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ABSTRACT
In the present paper, we address the important point of the proportionality between
the longitudinal integral lengthscale (L) and the characteristic mean flow width
(δ) using experimental data of an axisymmetric wake and a turbulent planar jet.
This is a fundamental hypothesis when deriving the self-similar scaling laws in free
shear flows, irrespective of turbulence dissipation scaling. We show that L/δ is in-
deed constant, at least in a range of streamwise distances between 15 and 50 times
the characteristic inlet dimension Lref (nozzle width or wake generator size). Fur-
thermore, we revisit turbulence closure models such as the Prandtl mixing length
[1] and the constant eddy viscosity in the light of the recent non-equilibrium dis-
sipation scalings. We show that the mixing length model, with lm ∼ δ, does not
comply with the scalings stemming from the non-equilibrium version of the the-
ory even if it does comply with the theory’s equilibrium version; we instead obtain
lm ∼ δ

√
ReG/Re0δ, where ReG and Re0δ are a global and local Reynolds num-

ber, respectively for the recent non-equilibrium dissipation scalings. Similarly, the
eddy viscosity model holds in the case of the non-equilibrium version of the theory
provided that the eddy viscosity is constant everywhere, not only across sections
orthogonal to the streamwise direction as in the equilibrium case. We conclude by
comparing the results of the different models with each other and with experimental
data and with an improved model (following Townsend) that corrects for the eddy
viscosity by taking into account the intermittency of the flow.

KEYWORDS
Jets; Wakes; Non equilibrium turbulence; Turbulence modeling.

1. Introduction

Free shear flows are of significant importance in many natural and industrial applica-
tions. They are also of great interest for fundamental research, as it is one of the few
cases in turbulence where mean quantities can be predicted under a small, physically
based, set of hypotheses. The theory, developed by Townsend [2] and later by George
[3], requires the self-preservation of some turbulence quantities in the mean momen-
tum and streamwise kinetic energy equations. In order to close the equations, an ad
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hoc assumption is required to model the dissipation term in the kinetic energy equa-
tion. The closure usually chosen is the one consistent with the Richardson-Kolmogorov
cascade, in which case one assumes that the centreline turbulence dissipation rate ε
can be described as ε = CεK

3/2/L, where K is the turbulent kinetic energy, L is
an integral length-scale of the turbulence (usually taken to be the longitudinal one)
and Cε is a dimensionless coefficient which may depend on boundary conditions but
is independent of Reynolds number at high enough Reynolds number values. Finally,
the integral lengthscale L is assumed to be proportional to a mean flow profile width
such as the wake/jet width δ.

Focusing on the free shear flows investigated in the present work, namely the ax-
isymmetric wake and the planar jet, this theoretical approach leads to the following
streamwise evolutions of the centreline velocity (jet) or velocity deficit (wake) u0 and
the jet or wake width δ:

u0 ∼ (x− x0)a, (1)

δ ∼ (x− x0)b, (2)

with a = −1/2 and b = 1 for the planar jet and a = −2/3 and b = 1/3 for the
axisymmetric wake [2], [3], [4] (x is the streamwise coordinate and x0 is a virtual
origin).

Previous to Townsend [2] and George [3], researchers were already able to predict
these exact same streamwise dependencies of δ and u0 under different assumptions. A
closure of the mean momentum equation can be given by assuming that the relevant
component of the Reynolds shear stress tensor, u′v′, is related to the streamwise mean
flow velocity u by

u′v′ = −νT
∂u

∂y
(3)

where y is the spreading direction of the flow and νT is the eddy viscosity; here and in
the following, the overline symbol indicates ensemble averaging. The modelling of νT
has been the focus of intense research during the first half of the 20th century ([5], [6],
[7], [8]) and has been studied for many free shear flows. The most basic and common
hypotheses used are Prandtl’s mixing length hypothesis,

νT = l2m

∣∣∣∂u
∂y

∣∣∣, (4)

where lm is the mixing length, and a constant eddy viscosity hypothesis

νT = LeddyUeddy (5)

where Leddy and Ueddy are characteristic scales of length and velocity, respectively,
which may depend on x but are constant along y.

Equations 1 and 2 are retrieved with lm ∼ δ and Leddy ∼ δ. In this sense, the
Richardson-Kolmogorov cascade (which is one of the pillars of the Townsend-George
approach given that it adopts ε ∼ K3/2/δ) is consistent with both the constant eddy
viscosity and Prandtl’s mixing length hypotheses.
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Equilibrium Non-equilibrium

Dissipation Scaling K
3/2
0 /δ (ReG/Reδ)K

3/2
0 /δ

Power laws exponents: Axisymmetric Wake a = −2/3, b = 1/3 a = −1, b = 1/2
Power laws exponents: Planar Jet a = −1/2, b = 1 a = −1/3, b = 2/3

Table 1. Summary of the dissipation, mean flow (u0) and characteristic flow width (δ) scalings obtained

according to the equilibrium and the non-equilibrium versions of the Townsend-George theory for the axisym-
metric wake and turbulent planar jet cases.

Equilibrium Non-equilibrium Label

Mixing Length lm ∼ δ lm ∼ δ
√
ReG/Re0δ M1

Eddy Viscosity νT ∼ u0δ νT ∼ UrefLref M2
Corrected eddy viscosity νT ∼ γu0δ νT ∼ γUrefLref M3

Table 2. Summary of the mixing length (lm) and eddy viscosity (νT ) scalings obtained according to the

equilibrium and the non-equilibrium versions of the Townsend-George theory for the axisymmetric wake and

turbulent planar jet cases. The last column indicates the label used for the plots later in the paper.

Recent works have unveiled the presence of turbulence dissipation scalings in grid-
generated turbulence, periodic turbulence and free shear flows which are at odds with
the Richardson-Kolmogorov scaling for ε ([9], [10], [11], [12], [13]). Direct numerical
simulations (DNS) and experiments for axisymmetric wakes and experimental data for
the plane jet suggest the presence in free shear flows of the new non-equilibrium scal-
ings for dissipation, at least for a large portion of the flow. The dissipation parameter
Cε is no longer independent of Reynolds number (though it does remain independent
of the fluid’s kinematic viscosity ν), but scales as ReG/Reδ where ReG = UrefLref/ν
is the global Reynolds number (Uref is the free stream or inlet velocity and Lref is a
characteristic inlet lengthscale such as the wake generator’s size or the nozzle width)
and Reδ =

√
K0δ/ν is a local Reynolds number (K0 is the turbulent kinetic energy

on the flow centreline). As shown by Dairay et al [10] and Cafiero and Vassilicos [9],
the application of the non-equilibrium dissipation scaling makes it possible to use a
smaller number of assumptions than Townsend [2] and George [3] and leads to new
exponents for eq. (1) and (2). In the planar jet case, a = −1/3 and b = 2/3 while
in the axisymmetric wake case, a = −1 and b = 1/2. It is important to explicitly
notice that the assumption L ∼ δ is needed for both the classical and the non equi-
librium dissipation scalings. In table 1 we summarise the scalings stemming from the
Richardson-Kolmogorov equilibrium dissipation and the non-equilibrium dissipation
versions of the theory.

One easily checks that the Prandtl mixing length hypothesis cannot lead to (1)
and (2) with non-equilibrium exponents if lm ∼ δ. The non-equilibrium scalings can

however be retrieved if lm ∼ δ
√
ReG/Re0δ (see table 2) where Re0δ = u0δ/ν (see table

1). As for the constant eddy viscosity, it can still be used to obtain non-equilibrium
scaling exponents a and b but only if νT is constant throughout the flow so that
νT ∼ UrefLref , not only across sections of the flow orthogonal to the streamwise
coordinate as in νT ∼ u0δ.

In this work we first and foremost address one key aspect of the Townsend-George
approach using experimental data for a turbulent axisymmetric wake at ReG = 40000
and a planar jet at ReG = 20000: the important question of the proportionality of
L and δ in free shear flows. Secondly, we also ask whether the equilibrium and non-
equilibrium mixing length and eddy viscosity models imply different mean flow profiles
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and how the different models perform in predicting these profiles.
Prandtl’s mixing length and the constant eddy viscosity are both very simple clo-

sures that have been known for decades. Nevertheless, they remain used in the wider
fluid dynamics community for computational fluid dynamics and simple theoretical
modelling [14]. We have therefore chosen this simple and well known closures to show
the important consequences of non-equilibrium turbulence for modelling. To the best
of authors’ knowledge, no systematic study of the modelling and applicability of this
hypothesis has been done previously for different turbulence dissipation laws. Further-
more, we provide the first theoretical model that gives the mean transverse profiles
in terms of the Richardson-Kolmogorov and non-equilibrium cascades. The second
part of this manuscript is devoted to showing some simple consequences of the recent
non-equilibrium dissipation (and therefore cascade) scalings for turbulence modelling,
which might in the future be expanded to more complex and/or more complete models
[15].

2. Experimental setup

The experiments were carried out in two different facilities at Imperial College London.
A schematic representation of both the planar jet and the axisymmetric wake flows is
provided in figure 1.

The planar jet flow is generated using a centrifugal blower which collects air from the
environment and then forces it into a plenum chamber. In order to reduce the inflow
turbulence intensity level and remove any bias due to the feeding circuit, the air passes
through two sets of flow straighteners before entering a convergent duct (having area
ratio equal to about 8). At the end of the duct there is a letterbox slit with aspect
ratio w/Lref = 31 (with Lref = 15 mm being the slot width in the y direction). In
order to produce a top hat entrance velocity profile, the two longest sides of the slit
are filleted with a radius r = 2Lref , following the careful recommendation by [16].
The jet exhausts in still ambient air and is confined in the spanwise direction by two
perspex walls of size 100Lref ×100Lref placed in x−y planes . The rotational speed of
the blower is controlled using an in-house PID controller to produce an inlet Reynolds
number ReG = 20000. Single (SW) and Cross (XW) wire measurements are taken
along the jet centreline in the range x/Lref = 14 − 50 with 2Lref spacing. Both SW
and XW are driven by a Dantec Streamline constant temperature anemometer (CTA).
Data are sampled at a frequency of 50 KHz, with measurements lasting 60 s and 120
s respectively in the SW and XW cases.

The wake flows were generated in the low-turbulence wind tunnel at Imperial Col-
lege London. The measurement test section is 3 ft x 3 ft (≈91 cm x 91 cm) and
length 4.25 m. The plates employed for these experiments have a reference length
Lref =

√
Aplate = 64 mm, with thickness 1.25 mm, Aplate being the frontal area of the

plate. The plate is suspended in the centre of the wind tunnel normal to the laminar
free stream using four 1 mm diameter piano wires. The free-stream velocity was kept
fixed at Uref=10 m/s using a PID controller. For that value, the velocity fluctuations
around the mean are below 0.1% when the plate is not in place. The velocity signal
is measured using a one component hot-wire (herein referred to as SW) driven by a
Dantec Streamline constant temperature anemometer (CTA). Data are sampled at
a frequency of 20 KHz . Each measurement lasts for 60 s, which was deemed to be
sufficient to converge the integral scales. The choice of Uref is conditioned by the wind
tunnel properties: while for lower values the wind tunnel is unstable, for larger values
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Figure 1. a-I) Schematic representation of the planar jet flow and three dimensional representation of the
planar jet facility (b); a-II) Schematic representation of the axisymmetric wake flow. δ(x) is representative
of the characteristic flow width at each streamwise location x which is defined as δ(x) = 1/u0

∫∞
0 udy and

δ(x)2 = 1/u0
∫∞
0 (Uref − u)rdr in the jet and wake cases, respectively. c) Three dimensional representation of

the wake generating body and its positioning within the wind tunnel.
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of Uref the air tends to heat, diminishing the reliability of the SW measurements.
Finally, a X-wire probe was used to estimate the kinetic energy only for centreline
measurements. The centreline kinetic energy is calculated by assuming axial symme-

try, i.e. K0 = 0.5
(
u′2 + 2u′2r

)
where u′ and u′r are streamwise and radial fluctuating

velocities obtained by the Reynolds decomposition of the velocity field. More details
about the experimental set-up can be found in [10,11].

The longitudinal integral lengthscale L is calculated by converting the anemometer
time signal into space using the frozen turbulence hypothesis and using the autocor-
relation of the fluctuating streamwise velocity. Comparison of the results with those
obtained using the expression in [17], i.e. L = πEu(k = 0)/u′2 (where Eu is the
streamwise velocity power spectral density), shows minimal discrepancies. The esti-
mate of the turbulent dissipation rate ε is obtained from its isotropic surrogate, i.e.
εISO = 15ν(∂u′/∂x)2, by integrating the one dimensional spectrum of the velocity

signal F
(1)
11 as follows

(∂u′/∂x)2 =

∫ ∞
0

k2F
(1)
11 dk. (6)

In both the experiments, we took care of reducing the noise at the high wavenumber
end of the spectrum. As suggested by [11], we fit the portion of the spectrum at
frequencies higher than Kolmogorov’s frequency with an exponential law. It must be
however pointed out that the contribution of this portion of the spectrum to the
integral in equation (6) is always less than 6%.

3. Results

Townsend [2], George [3], Dairay et al [10] and Cafiero & Vassilicos [9] assumed that the
dissipation lengthscale CεK

3/2/ε could be interchangeably taken to be proportional
to the integral lengthscale L or the characteristic flow width δ without loss of validity
of their results, at least in terms of scaling. It is then pertinent to investigate this
assumption by looking at data measured for two different wake-generating bodies, a
square plate and a fractal-perimeter plate (see [10,11] for more details), as well as for
the planar jet. Data are taken along the flows’ centreline. The inlet Reynolds numbers
are ReG = 40000 and 20000 for the wakes (based on the square root of the plates’
area) and jet (based on the nozzle width), respectively.

Figure 2a supports the assumption of proportionality between L and δ, at least in
the range of streamwise distances 15 ≤ x/Lref ≤ 50 (with departure from a constant
value always smaller than ±5%), which is part of the region where the non-equilibrium
dissipation scaling holds as reported in [9–11]. A constant value of the ratio L/δ is
attained both in the wake and the jet cases, but the value of the constant seems to
vary from flow to flow. In general, there is no reason to expect any sort of universality
for this ratio. For example, the planar jet is characterized by larger entrainment, thus
entailing higher spreading rate and flow width δ. Conversely, we do not expect to see
any significant effect of the inlet Reynolds number ReG for a particular flow. As shown
in [10], an increase in the global Reynolds number by almost a factor 7 (ReG = 5000
for DNS data and ReG = 40000 in the experiments) lead to unchanged values of the
wake width δ. Furthermore, in the turbulent regime the integral lengthscale L does
not vary much with ReG.
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Figure 2. a)Streamwise profiles of L/δ for the planar jet (red circles), the axisymmetric fractal wake (blue

squares) and the axisymmetric square wake (black triangles). The ratio is calculated along the centreline
of the flow. Inlet Reynolds numbers ReG = 40000 (wakes) and 20000 (jet). b) Non-equilibrium dissipation

constant CNE,δε = (UrefLref )−1εδ2/K0 for the the planar jet (red circles-continuous) and the axisymmetric

fractal wake (blue squares-continuous). Non-equilibrium dissipation constant CNE,Lε = (UrefLref )−1εL2/K0

for the planar jet (red circles-dotted) and the axisymmetric fractal wake (blue squares-dotted). c) Streamwise

profiles of L/δ for the planar jet case measured at two different global Reynolds numbers, ReG = 20, 000 and
ReG = 15, 000.
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Similar conclusions can be drawn for the planar jet. In this case, it is possible
to directly investigate the effect of ReG on the value of L/δ. Figure 2c shows the
streamwise variation of the ratio L/δ measured at ReG = 20, 000 and ReG = 15, 000.

Figure 2b compares the profiles of CNEε (defined in the caption of figure 2) as a
function of the streamwise distance when calculated using either L or δ. We plot the
data for the turbulent planar jet and the axisymmetric wake of the fractal obstacle
only, as the square one exhibits similar trends. Regardless of the choice of L or δ, CNEε

exhibits the same constant behaviour, as required by the non-equilibrium turbulence
dissipation scaling.

3.1. Lateral Profiles

In this section we investigate the consequences of the application of a different tur-
bulence dissipation scaling on the lateral mean flow profiles. The scalings (1) and (2)
stemming from the version of the theory based on the recent non-equilibrium dissipa-
tion scalings, can also be obtained with the mixing length,

lm ∼ δ
√
ReG/Re0δ, (7)

but not with lm ∼ δ (see table 2).
Similarly, for the constant eddy viscosity model, the version of the theory based

on the recent non-equilibrium dissipation scalings returns the right exponent a and b
provided that νT is not only constant across a section orthogonal to the mean flow
as in the equilibrium case, but throughout. Introducing into equation (3) the scalings
of 〈u′v′〉 stemming from the version of the theory with the different non-equilibrium
dissipation scalings (see [10] and [9]), we obtain

−νT
∂u

∂y
= u2

0

dδ

dx
, (8)

for the planar jet case [9] and

−νT
∂u

∂y
= Urefu0

dδ

dx
, (9)

for the axisymmetric wake case [10], [11]. Introducing the power laws (1) and (2) with
the non-equilibrium values of a and b reported in table 1,

νT ∼ UrefLref ∼ const, (10)

both for the planar jet and for the axisymmetric wake case, as opposed to

νT ∼ u0δ, (11)

obtained from the equilibrium version of the Townsend-George theory (which actually
requires one more assumption to conclude, see [10] and [9]).

It is then important to determine whether the differences in mixing length and eddy
viscosity are reflected in different mean flow profiles for different turbulent dissipation
scalings. Furthermore, it is also relevant to determine whether the mean flow profiles
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Figure 3. a) Mean flow velocity profiles for the axisymmetric wake in the range of streamwise distances

10 ≤ x/Lref ≤ 50 (symbols). Black, red and blue lines are representative of Prandlt mixing length model
(M1, eq. 12), eddy viscosity model (M2, eq. 13) and eddy viscosity corrected with the intermittency (M3, eq.

16), respectively. b) Intermittency factor in the range of streamwise distances 10 ≤ x/Lref ≤ 50 rescaled with

respect to its local maximum. The continuous line is representative of equation 15. Data are plotted against
the similarity coordinate η. The inlet Reynolds number is ReG = 40000.

obtained with the Prandtl mixing length or with the constant eddy viscosity models
are consistent with the experimental data, and more or less so depending on turbulence
dissipation scaling.

Mixing-length based models [6,8] have largely proven to be inadequate for correctly
predicting lateral mean flow profiles. By comparing with experimental results obtained
in the turbulent planar wake of a square cylinder, Townsend [7] found that a constant
eddy viscosity νT ∼ u0δ best represented his measurements. We also compare the
mixing length based model and constant value of the eddy viscosity to each other
and to our data, but by taking into account the non-equilibrium modification of these
two models. Furthermore, following Townsend’s approach [7], we also correct the eddy
viscosity to account for the intermittency of the flow. In the following we compare our
experimental data with mean flow profiles predicted by Prandtl’s mixing length and
constant eddy viscosity models for the axisymmetric wake and the planar jet.

The detailed derivations of the profiles stemming from these two models modified to
take into account the non-equilibrium dissipation (and therefore cascade) are reported
in the appendix.

3.1.1. Axisymmetric Wake

For an axisymmetric wake, when using Prandtl’s mixing length (eq. 4) to model the
Reynolds shear stress it is possible to show that the mean flow profile can be described
as [6] (see Appendix)

Uref − u
u0

=
√
xf(η) =

(
1−

( η
η0

)3/2)2
, (12)

where η = y/δ and η = η0 is the point where f → 0 on the boundary of the wake (see
Appendix).

When, instead, a constant value of the eddy viscosity is used (eq. 5), the following
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form of the mean flow can be obtained [18]:

Uref − u
u0

= e−
kη2

2 , (13)

with η = y/δ; k depends on the turbulence dissipation scaling (see Appendix). It
is worth noting that the profiles obtained in equations (12)-(13) are valid for both
turbulence dissipation scalings (classical equilibrium and new non-equilibrium).

Figure 3a shows the mean flow velocity profiles rescaled with the maximum at
each streamwise location plotted against the similarity variable r/δ. A comparison
of the two proposed models (eq. 12-13) suggests that Prandtl’s mixing length model
overestimates the velocity profile for values of r/δ > 1. A constant value of the eddy
viscosity seems to follow more closely the physics of the problem. As also showed by
Townsend [7], a significant improvement of the eddy viscosity model can be obtained
by accounting for the intermittency factor γ. It is important to state explicitly that,
in the present context, the intermittency relates to the interface between vortical and
potential flow at the edges of a free shear flow [4]; it is not related to the internal
intermittency which is thought to cause the deviations from Kolmogorov theory [19].

The intermittency can be calculated as the inverse of the kurtosis of the time deriva-
tive of the streamwise fluctuating velocity, i.e.,

γ =
1

Kurt[du′/dt]
. (14)

This is due to the fact that the eddy viscosity cannot be non-zero beyond the
turbulent/non-turbulent interface, where there are no vortical fluctuations at all. Fol-
lowing Townsend, we use a functional form for the intermittency as

γ

γmax
=

1(
1 + (η/α1)2 + (η/α2)4 + (η/α3)6

) (15)

with α1, α2 and α3 parameters to be determined, (with no significant dependence on
the Reynolds number) and we redefine the eddy viscosity as νIT = γνT .

Equation (15) requires that the intermittency factor is self preserving; this is a
condition satisfied in our experiments as can be observed from Figure 3b where we plot
the intermittency profiles obtained in the range of streamwise distances 10 ≤ x/Lref ≤
50 normalised with respect to the local maximum at each streamwise location. The
continuous line is representative of the fit of equation (15) and shows a remarkable
agreement with the experimental data.

Hence, we modify the eddy viscosity by accounting for the intermittency of the
flow, i.e. νIT = νTγ, with νT a constant value and we find a solution to the self-similar
equation of the form

Uref − u
u0

= e−kη
2
(

1

2
+ 1

4
(η/α1)2+ 1

6
(η/α2)4+ 1

8
(η/α3)6

)
. (16)

We seek the coefficients α1, α2, α3 and k which optimise equations 15 and 16 simul-
taneously. The continuous blue line in figure 3a shows that the introduction of the
intermittency factor significantly improves the results, particularly in proximity of the
wake boundaries. The choice of this particular form of the intermittency profile makes
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Figure 4. a) Mean flow velocity profiles for the turbulent planar jet in the range of streamwise distances

6 ≤ x/Lref ≤ 50 (symbols). Black, red and blue lines are representative of Prandlt mixing length model
(M1, numerical solution of eq. 17), eddy viscosity model (M2, eq. 19) and eddy viscosity corrected with the

intermittency (M3, numerical solution of eq. 20), respectively. b) Intermittency function rescaled with respect
to the local maximum at each streamwise position x/Lref in the range 6 ≤ x/Lref ≤ 50. The black line

is representative of the fit γ
γmax

= f(η)m. Data are plotted against the similarity coordinate η. The inlet

Reynolds number is ReG = 20000.

it possible to obtain a closed form of the mean flow profile [7] which complies with the
self-preservations of the intermittency and mean flow profiles at once.

3.1.2. Planar Jet

We follow a similar procedure in the planar jet case. The application of Prandtl’s
mixing length model leads to the following form of the jet momentum equation

−kF ′′2 + FF ′ = 0 (17)

where F ′(η) = f(η), f(η) = u(x, y)/u0(x), and k a constant value which depends
on the turbulence dissipation scaling (this dependence is reported in the Appendix).
Nevertheless, as for the axisymmetric wake, there is no substantial difference in the
functional form of the mean flow profile for the classical equilibrium and new non-
equilibrium cases. As reported by Abramovich [20], Tollmien [21] was the first to find
a numerical solution for equation (17). We also solve the equation numerically, com-
paring the results with our experimental measurements and with the results obtained
with the eddy viscosity assumption with/without the intermittency correction.

The adoption of the turbulent viscosity model, leads to the following momentum
equation in similarity variables

FF ′′ + F ′
2

= −kF ′′′ (18)

with k = 2νT
u0δ

dδ

dx

. This equation can be solved to obtain the velocity profile f(η)

f(η) = sech2(η
√

2k). (19)

In Figure 4a we report the experimental data obtained from the planar jet experiment
in the range of streamwise distances 6 ≤ x/Lref ≤ 50, along with the mean flow profiles
predicted by the Prandtl mixing length model (M1, black) and the eddy viscosity model
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(M2, red). Despite only little differences can be detected throughout the whole range
of lateral locations, it can be argued that the Prandtl model slightly underestimates
the mean flow profile at small values of η and provides an overestimate of the data for
η > 0.6.

Even though the eddy viscosity model shows good agreement with the experimental
data, we decided to try and improve it by accounting for the intermittency of the flow,
hence introducing νIT = νTγ.

As already discussed in the axisymmetric wake case, this requires that the inter-
mittency function is self-similar. In Figure 4b we compare the data obtained in the
range 6 ≤ x/Lref ≤ 50 rescaled with respect to the local maximum at each stream-
wise location (γmax). It can be concluded that γ is indeed self-similar. The momentum
equation for the turbulent planar jet hence modifies as(

F ′F

)′
= −kγF ′′′, (20)

where F ′(η) = f(η). The solution depends on the choice of γ; we introduce a function
γ(η) = f(η)m and we integrate numerically equation (20). The choice of a different
intermittency function is mainly driven by the fact that equation (15) does not lead to
a closed solution of equation (20), and we therefore consider a better choice by relating
the intermittency function directly to the mean flow. This can also be instrumental in
future investigations aimed at relating the intermittency function γ to the turbulence
cascade. As evidenced in Figure 4a the solution obtained with the introduction of
the intermittency function (blue line) gives a slight improvement to the fit of the
experimental data.

4. Conclusions

Using experimental data from a turbulent planar jet and two axisymmetric turbulent
wakes, we find evidence for the proportionality of the integral lengthscale L and the
characteristic flow width δ in the range of streamwise distances 15 ≤ x/Lref ≤ 50. This
is a fundamental hypothesis when deriving the self-similar scaling laws in turbulent
free shear flows, and it is now established in a region where the turbulent dissipation
scaling is of the now known new non-equilibrium type.

We then revisit basic turbulence closure models such as Prandtl’s mixing length [1]
and constant eddy viscosity in the light of the new non-equilibrium dissipation scalings.
In this framework, the cornerstone of Prandtl’s (1925) model, i.e. lm ∼ δ, is not valid.

We show that lm ∼ δ
√
ReG/Re0δ instead. The scalings (1) and (2) stemming from the

non-equilibrium cascade agree with the eddy viscosity model νT ∼ UrefLref rather
than νT ∼ u0δ, hence implying a constant value of the eddy viscosity everywhere in
the region where the new non-equilibrium turbulence dissipation scaling holds.

However, we also demonstrate that these differences do not lead to different mean
flow profiles. A systematic comparison of the mean flow profiles predicted by Prandtl
(1925) and the eddy viscosity models with the experimental data for the axisymmetric
wake and the turbulent planar jet reveals the inadequacy of Prandtl’s mixing length
hypothesis to correctly predict the mean flow behaviour even where the turbulence
dissipation has a non-equilibrium cascade scaling. Furthermore, following Townsend
[7] we show that the prediction can be further improved by accounting for the inter-

12



mittency of the flow, particularly in the axisymmetric wake case. In agreement with
Townsend [7], we find that rescaling the eddy viscosity νT with the intermittency func-
tion γ provides a better representation of the mean flow behaviour as it accounts for
the eddy viscosity drop across the turbulent flow’s intermittent boundaries.

Acknowledgements

GC and JCV were supported by ERC Advanced Grant 320560 awarded to JCV.

Appendix A: governing equations

In this Appendix we report about the equations that lead to the definition of the
lateral profiles for the axisymmetric wake and the planar jet flows, following [10] and
[9] respectively. We start by describing the axisymmetric wake, then particularise the
radial profiles according to the different closure models for the Reynolds stresses.

Axisymmetric wake

For this flow the momentum balance can be approximated as,

Uref
∂

∂x
(Uref − u) = −1

r

∂

∂r
(ru′v′). (21)

Assuming that Uref − u = u0f(η), and substituting in equation (21)

Uref
∂u0

∂x
(f(η))− Urefu0f

′(η)η
1

δ

∂δ

∂x
= −1

r

∂

∂r
(ru′v′). (22)

Momentum flux constancy u0δ
2 = Urefθ

2 can be differentiated to get

∂

∂x
u0 = −2

u0

δ

∂

∂x
δ, (23)

so we rewrite the momentum equation as

2Urefu0

δ

∂

∂x
(δ)f(η) + Urefu0f

′(η)η
1

δ

∂

∂x
δ =

1

r

∂

∂r
(ru′v′). (24)

The solution of equation (24) depends on the Reynolds stress modelling. As reported
by Goldstein [6], the classical streamwise dependent eddy viscosity based on Prandtl’s
mixing length (Prandtl (1925)),

νT = l2m

∣∣∣ ∂
∂r

(Uref − u)
∣∣∣, (25)

leads to the following equation,

f ′ = −

√(
ηf

k

)
, (26)
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with k = l2mu0

δ2δ′Uref
. This equation has the solution,

Uref − u
u0

= f(η) =
(

1−
( η
η0

)3/2)2
, (27)

where η0 = (9k)1/3 is the point at the boundary of the wake (and therefore where
f → 0). Now, depending on the properties of the turbulent cascade, two different
closures can be obtained:

i) Richardson Kolmogorov cascade:
In this case, we have lm = Cδ, with C a constant. Furthermore, the streamwise

scalings are u0 = AUref (x−x0

θ )−2/3 and δ = Bθ(x−x0

θ )1/3. Adding the integral form of

momentum conservation (u0δ
2 = Urefθ

2), we get that k = 3C
2

B3 and η0 = 3C
2/3

B .
ii) Non-equilibrium cascade:

In this case, we have lm = Cδ
√
ReG/Re0δ = C

√
UrefLref

δ
u0

, and again C is a

constant. In this case, the streamwise scalings are u0 = AUref

(
x−x0

Lref

)−1
(θ/Lref )2

and δ = B
√
Lref (x− x0). Therefore, the constant becomes k = 2

(
C
B

)2
and η0 =

181/3
(
C
B

)2/3
.

Conversely, the adoption of a turbulent eddy viscosity model, νT = constant delivers
a substantially different lateral velocity profile

Uref − u
u0

= e−
kη2

2 , (28)

with η = y/δ and k =
Urefδ

dδ

dx

νT
. Once more, two different closures can be obtained:

i) Richardson Kolmogorov cascade:

We have νT = Cu0δ, with C constant, and we find that k = 1
3
B3

C .
ii) Non-equilibrium cascade:

In this case, we have νT = CUrefLref . The constant becomes k = 1
2
B2

C .
On the other hand, Townsend [7], studying the planar wake, suggested that the

quality of the fit could be further improved by accounting for the intermittency of the
flow γ. He proposed the use of γ in a modified eddy viscosity νIT = γνT where

γ

γmax
=

1(
1 + (η/α1)2 + (η/α2)4 + (η/α3)6

) , (29)

leading to the following correction of equation (28)

Uref − u
u0

= e−kη
2
(

1

2
+ 1

4
(η/α1)2+ 1

6
(η/α2)4+ 1

8
(η/α3)6

)
, (30)

where k remains unchanged from the previous case, not corrected by the intermittency.
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Planar Jet

In the thin shear layer approximation, the streamwise momentum equation for the
planar jet flow is

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂y
(u′v′), (31)

and similarly to the wake flow, we can assume that the mean flow is self similar
U = u0f(η). This condition, along with continuity,

∂u

∂x
+
∂v

∂y
= 0, (32)

implies that the lateral velocity is self-similar as well. Casting equations (31) and (32)
together and using the self similarity of the mean flow we obtain

−u
2
0

2δ

∂δ

∂x

(
f2 +

f ′

η

∫ η

0
f(η)dη

)
= − ∂

∂y
u′v′. (33)

Introducing f = F ′ and rearranging the equation, we get

−u
2
0

2δ

∂δ

∂x

(
F ′F

)′
= − ∂

∂y
u′v′. (34)

Equation (34) is then particularized depending on the closure for the Reynolds shear
stresses. Prandtl’s mixing length model leads to the following equation,

−kF ′′2 + FF ′ = 0, (35)

with k = 2 l2m
δ2δ′ . This equation has no known analytical solution, hence we solve it

numerically. We can again relate the constant k to model constants depending on the
type of turbulence cascade:

i) Richardson Kolmogorov cascade:
The mixing length is lm = Cδ, with C constant. The streamwise scalings are u0 =

AUref (x−x0

h )−1/2 and δ = Bh(x−x0

h ), and therefore we get that k = 2C2/B.
ii) Non-equilibrium cascade:

In this case, we have lm = Cδ
√
ReG/Re0δ, and again C is a constant. In this case,

the streamwise scalings are u0 = AUref
(
x−x0

h

)−1/3
and δ = BLref

(
x−x0

h

)2/3
. Adding

the integral form of momentum conservation (u2
0δ = U2

refh), the constant becomes

k = 3
√

C
B3 .

Assuming now a constant turbulent eddy viscosity model, the momentum equation
particularizes as follows (

F ′2 + F ′′F

)
= −kF ′′′, (36)

with k = 2νT
δu0

dδ

dx

. Finally,
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(
F ′F

)′
= −kF ′′′. (37)

This equation can be solved to obtain the velocity profile f(η) = F ′(η),

f(η) = sech2(η
√

2k). (38)

Again, depending on the properties of the turbulent cascade, both νT and k will
adopt different values:

i) Richardson Kolmogorov cascade:
The eddy viscosity takes the form νT = Cu0δ with C a constant. Therefore, we get

k = 2CA2.
ii) Non-equilibrium cascade:
We have νT = CUrefLref , and the constant becomes k = 3CA3.

Similarly to the axisymmetric wake case, we also study the case of modified eddy
viscosity νIT = γνT . Equation (36) then becomes(

F ′F

)′
= −kγF ′′, (39)

whose solution depends on the choice of γ. We propose a function γ = (f(η))m, relating
the intermittency to the mean flow profile. As there is no known closed solution, we
numerically solve equation (39).
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