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Non-local multi-class traffic flow models

Felisia Angela Chiarello 1 Paola Goatin 1

August 2, 2018

Abstract

We prove the existence for small times of weak solutions for a class of non-local systems
in one space dimension, arising in traffic modeling. We approximate the problem by
a Godunov type numerical scheme and we provide uniform L 1 and BV estimates for
the sequence of approximate solutions. We finally present some numerical simulations
illustrating the behavior of di↵erent classes of vehicles and we analyze two cost functionals
measuring the dependence of congestion on traffic composition.

1 Introduction
We consider the following class of non-local systems of M conservation laws in one space
dimension:

@t⇢i (t, x) + @x ⇢i (t, x)v i (( ⇤r  !i )(t, x)) = 0, i = 1, ..., M, (1.1)

where

r(t, x) :=
MX

i=1

⇢i (t, x), (1.2)

vi (⇠) := v max
i  (⇠), (1.3)

( ⇤r  !i )(t, x) :=
Z x+⌘i

x
r(t, y)! i (y x) dy , (1.4)

and we assume:

(H1) The convolution kernels ! i 2 C1([0 ⌘, i ]; R+ ), ⌘i > 0, are non-increasing functions such
that

R⌘i

0
! i (y) dy = J i . We set W0 := max i=1,...,M ! i (0).

(H2) v max
i are the maximal velocities, with 0 < v max

1 ð v max
2 ð ð. . .  v max

M .

(H3)  :R + ! R + is a smooth non-increasing function such that  (0)=1 and  (r)=0 for
r 1 (for simplicity, we can consider the function  (r)=max{1 r, 0}).

We couple (1.1) with an initial datum

⇢i (0, x) = ⇢ 0
i (x), i = 1, . . . , M. (1.5)
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Model (1.1) is obtained generalizing the n-populations model for traffic flow described in [3]
and it is a multi-class version of the one dimensional scalar conservation law with non-local
flux proposed in [4], where ⇢ i is the density of vehicles belonging to the i-th class, ⌘i is
proportional to the look-ahead distance and Ji is the interaction strength. In our setting, the
non-local dependence of the speed functions vi describes the reaction of drivers that adapt
their velocity to the downstream traffic, assigning greater importance to closer vehicles,see
also [6, 8]. We consider di↵erent anisotropic discontinuous kernels for each equation of the
system, therefore the results in [1] cannot be applied. The model takes into account the
distribution of heterogeneous drivers and vehicles characterized by their maximal speeds and
look-ahead visibility in a traffic stream. One of the limitations of the standard LWR traffic
flow model [10, 11] is the first in first out rule, conversely in multi-class dynamic faster vehicles
can overtake slower ones and slower vehicles slow down the faster ones.

Due to the possible presence of jump discontinuities, solutions to (1.1), (1.5) are intended
in the following weak sense.

Definition 1. A function ⇢  = (⇢ 1 ⇢, . . . , M ) 2 (L 1 \ L 1 )([0, T [⇥ R; RM ), T > 0, is a weak
solution of (1.1), (1.5) if

Z T

0

Z 1

1
⇢i @t ' + ⇢ i vi ( ⇤r  !i )@x ' (t, x) dx dt +

Z 1

1
⇢0

i (x)'(0, x) dx = 0

for all ' 2 C 1
c(] 1, T [⇥ R; R), i = 1, . . . , M .

The main result of this paper is the proof of existence of weak solutions to (1.1), (1.5),
locally in time.

Theorem 1. Let ⇢0
i (x) 2 (BV \ L 1 ) (R; R+ ), for i = 1, . . . , M , and assumptions (H1) -

(H3) hold. Then the Cauchy problem (1.1), (1.5) admits a weak solution on [0, T [⇥ R, for
some T > 0 sufficiently small.

The paper is organized as follows. Section 2 is devoted to prove uniform L 1 and BV
estimates on the approximate solutions obtained through an approximation argument based
on a Godunov type numerical scheme,see [7]. We have to point out that these estimates
heavily rely on the monotonicity properties of the kernel functions ! i . In Section 3 we prove
the existence in finite time of weak solutions applying Helly’s theorem and a Lax-Wendro↵
type argument, see [9]. In Section 4 we present some numerical simulations for M = 2.
In particular, we consider the case of a mixed flow of cars and trucks on a stretch of road,
and the flow of mixed autonomous and non-autonomous vehicles on a circular road. In this
latter case, we analyze two cost functionals measuring the traffic congestion, depending on
the penetration ratio of autonomous vehicles. The final Appendix contains an alternative
proof of Theorem 1, based on approximate solutions constructed via a Lax-Friedrichs type
scheme, which is commonly used in the framework of non-local equations, see [1, 2, 4].

2 Godunov type approximate solutions
First of all, we extend ! i (x) = 0 for ⌘ x > i . For j 2 Z and n 2 N, let x j+1/2 = j x

be the cells interfaces, x j = (j 1/2) x the cells centers and t n = n t the time mesh.
We aim at constructing a finite volume approximate solution ⇢ x =

⇣
⇢ x

1 ⇢, . . . , x
M

⌘
, with
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⇢ x
i (t, x) = ⇢ n

i,j for (t, x) 2 C n
j = [t n , tn+1 [⇥]xj 1/2 , xj+1/2 ] and i = 1, ..., M.

To this end, we approximate the initial datum ⇢ 0
i for i = 1, ..., M with a piecewise constant

function
⇢0

i,j =
1
x

Z x j+1/2

x j 1/2

⇢0
i (x) dx , j 2 Z.

Similarly, for the kernel, we set

! k
i :=

1
x

Z x j+1/2

x j 1/2

! 0
i (x) dx , k 2 N,

so that x
P +1

k=0 ! k
i =

R⌘i

0
! i (x) dx = J i (the sum is indeed finite since ! k

i = 0 for k N i

sufficiently large). Moreover, we set rnj+k =
MX

i=1

⇢n
i,j+k for k 2 N and

V n
i,j := v max

i  

0

@ x
+1X

k=0

! k
i r n

j+k

1

A , i = 1, . . . , M, j 2 Z. (2.1)

We consider the following Godunov-type scheme adapted to (1.1), which was introduced in [7]
in the scalar case:

⇢n+1
i,j = ⇢ n

i,j

⇣
⇢n

i,j V n
i,j+1 ⇢n

i,j 1V n
i,j

⌘
(2.2)

where we have set = t
x .

2.1 Compactness estimates
We provide here the necessary estimates to prove the convergence of the sequence of approx-
imate solutions constructed via the Godunov scheme (2.2).

Lemma 1.(Positivity) For any T > 0, under the CFL condition

ð 1
vmax

M k k 1

, (2.3)

the scheme (2.2) is positivity preserving on [0, T ]⇥  R.

Proof. Let us assume that ⇢ n
i,j 0 for all j 2 Z and i 2 1, ..., M . It suffices to prove that

⇢n+1
i,j in (2.2) is non-negative. We compute

⇢n+1
i,j = ⇢ n

i,j

⇣
1 V n

i,j+1

⌘
+ ⇢ n

i,j 1V n
i,j 0 (2.4)

under assumption (2.3). ⇤
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Corollary 2. (L1-bound) For any n 2 N, under the CFL condition (2.3) the approximate
solutions constructed via the scheme (2.2) satisfy

⇢n
i 1 = ⇢ 0

i
1
, i = 1, . . . , M, (2.5)

where ⇢n
i 1 := x

P
j ⇢n

i,j denotes the L1 ⇢norm of the i-th component of x .

Proof. Thanks to Lemma 1, for all i 2 {1, ..., M } we have

⇢n+1
i

1
= x

X

j

⇢n+1
i,j = x

X

j

⇣
⇢n

i,j ⇢n
i,j V n

i,j+1 + ⇢ n
i,j 1V n

i,j

⌘
= x

X

j

⇢n
i,j ,

proving (2.5). ⇤

Lemma 2.(L1 -bound) ⇢ If 0
i,j 0 for all j 2 Z and i = 1, ..., M , and (2.3) holds, then the

approximate solution ⇢ x constructed by the algorithm (2.2) is uniformly bounded on [0, T ]⇥R
for any T such that

T <
✓

M ⇢ 0
1

vmax
M  0

1
W0

◆ 1
.

Proof. Let ⇢̄ = max ⇢{ n
i,j 1 ⇢, n

i,j }. Then we get

⇢n+1
i,j = ⇢ n

i,j

⇣
1 V n

i,j+1

⌘
+ ⇢ n

i,j 1V n
i,j ð ⇢̄

✓
1 +

⇣
V n

i,j V n
i,j+1

⌘◆
(2.6)

and

V n
i,j V n

i,j+1 = v max
i  

0

@ x
+1X

k=0

! k
i r n

j+k

1

A  

0

@ x
+1X

k=0

! k
i r n

j+k+1

1

A

ð v max
i  0

1
x

+1X

k=0

! k
i (r n

j+k+1 r n
j+k )

= v max
i  0

1
x ! 0

i r n
j +

+1X

k=1

(! k 1
i ! k

i )r n
j+k

ð v max
i  0

1 xMk⇢ nk1 ! i (0) (2.7)

where k⇢k1 = (⇢ 1 ⇢, . . . , M ) 1 = max i,j ⇢i,j . So, until k⇢ n k1 ð K, for some K ⇢0
1 ,

we get
⇢n+1

1
ð k⇢ nk1

⇣
1 + MKv max

M  0
1

W0 t
⌘

,

which implies
k⇢nk1 ð ⇢ 0

1
eCn t ,

with C = MKv max
M  0

1
W0. Therefore we get that ⇢(t, ·) 1 ð K for

ðt 1
MKv max

M k 0k1 W0
ln

 
K

⇢0
1

!
ð 1

Me ⇢ 0
1

vmax
M k 0k1 W0

,
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where the maximum is attained for K = e ⇢ 0
1 .

Iterating the procedure, at time t m , m 1 we set K = e m ⇢0
1 and we get that the

solution is bounded by K until t m+1 such that

tm+1 ð t m +
m

Me m ⇢0
1

vmax
M k 0k1 W0

.

Therefore, the approximate solution remains bounded, uniformly in x, at least for ð t  T
with

ðT 1
M ⇢ 0

1
vmax

M k 0k1 W0

+1X

m=1

m
em

ð 1
M ⇢ 0

1
vmax

M k 0k1 W0
.

⇤

Remark 1. Unlike the classical multi-population model [3], the simplex

S :=

8
<

: ⇢ 2 R M :
MX

i=1

⇢i ð 1, ⇢i 0 for i = 1, . . . , M

9
=

;

is not an invariant domain for (1.1), see Figure 1 for a numerical example.
Indeed, let us consider the system

@t⇢i (t, x) + @x ⇢i (t, x)v i (r(t, x)) = 0, i = 1, ..., M, (2.8)

where r and v i are as in (1.2) and (1.3), respectively. We have the following:

Lemma 3.Under the CFL condition

ð 1
vmax

M k k 1 +k 0k1

,

for any initial datum ⇢ 0 2 S the approximate solutions to (2.8) computed by the upwind
scheme

⇢n+1
j = ⇢ n

j

h
F(⇢ n

j , ⇢ n
j+1 ) F(⇢ n

j 1, ⇢ n
j )

i
, (2.9)

with F(⇢ n
j , ⇢ n

j+1 ) = ⇢ n
j  (r n

j+1 ), satisfy the following uniform bounds:

⇢
n
j 2 S 8j 2 Z, n 2 N.

Proof. Assuming that ⇢ n
j 2 S for all j 2 Z, we want to prove that ⇢ n+1

j 2 S. Rewriting (2.9),
we get

⇢n+1
i,j = ⇢ n

i,j

h
vmax

i ⇢n
i,j  (r n

j+1 ) vmax
i ⇢n

i,j 1 (r n
j )

i
.

Summing on the index i = 1, . . . , M , gives

r n+1
j =

MX

i=1

⇢n+1
i,j =

MX

i=1

⇢n
i,j

MX

i=1

h
vmax

i ⇢n
i,j  (r n

j+1 ) vmax
i ⇢n

i,j 1 (r n
j )

i

= r n
j +  (r n

j )
MX

i=1

vmax
i ⇢n

i,j 1  (r n
j+1 )

MX

i=1

vmax
i ⇢n

i,j .

5



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2
In

iti
al

 d
en

si
ty

rho1
rho2

(a)

-2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

D
e

n
si

ty

densities at time t=1.800000

rho1
rho2
rho1+rho2

(b)

-2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

D
e

n
si

ty

densities at time t=2.800000

rho1
rho2
rho1+rho2

(c)

0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

1.25

(d)

Figure 1: Numerical simulation illustrating that the simplex S is not an invariant domain for
(1.1). We take M = 2 and we consider the initial conditions ⇢ 1(0, x) = 0.9 [ 0.5, 0.3] and
⇢2(0, x) = 0.1 ] 1,0] + ]0,+1[ depicted in (a), the constant kernels ! 1(x) = ! 2(x) = 1 ⌘/ ,
⌘ = 0.5, and the speed functions given by vmax

1 = 0.2, vmax
2 = 1,  (⇠) = max{1 ⇠, 0} for

⇠ 0. The space and time discretization steps are x = 0.001 and t = 0.4 x. Plots
(b) and (c) show the density profiles of ⇢1, ⇢2 and their sum r at times t = 1.8, 2.8. The
function maxx2R r(t, x) is plotted in (d), showing that r can take values greater than 1, even
if r(0, x) = ⇢ 1(0, x) + ⇢ 2(0, x) ð  1.

Defining the following function of ⇢ n
j

(⇢n
1,j

⇢, . . . , nM,j ) = r n
j +  (r n

j )
MX

i=1

vmax
i ⇢n

i,j 1  (r n
j+1 )

MX

i=1

vmax
i ⇢n

i,j ,

we observe that

(0,...,0)=  (0)
MX

i

vmax
i ⇢n

i,j 1 ð k k 1 vmax
M ð 1

if ð 1/v max
M k k 1 and

(⇢n
1,j

⇢, ..., n
M,j ) = 1  (r n

j+1 )
MX

i=1

vmax
i ⇢n

i,j ð 1
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for ⇢ n
j 2 S such that r n

j =
P M

i=1 ⇢n
i,j = 1. Moreover

@
⇢@n
i,j

(⇢ n
j )=1+  0(r n

j )
MX

i=1

vmax
i ⇢n

i,j 1  (r n
j+1 )vmax

i 0

if ð 1/v max
M

⇣
k k 1 +  0

1

⌘
. This proves that r n+1

j ð 1.
To prove the positivity of (2.9), we observe that

⇢n+1
i,j = ⇢ n

i,j

⇣
1 vmax

i  (r n
j+1 )

⌘
+ v max

i ⇢n
i,j 1 (r n

j ) 0

if ð 1/v max
M k k 1 . ⇤

Lemma 4.(Spatial BV-bound) ⇢ Let 0
i 2 (BV \ L 1 ) (R, R+ ) for all i = 1, ..., M. If (2.3)

holds, then the approximate solution ⇢ x (t, ·) constructed by the algorithm (2.2) has uniformly
bounded totalvariation for t 2 [0, T ], for any T such that

ðT min
i=1,...,M

1
H TV (⇢ 0

i ) + 1
, (2.10)

where H = k⇢k 1 vmax
M W0M

⇣
6MJ 0k⇢k1  00

1 +  0
1

⌘
.

Proof. Subtracting the identities

⇢n+1
i,j+1 = ⇢ n

i,j+1

⇣
⇢n

i,j+1 V n
i,j+2 ⇢n

i,j V n
i,j+1

⌘
, (2.11)

⇢n+1
i,j = ⇢ n

i,j

⇣
⇢n

i,j V n
i,j+1 ⇢n

i,j 1V n
i,j

⌘
, (2.12)

and setting n
i,j+1/2 = ⇢ n

i,j+1 ⇢n
i,j , we get

n+1
i,j+1/2 = n

i,j+1/2

⇣
⇢n

i,j+1 V n
i,j+2 2 ⇢ n

i,j V n
i,j+1 + ⇢ n

i,j 1V n
i,j

⌘
.

Now, we can write

n+1
i,j+1/2 =

⇣
1 V n

i,j+2

⌘
n
i,j+1 (2.13)

+ V n
i,j

n
i,j 1/2

⇢n
i,j

⇣
V n

i,j+2 2Vn
i,j+1 + V n

i,j

⌘
. (2.14)

Observe that assumption (2.3) guarantees the positivity of (2.13). The term (2.14) can be
estimated as

V n
i,j+2 2Vn

i,j+1 + V n
i,j =

= v max
i

0

B@ 

0

@ x
+1X

k=0

! k
i r n

j+k+2

1

A 2 

0

@ x
+1X

k=0

! k
i r n

j+k+1

1

A + 

0

@ x
+1X

k=0

! k
i r n

j+k

1

A

1

CA
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= v max
i  0(⇠j+1 ) x

0

@
+1X

k=0

! k
i r n

j+k+2

+1X

k=0

! k
i r n

j+k+1

1

A

+ v max
i  0(⇠j ) x

0

@
+1X

k=0

! k
i r n

j+k

+1X

k=0

! k
i r n

j+k+1

1

A

= v max
i  0(⇠j+1 ) x

0

@
+1X

k=1

(! k 1
i ! k

i )r n
j+k+1 ! 0

i r n
j+1

1

A

+ v max
i  0(⇠j ) x

0

@
+1X

k=1

(! k
i ! k 1

i )r n
j+k + ! 0

i r n
j

1

A

= v max
i ( 0(⇠j+1 )  0(⇠j )) x

0

@
+1X

k=1

(! k 1
i ! k

i )r n
j+k+1 ! 0

i r n
j+1

1

A

+ v max
i  0(⇠j ) x

0

@
+1X

k=1

(! k 1
i ! k

i )(r n
j+k+1 r n

j+k ) + ! 0
i (r n

j r n
j+1 )

1

A

= v max
i  00(⇠̃j+1/2 )(⇠ j+1 ⇠j ) x

0

@
+1X

k=1

MX

=1

! k
i

n
,j+k+3/2

1

A

+ v max
i  0(⇠j ) x

0

@
MX

=1

N 1X

k=1

(! k 1
i ! k

i ) n
,j+k+1/2 ! 0

i
n

,j+1/2

1

A ,

with ⇠ j 2 I
⇣

x
P +1

k=0 ! k
i r n

j+k
, x

P +1
k=0 ! k

i r n
j+k+1

⌘
and ⇠̃j+1/2 ⇠2 I j ⇠, j+1 , where we set

I(a, b) =
⇥
min{a, b}, max{a, b}

⇤
. For some #, µ 2 [0, 1], we compute

⇠j+1 ⇠j = # x
+1X

k=0

! k
i

MX

=1

⇢n
,j+k+2 + (1 #) x

+1X

k=0

! k
i

MX

=1

⇢n
,j+k+1

µ x
+1X

k=0

! k
i

MX

=1

⇢n
,j+k+1 (1 µ) x

+1X

k=0

! k
i

MX

=1

⇢n
,j+k

= # x
+1X

k=1

! k 1
i

MX

=1

⇢n
,j+k+1 + (1 #) x

+1X

k=0

! k
i

MX

=1

⇢n
,j+k+1

µ x
+1X

k=0

! k
i

MX

=1

⇢n
,j+k+1 (1 µ) x

+1X

k= 1

! k+1
i

MX

=1

⇢n
,j+k+1

= x
+1X

k=1

h
#! k 1

i + (1 #)! k
i µ! k

i (1 µ)! k+1
i

i MX

=1

⇢n
,j+k+1

+ (1 #) x! 0
i

MX

=1

⇢n
,j 1 µ x! 0

i

MX

=1

⇢n
,j+1

8



(1 µ) x

0

@! 0
i

MX

=1

⇢n
,j + ! 1

i

MX

=1

⇢n
,j+1

1

A .

By monotonicity of ! i we have

#! k 1
i + (1 #)! k

i µ! k
i (1 µ)! k+1

i 0 .

Taking the absolute values we get

⇠j+1 ⇠j ð x

8
<

:

+1X

k=2

h
#! k 1

i + (1 #)! k
i µ! k

i (1 µ)! k+1
i

i
+ 4! 0

i

9
=

; Mk⇢ nk1

ð x

8
<

:

+1X

k=2

h
! k 1

i ! k+1
i

i
+ 4! 0

i

9
=

; Mk⇢ nk1

ð x 6 W0Mk⇢ nk1 .

Until
P

j
n

,j ð K 1 for = 1, . . . , M for some K1
P

j
0

,j , taking the absolute values
and rearranging the indexes, we have

X

j

n+1
i,j+1/2

ð
X

j

n
i,j+1/2

✓
1

⇣
V n

i,j+2 V n
i,j+1

⌘◆
+ t HK 1,

where H = k⇢k 1 vmax
M W0M

⇣
6MJ 0k⇢k1  00

1 +  0
1

⌘
. Therefore, by (2.7) we get

X

j

n+1
i,j+1/2

ð
X

j

n
i,j+1/2 (1 + t G) + t HK 1,

with G = v max
M  0

1
W0Mk⇢k 1 . We thus obtain

X

j

n
i,j+1/2 ð e Gn t

X

j

0
i,j+1/2 + eHK 1n t 1,

that we can rewrite as

TV (⇢ x
i )(n t, ·) ð  eGn t TV (⇢ 0

i ) + eHK 1n t 1

ð e HK 1n t
⇣

TV (⇢ 0
i ) + 1

⌘
1 ,

since H G and it is not restrictive to assume K 1 1. Therefore, we have that TV (⇢ x
i ) ð 

K 1 for

ðt 1
HK 1

ln

 
K 1 + 1

TV (⇢ 0
i ) + 1

!
,

9



where the maximum is attained for some K1 < e TV (⇢ 0
i ) + 1 1 such that

ln

 
K 1 + 1

TV (⇢ 0
i ) + 1

!

=
K 1

K 1 + 1
.

Therefore the total variation is uniformly bounded for

ðt 1
He TV (⇢ 0

i ) + 1
.

Iterating the procedure, at time t m , m 1 we set K1 = em TV (⇢ 0
i ) + 1 1 and we get that

the solution is bounded by K 1 until t m+1 such that

tm+1 ð t m +
m

Hem TV (⇢ 0
i ) + 1

. (2.15)

Therefore, the approximate solution has bounded total variation for ð t  T with

ðT 1
H TV (⇢ 0

i ) + 1
.

⇤

Corollary 3. Let ⇢0
i 2 (BV \ L 1 ) (R; R+ ). If (2.3) holds, then the approximate solution

⇢ x constructed by the algorithm (2.2) has uniformly bounded total variation on [0, T ]⇥  R,
for any T satisfying (2.10).

Proof. If ð T t, then TV (⇢ x
i ; [0, T ]⇥  R) ð  T TV (⇢0i ). Let us assume now that T > t.

Let n T 2 N\{0} such that n T ðt < T  (n T + 1) t. Then

TV (⇢ x
i ; [0, T ]⇥  R)

=
nT 1X

n=0

X

j2Z

⇢t n
i,j+1 ⇢n

i,j + (T nT t)
X

j2Z

⇢nT
i,j+1 ⇢nT

i,j

| {z }
ð T sup t2[0,T ] TV(⇢ x

i )(t,·)

+
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j .

We then need to bound the term
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j .

From the definition of the numerical scheme (2.2), we obtain

⇢n+1
i,j ⇢n

i,j =
⇣
⇢n

i,j 1V n
i,j ⇢n

i,j V n
i,j+1

⌘

=
✓
⇢n

i,j 1

⇣
V n

i,j V n
i,j+1

⌘
+ V n

i,j+1

⇣
⇢n

i,j 1 ⇢n
i,j

⌘◆
.

Taking the absolute values and using (2.7) we obtain

⇢n+1
i,j ⇢n

i,j ð
✓

vmax
i  0

1 Mk⇢ nk1 ! i (0) ⇢x n
i,j 1 + v max

i k k 1 ⇢n
i,j 1 ⇢n

i,j

◆
.

10



Summing on j, we get
X

j2Z

⇢x n+1
i,j ⇢n

i,j = v max
i  0

1 Mk⇢ nk1 ! i (0) t
X

j2Z

⇢x n
i,j 1

+ v max
i k k 1 t

X

j2Z

⇢n
i,j 1 ⇢n

i,j ,

which yields
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j

ð v max
M k k 1 T sup

t2[0,T ]
TV (⇢ x

i )(t, ·) + v max
M  0

1
MW 0T sup

t2[0,T ]
⇢ x

i (t, ·)
1
⇢ x

i (t, ·)
1

that is bounded by Corollary 2, Lemma 2 and Lemma 4. ⇤

3 Proof of Theorem 1
To complete the proof of the existence of solutions to the problem (1.1), (1.5), we follow a
Lax-Wendro↵ type argument as in [4], see also [9],to show that the approximate solutions
constructed by scheme (2.2) converge to a weak solution of (1.1). By Lemma 2, Lemma 4
and Corollary 3, we can apply Helly’s theorem, stating that for i = 1, . . . , M , there exists a
subsequence,still denoted by ⇢ x

i , which converges to some ⇢ i 2 (L 1 \ BV)([0, T ]⇥  R; R+ )
in the L 1

loc-norm. Let us fix i 2 {1, . . . , M }. Let ' 2 C 1
c([0, T [⇥ R) and multiply (2.2) by

'(t n , xj ). Summing over j 2 Z and n 2 {0, . . . , n T } we get

nT 1X

n=0

X

j

'(t n , xj )
⇣
⇢n+1

i,j ⇢n
i,j

⌘

=
nT 1X

n=0

X

j

'(t n , xj )
⇣
⇢n

i,j V n
i,j+1 ⇢n

i,j 1V n
i,j

⌘
.

Summing by parts we obtain

X

j

'((n T 1) t, xj )⇢nT
i,j +

X

j

'(0, x j )⇢0
i,j +

nT 1X

n=1

X

j

⇣
'(t n , xj ) '(t n 1 , xj )

⌘
⇢n

i,j

+
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj ) V n
i,j+1 ⇢n

i,j = 0. (3.1)

Multiplying by x we get

x
X

j

'((n T 1) t, xj )⇢nT
i,j + x

X

j

'(0, x j )⇢0
i,j (3.2)

+ x t
nT 1X

n=1

X

j

'(t n , xj ) '(t n 1 , xj )
t

⇢n
i,j (3.3)

11



+ x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x

V n
i,j+1 ⇢n

i,j = 0. (3.4)

By L1
loc convergence of ⇢ x

i ⇢! i , it is straightforward to see that the terms in (3.2), (3.3)
converge to

Z

R

⇣
⇢0

i (x)'(0, x) ⇢i (T, x)'(T, x)
⌘

dx +
Z T

0

Z

R
⇢i (t, x)@t '(t, x) dx dt , (3.5)

as x ! 0. Concerning the last term (3.4), we can rewrite

x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x

V n
i,j+1 ⇢n

i,j

= x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x

⇣
⇢n

i,j V n
i,j+1 ⇢n

i,j V n
i,j

⌘
(3.6)

+ x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x

⇢n
i,j V n

i,j .

By (2.7) we get the estimate

⇢n
i,j V n

i,j+1 ⇢n
i,j V n

i,j ð v max
i  0

1 xMk⇢k 2
1 ! i (0).

Set R > 0 such that '(t, x) = 0 for |x| > R and j 0, j 1 2 Z such that R 2 ]x j 0
1
2
, xj 0+ 1

2
] and

R 2 ]x j 1
1
2
, xj 1+ 1

2
], then

x t
nTX

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x (⇢n

i,j V n
i,j+1 ⇢n

i,j V n
i,j )

ð x tk@x 'k 1

nTX

n=0

j 1X

j=j 0

vmax
i  0

1 Mk⇢k 2
1 ! i (0) x

ð k@x 'k 1 vmax
i  0

1 Mk⇢k 2
1 ! i (0) x 2 R T ,

which goes to zero as x ! 0.
Finally, again by the L1

loc convergence of ⇢ x
i ⇢! i , we have that

x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x

⇢n
i,j V n

i,j 1
2

!
Z T

0

Z

R
@x '(t, x)⇢ i (t, x)v i ( ⇤r  !i ) dx dt .

4 Numerical tests
In this section we perform some numerical simulations to illustrate the behaviour of solutions
to (1.1) for M = 2 modeling two di↵erent scenarios. In the following, the space mesh is set
to x = 0.001.
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4.1 Cars and trucks mixed traffic
In this example, we consider a stretch of road populated by cars and trucks. The space
domain is given by the interval [ 2, 3] and we impose absorbing conditions at the boundaries,
adding N1 =⌘ 1/ x ghost cells for the first population and N2 =⌘ 2/ x for the second one at
the right boundary, and just one ghost cell for both populations at the left boundary, where
we extend the solution constantly equal to the last value inside the domain.The dynamics is
described by the following 2⇥  2 system

(
@t⇢1(t, x) + @x ⇢1(t, x)v max

1  (( ⇤r ! 1)(t, x)) = 0,
@t⇢2(t, x) + @x ⇢2(t, x)v max

2  (( ⇤r ! 2)(t, x)) = 0,
(4.1)

with

! 1(x) =
2
⌘1

✓
1

x
⌘1

◆
, ⌘1 = 0.3,

! 2(x) =
2
⌘2

✓
1

x
⌘2

◆
, ⌘2 = 0.1,

 (⇠)=max{1 ⇠, 0} , ⇠ 0,
vmax

1 = 0.8, vmax
2 = 1.3.

In this setting, ⇢1 represents the density of trucks and ⇢ 2 is the density of cars on the road.
Trucks moves at lower maximal speed than cars and have grater view horizon, but of the same
order of magnitude. Figure 2 describes the evolution in time of the two population densities,
correspondent to the initial configuration

(
⇢1(0, x) = 0.5 [ 1.1, 1.6],

⇢2(0, x) = 0.5 [ 1.6, 1.9],

in which a platoon of trucks precedes a group of cars.Due to their higher speed, cars overtake
trucks, in accordance with what observed in the local case [3].

4.2 Impact of connected autonomous vehicles
The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by
the space interval [ 1, 1] with periodic boundary conditions at x = ±1. In this case, we
assume that autonomous and non-autonomous vehicles have the same maximalspeed,but
the interaction radius of CAVs is two orders of magnitude grater than the one of human-driven
cars. Moreover, we assume CAVs have constant convolution kernel,modeling the fact that
they have the same degree of accuracy on information about surrounding traffic, independent
from the distance. In this case, model (1.1) reads

8
>>>><

>>>>:

@t⇢1(t, x) + @x ⇢1(t, x)v max
1  (( ⇤r ! 1)(t, x)) = 0, i = 1, ..., M,

@t⇢2(t, x) + @x ⇢2(t, x)v max
2  (( ⇤r ! 2)(t, x)) = 0,

⇢1(0, x) = (0.5 + 0.3 sin(5⇡x)),
⇢2(0, x) = (1 ) (0.5 + 0.3 sin(5⇡x)),

(4.2)

13



-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
si

ty

densities at time t=0.000692

trucks
cars

(a)

-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

densities at time t=0.554538

trucks
cars

(b)

-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
si

ty

densities at time t=1.662231

trucks
cars

(c)

-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
si

ty

densities at time t=2.216077

trucks
cars

(d)

-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
si

ty

densities at time t=3.323769

trucks
cars

(e)

-2 -1 0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
si

ty

densities at time t=3.877615

trucks
cars

(f )

Figure 2: Density profiles of cars and trucks at increasing times corresponding to the non-local
model (4.1).

with

! 1(x) =
1
⌘1

, ⌘1 = 1,
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! 2(x) =
2
⌘2

✓
1

x
⌘2

◆
, ⌘2 = 0.01,

 (⇠)=max{1 ⇠, 0} , ⇠ 0,
vmax

1 = v max
2 = 1.

Above ⇢ 1 represents the density of autonomous vehicles,⇢2 the density of non-autonomous
vehicles and 2 [0, 1] is the penetration rate of autonomous vehicle. Figure 3 displays the
traffic dynamics in the case = 0.9.

As a metric of traffic congestion, given a time horizon T > 0, we consider the two following
functionals:

J ( ) =
Z T

0
d| @x r| dt , (4.3)

 ( ) =
Z T

0

⇥
⇢1(t, x̄)v max

1  (( ⇤r ! 1)(t, x̄)) + ⇢ 2(t, x̄)v max
2  (( ⇤r ! 2)(t, x̄))

⇤
dt , (4.4)

where x̄ = x 0 ⇡ 0. The functional J measures the integral with respect to time of the spatial
total variation of the total traffic density, see [5]. Instead, the functional   measures the
integral with respect to time of the traffic flow at a given point x̄, corresponding to the
number of cars that have passe through x̄ in the studied time interval. Figure 4 displays
thevaluesofthefunctionalsJ and fordi↵erentvaluesof = 0, 0.1, 0.2, . . . ,1. We can
notice that the functionals are not monotone and present minimum and maximum values.
The traffic evolution patterns corresponding these stationary velues are reported in Figure 5,
showing the (t, x)-plots of the total traffic density r(t, x) corresponding to these values of .
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Figure 3: Density profiles corresponding to the non-local problem (4.2) with = 0.9 at
di↵erent times.
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Figure 5: (t, x)-plots of the total traffic density r(t, x) = ⇢ 1(t, x) + ⇢ 2(t, x) in (4.2) correspond-
ing to di↵erent values of : (a) no autonomous vehicles are present;(b) point of minimum
for ;(c)pointofminimumforJ;(d)pointofmaximumforJ.
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Appendix A Lax-Friedrichs numerical scheme
We provide here an alternative existence proof for (1.1), based on approximate solutions
constructed via the following adapted Lax-Friedrichs scheme:

⇢n+1
i,j = ⇢ n

i,j

⇣
F n

i,j+1/2 F n
i,j 1/2

⌘
, (A.1)

with
F n

i,j+1/2 :=
1
2
⇢n

i,j V n
i,j +

1
2
⇢n

i,j+1 V n
i,j+1 +

↵

2

⇣
⇢n

i,j ⇢n
i,j+1

⌘
, (A.2)

where ↵ 1 is the viscosity coefficient and = t
x .

Lemma 5.For any T > 0, under the CFL conditions

↵ < 1, (A.3)
↵ vmax

M k k 1 , (A.4)

the scheme (A.2)-(A.1) is positivity preserving on [0, T ]⇥  R.
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Proof. Let us assume that ⇢ n
i,j 0 for all j 2 Z and i 2 1, ..., M . It suffices to prove that

⇢n+1
i,j in (A.1) is non-negative. Compute

⇢n+1
i,j = ⇢ n

i,j +
2
↵(⇢n

i,j+1 2⇢n
i,j + ⇢ n

i,j 1) +
2

⇣
⇢n

i,j 1V n
i,j 1 ⇢n

i,j+1 V n
i,j+1

⌘
(A.5)

= ⇢ n
i,j 1 2

⇣
↵ + Vn

i,j 1

⌘
+ ⇢ n

i,j (1 ↵) + ⇢ n
i,j+1 2

⇣
↵ V n

i,j+1

⌘
, (A.6)

under assumptions (A.3) and (A.4), we obtain that ⇢ n+1
i,j is positive. ⇤

Corollary 4. (L1 bound) For any T > 0, under the CFL conditions (A.3)-(A.4) the scheme
(A.2)-(A.1) preserves the L1 ⇢norm of the i-th component of x .

Proof. See proof of Corollary 2. ⇤

Lemma 6. (L1 -bound) If ⇢0
i,j 0 for all j 2 Z and i = 1, ..., M , and the CFL condi-

tions (A.3)-(A.4) hold, the approximate solution ⇢ x constructed by the algorithm (A.2)-(A.1)
is uniformly bounded on [0, T ]⇥  R for any T such that

T <
✓

M ⇢ 0
1

vmax
M  0

1
W0

◆ 1
. (A.7)

Proof. From (A.6) we can define

⇢n+1
i,j =

2
⇢n

i,j 1

⇣
↵ + Vn

i,j 1

⌘
+ (1 ↵)⇢n

i,j +
2
⇢n

i,j+1

⇣
↵ V n

i,j+1

⌘

Let ⇢̄ = max
n
⇢n

i,j 1 ⇢, n
i,j ⇢, n

i,j+1

o
. Then we get

⇢n+1
i,j ð ⇢̄

ð
1 +

2

⇣
V n

i,j 1 V n
i,j+1

⌘

and by (2.7)

V n
i,j 1 V n

i,j+1 ð 2v max
M  0

1
x ! i (0)Mk⇢k 1 . (A.8)

Therefore, until k⇢ nk1 ð K, for some K ⇢0
1 , we get

⇢n+1
1
ð k⇢ nk1

⇣
1 + MKv max

M  0
1

W0 t
⌘

,

and we can reason as in the proof of Lemma 2. ⇤
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Lemma 7. (BV estimates) Let ⇢0
i 2 (BV \ L 1 ) (R, R+ ) for all i = 1, ..., M . If (A.4)

holds and

ðt 2
2↵ + xk 0k1 W0 vmax

M k⇢k1

x, (A.9)

then the solution constructed by the algorithm (A.2)-(A.1) has uniformly bounded total vari-
ation for any T such that

ðT min
i=1,...,M

1
D TV (⇢ 0

i ) + 1
, (A.10)

where D = k⇢k 1 vmax
M W0M

⇣
3MJ 0k⇢k1  00

1 +2  0
1

⌘
.

Proof. Subtracting the following expressions

⇢n+1
i,j+1 = ⇢ n

i,j+1 +
2
↵(⇢n

i,j 2⇢n
i,j+1 + ⇢ n

i,j+2 ) +
2

⇣
⇢n

i,j V n
i,j ⇢n

i,j+2 V n
i,j+2

⌘
,

⇢n+1
i,j = ⇢ n

i,j +
2
↵(⇢n

i,j 1 2⇢n
i,j + ⇢ n
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,

we get
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Now, we can write
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and

V n
i,j+2 V n

i,j+1 = v max
i  0(⇠j+3/2 ) x

+1X

k=0

! k
i

MX

=1

⇢n
,j+k+2 ⇢n

,j+k+1

= v max
i  0(⇠j+3/2 ) x

+1X

k=0

! k
i

MX

=1

n
,j+k+3/2

= v max
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We get
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⇣
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⇣
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n
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=
2

⇣
↵ + Vn

i,j

⌘
n
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⇣
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⇣
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+
✓

1 ↵
2

⇣
V n

i,j V n
i,j 1

⌘◆
n
i,j+1/2 (A.12)

+
2

⇣
↵ V n

i,j+2

⌘
n
i,j+3/2 (A.13)
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+ v max
i  0(⇠j+3/2 ) x
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where ⇠̃j+1 2 I(⇠ j+1/2 ⇠, j+3/2 ). For some #, µ 2 [0, 1], we compute
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By monotonicity of ! ⌘we have

#! k
i + (1 #)! k+1

i µ! k 2
i (1 µ)! k 1

i ð 0.

Taking the absolute values we get
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8
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i

i
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9
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Observe that assumption (A.4) guarantees the positivity of (A.11) and (A.13). Similarly,
(A.9) ensures the positivity of (A.12).

Until
P

j
n

,j ð K 1 for = 1, ..., M for some K 1
P

j
0

,j , taking the absolute
values and rearranging the indexes, we have

X

j

n+1
i,j+1/2

ð
X

j

n
i,j+1/2

✓
1 +

2
Vi,j 1 Vi,j+1

◆
+ t DK 1

where D = k⇢k 1 vmax
M W0M

⇣
3MJ 0k⇢k1  00

1 +2  0
1

⌘
. Therefore, by (A.8) we get

X

j

n+1
i,j+1/2

ð
X

j

n
i,j+1/2 (1 + t C) + t DK 1

with C = v max
M  0

1
W0Mk⇢k 1 . In this way we obtain
X

j

n+1
i,j+1/2

ð e Cn t
X

j

0
i,j+1/2 + eDK 1n t 1,

that we can rewrite as

TV (⇢ i, x )(n t, ·) ð  eCn t TV (⇢ 0
i ) + eDK 1n t 1

ð e DK 1n t
⇣

TV (⇢ 0
i ) + 1

⌘
1, (A.14)

since D 2C and it is not restrictive to assume K1
1
2 . Therefore we have that TV (⇢i, x ) ð 

K 1 for

ðt 1
DK 1

ln

 
K 1 + 1

TV (⇢ 0
i ) + 1

!
,

where the maximum is attained for some K1 ð e TV (⇢ 0
i ) + 1 1 such that

ln

 
K 1 + 1

T V (⇢0i ) + 1

!

=
K 1

K 1 + 1
.

Therefore the total variation is uniformly bounded for

ðt 1
De TV (⇢ 0

i ) + 1
.

Iterating the procedure, at time t m , m 1 we set K1 = em TV (⇢ 0
i ) + 1 1 and we get that

the solution is bounded by K 1 until t m+1 such that

tm+1 ð t m +
m

Dem TV (⇢ 0
i ) + 1

. (A.15)

Therefore, the approximate solution satisfies the bound (A.14) for ð t  T with

ðT 1
D TV (⇢ 0

i ) + 1
.

⇤

23



Corollary 5. ⇢ Let 0
i 2 BV(R; [0, 1]). If (A.3)-(A.4) holds, then the approximate solution ⇢ x

constructed by the algorithm (A.2)-(A.1) has uniformly bounded total variation on [0, T ]⇥  R,
for any T satisfying (A.10).

Proof. Let us fix T 2 R + such that (A.10) and (A.7) hold. If ð T t, then TV (⇢ i, x ; R⇥ 
[0, T ]) ð  T TV (⇢ i,0 ). Let us assume now that T t. Let M 2 N\{0} such that n T t <

ðT  (n T + 1) t. Then

TV (⇢ i, x ; R⇥  [0, T ]) (A.16)

=
nT 1X
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X

j2Z

⇢t n
i,j+1 ⇢n

i,j + (T nT t)
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j2Z
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i,j

| {z }
ðT sup t2[0,T ] TV(⇢ x

i )(t,·)

+
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j

(A.17)

We then need to bound the term
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j . (A.18)

Let us make use of the definition of the numerical scheme (A.2)-(A.1), we obtain

⇢n+1
i,j ⇢n

i,j

=
2
↵ + Vi,j+1 (⇢ i,j 1 ⇢i,j )

2
↵ Vi,j+1 (⇢ i,j ⇢i,j+1 )

+
2
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If (A.4) holds, we can take the absolute value
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Summing on j and rearranging the indexes we get
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+ t
X

j2Z

⇢i,j 1 x vmax
M  0

1
W0Mk~⇢k1

which yields
nT 1X

n=0

X

j2Z

⇢x n+1
i,j ⇢n

i,j (A.19)

ð T eC1n t
⇣

TV (⇢ 0
i ) + 1

⌘ ✓
↵ +

1
2

vmax
M  0

1
x W0Mk~⇢k1

◆
(A.20)

+ T k~⇢kL1vmax
M  0

1
W0Mk~⇢k1 . (A.21)

⇤

Proof of Theorem 1.Let us define
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1
2
⇢n

i,j V n
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1
2
⇢n

i,j+1 V n
i,j+1 +

↵

2

⇣
⇢n

i,j ⇢n
i,j+1

⌘
.

Fix i 2 {1, ..., M }. Let ' 2 C 1
c([0, T ]⇥  R) and multiply (A.1) by '(t n , xj ). Summing over

j 2 Z and n 2 {0, 1, ..., n T } we get
nT 1X

n=0

X

j

'(t n , xj )
⇣
⇢n+1
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i,j

⌘

=
nT 1X

n=0

X

j
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.

Summing by parts we obtain
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j
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X

j

'(0, x j )⇢0
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nT 1X
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j
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'(t n , xj ) '(t n 1 , xj )

⌘
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i,j

+
nT 1X
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Multiplying by x

x
X

j

'((n T 1) t, xj )⇢nT
i,j + x

X

j

'(0, x j )⇢0
i,j + x t

nT 1X
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(A.23)

+ x t
nT 1X

n=0

X

j

'(t n , xj+1 ) '(t n , xj )
x g(⇢n

i,j ⇢, ..., n
i,j+N ) = 0. (A.24)

By L 1
loc convergence of⇢i, x ⇢! i , it is straightforward to see that the first two terms in

(A.23) converge to
Z

R
(⇢0

i (x)'(0, x) ⇢i (T, x)'(T, x)) dx +
Z T

0

Z

R
⇢i (t, x)@t '(t, x) dx dt (A.25)
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as x ! 0. Concerning the last term, we can observe that
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W0 TV (⇢ i, x (T, ·)). Therefore, the last term in (A.22) can be rewrit-
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By L1
loc convergence of ⇢ i, x ⇢! i and boundedness of !i , the first term in the above decom-

position converges to Z T

0

Z

R
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Set R > 0 such that '(t, x) = 0 for |x| > R and j 0, j 1 2 Z such that R 2]x j 0 1/2 , xj 0+1/2 [
and R 2]x j 1 1/2 , xj 1+1/2 [, then
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which goes to zero when x ! 0. Finally, again by the L 1
loc convergence of⇢ x

i ⇢! i , we
have that
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