We thus generated a synthetic
time series of half-hourly mean wind power production at the ERU site. This time
series was normalized by the diurnal cycle in production.

We used the ECMWF forecasts made for Heathrow Airport (LHR) (51°29	47
N,
0°26	10
W). Heathrow Airport is approximately 100 km from the ERU site.

As a proxy for the electricity spot price, Ps, we used the half-hourly System Mar-
ginal Price (SMP) for the UK, which we obtained from ESIS Ltd. This is not a spot
price but the price charged by the most expensive generator for production during
that half-hour period. The period of simulation was 1999–2000. Fig. 6 shows samples
of UK system demand and the corresponding System Marginal Price during winter
and summer.

For each half-hour period, a sample of 480 half-hour productions was generated.
For the climatology this sample was generated by picking 480 productions distributed
according to Eq. (8). For persistence, the 480 samples were picked with replacement
from the most recent 48 half-h. In the case of the ECMWF high-resolution forecast
all of the 480 samples were identical to this forecast, while when the ensemble
forecast was used the 480 samples were picked with replacement from the 51 mem-
ber ensemble. For the climate conditioned on the ECMWF forecasts, the 10 days
that had forecasts closest to the current forecast were used as the sample of 480
half-hour productions. Each of the 480 samples of power production was then paired
with a spot price generated by the stochastic spot price model described in the
Appendix. For a given value of Ec, the income averaged over the 480 pairs of (Ea, Ps)
could then be calculated. The value of Ec that maximized this average when Pc �
10 GBP/MWh was then found using a brent optimization algorithm [13].3 Once

Fig. 5. The profile of wind turbine output as a function of wind speed that was used for the study.

3 We note that since in this case predictions of Ps were independent of predictions of Ea, only the
value of �Ps� was actually required. However, the method we used of sampling the joint probability
distribution p(Ea, Ps) can be used when predictions of Ea and Ps are not independent. Since the weather
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Fig. 6. Samples of UK system demand and the system marginal price for January and July 1999. In the
demand panels the thick line is the actual demand and the thin line is the demand predicted using Eq.
(A2) described in the Appendix.

this value of Ec had been selected, the actual income that would have been made
for this half-hour was calculated using the synthetic production data from the ERU
site for Ea , the UK SMP for Ps and Pc � 10 GBP/MWh. Thus for each strategy a
time series of half-hourly net income was generated. For the strategy based on per-
sistence and the strategies based on ECMWF forecast products the simulations were

can influence the spot price of electricity as well as wind power production, some dependence between
Ea and Ps would not unreasonable.
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repeated for lead times of 1 to 10 days.4 The time series of half-hourly income were
then converted to time series of net weekly income. A bootstrap technique was used
to estimate the mean and variance of the annual income [3]. Fifty estimates of the
total annual income were made by picking 52 weeks with replacement from the time
series and summing them. This sample of 50 total annual incomes was then used to
estimate the mean and variance of this quantity.

5. Results

Fig. 7 compares the mean weekly net income obtained by generators using stra-
tegies based on the different wind forecasting methods. Persistence forecasting
underperforms relative to climatology even at a lead time of one day (Fig. 7a).

All of the forecasts based on ECMWF forecast products outperform climatology
at lead times of up to 5 days (Fig. 7b–e). Using the climate conditioned on the
ECMWF forecasts to estimate the distribution of half-hourly production yields better
results than treating the ECMWF forecasts in a deterministic manner. Fig. 7f com-
pares the mean weekly income of a generator using the climate conditioned on the
ECMWF ensembles and a generator using the climate conditioned on the ECMWF
best-guess forecast. The ensemble user can expect a higher mean income at all lead
times beyond 1 day and obtains the largest relative advantage at a lead time of 4
days. This is due to the performance of the deterministic user decaying faster with
lead time than the ensemble user. The ensemble conditioned climate shows value at
a lead time of 6 days. Fig. 8 compares the net daily income of a generator using
the climatological forecasts with that of a generator using the forecast generated by
conditioning the climate on the 4-day ensemble forecast.

We repeated the simulations using a simpler spot price model in the decision-
making process. The simpler model assumed a static log normal (demand-invariant)
distribution for spot price. We also repeated the simulations using a fixed contract
price of Pc � 20 GBP/MWh and also a variable contract price of Pc � 0.5�Ps�. In
all cases the relative performance of the strategies remained unchanged.

6. Discussion

Our results indicate that, in the context of the market model we used, the ECMWF
forecasts could be very valuable to wind energy producers. The single best-guess
forecasts provide most of the improvement over climatology. These forecasts double
net income at short lead times and even at 3 days income was boosted by 75%. Use
of the ensemble forecasts raised net income by up to 20% more and extended the
useful range of the forecasts by an extra day.

4 For all lead times, a single contract price of Pc � 10 GBP/MWh was used. In a real market one
would expect Pc to move closer to Ps as the lead time decreases.
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Fig. 7. Relative mean weekly net income as a function of forecast lead time for five different wind
forecasting methods described in the text. Panels (a)–(e) are normalized with respect to the profits of a
generator using the climatological wind model. Panel (f) compares the climate condtioned on the ensemble
forecasts with the climate conditioned on the best-guess forecast. The error bars are the standard errors
obtained by resampling with replacement [3].
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Fig. 8. Net daily income over the simulation period. Panel (a) is for a generator using the climatological
wind forecasts and (b) is a for a generator using the climate conditioned on the 4-day ECMWF ensem-
ble forecast.

Fig. 8 indicates that the unseasonably calm period during late January 2000 caused
the climatology user to suffer losses; however, even the ensemble user generally
outperforms the climatology user, and not just during this calm period. The 4-day
ensemble forecast user has a higher daily income on 60% of the days and a higher
net weekly income on 80% of the weeks. The medium-range forecast users raise
their income by both reducing losses due to underproduction and reducing the opport-
unity cost associated with underpromising when production is unseasonably high.

Our results assume that, without the forecasts, the producer would use the climatol-
ogical model. This climatological model was actually constructed by fitting to both
the historical data and the data used for the simulation period. This use of in-sample
data to construct the climatology could have biased the results in favour of clima-
tology. Therefore, the value of the medium range forecasts may be even greater than
our study suggests.

In this paper we made several simplifying assumptions. The assumptions were not
necessary but including additional complexities would make the study less general.

1. The relationship between wind speed and power output was idealized. In practice
this would be more complicated, particularly in the case of multi-turbine wind
farms where wake effects would vary depending on the wind direction.
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2. It was assumed that producers can write their contracts for specific half-hours at
arbitrary times before delivery. This is not the case in all contempory electricity
markets. For example, Nordpool allows only weekly averaged “contracts-for-dif-
ferences” at lead times longer than the day before delivery.

3. The convergence between Pc and Ps with shortening lead time was completely
ignored. This means that while direct comparisons can be made between different
strategies at the same lead time, comparisons involving different lead times are
not meaningful.

4. The impact of weather on electricity demand could be incorporated into the spot
price model.

5. The risk tolerance of the producer could be allowed for when optimizing Ec.

All of these effects would have to be investigated to ascertain the value of forecasts
to a specific site in a specific market. In addition, it should be remembered that the
forecasts for Heathrow Airport were used. Using the forecasts corresponding to the
ERU site may improve the value of the forecasts further.
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Appendix. The spot price model

In order to capture the seasonal dependence of spot price and other time correlations
in spot price, we constructed models of the seasonal dependence of demand and of
the dependence of spot price on demand. These models are described here. However,
quite similar overall results of the strategy values were obtained using a simple model
where spot price was random but independent of time.

For the purposes of this study it was assumed that, for a given day, the electricity
spot price and the wind energy production are independent. That is, if p(Ea, Ps) is
the joint probability conditioned on the day, then p(Ea,Ps) � p(Ea)p(Ps). This is not
necessarily true since unseasonally high winds would be associated with high values
of Ea and they may also increase Ps by increasing the demand for electricity. A log-
normal model for Ps was used

Ps � eX,X:N(m,s2),m � 1.35 � (9.2 × 10�5)D,s � 0.3 (A1)

where D is the system demand in megawatts and Ps is in GBP/MWh. Fig. A1 shows
the actual and model distribution of system marginal prices associated with four
different demands. To condition the model for Ps, an estimate of system demand is
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Fig. A1 A comparison of the actual distribution of UK system marginal prices (thin line) and the demand
conditioned probability distribution given by Eq. (A1) (thick line) for four different values of the sys-
tem demand.

needed. The demand model we used estimated demand based solely on the day of
the year and the time of day. It did not include demand from previous days or
weather information, both of which can be included in medium-range demand fore-
casting models [14,21]

D � a0sin(2pT1) � b0cos(2pT1) � �3

n � 1

[aisin(2npT2) (A2)

� bicos(2npT2)] � c,T1 � d /365.25,T2 � h /24,

where d is the number of days after 1 January and h is the number of hours since
midnight. Two sets of parameters were used; one set for weekdays and one set for
weekends and public holidays. Fig. 6 compares the predictions made using Eq. (A1)
with the actual system demand.
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