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GLOBAL ENTROPY WEAK SOLUTIONS FOR GENERAL

NON-LOCAL TRAFFIC FLOW MODELS WITH ANISOTROPIC

KERNEL

Felisia Angela Chiarello and Paola Goatin*

Abstract. We prove the well-posedness of entropy weak solutions for a class of scalar conservation
laws with non-local flux arising in traffic modeling. We approximate the problem by a Lax-Friedrichs
scheme and we provide L∞ and BV estimates for the sequence of approximate solutions. Stability with
respect to the initial data is obtained from the entropy condition through the doubling of variable
technique. The limit model as the kernel support tends to infinity is also studied.
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1. Introduction

We consider the following scalar conservation law with non-local flux

∂tρ+ ∂x (f(ρ)v(Jγ ∗ ρ)) = 0, x ∈ R, t > 0, (1.1)

where

Jγ ∗ ρ(t, x) :=

∫ x+γ

x

Jγ(y − x)ρ(t, y)dy, γ > 0. (1.2)

In (1.1), (1.2), we assume the following hypotheses:

(H)

f ∈ C1(I;R+), I = [a, b] ⊆ R+,

v ∈ C2(I;R+) s.t. v′ ≤ 0,

Jγ ∈ C1([0, γ];R+) s.t. J ′γ ≤ 0 and
∫ γ

0
Jγ(x)dx := J0, ∀γ > 0, limγ→∞ Jγ(0) = 0.

This class of equations includes in particular some vehicular traffic flow models [4, 11, 16, 19], where γ > 0
is proportional to the look-ahead distance and the integral J0 is the interaction strength (here assumed to be
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independent of γ). In this setting, the non-local dependence of the speed function v can be interpreted as the
reaction of drivers to a weighted mean of the downstream traffic density. Unlike similar non-local equations [2, 3,
6–8, 12, 20], these models are characterized by the presence of an anisotropic discontinuous kernel, which makes
general theoretical results [1–3] inapplicable as such. On the other side, the specific monotonicity assumptions
on the speed function v and the kernel Jγ ensure nice properties of the corresponding solutions, such as a strong
maximum principle (both from below and above) and the absence of unphysical oscillations due to a sort of
monotonicity preservation, which make the choice (1.2) interesting and justified from the modeling perspective.

Adding an initial condition

ρ(0, x) = ρ0(x), x ∈ R, (1.3)

with ρ0 ∈ BV(R; I), entropy weak solutions of problem (1.1), (1.3), are intended in the following sense [2, 3, 14].

Definition 1.1. A function ρ ∈ (L1 ∩ L∞ ∩ BV)(R+ × R; I) is an entropy weak solution of (1.1), (1.3), if∫ +∞

0

∫
R

{
|ρ− κ|ϕt + sgn(ρ− κ)(f(ρ)− f(κ))v(Jγ ∗ ρ)ϕx

− sgn(ρ− κ)f(κ)v′(Jγ ∗ ρ)∂x(Jγ ∗ ρ)ϕ
}

dxdt+

∫
R
|ρ0(x)− κ|ϕ(0, x)dx ≥ 0 (1.4)

for all ϕ ∈ C1
c(R2;R+) and κ ∈ R.

The main results of this paper are the following.

Theorem 1.2. Let hypotheses (H) hold and ρ0 ∈ BV(R; I). Then the Cauchy problem (1.1), (1.3), admits a
unique weak entropy solution ργ in the sense of Definition 1.1, such that

min
R
{ρ0} ≤ ργ(t, x) ≤ max

R
{ρ0}, for a.e. x ∈ R, t > 0. (1.5)

Moreover, for any T > 0 and τ > 0, the following estimates hold:

TV(ργ(T, ·)) ≤ eC(Jγ)T TV(ρ0), (1.6a)

‖ργ(T, ·)− ργ(T − τ, ·)‖L1 ≤ τeC(Jγ)T (‖f ′‖ ‖v‖+ J0‖f‖‖v′‖) TV(ρ0), (1.6b)

with C(Jγ) := Jγ(0)
(
‖v′‖ (‖f ′‖‖ρ0‖+ 2‖f‖) + 7

2J0‖f‖‖v′′‖
)
.

Above, and in the sequel, we use the compact notation ‖·‖ for ‖·‖L∞ .

Corollary 1.3. Let hypotheses (H) hold and ρ0 ∈ BV(R; I). As γ →∞, the solution ργ of (1.1), (1.3) converges
in the L1

loc-norm to the unique entropy weak solution of the classical Cauchy problem{
∂tρ+ ∂x (f(ρ)v(0)) = 0, x ∈ R, t > 0

ρ(0, x) = ρ0(x), x ∈ R.
(1.7)

In particular, we observe that C(Jγ)→ 0 in (1.6a) and (1.6b), allowing to recover the classical estimates.

The paper is organized as follows. Section 2 is devoted to the proof of the stability of solutions with respect
to the initial data, based on a doubling of variable argument [14]. We observe that, for a close class of non-local
equations, uniqueness of solutions has been recently derived in [13] relying on characteristics method and a
fixed-point argument, thus avoiding the use of entropy conditions. In our setting, we prefer to keep the classical
approach to pass to the limit γ →∞.
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In Section 3 we derive existence of solutions through an approximation argument based on a Lax-Friedrichs
type scheme. In particular, we prove accurate L∞ and BV estimates on the approximate solutions, which
allow to derive (1.5) and (1.6). We remark once again that these estimates heavily rely on the monotonicity
properties of Jγ , and do not hold for general kernels, see [2, 4]. Note that, regarding the Arrhenius look-ahead
model [19], our result allows to establish a global well-posedness result and more accurate L∞ estimates with
respect to previous studies [16]. Moreover, to our knowledge, Corollary 1.3 provides the first convergence proof
of a limiting procedure on the kernel support. We present some numerical tests illustrating this convergence
in Section 4. Besides the mathematical implications of such result, Corollary 1.3 may give information on
connected autonomous vehicle traffic flow characteristics. Indeed, large kernel supports could account for the
information transmission range between connected vehicles. On the contrary, we have currently no hint on the
limit γ → 0, which was investigated numerically in [2, 4, 11], since in this case the constants in (1.6) blow up.
The counterexamples provided recently in [5] do not cover the problem studied here.

2. Uniqueness and stability of entropy solutions

The Lipschitz continuous dependence of entropy solutions with respect to initial data can be derived using
Kružkov’s doubling of variable technique [14] as in [3, 4, 11].

Theorem 2.1. Under hypotheses (H), let ρ, σ be two entropy solutions to (1.1) with initial data ρ0, σ0

respectively. Then, for any T > 0 there holds

‖ρ(t, ·)− σ(t, ·)‖L1 ≤ eKT ‖ρ0 − σ0‖L1 ∀t ∈ [0, T ], (2.1)

with K given by (2.5).

Proof. The functions ρ and σ are respectively entropy solutions of

∂tρ(t, x) + ∂x(f(ρ(t, x))V (t, x)) = 0, V := v(ρ ∗ Jγ), ρ(0, x) = ρ0(x),

∂tσ(t, x) + ∂x(f(σ(t, x))U(t, x)) = 0, U := v(σ ∗ Jγ), σ(0, x) = σ0(x).

V and U are bounded measurable functions and are Lipschitz continuous w.r. to x, since ρ, σ ∈ (L1 ∩ L∞ ∩
BV)(R+ × R;R). In particular, we have

‖Vx‖ ≤ 2Jγ(0)‖v′‖‖ρ‖, ‖Ux‖ ≤ 2Jγ(0)‖v′‖‖σ‖.

Using the classical doubling of variables technique introduced by Kruzkov, we obtain the following inequality:

‖ρ(T, ·)− σ(T, ·)‖L1 ≤ ‖ρ0 − σ0‖L1

+‖f ′‖
∫ T

0

∫
R
|ρx(t, x)||U(t, x)− V (t, x)|dxdt

+

∫ T

0

∫
R
|f(ρ(t, x))||Ux(t, x)− Vx(t, x)|dxdt. (2.2)

We observe that

|U(t, x)− V (t, x)| ≤ Jγ(0)‖v′‖‖ρ(t, ·)− σ(t, ·)‖L1 , (2.3)
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and that for a.e. x ∈ R

|Ux(t, x)− Vx(t, x)| ≤
(
2(Jγ(0))2‖v′′‖‖ρ(t, ·)‖+ ‖v′‖

∥∥J ′γ∥∥) ‖ρ(t, ·)− σ(t, ·)‖L1

+Jγ(0)‖v′‖ (|ρ− σ|(t, x+ γ) + |ρ− σ|(t, x)) . (2.4)

Plugging (2.3) and (2.4) into (2.2), we get

‖ρ(T, ·)− σ(T, ·)‖L1 ≤ ‖ρ0 − σ0‖L1 +K

∫ T

0

‖ρ(t, ·)− σ(t, ·)‖L1dt

with

K = Jγ(0)‖v′‖

(
‖f ′‖ sup

t∈[0,T ]

‖ρ(t, ·)‖BV(R) + 2 sup
t∈[0,T ]

‖f(ρ(t, ·))‖

)

+ sup
t∈[0,T ]

‖f(ρ(t, ·))‖L1

(
2(Jγ(0))2‖v′′‖ sup

t∈[0,T ]

‖ρ(t, ·)‖+ ‖v′‖
∥∥J ′γ∥∥

)
. (2.5)

By Gronwall’s lemma, we get the thesis.

3. Existence

3.1. Lax-Friedrichs numerical scheme

We discretize (1.1) on a fixed grid given by the cells interfaces xj+ 1
2

= j∆x and the cells centers xj =

(j − 1/2)∆x for j ∈ Z, taking a space step ∆x such that γ = N∆x for some N ∈ N, and tn = n∆t the
time mesh. Our aim is to construct a finite volume approximate solution ρ∆x(t, x) = ρnj for (t, x) ∈ Cnj =

[tn, tn+1[×]xj−1/2, xj+1/2]. We approximate the initial datum ρ0 with the piecewise constant function

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx.

We denote Jkγ := Jγ(k∆x) for k = 0, ..., N − 1 and set

V nj := v(cnj ),

where

cnj := ∆x

N−1∑
k=0

Jkγ ρ
n
j+k.

The Lax-Friedrichs flux adapted to (1.1) is given by

Fnj+1/2 :=
1

2
f(ρnj )V nj +

1

2
f(ρnj+1)V nj+1 +

α

2
(ρnj − ρnj+1), (3.1)

α ≥ 0 being the viscosity coefficient. In this way, we obtain the N + 2 points finite volume scheme

ρn+1
j = H(ρnj−1, ..., ρ

n
j+N ), (3.2)
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where

H(ρj−1, ..., ρj+N ) := ρj +
λ

2
α(ρj−1 − 2ρj + ρj+1) +

λ

2

(
f(ρj−1)V nj−1 − f(ρj+1)V nj+1

)
, (3.3)

with λ = ∆t/∆x.
Assume ρi ∈ I for i = j − 1, ..., j +N, we can compute:

∂H

∂ρj−1
=
λ

2

(
α+ Vj−1f

′(ρj−1) + ∆x v′(cj−1)J0
γf(ρj−1)

)
, (3.4a)

∂H

∂ρj
= 1− λ

(
α− 1

2
∆xf(ρj−1)v′(cj−1)J1

γ

)
≥ 1− λ

(
α+

1

2
∆xJγ(0) ‖f‖‖v′‖

)
, (3.4b)

∂H

∂ρj+1
=
λ

2

(
α+ ∆xf(ρj−1)v′(cj−1)J2

γ − f ′(ρj+1)Vj+1 −∆xf(ρj+1)v′(cj+1)J0
γ

)
, (3.4c)

∂H

∂ρj+k
= −λ

2
∆x
(
f(ρj+1)v′(cj+1)Jk−1

γ − f(ρj−1)v′(cj−1)Jk+1
γ

)
, k = 2, . . . , N − 2, (3.4d)

∂H

∂ρj+N−1
= −λ

2
∆xf(ρj+1)v′(cj+1)JN−2

γ , (3.4e)

∂H

∂ρj+N
= −λ

2
∆xf(ρj+1)v′(cj+1)JN−1

γ . (3.4f)

We have that (3.4e) and (3.4f) are non-negative. The positivity of (3.4b) follows assuming

∆t ≤ 2

2α+ ∆xJγ(0) ‖f‖‖v′‖
∆x, (3.5)

which gives the CFL condition. Moreover, the bound

α ≥ ‖f ′‖‖v‖+ ∆xJγ(0)‖f‖‖v′‖ (3.6)

guarantees the increasing monotonicity w.r.t. ρj−1 and ρj+1, respectively in (3.4a) and in (3.4c). The sign of
(3.4d) cannot be a priori determined and for this reason the numerical scheme (3.2), (3.3) is not monotone.

3.2. Maximum principle and L∞ estimates

Proposition 3.1. Let hypotheses (H) hold. Given an initial datum ρ0
j , j ∈ Z, such that ρm = min

j∈Z
ρ0
j ∈ I and

ρM = max
j∈Z

ρ0
j ∈ I, the finite volume approximation ρnj , j ∈ Z and n ∈ N, constructed using the scheme (3.2),

(3.3), satisfies the bounds

ρm ≤ ρnj ≤ ρM ,

for all j ∈ Z and n ∈ N, under the CFL condition (3.5).

Proof. We follow closely the idea in [4]. We start observing that

H(ρm, ρm, ρm, ρj+2, ..., ρj+N−2, ρm, ρm) ≥ ρm, (3.7)

H(ρM , ρM , ρM , ρj+2, ..., ρj+N−2, ρM , ρM ) ≤ ρM . (3.8)
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Indeed, we get

H(ρm, ρm, ρm, ρj+2, ..., ρj+N−2, ρm, ρm) = ρm +
λ

2
f(ρm)(V nj−1 − V nj+1),

and we have that

V nj−1 − V nj+1 = v(cnj−1)− v(cnj+1) = −v′(ξ)∆x
N−1∑
k=0

Jkγ (ρj+k+1 − ρj+k−1) ≥ 0,

for some ξ is between cnj−1 and cnj+1. Indeed, due to the non-increasing monotonicity of Jγ , we observe that

N−1∑
k=0

Jkγ (ρj+k+1 − ρj+k−1) = ρm(JN−2
γ + JN−1

γ − J0
γ − J1

γ ) +

N−2∑
k=1

ρj+k(Jk−1
γ − Jk+1

γ )

≥ ρm(JN−2
γ + JN−1

γ − J0
γ − J1

γ ) + ρm

N−2∑
k=1

(
Jk−1
γ − Jk+1

γ

)
= ρm

(
N∑
k=1

Jk−1
γ −

N−2∑
k=−1

Jk+1
γ

)
= 0.

In this way we have the inequality (3.7) and the same procedure leads to (3.8).
Consider now the points

Rnj = (ρnj−1, ..., ρ
n
j+N )

and

Rnm = (ρm, ρm, ρm, ρ
n
j+2, ..., ρ

n
j+N−2, ρm, ρm).

Applying the mean value theorem and using (3.7) one has

ρn+1
j = H(Rnj ) = H(Rnm) +∇H(Rξ) · (Rnj −Rnm)

≥ ρm +∇H(Rξ) · (Rnj −Rnm), (3.9)

for Rξ = (1− ξ)Rnm + ξRnj , for some ξ ∈ [0, 1]. We note that

∂H

∂ρj+k
(Rξ)(R

n
j −Rnm)k = 0, k = 2, . . . , N − 2,

since (Rnj − Rnm)k = 0 for k = 2, . . . , N − 2. Assuming (3.5) and (3.6), we conclude, from the discussion in
Section 3.1,

∇H(Rξ) · (Rnj −Rnm) ≥ 0,

which by (3.9) implies that ρn+1
j ≥ ρm.

Similarly we can prove the upper bound by considering

RnM = (ρM , ρM , ρM , ρ
n
j+2, ..., ρ

n
j+N−2, ρM , ρM )
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and (3.8).

3.3. BV estimates

The approximate solutions constructed using adapted Lax-Friedrichs numerical scheme have uniformly
bounded total variation.

Proposition 3.2. Let hypotheses (H) hold, ρ0 ∈ BV(R; I), and let ρ∆x be constructed using (3.2), (3.3). If

α ≥ ‖f ′‖‖v‖+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖),

∆t ≤ 2∆x

2α+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
,

then for every T > 0 the following discrete space BV estimate holds

TV(ρ∆x)(T, ·) :=
∑
j∈Z

∣∣∣ρbT/∆tcj+1 − ρbT/∆tcj

∣∣∣ ≤ eC(Jγ)T TV(ρ0), (3.10)

where C(Jγ) := Jγ(0)
(
‖v′‖ (‖f ′‖‖ρ0‖+ 2‖f‖) + 7

2J0‖f‖‖v′′‖
)
.

In (3.10) we have used the notation bT/∆tc := max

{
n ∈ N : n ≤ T

∆t

}
.

Proof. At the mesh cell Cnj there holds

ρn+1
j = ρj +

λα

2
(ρj−1 − 2ρj + ρj+1) +

λ

2
(f(ρj−1)Vj−1 − f(ρj+1)Vj+1),

and at Cnj+1

ρn+1
j+1 = ρj+1 +

λα

2
(ρj − 2ρj+1 + ρj+2) +

λ

2
(f(ρj)Vj − f(ρj+2)Vj+2),

where we omitted the superscript n to simplify the notation. Computing the difference between ρn+1
j+1 and ρn+1

j

and setting ∆n
j+k−1/2 = ρnj+k − ρnj+k−1 for k = 0, . . . , N + 1 we get:

∆n+1
j+1/2 = ∆j+1/2 +

λα

2
[∆j−1/2 − 2∆j+1/2 + ∆j+3/2]

+
λ

2
[f(ρj)Vj+f(ρj−1)Vj − f(ρj−1)Vj − f(ρj−1)Vj−1

−f(ρj+2)Vj+2+f(ρj+1Vj+2 − f(ρj+1Vj+2 + f(ρj+1)Vj+1] . (3.11)

Applying the mean value theorem we can rewrite (3.11) as:

∆n+1
j+1/2 = ∆j+1/2 +

λα

2

[
∆j−1/2 − 2∆j+1/2 + ∆j+3/2

]
+
λ

2

[
Vjf

′(ζj−1/2)∆j−1/2 + f(ρj−1)(Vj − Vj−1)− Vj+2f
′(ζj+3/2)∆j+3/2 + f(ρj+1)(Vj+1 − Vj+2)

]
.

(3.12)
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where ζj−1/2 is between ρj−1 and ρj . Applying the mean value theorem we have

Vj − Vj−1 = v′(ξj−1/2)∆x

N−1∑
k=0

Jkγ∆j+k− 1
2
,

Vj+2 − Vj+1 = v′(ξj+3/2)∆x

N−1∑
k=0

Jkγ∆j+k+ 3
2
,

where ξj+3/2 is between
∑N−1
k=0 Jkγ ρj+k+1 and

∑N−1
k=0 Jkγ ρj+k+2. In this way we obtain

∆n+1
j+1/2 =

λ

2
[α+ Vjf

′(ζj−1/2) + ∆xJ0
γ v
′(ξj−1/2)f(ρj−1)]∆j−1/2 (3.13a)

+ [1− λα+
λ

2
∆xJ1

γ v
′(ξj−1/2)f(ρj−1)]∆j+1/2 (3.13b)

+
λ

2

[
α− Vj+2f

′(ζj+3/2)−∆xJ0
γ f(ρj+1)v′(ξj+3/2) + ∆xJ2

γv
′(ξj−1/2)f(ρj−1)

]
∆j+3/2 (3.13c)

+
λ

2
∆x f(ρj−1)v′(ξj−1/2)

N−1∑
k=3

Jkγ∆j+k−1/2 (3.13d)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)

N−1∑
k=1

Jkγ∆j+k+3/2. (3.13e)

Rearranging the indexes in (3.13d) and (3.13e) we obtain

(3.13d) + (3.13e) =
λ

2
∆x

N−2∑
k=2

[
f(ρj−1)v′(ξj−1/2)Jk+1

γ − f(ρj+1)v′(ξj+3/2)Jk−1
γ

]
∆j+k+1/2

− λ

2
∆x f(ρj+1)v′(ξj+3/2)JN−2

γ ∆j+N−1/2

− λ

2
∆x f(ρj+1)v′(ξj+3/2)JN−1

γ ∆j+N+1/2.

Noting that adding and subtracting f(ρj−1)Jk−1
γ v′(ξj−1/2) in the sum we have

f(ρj−1)v′(ξj−1/2)Jk+1
γ − f(ρj+1)v′(ξj+3/2)Jk−1

γ

= f(ρj−1)v′(ξj−1/2)(Jk+1
γ − Jk−1

γ )

+ Jk−1
γ

(
f(ρj−1)v′(ξj−1/2)+f(ρj−1)v′(ξj+3/2)− f(ρj−1)v′(ξj+3/2)− f(ρj+1)v′(ξj+3/2)

)
= f(ρj−1)v′(ξj−1/2)(Jk+1

γ − Jk−1
γ ) + Jk−1

γ f(ρj−1)(v′(ξj−1/2)− v′(ξj+3/2))

− Jk−1
γ v′(ξj+3/2)f ′(ζj)

(
∆j−1/2 + ∆j+1/2

)
,
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with ζj is between ρj−1 and ρj+1. Therefore we get

∆n+1
j+1/2

=
λ

2

[
α+ Vjf

′(ζj−1/2) + ∆xJ0
γv
′(ξj−1/2)f(ρj−1)−∆x v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

Jk−1
γ ∆j+k+1/2

]
∆j−1/2 (3.14a)

+
[
1− λα+

λ

2
∆xJ1

γv
′(ξj−1/2)f(ρj−1)− λ

2
∆x v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

Jk−1
γ ∆j+k+1/2

]
∆j+1/2 (3.14b)

+
λ

2

[
α− Vj+2f

′(ζj+3/2)−∆xJ0
γf(ρj+1)v′(ξj+3/2) + ∆xJ2

γf(ρj−1)v′(ξj−1/2)
]
∆j+3/2 (3.14c)

+
λ

2
∆x

N−2∑
k=2

[
f(ρj−1)v′(ξj−1/2)(Jk+1

γ − Jk−1
γ ) + Jk−1

γ f(ρj−1)
(
v′(ξj+1/2)− v′(ξj+3/2)

) ]
∆j+k+1/2 (3.14d)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)JN−2

γ ∆j+N−1/2 (3.14e)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)JN−1

γ ∆j+N+1/2. (3.14f)

Observe that the assumption α ≥ ‖f ′‖‖v‖+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖) guarantees the positivity of (3.14a).
Similarly for (3.14c) we get α ≥ ‖f ′‖‖v‖+ ∆xJγ(0)‖f‖‖v′‖ and for (3.14b) we have the following CFL condition

∆t ≤ 2∆x

2α+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
. (3.15)

Rearranging the indexes and taking the absolute values

∑
j

∣∣∣∆n+1
j+1/2

∣∣∣ (3.16a)

≤
∑
j

∣∣∆j+1/2

∣∣ (3.16b)

×
[λ

2

(
α+ Vj+1f

′(ζj+1/2) + ∆xJ0
γv
′(ξj+1/2) f(ρj)−∆xv′(ξj+5/2)f ′(ζj+1)

N−2∑
k=2

Jk−1
γ ∆j+k+3/2

)
(3.16c)

+ 1− λα+
λ

2
∆xJ1

γv
′(ξj−1/2)f(ρj−1)− λ

2
∆x v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

Jk−1
γ ∆j+k+1/2 (3.16d)

+
λ

2

(
α− Vj+1f

′(ζj+1/2)−∆xJ0
γf(ρj)v

′(ξj+1/2) + ∆xJ2
γv
′(ξj−3/2)f(ρj−2)

)
(3.16e)

+
λ

2
∆x
(N−2∑
k=2

f(ρj−k−1)v′(ξj−k−1/2)(Jk+1
γ − Jk−1

γ ) + Jk−1
γ f(ρj−k−1)

∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)
∣∣) (3.16f)

−λ
2

∆x f(ρj−N+2)v′(ξj−N+5/2)JN−2
γ − λ

2
∆x f(ρj−N+1)v′(ξj−N+3/2)JN−1

γ

]
. (3.16g)
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Due to some cancellations, the coefficient of the right-hand side of (3.16) becomes

1 +
∆t

2

[
− v′(ξj+5/2)f ′(ζj+1)

N−2∑
k=2

Jk−1
γ ∆j+k+3/2 − v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

Jk−1
γ ∆j+k+1/2

+ J1
γv
′(ξj−1/2)f(ρj−1) + J2

γv
′(ξj−3/2)f(ρj−2)

+
(N−2∑
k=2

f(ρj−k−1)v′(ξj−k−1/2)(Jk+1
γ − Jk−1

γ ) + Jk−1
γ f(ρj−k−1)

∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)
∣∣)

− f(ρj−N+2)v′(ξj−N+5/2)JN−2
γ − f(ρj−N+1)v′(ξj−N+3/2)JN−1

γ

]
. (3.17)

Following ([10], pp. 11–12), applying the mean value theorem to v′ and using the monotonicity of the kernel Jγ ,
we have ∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)

∣∣ ≤ 7Jγ(0)‖v′′‖∆x.

Therefore we have

(3.17) ≤ 1 +
∆t

2

[
2Jγ(0)‖v′‖‖f ′‖‖ρ0‖+ 2Jγ(0)‖v′‖‖f‖

+ ‖v′‖‖f‖
N−2∑
k=2

(Jk−1
γ − Jk+1

γ )︸ ︷︷ ︸∑N−3
k=1 Jkγ−

∑N−1
k=3 Jkγ

+7Jγ(0)‖v′′‖‖f‖∆x

N−2∑
k=2

Jk−1
γ︸ ︷︷ ︸

≤J0

]
.

Substituting in (3.16) we get

∑
j

∣∣∣∆n+1
j+1/2

∣∣∣ ≤ [1 +
∆t

2
(2Jγ(0)‖v′‖ (‖f ′‖‖ρ0‖+ 2‖f‖) + 7Jγ(0)J0‖f‖‖v′′‖)

]∑
j

∣∣∣∆n
j+1/2

∣∣∣,
therefore we recover the following estimate for the total variation

TV(ρ∆x(T, ·)) ≤
[
1 +

∆t

2
(2Jγ(0)‖v′‖ (‖f ′‖‖ρ0‖+ 2‖f‖) + 7Jγ(0)J0‖f‖‖v′′‖)

]T/∆t
TV(ρ∆x(0, ·))

≤ eJγ(0)(‖v′‖(‖f ′‖‖ρ0‖+2‖f‖)+ 7
2J0‖f‖‖v′′‖)T TV(ρ0).

From Proposition 2, the following space-time BVestimate can be derived (see [9], Cor. 5.1).

Corollary 3.3. Let hypotheses (H) hold, ρ0 ∈ BV(R; I), and ρ∆x be given by (3.2), (3.3). If

α ≥ ‖f ′‖‖v‖+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖),

∆t ≤ 2∆x

2α+ ∆xJγ(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
,
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then, for every T > 0, ρ∆x satisfies the following Total Variation estimate in space and time

TV(ρ∆x;R× [0, T ]) ≤ T eC(Jγ)T

(
1 + ‖f ′‖‖v‖+

1

2
∆xJγ(0)‖v′‖ (5‖f‖+ ‖f ′‖‖ρ0‖) + J0‖f‖‖v′‖

)
TV(ρ0).

(3.18)

Proof. Let us fix T ∈ R+. If T ≤ ∆t, then TV(ρ∆x; [0, T ]× R) ≤ T TV(ρ0). Let us assume now that T > ∆t.
Let M ∈ N\{0} such that M∆t < T ≤ (M + 1)∆t. Then

TV(ρ∆x;R× [0, T ]) =

M−1∑
n=0

∑
j∈Z

∆t
∣∣ρnj+1 − ρnj

∣∣+ (T −M∆t)
∑
j∈Z

∣∣ρMj+1 − ρMj
∣∣+

M−1∑
n=0

∑
j∈Z

∆x
∣∣ρn+1
j − ρnj

∣∣.
The spatial BV estimate yields

M−1∑
n=0

∑
j∈Z

∆t
∣∣ρnj+1 − ρnj

∣∣+ (T −M∆t)
∑
j∈Z

∣∣ρMj+1 − ρMj
∣∣ ≤ T eC(Jγ)T TV(ρ0) (3.19)

where C(Jγ) is the constant in Proposition 3.2. We are left to bound the term

M−1∑
n=0

∑
j∈Z

∆x
∣∣ρn+1
j − ρnj

∣∣.
Let us make use of the definition of the numerical scheme (3.2), (3.3). Applying the mean value theorem to the
function f we obtain

ρn+1
j − ρnj =

λα

2
(ρnj−1 − ρnj ) +

λα

2
(ρnj+1 − ρnj )

+
λ

2

(
f(ρnj−1)V nj−1+f(ρnj−1)V nj+1 − f(ρnj−1)V nj+1 − V nj+1f(ρnj+1)

)
=
λ

2
(α+ V nj+1f

′(ζj−1/2))(ρnj−1 − ρnj )

+
λ

2
(−α+ V nj+1f

′(ζj+1/2))(ρnj − ρnj+1)

+
λ

2
f(ρnj−1)

(
V nj−1 − V nj

)
+
λ

2
f(ρnj−1)

(
V nj − V nj+1

)
,

where ζj−1/2 is between ρnj−1 and ρnj . Applying again the mean value theorem, we obtain

V nj−1 − V nj = v′(ξj−1/2)∆x

N−1∑
k=0

Jkγ (ρnj+k−1 − ρnj+k),

and

V nj − V nj+1 = v′(ξj+1/2)∆x

N−1∑
k=0

Jkγ (ρnj+k − ρnj+k+1).
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Therefore we can write

ρn+1
j − ρnj =

λ

2

(
α+ V nj+1f

′(ζj−1/2) + f(ρnj−1)v′(ξj−1/2)∆xJ0
γ

)
(ρnj−1 − ρnj )

+
λ

2

(
−α+ V nj+1f

′(ζj+1/2) + f(ρnj−1)v′(ξj−1/2)∆xJ1
γ + f(ρnj−1)v′(ξj+1/2)∆xJ0

γ

)
(ρnj − ρnj+1)

+
λ

2
f(ρnj−1)v′(ξj−1/2)∆x

N−1∑
k=2

Jkγ (ρnj+k−1 − ρnj+k)

+
λ

2
f(ρnj−1)v′(ξj+1/2)∆x

N−1∑
k=1

Jkγ (ρnj+k − ρnj+k+1).

Rearranging the indexes of the last two terms, we can write

ρn+1
j − ρnj =

λ

2

(
α+ V nj+1f

′(ζj−1/2) + f(ρnj−1)v′(ξj−1/2)∆xJ0
γ

)
(ρnj−1 − ρnj ) (3.20a)

− λ

2

(
α− V nj+1f

′(ζj+1/2)− f(ρnj−1)v′(ξj−1/2)∆xJ1
γ − f(ρnj−1)v′(ξj+1/2)∆xJ0

γ

)
(ρnj − ρnj+1)

(3.20b)

+
λ

2
f(ρnj−1)∆x

N−2∑
k=1

(
v′(ξj−1/2)Jk+1

γ + v′(ξj+1/2)
)
Jkγ (ρnj+k − ρnj+k+1) (3.20c)

+
λ

2
f(ρnj−1)v′(ξj+1/2)∆xJN−1

γ (ρnj+N−1 − ρnj+N ). (3.20d)

Observe that the coefficients in (3.20a) and (3.20b) are positive if α ≥ ‖f ′‖ ‖v‖+ ∆xJγ(0)‖f‖ ‖v′‖. Therefore,
taking the absolute values in (3.20) we get

∣∣ρn+1
j − ρnj

∣∣ =
λ

2

(
α+ V nj+1f

′(ζj−1/2) + f(ρnj−1)v′(ξj−1/2)∆xJ0
γ

) ∣∣ρnj−1 − ρnj
∣∣

+
λ

2

(
α− V nj+1f

′(ζj+1/2)− f(ρnj−1)v′(ξj−1/2)∆xJ1
γ − f(ρnj−1)v′(ξj+1/2)∆xJ0

γ

) ∣∣ρnj − ρnj+1

∣∣
− λ

2
f(ρnj−1)∆x

N−2∑
k=1

(
v′(ξj−1/2)Jk+1

γ + v′(ξj+1/2)Jkγ
) ∣∣ρnj+k − ρnj+k+1

∣∣
− λ

2
f(ρnj−1)v′(ξj+1/2)∆xJN−1

γ

∣∣ρnj+N−1 − ρnj+N
∣∣.
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Summing on j and rearranging the indexes we obtain

∑
j∈Z

∆x
∣∣ρn+1
j − ρnj

∣∣ ≤ ∆t

2

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣

×
[
2α+ f ′(ζj+1/2)

(
V nj+2 − V nj+1

)
+ ∆x f(ρnj )v′(ξj+1/2)J0

γ −∆x f(ρnj−1)v′(ξj−1/2)J1
γ

−∆x f(ρnj−1)v′(ξj+1/2)J0
γ −∆x

N−2∑
k=1

f(ρnj−k−1)
(
v′(ξj−k−1/2)Jk+1

γ + v′(ξj−k+1/2)Jkγ
)

−∆x f(ρnj−N )v′(ξj−N+3/2)JN−1
γ

]
≤ ∆t

2

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ (2α+ ∆xJγ(0)‖v′‖ (3‖f‖+ ‖f ′‖‖ρ0‖) + 2J0‖f‖‖v′‖) ,

which yields

M−1∑
n=0

∑
j∈Z

∆x
∣∣ρn+1
j − ρnj

∣∣ ≤ T eC(Jγ)T

(
α+

1

2
∆xJγ(0)‖v′‖ (3‖f‖+ ‖f ′‖‖ρ0‖) + J0‖f‖‖v′‖

)
TV(ρ0), (3.21)

since M∆t < T . Taking α = ‖f ′‖ ‖v‖+ ∆xJγ(0)‖f‖ ‖v′‖, we obtain the bound (3.18) with

C̃ = T eC(Jγ)T

(
1 + ‖f ′‖‖v‖+

1

2
∆xJγ(0)‖v′‖ (5‖f‖+ ‖f ′‖‖ρ0‖) + J0‖f‖‖v′‖

)
TV(ρ0).

Note that (3.21) allows to recover (1.6b) as ∆x→ 0.

3.4. Discrete entropy inequalities

Following [2, 4, 11], we derive a discrete entropy inequality for the approximate solution generated by (3.2),
(3.3), which is used to prove that the limit of Lax-Friedrichs approximations is indeed a weak entropy solution
in the sense of Definition 1.1. We denote

Gj+1/2(u,w) :=
1

2
f(u)V nj +

1

2
f(w)V nj+1 +

α

2
(u− w),

Fκj+1/2(u,w) := Gj+1/2(u ∧ κ,w ∧ κ)−Gj+1/2(u ∨ κ,w ∨ κ),

with a ∧ b = max(a, b) and a ∨ b = min(a, b).

Proposition 3.4. Under hypotheses (H),let ρnj , j ∈ Z, n ∈ N, be given by (3.2), (3.3). Then, if α ≥ ‖f ′‖‖v‖
and λ ≤ 1/α, we have

∣∣ρn+1
j − κ

∣∣− ∣∣ρnj − κ∣∣+ λ
(
Fκj+1/2(ρnj , ρ

n
j+1)− Fκj−1/2(ρnj−1, ρ

n
j )
)

+
λ

2
sgn(ρn+1

j − k)f(κ)(V nj+1 − V nj−1) ≤ 0, (3.22)

for all j ∈ Z, n ∈ N, and κ ∈ R.
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Proof. The proof follows closely [2, 4]. We detail it below for sake of completeness. We set

H̃j(u,w, z) = w − λ
(
Gj+1/2(w, z)−Gj−1/2(u,w)

)
.

The function H̃j is monotone non-decreasing with respect to each variable for αλ ≤ 1 and α ≥ ‖f ′‖‖v‖, which
are guaranteed by (3.5) and (3.6). Indeed, we have

H̃j(u,w, z) = w − λ

2

(
f(z)V nj+1 − f(u)V nj−1 + α(2w − u− z)

)
,

so the partial derivatives are

∂H̃j

∂u
=
λ

2

(
f ′(u)V nj−1 + α

)
,

∂H̃j

∂w
= 1− λα,

∂H̃j

∂z
=
λ

2

(
α− f ′(z)V nj+1

)
.

Moreover, we have the identity

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)

= |ρnj − κ| − λ
(
Fκj+1/2(ρnj , ρ

n
j+1)− Fκj−1/2(ρnj−1, ρ

n
j )
)
.

By monotonicity,

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)

≥ H̃j(ρ
n
j−1, ρ

n
j , ρ

n
j+1) ∧ H̃j(κ, κ, κ)− H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1) ∨ H̃j(κ, κ, κ)

=
∣∣∣H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

∣∣∣
= sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
= sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V nj+1 − V nj−1)

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V nj+1 − V nj−1)

)
≥ sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V nj+1 − V nj−1)

)
=
∣∣∣H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

∣∣∣+
λ

2
sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

)
f(κ)

(
V nj+1 − V nj−1

)
=
∣∣ρn+1
j − κ

∣∣+
λ

2
sgn(ρn+1

j − κ)f(κ)
(
V nj+1 − V nj−1

)
,

by definition of the scheme (3.2), (3.3), which gives (3.22).

Proof of Theorem 1.2. Thanks to Proposition 3.1 and Corollary 3.3, we can apply Helly’s theorem stating that
there exists a subsequence ρ∆x that converges to some ρ ∈ (L1 ∩ L∞ ∩ BV)(R+ × R; I) in the L1

loc-norm. One
can then follow a Lax-Wendroff type argument to show that the limit function ρ is a weak entropy solution of
(1.1), (1.3), in the sense of Definition 1.1. We just observe that the numerical flux also depends on ∆x, therefore
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the classical argument on flux consistency and Lipschitz dependence must be replaced by direct estimates, like
in [4, 10].

Proof of Corollary 1.3. When the look-ahead distance γ →∞, the non-local flux in (1.1) becomes a local one.
Since the bounds (1.5), (1.6) are uniform as γ → ∞, the solution ργ of problem (1.1), (3.3), tends up to a
subsequence to the solution ρ of the local problem (1.7) in the L1

loc-norm when γ → ∞. In fact, applying
Lebesgue’s dominated convergence theorem in (1.4), since

|sgn(ρ− κ)(f(ρ)− f(κ))v(Jγ ∗ ρ)| ≤ 2‖f‖ ‖v‖

and

|sgn(ρ− κ)f(κ)v′(Jγ ∗ ρ)∂x(Jγ ∗ ρ)| ≤ 3‖f‖ ‖ρ‖ ‖Jγ‖ ‖v′‖,

we obtain ∫ +∞

0

∫
R
{|ρ− κ|ϕt + sgn(ρ− κ)(f(ρ)− f(κ))v(0)ϕx +

∫
R
|ρ0(x)− κ|ϕ(0, x)dx ≥ 0,

which is the definition of entropy weak solution for the classical equation (1.7).

4. Numerical tests

In this section, we perform some numerical simulations to illustrate the result of Corollary 1.3, taking two
different choices for the speed law v, the convolution kernel Jγ and the function f . More precisely, we consider
the models studied in [16, 19] and [4], which consist in the following equations:

∂tρ+ ∂x

(
ρ(1− ρ)e−(Jγ∗ρ)

)
= 0, x ∈ R, t > 0, (4.1)

for the Arrhenius look-ahead dynamics [19], and

∂tρ+ ∂x (ρ(1− Jγ ∗ ρ)) = 0, x ∈ R, t > 0, (4.2)

for the Lighthill-Whitham-Richards (LWR) model with non-local velocity [4].
Equations (4.1) and (4.2) correspond to the following choices of f ∈ C1([0, 1];R+) and v ∈ C2([0, 1];R+):

f(ρ) = ρ (1− ρ) , v(ρ) = e−ρ, (4.3)

f(ρ) = ρ, v(ρ) = (1− ρ) , (4.4)

respectively. Besides, we will consider the following kernels Jγ ∈ C1([0, γ];R+), see [4, 15]:

constant: Jγ(x) =
1

γ
,

linear decreasing: Jγ(x) =
2

γ

(
1− x

γ

)
.

For the tests, the space domain is given by the interval [−1, 1] and the space discretization mesh is ∆x = 0.001.
We impose absorbing conditions at the boundaries, adding N = γ/∆x ghost cells at the right boundary and
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Figure 1: Density profiles corresponding to the non-local equation (4.1) with increasing values of γ = 0.1, 1, 10.
We can observe that the nonlocal solution tends to the solution of (4.5) (red line) as γ →∞ (color online).
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Figure 2: Density profiles corresponding to the non-local equation (4.2) with increasing values of γ = 0.1, 1, 10.
We can observe that the nonlocal solution tends to the solution of (4.6) (red line) as γ →∞ (color online).
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just one at the left, where we extend the solution constantly equal to the last value inside the domain. Our aim
is to investigate the convergence of (4.3) to the solution of the LWR model [17, 18]

∂tρ+ ∂x(ρ(1− ρ)) = 0, (4.5)

and the convergence of (4.4) to the solution of the transport equation

∂tρ+ ∂xρ = 0, (4.6)

as γ →∞. We study both problems with the initial datum

ρ0(x) =

{
0.8 for − 0.5 < x < −0.1,

0 otherwise,
(4.7)

that describes the case of a red traffic light located at x = −0.1, which turns green at the initial time t = 0.
Figures 1 and 2 illustrate the behavior for models (4.1) and (4.2), respectively, in agreement with the theoretical
results.
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