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Stability estimates for non-local scalar conservation laws

FELISIA ANGELA CHIARELLO! Paora GoOATIN! ELENA RossI!

Abstract

We prove the stability of entropy weak solutions of a class of scalar conservation laws
with non-local flux arising in traffic modelling. We obtain an estimate of the dependence
of the solution with respect to the kernel function, the speed and the initial datum.
Stability is obtained from the entropy condition through doubling of variable technique.
We finally provide some numerical simulations illustrating the dependencies above for
some cost functionals derived from traffic flow applications.
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1 Introduction

Conservation laws with non-local flux have drawn growing attention in the recent years.
Indeed, beside the intrinsic mathematical interest for their properties, they turned out to
be suitable for modelling several phenomena arising in natural or engineering sciences: flux
functions depending on space-integrals of the unknown appear for example in models for
granular flows [3], sedimentation [5], supply chains [15], conveyor belts [14], weakly coupled
oscillators [2], structured populations dynamics [20] and traffic flows [6] [8 [21].

For this type of equations, general existence and uniqueness results have been established
in [4][7] for specific classes of scalar equations in one space-dimension, and in [1] for multi-
dimensional systems of equations coupled through the non-local term. In particular, existence
is usually proved by providing suitable compactness estimates on a sequence of approximate
solutions constructed by finite volume schemes, while L!-stability on initial data is obtained
from Kruzkov-type entropy conditions through the doubling of variable technique [18]. A
different approach based on fixed-point techniques has been recently proposed in [17] to
prove existence and uniqueness of solutions to scalar balance laws in one space dimension,
whose velocity term depends on the weighted integral of the density over an area in space.

In this paper, we focus on a specific class of scalar equations, in which the integral de-
pendence of the flux function is expressed though a convolution product. We consider the
following Cauchy problem

(1.1)

Op + Oy (f(t,x,p)V(t,x)) =0 t>0,z€eR,
p(0,2) = pol2), reR,
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where V (t,z) = v ((p(t) * w)(x)), and w is a smooth mollifier:

(p(t) * w)(z) = /R plt,y) iz — ) dy.

Here and below, we set p(t) := p(t,-) the function x — p(t, ).

Existence and uniqueness of solutions to (I.I) follows from [4], as well as some a priori
estimates, namely L1, L> and total variation estimates, see Section [2] below.

Motivated by the study of control and optimisation problems, we are interested in studying
the dependence of solutions to (1.1) on the convolution kernel w and on the velocity function
v. Estimates of the dependence of solutions to a general balance laws on the flux function
can be found in [11] [19]. However, as precised also below (see Remark [3), those estimates
turn out to be implicit when applied to the setting of problem (I.1).

Carefully applying the Kruzkov’s doubling of variables techniques, on the lines of |5} [16],
we derive the L!-Lipschitz continuous dependence of solutions to (I.I) on the initial datum,
the kernel (see Theorem [I) and the velocity (see Theorem [2). These results are collected in
Section [2] while the technical proofs are deferred to Section[3l Finally, in Section [4] we show
some numerical simulation illustrating the behaviour of the solutions of a non-local traffic
flow model, when the size and the position of the kernel support or the velocity function vary.
In particular, we analyse the impact on two cost functionals, measuring traffic congestion.

2 Main Results

The study of problem (L) is carried out in the same setting of [4], with slightly strengthened
conditions. We recall here briefly the assumptions on the flux function f, on v and on w:

Sllp ‘apf t,$,p)| < +OO
Sup\a f(t.z,p)| <Clp|

feC) R xR xR;RT) and (2.1)
02, f (1,2, p)| < Clpl
Vt,z f(t,z,0)=0
€ (C2NW2®)(R;R) and w e (C2NnWH N W2)(R;R). (2.2)

We recall also the definition of solution to problem (1.1J), see [4] Definition 2.1].

Definition 1. Let T > 0. Fiz p, € L (R;R). A weak entropy solution to (I.I)) on [0,T] is
a bounded measurable Kruzkov solution p € CO([0,T]; L, (R;R)) to

loc

Op+0: (F(t,3,p) V(t,2)) = 0 where x) = *xw)(z
{ p(0,) = polz) here V/(t,2) = o((p(t) * w)(x)).

The results in [4] ensure the existence and uniqueness of solution to (T.I) and provides
the following a priori estimates on the solution.

Lemma 1 ([4] Lemma 2.2]). Let conditions (2.1)-(2:2) hold. If po(x) > 0 for all x € R, then
the solution to (L.1) is such that p(t,z) >0 for all (t,z) € RT x R.



Lemma 2 (|4} Lemma 2.4]). Let conditions (2.1)-(2.2) hold. If p,(x) > 0 for all x € R, then
the solution to (L.1) satisfies, for all t € RT,
Hp(t)HLl(R;R) < ”poHLl(R;R)'

Lemma 3 ([4] Lemma 2.5]). Let conditions (2:1)-(2:2)) hold. If p,(x) > 0 for all x € R, then
the solution to (L1) satisfies, for all t € RT,

Hp(t)HLOO(R;R) S HpOHLOO(]R;]R) eLt’ (2'3)
where £ = C|v]|g00 g + HaprLoo([o,t]xRxR;R) HU/HL‘X’(R;R) [P0l (=) Hw,HL“’(R;R)‘

Proposition 1 ([4] Proposition 2.6]). Let conditions (21)-22) hold. If p,(x) > 0 for all
x € R, then the solution to (1) satisfies the following total variation estimate: for allt € R™

TV (p(t)) < (Kot + TV (p,)) €7, (2.4)
where
Ky = Ha?)xf ‘L‘X’(Et;R) HUHLoo(R;Ry
3
K2 = [50 + <H8PfHL°°(Et;R) + C) Hw/lem(R;R)HpO”Ll(R;R) (2.5)

1
5 <C + Ha/’fHLDO(Et;]R) (2 + ”pOHLl(R;R)Hw/HLoo(R;R)>) Hw/HWLOO(R;R)]
x HUHWZOO(R;]R)HpoHLl(R;R)’
with Xy = [0,1] x R x [0, My] and My = || po||p0o gy €'+ a5 in (2:3).

Remark 1. The regularity assumptions required in [4] for the functions v and w, see |4,
Formula (2.2)], are actually less restrictive than (2:2). Indeed, to guarantee the existence of
solutions and to obtain the a priori estimates above, it is sufficient that

€ (CPNWh)R;R)  and  w € (C2NW*P)(R;R).

Aim of this paper is to study the stability of solutions to (I.1) with respect to both
the kernel w and the velocity function v. The following Theorem states the L!-Lipschitz
continuous dependence of solutions to (L.1) on both the initial datum and the kernel function.

Theorem 1. Let T > 0. Fiz f and v satisfying (2.1) and (2:2) respectively. Fizx po,po €
L®(R;R). Let w,w € (CZNWHINW2)(R;R). Call p and p the solutions, in the sense of
Definition[d], to the following problems respectively

Op+ 0x(f(t,x,p) V(t,z)) =0 _, v

{ p(0,2) = po(x) where V() = v((p(t) *w)(z)),  (2:6)
atﬁ—i—a(f(,x,ﬁ)f/(t,x)):o where V(t,x) = v((p(t) * ) (x

{ p(0,z) = po(z) here V(¢ ) = v((p(t) * @)(x)). (2.7)



Then, for any t € [0,T], the following estimate holds

lo(t) = 50l gy < (00 ﬁonmm+a<t>uw—wuw1,1<R;R))exp</O b(r)dr>, (28)

where a(t) and b(t) depend on various norms of the initial data and of the functions f, v, w

and w, see and (3.55)).

The L'-Lipschitz continuous dependence of solutions to (I.1]) on the velocity function v
is ensured by the following Theorem.

Theorem 2. Let T > 0. Fiz f and w satisfying (2.1) and (22) respectively. Fix p, €
L®(R;R). Let v,9 € (C2NW22)(R;R). Call p and p the solutions, in the sense of Defini-
tion[1] to the following problems respectively

O+ Oy(f(t,m,p) V(t,x)) =0 ., o

{ p(0,7) = po(x) where  V(t,z) = v((p(t) ¥ w)(@)), (2.9)
Khp+0u(f(ta, )V (E2) =0

{ p(0,x) = po(z) here  V(t,x) = o((p(t) * w)(x)). (2.10)

Then, for any t € [0,T], the following estimate holds

Hp(t) - ﬁ(t)HLl(R;R) < <cl(t) HU - QNJHL‘X’(R;R) + Cz(t) HU, B QN/HLDO(]R;]R)) €xp (/0 03(8) ds) ’

(2.11)
where the ¢;(t), i = 1,2,3, depend on various norms of the initial data and of the functions

fov, 0 and w, see (3.60), B.61) and (3.62).

3 Proofs

The Lemma below is the building block of both Theorem [I] and Theorem 2]

Lemma 4. Let T > 0. Fiz f satisfying (1) and V,V € (C2 N W2®)(R x R;R). Fiz
Pos Po € L¥(R;R). Call p and p the solutions to the following problems

Bup+ D:J(1,2,) V(1,2)) = 0 09+ D:(f(1,2,) V(1,2)) = 0
{ (0,2) = pof e {~< v) = olz). )

Then, for any T,t €10, T[, with T < t, the following estimate holds
[ Iotr.) = )| e [ |p(t.) = ptt, )| da (32)
R R
t
- a:vv ) [ Rad) ’
+ [ [ o7 05,0 |F (5. pt5.2)
(s,x,p(s,x))‘

+‘f/(s,x) — V(s,x)‘ ‘apf (S,x,p(s,x))‘ ‘(9:,3,0(8@)‘} dzds > 0. (3.3)

+‘f/(s,x) - V(s,x)‘

4



Proof. The proof is based on the doubling of variables method introduced by Kruzkov in [18|.
In particular, we follow the lines of [16, Theorem 1.3], although there the flux function has the
form [(x) g(p), while here it is of the form f(¢,x, p) V(t,2). The dependence on time does not
add any difficulties in the proof, while the dependence of f on the space variable x produces
additional terms.

Let p € C°(J0; T[xR;R™) be a test function as in the definition of solution by Kruzkov.
Let Y € C(R;R™) be such that

Y(z) =Y (—2), Y(z) =0 for |z| > 1, /RY(Z) dz =1,

and define Y}, = 1Y (%). Obviously Y}, € C(R;RY), Y, (—2) = Y3(2), Yi(2) = 0 for |z| > h,
fR Yin(2)dz =1 and Y, — & as h — 0, where §y is the Dirac delta in 0. Define, for h > 0,

t+s x4y
2 72

Yn(t,z,s,y) = ¢ ( ) Yt =8)Ya(x —y) =@ () Yalt —s) Ya(z —y). (3.4)

Introduce the space IIp =]0,T[xR. We derive the following entropy inequalities for the
solutions p = p(t,z) and p = p(s,y) to (BI):

][ {10 dlounte.o.5.0) + sento = )V t0) ($..9) = £(t.2.5) Ouin(t.,5.9)

HTXHT
tsen(p )0, [£(t,2,7) V()] n(t, 2, 5,9) b dededyds > 0

][ {16 slountt.o.s.5) + 5o - )V (5.9 (7(5.5:5) = F(5.3.9) Byn(t.5.0)

HT XHT

+sgn(p — p) Oy [f(s, Y, p) V (s, y)} Yn(t, s, y)} dzdtdyds > 0.

Summing the two inequalities above and rearranging the terms therein, relying on the explicit
form of the function ¢y, (3:4), we obtain

////{ p(t, ) — (s, 9)| e () Yalt —8) Ya(z —y)  (3.5)

I xIlp
+ sgn(p - /3) (V(t’ x)f(t’ €, 10) - ‘7(5’ y)f(s, Y, P)) 6190( ) Yh(t ) Yh(x - ) (3'6)
+sen(p— ) (V(s,9)f(s.9,5) - Otnlta,sy)  (37)

flt,x,p )
+sen(p = p) (Vis,0)f(5,0.0) = VLD (h2.p) dun(tizsy)  (38)
f(t,z,p) ]

whtxsy} (3.9)

dzdtdyds > 0.

w5l =) [0, (Vo) 15,90 - am(w



Consider (3.7) and (3.8)): explicit the function v, to obtain

@) + @)

= B =D y) (Fls0.0) + Fls0.0) Dol Vit - ) Vie —)  (3.10)
B (fm,o+fmp>>a Vit - )Yz —y)  (311)
—sgu(p —p)V(s,y) (f(s,9,) = f(s,9,p)) (- ) Ya(t — s) V(2 — y) (3.12)
+sgu(p — p)V(t,x) (f(t,z,p) — txp))<p(---)Yh(t—s)Y,;(x—y). (3.13)

In compute

(B3] = senlp — 5) |0,V (5,9) (5,9,0) + V(5,9) 0, (5. ) o1
— 0, V(t,x) f(t,x,p) — V(t,x) 0. f (¢, x, ﬁ)} Up(t, z,8,y). ‘

Introduce the following notation
F (t,2,p(t,2), 5(5, ) =sen (p(t, @) = p(s,9) (f (b2 p(t,2) = [ (8,2, 7(s,9)) ,  (3.15)
so that (3:12) — (3:13) now reads

////mmm + [(BI3)] de dtdyds

HTXHT

- //// <V(t,x)F(t,x,,0,ﬁ) — V(S,y)F(S,y,p’ﬁ)> ol )Yyt — 8) Yy (2 — y) dzdt dyds

HTXHT

_ _////<V(t,x)% (t,2,p, ) — V (s, )ddxF( s 0y )> Uitz s,y)dedtdyds (3.16)

HTXHT

][0 Ftp.py int s dwdeay as (3.17)

HTXHT

//// F(t,a,p,p) = V(S,y)F(S,y,p,ﬁ)> Ozp(-- ) (3.18)

HTXHT
X Yp(t —s)Yp(x —y)dedtdyds,

where we also integrate by parts. Combine the integrand of together with to get
=V (t,x) F(t, @, p, p) Yn(t,z, s,y) + [(B1))]

= sgn(p— 5) (0,V(5.9) F(5,9.0) = BV () f(t.3,p)) Gnlt.,5,0) (3.19)

+sgn(p = 7) (V(5:9) 0,F (5,9,0) = V(t.2)0: (2. ) ) ¥n(t,5,9). (3:20)

Observe that the following equality holds

////Km]+mmM+[]+[@]dxdtdyds

HTXHT



— ////sgn(p— p) ‘N/(S,y)(f(s,y,p) — f(s,y,ﬁ)) Opo(- - ) Vit — 8) Yiy(z — y) dz dt dy ds.
o (3.21)

We are therefore left with

/ / / / B3]+ (EI0)] + | EI9) + (20 + [E2D) dx dt dy ds > 0. (3.22)

HT XHT

Let now h go to 0. The terms in (3.5) and ([B.2I) can be treated exactly as in [I8], leading to

lim ////{[@]H@)]}dxdtdyds

h—0+
HT X HT

= [[{lote.0) = it ) et (3.23)
Iy

+sen (p(t,z) — p(t,2)) V (¢, 2) ( f(tz,p(t,)) — f (6,2, pt, g;))) Bup(t, g;)} dedt. (3.24)

Regarding (3:19), we simplify the notation by introducing the map

Y(t,x,s,y)=sgn (p(t,2)—p(s, y))<5y‘7(87 y)f (s,9,0) = LV (E,2)f (&, p)> ‘P<t ; = ; y)
so that
(B.19)]
= T(t’x’ Say) Yh(t - 5) Yh(x -y
=T(t,z,t, ) YVp(t —s)Yi(z —y) + (Y(t, 2, s,y) — T(t, 2, t,2)) Ya(t —s)Vi(z —y)
= sgn (p(t,x) - ﬁ(t’x)) <(9$V(7f,$) - aIV(t,$)) f (t,x,p) Qp(t’x) Yh(t - S) Yh(x - y) (3 25)
+ (Yt @, 8,y) — T(t,2,t,2)) Yi(t —s) Ya(z —y). (3.26)

It is immediate to see that
////[(@)]dxdtdyds
HTXHT

= // sgn (p(t, ) — p(t, z)) (Bxf/(t,w) — 3xV(t,x)> [tz pt z)) o(t,z)dedt. (3.27)
It

Concerning (3.26)), it vanishes as h goes to 0 when integrated over Il x ITp. Indeed, recall
that |Y,| < (Y(0)/h) X and apply [12] Lemma 6.2], see also [18] Lemma 2], with N = 3,

X = (z,t,x), Y = (z,t,y) and




Focus the attention on (3.16). With abuse of notation, since the function F is only Lipschitz
continuous with respect to p, we write

LF (1,2, plt,2), 2(5,)
= 0. F (t,x,p(t, x), p(s,y)) + pF (t, 2, p(t, x), p(5,9)) Oup(t, x)

= sgn (p(t, =) — p(s,9)) (&L«f (t,z,p(t,x)) = Ouf (t,fﬂ,ﬁ(s,y))> (3.28)
+ 0 F (t,z, p(t, x), p(s,y)) Oup(t, x) (3.29)
and
d ~
oL (s, p(t2),5(s,9))
= 0, F (8,9, p(t, ), p(s,y)) Oup(t, x)
= O,F (t,z,p(t, z), p(t,z)) Oupl(t, x) (3.30)
+ (apF (5,9, p(t, ), p(s,y)) — O, F (t,x,p(t,x),ﬁ(t,x))) Oup(t, ). (3.31)

In particular observe that we can combine (3:20) with (3:28) to get
[B20)] - V(t,2) sgn (p(t, x) — A(s,y)) (Bxf (.2, p(t,2)) = Ouf (t 2, A(s, y))) Un(t,,5,y)
= sgn (p(t,2) — p(s,y)) (V(S,y)ayf (s,9,0) =V (t,2)0 f (t,fﬂ,p)) Un(t z,s,y). (3.32)

An application of [12] Lemma 6.2] yields

}1111%////[(]37_07[)] dz dtdyds

HT XHT

= // sgn (p(t,z) — p(t, x)) <‘7(t,x) — V(t,x)) Ouf (b, p(t, ) @(t, z) de dt . (3.33)
It

In order to deal with the remaining terms, i.e. (3:29), (3:30) and (3.31), we need to
introduce a regularisation of the sign function. In particular, for a > 0 set

Sa(u) = (sgn*Yy) (u).

«

2
Observe that s/, (u) = — Y<E> Recall the definition of the map F (3.15) and compute

//// —V(t,z) x [(3:29)] x ¥n(t, z,s,y) dzdtdyds

I xI1p
= Clgnon//xg/{s; (p(tx) = p(s,9)) (f (t,2,p(t,x)) — f (t7w7ﬁ(s7y))> (3.34)
+ 50 (p(t,2) = 5(5.1)) Dpf (L. p(t,2) } (3.35)
X (=V(t,z)) Oup(t, ) n(t, z,5,y) dz dt dyds. (3.36)



By the Dominated Convergence Theorem, as « goes to 0, we get

////[m] x [(3.36)] dz dt dy ds — 0.

HT XHT

Indeed,

2 y (ﬂ) (f (t,z, p(t,z)) — f (t,x,ﬁ(s,y))) V(t,x) Opp(t,x) Py (t,x,s,y)

« «

IN

9 _ A\ [P
—-Y <p (0% p) [ |8pf(8,y,7“)‘ dr ”VHL‘X’(HT;R) |8$p(t,x)| wh(t7x7 S’y)
p

(%

2 ||YHL°°(]R;]R) HaprLoo(HTX]R;]R)HVHLOO(HT;]R)‘8£Dp(t"I)‘ ¢h(t,$,5,y) € LI(HT X HTaR)

IN

Therefore we have

//// —V(t,z) x [(B:29)] x ¥n(t, z, s,y) dzdtdyds

IIpxIIp
= _////sgn (p(t,z) — p(s,y)) V(t,x) Opf (t,z, p(t,2)) Oup(t, z) Yu(t, z,s,y) dedtdyds.
IIpxIIp
(3.37)
The term

//// V(s,y) x [B30)] x 1 (t, x,s,y)drdtdyds

HTXHT

can be treated exactly in the same way, leading to
][ sen (ot = 5tt.0) 7 (5.) 0,8 (1.0, p(0,)) (e, ) in(t,.5,) o dedy . (3.38)
HT XHT

Introduce now the notation

Y(s,y) = sgn (p(t, ) — 4(t, ) V(s,y) —sgn (p(t, z) — p(s,y)) V(t, )

and apply [12] Lemma 6.2]:

lim [(3.38)] + [.3D)]

h—0

= // sgn (p(t,z) — p(t, x)) (f/(t,x) — V(t,x)) Oof (t,z, p(t, ®)) Oup(t,x) (t,x)dxdt. (3.39)
It

In order to deal with the last term, i.e. (3:31)), exploit the same regularisation of the sign
function as above and compute

//// V(s,y) x [B3D)] x ¢n(t,z,s,y) dvdtdyds (3.40)

HT XHT



= i [[[[ [ ptt0) = ps.) (5 (0 p(t.2)) = £ (5.9 8050)) (3.41)

= st (p(t.2) = p(t,2) (f (b p(t,2) = f (b2, p(t, ) (3.42)
+ 50 (p(t, ) = 5(5,9)) 0o f (5,9, p(t, 7))
= sa (p(t,2) = 5(t,2)) B, (8,2, plt, ) |
V(s,y )n(t, x, s,y) dae dtdy ds. (3.43)

By the Dominated Convergence Theorem, as « goes to 0, we get

[/ 1@ < @@mararayas o, [ @) < (@@ 0w arayas - o

HT XHT I—IT X I—IT

Indeed,

2y <u> (£ (59.0(t,0) = £ (5,0, 5(5,0)) ) V(5,9) Bu(t, 2) (1, 5,9)

[0 [0

) _ 5 p
<2v(%70) [ 1ourtemnar

< 2V |peorem) HaﬂfHLoo(HTxR R)HVH

VHL"O(HT;R) {81;)(75, =) wh(t’ ™ 59)

1 .
Lo R)‘awp(t,x)wh(t,x,s,y) € L (IIp x IIp; R).

Therefore we have

[(3.40)]
— //// {sgn (p(t,z) — p(s,y)) Opf (s,y,p(t,z)) —sgn (p(t,z) — p(t,2)) O, f (t,x,p(t,x))}

HTXHT
x V(s,y) Op(t, ) Yp(t, z, s, y) do dtdyds.

Introduce the notation Y(s,y) = sgn (p(t,z) — p(s,9)) 8, f (5,9, p(t, z)) and rewrite the equal-
ity above as follows

@) < |V, H/ / 4 [ 176.9) = Tit.2)]|02p(t.)] 01t 5.) do dtdy s,

the left hand side clearly vanishing as h goes to 0, thanks to [12] Lemma 6.2] and to the fact
that p has bounded variation.

Collecting together all the estimates obtained in (3.23), (3.24), (3.27), (3.33) and (3:39),

we get

lim [ ]
h—>0

/ \p(t, @) — p(t, )| Opp(t, ) (3.44)

+sgn (p(t, @) = (@) V() (f (b, plt,2) = f (82,5t 2)) ) Dusplt, )

10



+sgn (p(t,z) — p(t,z)) <8$Y7(t, x) — 0,V (t, w)) f(t,z,p)e(t,x)
+sen (p(t, ) — plt, 7)) <I7(t, ) - V(t, x)) 0uf (t,2, p(t, ) (t, 7)
+sen (p(t,z) — p(t, 7)) (V(t,x) - V(t,x))(?p f(tz, p(t, ) Duplt, ) go(t,x)}dx dt. (3.45)

Let now h >0and r > 1. Fix 0 < 7 <t < T, define
Dp(s) =ap(s—7) —ap(s — 1), where ap(z) = / Y5 (¢)d¢,

and

/Y )Xy @) 00

Observe that, as h goes to 0, ®;, — X and ®, — 0, — ;. Moreover, U, (z) = 0 for

Tt
|z] <r—1or |x| >r+1 and, as r tends to +o0, ¥, — Xg Choose p(t,x) = ®p(t) ¥, (z)

in [(3.44)- - - (345)] and pass to the limits h — 0 and r — 400 to obtain the desired esti-

mate [(3.2)-(3.3)]:
[ lotr.o) = str.a)| o [ lptt.o) - e, )] o
+//R —@V(s,x)"f(s,x,p(s,x))‘
(5,2, p(5,2) |

—1—“7(3,36) - V(s,x)‘ ‘Bpf (s,w,p(s,x))‘ {@;p(s,x){} dzds > 0.

+“7(s,x) — V(s,x)‘

0

Proof of Theorem [1] We can apply Lemma [4]to problems (2.6) and (2.7). By Lemma|[3]
with obvious notation, for all ¢ € [0,7] we have

100 | ey < Noolliemy ©F = Mer (50w gy < Il ez 5 = Ve

For the sake of simplicity introduce the space

¥y = [0,¢] x R x [0, max{M,, M,}]. (3.46)
Let 7 — 0 in [(32)- - - (B3)]:

Hp(t) - ﬁ(t)HLl(R;R) < Hpo - ﬁO”Ll(R;R) (3'47)

t ~
+/0 HfHLoo(ES;R)/R (s,x) — BxV(s,x)‘ dz ds (3.48)

t ~

+/ 102 f 100 (52,:m) / ‘V(s,w) — V(s,w)‘ dzds (3.49)
/ 05| . ZS,R)/ 0zp(s,2)| ‘V (s,x) )‘dxds. (3.50)

11



Consider (3.48). By the definitions of V and V, compute

J
-

< H”/HLOO(R;R) (HP(S) - ﬁ(s)HLl(R;R) min{Haﬂﬁw”Ll(R;R)v ”aﬂcwHLl(R;R)}

0.V (s,x) — 0,V (s, a:)‘ dz

V' ((p(s) x w)(x)) (p(s) * aw) (x) — v/ ((A(s) = @)(x)) (p(s) * Ox) (w)‘ dz

+ 102w — O || 1 () min{Hp(S)HLl(R;R)’ Hﬁ(S)HLl(R;R)}>
+ H””HLoo(R;R) min{Hp(S)HLl(R;R)HawaLw(R?R)’ Hﬁ(S)HLl(R;R)HaszLoo(R;R)}

x (Hp<s> = 59) | gy 0 0 ey 0 ey

ﬁ(S)HLl(R;R)}>

< (WHLW(M) 10| g iy 0 {01 1100 HﬁouwmHaxwuww})

+||w - wHLl(R;R) min{Hp(S)HLl(R;R)a |

x (HP(S) - ﬁ(s)Hp(R;R) min{”wHWLl(R;R)a H?I}HWM(R;R)}

o = sy 1 ool ol )
where we exploit also Lemma[2l Therefore,

[(3.48))]

< (Hv’HLm(R;R) + Hv”HLm(R;R) min {HPOHLI(R;R)HawaLoo(R;R)a ”ﬁo”Ll(R;R)Haxﬁ}HLoo(R;R)}>
t
X (min {HwHWLl(R;R)? HHN}HWU(R;R)} /0 1 f oo s .m) [|(s) = ﬁ(S)HLl(R;R) ds (3.51)

+ [lw - @HWLI(R;R) HfHLOO(Et;R) min{HpOHLl(R;R)’ HﬁoHLl(R;R)} t> :

Consider (3.49): compute

/I‘R ‘V(S,%‘) - V(Sax)‘ dw < HUIHLOO(]R;]R) min{”wHLl(R;R)7 ”w”Ll(R;R)} Hp(s) - ﬁ(s)HLl(R;R)

+ HUIHLOO(R;R) min{Hp(s)HLl(R;R)’ ﬁ(s)HLl(R;R)} lw = @l g x)
< HUIHLOO(R;R) min{HwHLl(R;R)’ ||U7||L1(R;R)} |o(s) — ﬁ(S)HLl(R;R)
+ HU,HLW(R;R) min{Hpo”Ll(R;R)7 Hﬁo”Ll(R;R)} lw — wHLl(R;R)'

In this way we have
t
(G < [|v/]| oo gy min{”wHLl(R;R% Hﬁ)HLl(R;R)}/O 102 flleoe s.i2) [l(5) = P(5) | a gy A5
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+ ”afoLoo(Zt;R) HUIHLOO(R;R) min {Hpo”Ll(R;R)a ”ﬁoHLl(R;R)} HU} - QI}HLl(R;R) t.
(3.52)

Finally, consider (3.50) and compute

V(s,2) = V(s5,)| < /]| gy i {0l gy |0l gom iz | 11065) = 50) g ey
+ HUIHLOO(]R;]R) min{Hp(s)HLw(R;R)’ |

< HU/HLOO(R;R) min {HwHL‘X’(R;R)’ HQIJHLOO(R;R)} Hp(S) - ﬁ(s)HLl(R;R)

P3) e iy | 10 = Bl ey

07 e gy i { M, ML} 0 = g -
Hence,
(5D < [0l e ey 2000 {10 e ey 1 ey |
100 sy T (09) 165) = 76) s (359
1190 ey TV (PO) [0 gy i { Mo M | [l = Bl ey
Therefore, the inequality [(3.47)- - - (3.50)] can be estimated as follows
() — ﬁ(t)HLl(R;]R)
< 110 = Pollis iy + alt) 10 = Dl gy + / "55) [165) = 5 g e 5
where, thanks to the total variation estimate provided by Proposition
a(t) (3.54)
= ¢ [min { ol olsces } 1 e
X <H”/HL00(R;R) + Hv"HLw(R;R) min {HPOHLI(R;R)Haxw”Loo(R;R)a [P0l &R 0|l 1,00 (m; ) })
o+ it { 1pollgs oy Noll sy 190 F ey 10l oo sy
10, sy (Kot + TV (90) 0y min {1, 3
and
b(s) (3.55)
= 1 ooy 1 { 0l oy 1l ey
x (Hv’HLw(R;R) 10| g ey i 4 10l ) 100 oy 1l ey 190 . })

+ HaszLOO(ES;R) H,UIHL“’(R;R) min {HwHLl(R;R)’ HwHLl(R;R)}

13



Kis . ~
+ Ha/’fHLOO(ES;R) (Kas +TV (po)) ! HU/HLOO(]R;]R) mm{”w”L""(R;R)’ Hw”L"O(R;R)} )
K1 and Ky being specified in (2.5). An application of Gronwall Lemma yields

| p(t) — ﬁ(t)HLl(R;R) < [lpo = PollLimry + at) [w — @llwr1 g

+ /Ot <HP0 = PollLamm) + a(s)) b(s) exp (/: b(r) dr) ds.

Since a(s) < a(t) for any s € [0,t] and

/Otb(s) exp </stb(r)dr> ds = | —exp </stb(r)dr> — 14 exp (/Otb(r)dr>,

we obtain

¢
10(6) = 60l gy < (100~ Polliamy + a0) [ — @l oz ) exp ( G dr) . (350)
concluding the proof. O

Remark 2. Notice that, when ¢ = 0, the right hand side of (3.56) is equal to ||p, — PollLr®;r):
since a(0) = 0.

Remark 3. Compare our estimate (3.56) with the one in [5, Theorem 4.1]:
|(t) - ﬁ(t)HLl(R;R) < e p, — Al ),
where
Co = ez (10| s 1900l iy
+HU”HL<><>(R;R)Ha:vaLoo(R;R) HwHLl(R;R) min{HPoHLl(R;Ry Hﬁo”Ll(R;R)})
+Hf/HL°°(Zt;]R) TV (p(t)) HU/HLOO(R;]R) [0l oo )

The main hypotheses there are the following:

o f(t,x,p) = [f(p);

e w = w, thus the kernel functions are the same;

e different initial data: p, # p,.

It is immediate to see that, once the estimate for the total variation of p(t) is inserted, the
bound C3 bears a strong resemblance with our b(¢) (3.55), provided the L'-norm of the kernel
w and of its derivative are controlled by |[w|lwy1.1gg)-
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Remark 4. One may wonder why there is the need to exploit the doubling of variables method
and to go through all the steps of the proof instead of using the ready-made estimate provided
in [I9] Theorem 2.5 or Proposition 2.9]. The reason lies in the coefficient £* appearing in the
estimates presented in that work. Indeed, with our notation, this coefficient reads

0,0: ( f(tw.p) (Vi) - V(t,m)))

L>(X4;R)

Computing the derivatives yields

KE < Haxap

f”Loo(zt;R)HV B VHLDOQMXR;R) + HaprL‘x’(Et;R)‘ Lo ([0,¢]xR;R)

Substitute now the definitions of V and V, using also the estimates for (3.48) and (3.50
computed in the proof of Theorem [I} we obtain an estimate for x* depending on the term
[0 = PllLeo (j0,0;12 (R;R))- Going back to the estimate presented in [19], we see that the coefficient

x* appears in the term e t||p, — PollL1 (r;r)- Therefore, since the final goal is to control from

above H p(t) we get an implicit estimate for it, which is clearly not what desired.

Dlles eiey:

Proof of Theorem [2l We can apply Lemma [4] to problems (2.9) and (2.10). Let us start
from the inequality [(3.2)—(3.3)]. Introduce the following notation, based on Lemma/[3]

Lt 15[ my < 1Polloe iy €

Hp(t)HLoo(R;R) < lpollpeomiry €
Define G; = HIOOHLDO(R;]R) emax{L,L}t, Similarly to (3:46)), introduce the space
Y =10,t] x R x [0,Gy].

Let 7 — 0 in [(2)-@3)] and recall also the assumption sup; , |0, f(t, z, p)| < C|pl:

(5,2) — 0,V (s, x)‘ dzds (3.57)

(&) = ()| L1 riz) < /Ot”f”Lw(zs;R) A
+ /t/ C‘p(t,x)‘ ‘V(s,x) - V(s,x)‘ dz ds (3.58)
[ 100 [ 00t [V55) = Vs s, )

By the definitions of V and V, compute:

‘V(s,m) — f/(s,x)‘
= Jol(p(s) *w)@)) = 5((3(s) * w)(@))]

min{Hv HLoo R;R)’

J

IN

HLoo R;R } Hw”L‘X’(RR Hp (S)HLI(R;]R) + ”1) - f)HL‘X’(]R;]R)

and

(s,2) — 0,V (s, x)‘ dz
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V((p(s) % w)(@)) (p(s) * Qew) () — 7' ((p(s) * w)(x)) (A(s) * Opw) (fﬂ)‘ dz

-J.

= min{HleLw(R;R)’ Hﬁ,HLw(R;R)} HaIwHLl(R;R)Hp(S) B 'E(S)HLl(R;R)
0 = 7 g iy 100 iy 0 05) g ey [1565) o ey |
= min{HvIHLOO(R;R)’ HWHL%(R;R)} HameLl(R;R)Hp(S) B 'E(S)HLl(R;R)

+ HU/ - 77/HLoo(R;R)Haxw”Ll(R;R)”Po”Ll(R;R)a

where we exploit also Lemmal[2] Therefore the inequality [([3.57)— (3.59)] can be estimated as
follows:

lo(t) - ﬁ(t)HLl(R;R)
< cl(t) HU - QNJHLOO(R;R) + CQ(t) HUI - QN/HLOO(]R;]R) + /0 03(8) Hp(s) - ﬁ(s)HLl(R;R) ds,

where, thanks to the total variation estimate provided by Proposition

Cl(t) =t (C ||p0||L1(]R;]R) + (IC? t+ TV (pO)) e’Clt ||8prL°°(Et;R)) ) (360)
c2(t) = | fllpee(sm) 102wl (mimy | PollLr (miR)» (3.61)
c3(s) = Hf”LOO(ZS;R) min{Hv,HLw(R;R)’ { 2~’/HLOO(R;R)} ”ameLl(R;R)

+(Cllpolliamy + (s + TV (00) & 0 lynsy)  (362)

X min{HleLw(R;R)’ Hﬁ,HLw(R;R)} 1wl zoo mm),

K1 and K2 being specified in (2.5). An application of Gronwall Lemma yields

Hp(t) - ﬁ(t)HLl(R;R) < <Cl(t) llv— 2~’HLoo(]R;]R) + ca(t) Hvl - 17/HL00(R;R)) eXp (/0 c3(s) dS) )

concluding the proof. O

4 Numerical Integrations

In this section, we investigate the dependence of solutions to on the kernel and the
velocity function via numerical integrations. To this end, we discretize (I-I) on a fixed grid
given by the cells interfaces Tj 1= jAx and the cells centres x; = (j— %)Am for j € Z, taking
a space step Az and a time step At, so that " = nAt is the time mesh. The Lax-Friedrichs

flux adapted to (I.I)) is given by

1 o
e = 3 <f(t",$j,P?)U(R?) + f(t"79€j+17P?+1)U(R?+1)) - 5(/’?—‘,—1 - 07) (4.1)
where o > 0 is the viscosity coefficient and R} := sz,o?+kwf7, denoting ws = wy(kAx)
kEZ
for k € Z. In this way we have the finite volume scheme
P;‘LH = P? —A [an+1/2 - an—1/2] ) (4.2)
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with A = At/Az. A rigorous study of the convergence of Lax-Friedrichs type schemes for
non-local conservation laws has been carried out in [1} [4] [6]. Here we limit the study to
the derivation of sufficient conditions ensuring that the above discretization (@I)—(Z2) is
positivity preserving.

Lemma 5. For any T > 0, under the CFL conditions
A (O‘ + (C Az +2 HapfuLoo(ZT;R)> HUHLOO(]R;]R)> <1, (4.3)

o2 HaprLoo(zT;R)||UHLoo(R;R), (4.4)
the scheme (&I)-(E2) is positivity preserving on [0,T] x R.
Proof. Let us assume that pj > 0 for all j € Z. It suffices to prove that p?“ in (4.2) is

non-negative. For the sake of simplicity, in the following we omit the dependence on n and
introduce the notation f;(p;) = f(t", zi, p;) and v; = v(R}). Compute

Ao A
P =i+ S (pis1 = 2pj +pj1) = 5 Lfi+1(pjs1) vir1 — fi-1(pj—1) vj-1]

Ao
= pi(1 = Aa) + —=(pjs1+ pj-1)

A
-3 [(fj-i—l(ﬂj—f—l) — fi41(pj) vis1 + (fi—1(pj) — fi—1(pj-1)) vj-1
+ (fj+1(Pj) - fj—1(Pj)) Vjt1 + fj—1(Pj) (Uj+1 - Uj—l)}
i (1-ras A fiilpj+1) — fi+1(py) vt — A fi=1(pj) = fi=1(pj-1) v
2 Pi+1 = Pj 2 Pj = Pj-1
Ao X fin(pje) = fivi(py)
i (7 2T e ”j“)
Aa A fima(py) = fi-1(pj-1)
+pit (7 A R ”“)

A

A
= 5 vt (Fpg) = fi=1(p5)) = 5 Fi-1(pg) (041 = vj1) -

Observe that, thanks to the assumption (4.4) on «,

ot fi—1(p;) = fi—1(pj—1)

vi-1= o+ Opfi-1(G-1/2) V-1 @ = [[0p | e 2, ) 1l pov (i) >0,

Pj = Pj-1
fir1(pj+1) = fi+1(py)
a — e Iy == p fia(Grag2) Vit > o — HaprLoo(ET.R)HUHLoo(]R;]R) >0.
Pj+1 = Pj ’
Moreover,
vit1 (Fi1(p) = fi-1(p5)) < 20 |0llpe oy A pj
and

fi-1(p3) (i1 = vj-1) < 210pf || oo sy 1V oo i) P
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Hence,

L A fivilpj+1) — fivalpg) A fimalps) — fima(pj—1)
& (1 At Pi+1 = Pj AR Pj = Pj-1 v]1>
A A
= 5 i1 (F+1(05) = fi=1(p5)) = 5 Fi-1(p5) (041 = vj1)

Z Pj (1 —Aa—2A Ha/’fHLOO(ET;R)HUHL“’(R;R) = AC||v]lgeo mim) Aw) >0,
by the CFL condition (4.3). O

Fix T' = 0.5. Let us now consider the following problem:

Oip+ 0 (f(t,x, p)v(wys * p)) =0, t€[0,T], z€]—-1,1[, (4.5)
p(0,z) = 0.6, '
with periodic boundary conditions at z = £1 and
f(t’x’p) = VmaX(t’x)p(l - p)’ pE [0’ 1]’ (46)
v(p) = (1=p)" (1 +p)™, m €N,
116 5
wn,é(x) = %a(rf - (x - 6)2)2X[—n+6,n+6}a ne ]0’ 1]’ S [_77’77]' (48)

In ([4.0), Vinax(t, x) is given by the convolution between the gaussian kernel g(x) = oL
with ¢ = 10 and the following piece-wise constant function:

7 ifee]—-1,-1/3) U]1/3,1],
o(t,x) =43 ifee]—1/3,1/3], t €1]0,1/6] U ]1/3,1/2],
1.5 ifze]-1/3,1/3], t €1/6,1/3],

see Figure [l In (48), the parameter 7 represents the radius of the support of the kernel
function w,, 5, while ¢ is the point at which the maximum is attained.

The above equations (4.5)-(4.8) describe the traffic flow on a circular road with variable
speed limit in space and time, starting from a constant initial density p, = 0.6 (for simplicity,
the maximal density is here normalised to 1).

As a metric of traffic congestion, we consider the two following functionals [9} [10][13]:

T
a@) = [ dfoupte.o)]ar. (49)
0
T b
w(Tsa) = [ [ elolt) dodr, (4.10)
0 a
where
0 r < 0.75,
e(r)=<10r —7.5 0.75 <r < 0.85,
1 0.85 < r <1.
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Figure 1: 2D plot of the function V. (¢, x)

The functional J defined in measures the integral with respect to time of the spatial
total variation of the traffic density. The results of Theorems[I] and [2] apply to the present
setting and ensure the continuous dependence of J on the parameters m, n and d. Indeed, the
map 6 — wys is Lipschitz continuous with respect to the W1 distance, the map 1 — Wy, 5
is continuous with respect to the Wh! distance and the map m — v is continuous with
respect to the W1 distance. Theorem [I] then ensures that the map wys — p, where p
solves ([&5)-(&38), is continuous with respect to the Wh! distance, while Theorem [2] ensures
the continuity of the map v — p. Finally, the map p — J is lower semicontinuous, as showed
in [10} Lemma 2.1]. Therefore, any minimising sequence of solutions converges, guaranteeing
the existence of optimal choices of the parameters 7, § and m.

The functional ¥ in (410) was introduced in [13] and it is obviously continuous with
respect to p in the L!-distance. It measures the queue of the solution in the space interval
[a, b], which is chosen equal to [-4/5, —1/3] in the numerical simulations below.

For the tests, we fix the space discretization mesh to Az = 0.001. Figures RH3l show the
values of the functionals J and ¢ when we vary the value of one of the parameters 7, § and
m, keeping the other fixed. In particular, the functionals are evaluated on the following grids:

n=01:01:1, §=-01:002:0.1,  m=1:1:10.

We observe that the functionals are in general not monotone and display some extrema in the
considered intervals. Figures [5] [6] and [7] show the behaviour of the solutions corresponding
to some of these extremal values. More precisely, Figures [5al and [5¢] show the solutions
corresponding to n = 0.2, 0.5, 1 for m = 3 and centered kernel (§ = 0). In particular,
the solutions displayed in [5aland [5d correspond to the minimum and maximum values of the
functional J (4.9) for n € [0.1,1] (see Figure[2] left). Figurel6alshows the solution obtained for
0 = —0.04 (and m = 3, n = 0.1) and corresponding to the point of minimum of both J and ¥
functionals, while Figures [6b] and [6c] correspond to the points of maximum of the functionals
J and W, respectively (see Figure [3]). Finally, in Figures [7a] and we give the solutions
corresponding to the maximum and minimum points of the functional J for m € {1,...,10}
for n =10.1 and § = 0 (see Figure [).

19



1.25 T T T T T T T T 0.18

1ol 0.16
0.14 |
1.15
012
J v
1.1
01f
1.05|
0.08
T 0.06 -
0.95 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
n n

Figure 2: Functionals J (4.9)) (left) and ¥ (4:I0) (right) with m =3, § =0 and n € [0.1, 1].
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Figure 3: Functionals J (4.9) (left) and ¥ (4.10) (right) with n = 0.1, m = 3 and § € [—n, n].
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Figure 4: Functionals J (4.9) (left) and ¥ (4.10) (right) with n = 0.1, § = 0 and m € [1,10].
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Figure 5: (¢, r)-plots of the solution to (4.5)-(4.8)), for m = 3 and § = 0, and, from the left,
n=0205,1.
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Figure 6: (¢, z)-plots of the solution to ([@5)—-(438), for m = 3 and n = 0.1, and, from the left,
§ = —0.04, 0.06, 0.08.
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Figure 7: (t,x)-plots of the solution to (4.5)-(4.8), for n = 0.1, § = 0, and m = 3 on the left,
m = 10 on the right.
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