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Lagrangian-Antidi↵usive Remap schemes for non-local
multi-class traffic flow models

Felisia Angela Chiarello 1 Paola Goatin 1 Luis Miguel Villada 2

December 2, 2019

Abstract
This paper focuses on the numerical approximation of the solutions of a class of non-

local systems in one space dimension, arising in traffic modeling.We propose alternative
simple schemes by splitting the non-local conservation laws into two di↵erent equations,
namely, the Lagrangian and the remap steps. We provide some properties and estimates
recovered by approximating the problem with the Lagrangian-Antidi↵usive Remap (L-
AR) scheme, and we prove the convergence to weak solutions in the scalar case.Finally,
we show some numerical simulations illustrating the efficiency of the L-AR schemes in
comparison with classical first and second-order numerical schemes.

1 Introduction
The aim of this paper is to propose an efficient and easy-to-implement numerical scheme
to compute approximate solutions of the non-local multi-class traffic flow model introduced
in [10]. It consists in the following ⇥ M M system of conservation laws with non-local velocities

@t⇢i (t, x) + @x ⇢i (t, x)v i (( ⇤r  !i )(t, x)) = 0, i = 1, ..., M, (1.1)

where we set

r(t, x) :=
MX

i=1

⇢i (t, x), vi (⇠) := v max
i  (⇠), (1.2)

( ⇤r  !i )(t, x) :=
Z x+⌘i

x
r(t, y)! i (y x) dy , (1.3)

⇢i (0, x) = ⇢ 0
i (x), i = 1, . . . , M. (1.4)

We make the following hypotheses:

(H)
! i 2 C1([0 ⌘, i ]; R+ ) ⌘, i > 0, s.t. ! 0

i ð 0,
R⌘i

0
! i (y) dy = J i and W0 := max i=1,...,M ! i (0);

0 < v max
1 ð v max

2 ð ð. . .  v max
M ;

 :R + ! R + is a smooth non-increasing function s.t.  (0)=1,  (r)=0 for r 1.
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From the application point of view, ⇢i represents the density of the i-th vehicle class, char-
acterized by its maximal velocity v max

i and its interaction kernel ! i , which accounts for the
reaction to downstream traffic distribution. In particular,⌘ i is proportional to the look-ahead
distance of drivers and J i represents the interaction strength. Equations (1.1) are coupled
through the velocity function, which depends on an integral evaluation of the total traffic
density r. For simplicity, in this work we will consider linear decreasing velocities setting
 (r)=max{1 r, 0}.

Model (1.1) is a multi-class extension of the one-dimensional scalar conservation law with
non-local flux proposed in [3, 15]. It can also be seen as the non-local generalization of the
“local” multi-population model for traffic flow described in [2]. Indeed, one of the limitations
of the standard Lighthill-Whitham-Richards (LWR) traffic flow model [17, 18] is the first in
first out rule, conversely in multi-class dynamic faster vehicles can overtake slower ones and
slower vehicles slow down the faster ones. In our setting, the non-local dependence ofthe
speed functions vi describes the reaction of drivers that adapt their velocity with respect to
what happens in front of them in terms of downstream traffic, assigning greater importance
to closer vehicles, see also [9].

Since solutions to (1.1), (1.4) may be discontinuous, they are intended in the following
weak sense.

Definition 1. A function ⇢  = (⇢ 1 ⇢, . . . , M ) 2 (L 1 \ L 1 )([0, T [⇥ R; RM ), T > 0, is a weak
solution of (1.1), (1.4) if

Z T

0

Z 1

1
⇢i @t ' + ⇢ i vi ( ⇤r  !i )@x ' (t, x) dx dt +

Z 1

1
⇢0

i (x)'(0, x) dx = 0

for all ' 2 C 1
c(] 1, T [⇥ R; R), i = 1, . . . , M .

The existence of solutions, locally in time, was proved in [10] by constructing a sequence of
approximate solutions via an up-wind finite volume scheme, and proving its convergence.We
observe that, due to the lack of smoothness of the convolutions kernels !i on R, the general
well-posedness results given in [1] cannot be applied.

In this work, we focus on the numerical aspects. We remark that the computation of
numerical solutions for (1.1) is challenging due to the high non-linearity of the system and
the dependence of the flux function on convolution terms, which increase the computational
cost. For these reasons, the development of efficient numerical strategies is crucial to precisely
capture solutions’ behaviour. The first-order schemes used in [9, 10] are known to be very
di↵usive. On the other hand, high-order Discontinuous Galerkin and Finite Volume WENO
schemes, which are based on quadratic polynomial reconstruction in each cell to evaluate the
non-local terms in order to obtain high-order of accuracy, were constructed and tested for the
scalar cases in [8] and extended to multi-class cases in [11].

The aim of this paper is to present a generalization to non-local systems of the Lagrangian-
Antidi↵usive Remap (L-AR) schemes introduced in [5, 6], in order to compute approximate
solutions of model (1.1). This type of schemes are constructed exploiting the concentration-
times-velocity form of the fluxes in (1.1). In [5], one step L-AR schemes were applied to
multi-class Lighthill-Whitham-Richards (MCLWR) traffic models and they were extended to
polydisperse sedimentation models in [6].L-AR schemes do not rely on spectral (characteris-
tics) information and their implementation is as easy as that one of first- and second-order of
accuracy schemes introduced in [7].These L-AR schemes are supported by a partial analysis
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for M = 1, with the conclusion that under a suitable CFL condition, these schemes converge
to a weak solution. Numerical experiments show that L-AR schemes perform better in terms
of resolution, accuracy and efficiency, especially for large values of M .

The paper is organized as follows. Section 2 presents the L-AR schemes. We recover
some properties of the schemes in both scalar and multi-class cases.In the scalar case, we
obtain uniform L1 , BV estimates on the approximate solutions computed through the L-AR
schemes, which provide an alternative proof of existence of weak solutions.In Section 3, we
recall classical first-order schemes used to approximate the solutions of the non-local problem
(1.1) and we provide a second-order version of a Godunov type numerical scheme.Finally, in
Section 4, we present some numerical simulations, analyzing the L1-error of the approximate
solutions of (1.1) computed with di↵erent schemes and considering smooth and discontinuous
initial data.

2 ↵Lagrangian-Antidi usive Remap (L-AR) schemes
2.1 Discretization
First of all, we extend ! i (x) = 0 for ⌘ x > i . For j 2 Z and n 2 N, let x j+1/2 = j x be
the cells interfaces,x j = (j 1/2) x the cells centers and tn = n t the time mesh. In the
paper, we will set = t

x . We aim at constructing a finite volume approximate solution
⇢ x =

⇣
⇢ x

1 ⇢, . . . , x
M

⌘
, with ⇢ x

i (t, x) = ⇢ n
i,j for (t, x) 2 C n

j = [t n , tn+1 [⇥]xj 1/2 , xj+1/2 ] and
i = 1, ..., M.
To this end, we approximate the initial datum ⇢ 0

i for i = 1, ..., M with a piece-wise constant
function

⇢0
i,j =

1
x

Z x j+1/2

x j 1/2

⇢0
i (x) dx , j 2 Z. (2.1)

Similarly, for the kernel, we set

! k
i :=

1
x

Z k x

(k 1) x
! i (x) dx , k 2 N⇤, (2.2)

so that x
P +1

k=1 ! k
i =

R⌘i

0
! i (x) dx = J i (the sum is indeed finite since ! k

i = 0 for k N i

sufficiently large). Moreover, we set rnj+k =
MX

i=1

⇢n
i,j+k for k 2 N and

V n
i,j+1/2 := v max

i  

0

@ x
+1X

k=1

! k
i r n

j+k

1

A , i = 1, . . . , M, j 2 Z. (2.3)

We formally rewrite (1.1) as

@t⇢i + ⇢ i @x (v i ( ⇤r  !i )) + v i ( ⇤r  !i )@x⇢i = 0, i = 1, . . . , M. (2.4)

L-AR schemes are obtained splitting (2.4) into two di↵erent equations, which are solved
successively for each time iteration. To advance the solution from time t to t + t, we first
apply a Lagrangian method [16] to solve

@t⇢i + ⇢ i @x (v i ( ⇤r  !i )) = 0, (2.5)
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and we use this solution, evolved over a time interval of length t, as initial condition for
solving in a second step the transport equation [4]

@t⇢i + v i ( ⇤r  !i )@x⇢i = 0, (2.6)

whose solution, again evolved over a time interval of length t, provides the sought approxi-
mate solution of (1.1) valid for t + t.

2.2 Discretization of the Lagrangian step
We observe that, defining  i := 1 ⇢/ i , one obtains from (2.5) the conservation mass equation
in Lagrangian coordinates

⇢i @t  i @x (vi ( ⇤r  !i )) = 0. (2.7)

In other words, solving (2.5), or equivalently (2.7), means solving the original equation (1.1)
on a moving referential mesh with velocity v i . Assume now that ⇢ { n

i,j } j2Z , i = 1, . . . , M is a
approximate solution of (1.1) in the sense of finite volume methods (2.1)-(2.3) at time t = tn ,

then a numerical solution ⇢ { n+1,
i,j } j2Z of the equation (2.7) at time t can be naturally

computed by

⇢n+1,
i,j [ x + (V n

i,j+1/2 V n
i,j 1/2 ) t] = ⇢x n

i,j , i = 1, . . . , M, j 2 Z, (2.8)

since (2.8) expresses that the initial mass in the cell [x j 1/2 , xj+1/2 ] at time t n equals the
mass in the modified cell [x̄ j 1/2 , x̄ j+1/2 ] at time t, where x̄ j+1/2 = x j+1/2 + V n

i,j+1/2 t are
the new interface positions for all j. We have the following properties.

Lemma 1.Assume that the time step satisfies the following condition:

ðt 
⇣

vmax
M  0

1
kr nk1 W0

⌘ 1
. (2.9)

If {⇢ n+1,
j } j2Z denotes the numerical solution computed by the scheme (2.8), then the follow-

ing bounds hold:

(i) ⇢ If n
i,j 0 for all j 2 Z ⇢, then n+1,

i,j 0 for all j 2 Z.

(ii) In the scalar case M = 1, the following maximum property holds:

min ⇢{ n
j ⇢, ..., n

j+N
ð ⇢}  n+1,

j ð max ⇢{ n
j ⇢, ..., n

j+N
} 8j 2 Z. (2.10)

Proof. (i) Suppose that ⇢ n
i,j 0 for all j 2 Z and i = 1, ..., M. From (2.8) we have

⇢n+1,
i,j =

⇢n
i,j

1 +
⇣

V n
i,j+1/2

V n
i,j 1/2

⌘. (2.11)

If V n
i,j+1/2

V n
i,j 1/2 then it is clear that ⇢ n+1,

i,j 0. Consider now the case Vn
i,j+1/2

ð
V n

i,j 1/2 . We can compute

V n
i,j 1/2 V n

i,j+1/2 = vmax
i  0(⇠i,j ) x

0

@
+1X

k=1

! k
i r n

j+k

+1X

k=1

! k
i r n

j+k 1

1

A
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ð v max
i  0(⇠i,j ) x

0

@
+1X

k=1

(! k
i ! k+1

i )r n
j+k

! 1
i r n

j

1

A

ð v max
i xW0  0

1
kr nk1 ,

for some ⇠ i,j 2 I
⇣

x
P +1

k=1 ! k
i r n

j+k 1, x
P +1

k=1 ! k
i r n

j+k

⌘
, where we have set I(a, b) =

⇥
min{a, b}, max{a, b}

⇤
. Therefore ⇢ n+1, 0 under (2.9).

(ii) Assume M = 1 and set V n
j+1/2 := V n

1,j+1/2 , ! k := ! k
1 and v max := v max

1 . Let us
prove the upper bound, the lower one resulting from a symmetric procedure. Define
⇢̄j = max ⇢{ n

j ⇢, ..., n
j+N }. Consider first the case Vn

j+1/2
V n

j 1/2 . Then it is clear that

⇢n+1,
j =

⇢n
j

1 +
⇣

V n
j+1/2

V n
j 1/2

⌘ ð ⇢̄j ,

Consider now the case Vn
j+1/2

ð V n
j 1/2 . We note that

⇢n
j

1 +
⇣

V n
j+1/2

V n
j 1/2

⌘ ð ⇢̄j () ¯ ⇢j ⇢n
j + ¯ ⇢j

⇣
V n

j+1/2 V n
j 1/2

⌘
0.

According with (i), we have the estimation

V n
j 1/2 V n

j+1/2 = vmax  0(⇠j ) x

0

@
+1X

k=1

⇣
! k ! k+1

⌘
⇢n

j+k
! 1⇢n

j

1

A

ð v max  0
1

x
⇣

! 1⇢̄j ! 1⇢j

⌘

ð v max  0
1 x ⇢̄j ⇢j W0.

Finally we obtain that

⇢̄j ⇢n
j ⇢̄j

⇣
V n

j 1/2 V n
j+1/2

⌘
( ⇢̄j ⇢n

j )
⇣

1 tvmax ⇢̄j  0
1

W0

⌘
0

holds if ðt 
⇣

vmax  0
1

⇢k nk1 W0

⌘ 1
.

Remark 1. Due to the lack of uniform L1 estimates on approximate solutions [10], the time
step should in principle be recomputed at each iteration to comply with (2.9). In practice,
since the computed solutions stay uniformly bounded in time, it is possible to choose a fixed
time step, as we did in Section 4. Moreover, we remark that, in the particular case M = 1,
the maximum principle (2.10) ⇢ guarantees that k nk1 ð ⇢ 0

1
for all n 2 N⇤.

2.3 Remap Step: ↵Antidi usive scheme
After the Lagrangian step, the new value ⇢ n+1,

i,j represents approximate values of the density
of the i-th class on a moved mesh with new cells [ x̄ j 1/2 , x̄ j+1/2 ] for all j. To avoid dealing
with moving meshes, a so-called remap step is necessary to define the new approximations
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⇢n+1
j on the uniform mesh with cells [xj 1/2 , xj+1/2 ]. This averaging step can equivalently be

reformulated by using the solution of the transport equation (2.6) with initial data defined
by ⇢ n+1,

i,j on each cell [xj 1/2 , xj+1/2 ], i.e. we consider a numerical scheme in the form

⇢n+1
i,j = ⇢ n+1,

i,j V̄ n
i,j

⇣
⇢n+1,

i,j+1/2
⇢n+1,

i,j 1/2

⌘
, i = 1, . . . , M j 2 Z. (2.12)

Here, V̄ n
i,j is a velocity value, defined in terms of available density, which will be chosen in

such a way that the complete scheme (2.5) plus (2.12) is conservative with respect to (1.1).
The quantities ⇢ n+1,

i,j+1/2 are numerical fluxes associated with the cell interfaces xj+ 1
2

and will
be chosen such that the scheme (2.12) has certain stability and consistency properties. In
particular, the choice ⇢ n+1,

i,j+1/2 = ⇢ n+1,
i,j for all j 2 Z produces a di↵usive and stable scheme,

while ⇢ n+1,
i,j+1/2 = ⇢ n+1,

i,j+1 yields an antidi↵usive but unstable scheme. For this reason, we
proceed as in [4, 12] and we choose ⇢ n+1,

i,j+1/2 as close to the anti-di↵usive value ⇢ n+1,
i,j+1 as

possible, subject to the following consistency condition

mi,j+1/2 := min ⇢{ n+1,
i,j ⇢, n+1,

i,j+1 ð ⇢}  n+1,
i,j+1/2

ð M i,j+1/2 := max ⇢{ n+1,
i,j ⇢, n+1,

i,j+1 }, (2.13)

and maximum principle
mi,j+1/2 ð ⇢ n+1

i,j ð M i,j+1/2 , (2.14)

which resume the properties of the scheme defined by (2.12).
Let us now define

b+
i,j := M i,j+1/2 +

⇢n+1,
i,j M i,j+1/2

max{v n
i,j 1/2

, vn
i,j+1/2

}
, B +

i,j := m i,j+1/2 +
⇢n+1,

i,j mi,j+1/2

max{v n
i,j 1/2

, vn
i,j+1/2

}

and
ai,j+1/2 := max{b +

i,j , mi,j+1/2 }, A i,j+1/2 := max{B +
i,j , Mi,j+1/2 }.

In the next lemma, which is a slight modification of Lemma 4.1 in [5], we summarize the
existence and properties of the scheme defined by (2.12).

Lemma 2.Assume that the following CFL condition holds

ðt 
x

vmax
M k k 1

. (2.15)

Then ai,j+1/2 ð ⇢ n+1,
i,j ð A i,j+1/2 for all j 2 Z, and for any numerical flux that satisfies

⇢n+1,
i,j+1/2 2 [a i,j+1/2 , Ai,j+1/2 ], for all j 2 Z, (2.16)

the scheme (2.12) is L1 -stable, that is

⇢n+1
i,j 2 I(⇢ n+1,

i,j ⇢, n+1,
i,j+1 ), for all j 2 Z, (2.17)

and TVD, i.e., X

j2Z

⇢n+1,
i,j+1 ⇢n+1,

i,j ð
X

j2Z

⇢n
i,j+1 ⇢n

i,j . (2.18)

In particular, for each j 2 Z ↵, there exist numbers i,j 2 [0, 1] such that

⇢n+1,
i,j = ↵ i,j ⇢n+1,

i,j 1/2 + (1 ↵i,j )⇢n+1,
i,j+1/2

. (2.19)
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2.4 Choice of numerical flux
In this subsection, we explain how to compute ⇢ n+1,

i,j+1/2 for the scalar case M = 1, the procedure
can be applied component-wise in the multi-class case M > 1.We here proceed as in [5] and
consider the so-called U-Bee method proposed in [12] for linear transport equation, which is
defined by

⇢n+1,
j+1/2 := ⇢ n+1,

j +
1 ¯j

2
' j (⇢n+1,

j+1 ⇢n+1,
j ), (2.20)

where ¯j = max{V n
j 1/2

, Vn
j+1/2 }, ' j := '(R j , ¯ j ), with R j :=

⇢n+1,
j ⇢n+1,

j 1
⇢n+1,

j+1 ⇢n+1,
j

and

'(R, ¯) := ' UB (R, ¯) = max

(

0, min
⇢

2
1

, 2R
)

. (2.21)

Similarly, the so-called N-Bee method described, in [4], corresponds to a second-order scheme
in space and it is more di↵usive that the U-Bee scheme.It is defined as in (2.20) with

'(R, ¯) := ' NB (R, ¯) := max

(

0, min
⇢

1,
2R

, min
⇢

R, 2
1 ¯

)
. (2.22)

It is proved in [4] that the numerical flux (2.20) for U-Bee and N-Bee methods satisfies the
assumptions of Lemma 2.

2.5 ↵Lagrangian-Antidi usive Remap scheme
Assume that ⇢ n = ⇢ n

1 ⇢, . . . , nM approximates the solution of (1.1) at time t = t n and we wish
to advance this solution to tn+1 = t n + t. To this end, two steps are performed successively:

1. Lagrangian step. Consider that ⇢ n are initial data for (2.5). First, we define the in-
termediate velocities V n

i,j+1/2 by using (2.3), then we compute the numerical solution
⇢n+1,

i,j of equation (2.5) after an evolution over a time interval of length t, using
scheme (2.8).

2. ↵Antidi usive remap step. Solve (2.6) with initial data ⇢ n+1,
i,j using an antidi↵usive

scheme (2.12) for a specific choice of V̄ n
i,j , obtaining a numerical solution ⇢ n+1 which

approximates the solution of (1.1) a time t n+1 .

In the next theorem, the choice of V̄ n
i,j is motivated by the existence of a classical conser-

vative update formula for the whole L-AR scheme (2.5) plus (2.12).

Theorem 1. Under the stability conditions (2.9) and (2.15), there exists a definition of
V̄ n

i,j 2 I(v n
i,j 1/2

, vn
i,j+1/2 ) ↵ such that the complete Lagrangian-Antidi usive remap scheme can

be written in the conservative form

⇢n+1
i,j = ⇢ n

i,j

⇣
⇢n+1,

i,j+1/2
V n

i,j+1/2 ⇢n+1,
i,j 1/2

V n
i,j 1/2

⌘
, j 2 Z. (2.23)

Proof. Let ⇢ { n+1,
i,j } j2Z , be a solution of (2.5) obtained by scheme (2.8). Using this solution

we solve (2.6) by the scheme (2.12), where the valuēV n
i,j still needs to be determined in such

a way that the resulting scheme is conservative.Replacing ⇢ n+1,
i,j in (2.12) we obtain

⇢n+1
i,j = ⇢ n

i,j

⇣
V n

i,j+1/2 V n
i,j 1/2

⌘
⇢n+1,

i,j V̄ n
i,j

⇣
⇢n+1,

i,j+1/2
⇢n+1,

i,j 1/2

⌘
. (2.24)
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As ⇢ n+1,
i,j+1/2 satisfies the assumptions of Lemma 2, there exist ↵ i,j 2 [0, 1] satisfying (2.19).

Setting V̄ n
i,j := ↵ i,j V n

i,j 1/2 + (1 ↵i,j )V n
i,j+1/2 in (2.24), we obtain (2.23).

Remark 2.Note that, due to (2.13), the numerical flux F n
i,j+1/2 := ⇢ n+1,

i,j+1/2
V n

i,j+1/2 in (2.23)
is consistent with the flux f i (⇢) = ⇢ i v( ⇤r  !i ).

As a consequence of Lemmas 1 and 2, we have the following property.

Lemma 3.(Positivity) For any T > 0, under the stability conditions (2.9) and (2.15), the
scheme (2.23) is positivity preserving on [0, T ]⇥  R.

Moreover, in the scalar case, we have the following estimates.

Lemma 4 (L1 estimate, case M = 1).Under conditions (2.15) and (2.9), and as a conse-
quence of (2.10) and (2.17), we have

⇢n+1
j 2 I(⇢ n

j 1 ⇢, n
j+1 ) for all j 2 Z.

Lemma 5 (BV estimates, case M = 1).Assume (2.15) and

ðt 1
vmaxk 0k1 ⇢0

1
W0

. (2.25)

Let ⇢ x be constructed using (2.23). Then for every T > 0 the following discrete space BV
estimate holds

TV (⇢ x (T, ·)) ð  e
vmax W0k⇢0k

1

⇣
3k 0k

1 +5 k 00k
1

k⇢0k
1

J1
⌘

T
TV (⇢ 0).

Proof. Setting v(⇠) := v max  (⇠), from (2.8) we recover

⇢n+1,
j+1 ⇢n+1,

j = ⇢ n
j+1 ⇢n

j ⇢n+1,
j+1

⇣
V n

j+3/2 V n
j+1/2

⌘
+ ⇢ n+1,

j

⇣
V n

j+1/2 V n
j 1/2

⌘
.

We have

⇢n+1,
j+1

⇣
V n

j+3/2 V n
j+1/2

⌘
+ ⇢ n+1,

j

⇣
V n

j+1/2 V n
j 1/2

⌘
(2.26a)

= ⇢n+1,
j+1 v0(⇠j+1 ) x

+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
+ ⇢ n+1,

j v0(⇠j ) x
+1X

k=1

! k
⇣
⇢n

j+k
⇢n

j+k 1

⌘

(2.26b)

= t
h
⇢n+1,

j+1 ⇢n+1,
j

i
v0(⇠j+1 )

+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
(2.26c)

⇢t n+1,
j

⇥
v0(⇠j+1 ) v0(⇠j )

⇤+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
(2.26d)

⇢t n+1,
j v0(⇠j )

2

4
+1X

k=1

! k (⇢n
j+k+1 ⇢n

j+k )
+1X

k=1

! k (⇢n
j+k

⇢n
j+k 1)

3

5 (2.26e)

= t
h
⇢n+1,

j+1 ⇢n+1,
j

i
v0(⇠j+1 )

+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
(2.26f)
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⇢t n+1,
j

⇥
v0(⇠j+1 ) v0(⇠j )

⇤+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
(2.26g)

⇢t n+1,
j v0(⇠j )

2

4
+1X

k=1

! k (⇢n
j+k+1 ⇢n

j+k )
+1X

k=1

! k (⇢n
j+k

⇢n
j+k 1)

3

5 . (2.26h)

This implies
2

41 + t v0(⇠j+1 )
+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
3

5
⇣
⇢n+1,

j+1 ⇢n+1,
j

⌘
(2.27a)

= ⇢ n
j+1 ⇢n

j (2.27b)

⇢t n+1,
j

⇥
v0(⇠j+1 ) v0(⇠j )

⇤+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
(2.27c)

⇢t n+1,
j v0(⇠j )

2

4
+1X

k=1

! k(⇢n
j+k+1 ⇢n

j+k )
+1X

k=1

! k (⇢n
j+k

⇢n
j+k 1)

3

5 . (2.27d)

(2.27e)

Observe that

1 + t v0(⇠j+1 )
+1X

k=1

! k
⇣
⇢n

j+k+1 ⇢n
j+k

⌘
1 t v0

1
⇢0

1
W0

which is positive if ðt 
⇣

v0
1

⇢0
1

W0

⌘ 1
. Moreover, we have that

v0(⇠j+1 ) v0(⇠j ) = v 00(⇣j+1/2 )(⇠ j+1 ⇠j ),

with ⇣ j+1/2 ⇠2 I j ⇠, j+1 . We can compute

⇠j+1 ⇠j = # x
+1X

k=1

! k⇢n
j+k+1 + (1 #) x

+1X

k=1

! k⇢n
j+k

µ x
+1X

k=1

! k⇢n
j+k (1 µ) x

+1X

k=1

! k⇢n
j+k 1

=# x
+1X

k=2

! k 1⇢n
j+k + (1 #) x

+1X

k=1

! k⇢n
j+k

µ x
+1X

k=1

! k⇢n
j+k + (1 µ) x

+1X

k=0

! k+1 ⇢n
j+k

= x
+1X

k=2

h
#! k 1 + (1 #)! k µ! k (1 µ)! k+1

i
⇢n

j+k

+ x
h
(1 #)! 1⇢n

j+1 µ! 1⇢n
j+1 (1 µ)! 1⇢n

j (1 µ)! 2⇢n
j+1

i
.
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By monotonicity of ! we have

#! k 1 + (1 #)! k µ! k (1 µ)! k+1 0.

Taking the absolute values we get

⇠j+1 ⇠j ð ⇢x 0
1

8
<

:

+1X

k=2

h
#! k 1 + (1 #)! k µ! k (1 µ)! k+1

i
+ 3! 1

9
=

;

= ⇢x 0
1

n
#! 1 + (1 µ)! 2 + 3! 1

o

ð x 5 ⇢ 0
1

W0.

Taking the absolute values in (2.27) we get
✓

1 t v0
1

⇢0
1

W0

◆ X

j

⇢n+1,
j+1 ⇢n+1,

j

ð

2

6641 +

0

B@

0

@
1X

k=1

⇢n+1,
j k v0(⇠j+1 k ) v0(⇠j k ) ! k ⇢n+1,

j k v0(⇠j )(! k ! k+1 )

1

A

⇢n+1,
j v0(⇠j )! 1

1

CA t

3

775
X

j

⇢n
j+1 ⇢n

j

ð

2

41 + 5 t ⇢0 2

1
W0 v00 x

1X

k=1

! k + 2 t W0 ⇢0
1

v0
1

3

5
X

j

⇢n
j+1 ⇢n

j

ð
"

1 + t ⇢0
1

W0

✓
2 v 0

1 + 5 v00
1

⇢0
1

J1

◆#
X

j

⇢n
j+1 ⇢n

j ,

which, together with the TVD property of the remap step [4, 5], implies

TV (⇢ x (T, ·)) ð 

0

B@
1 + t ⇢0

1
W0

⇣
2 v 0

1 + 5 v00
1

⇢0
1

J1

⌘

1 t kv0k1 ⇢0
1

W0

1

CA

T
t

TV (⇢ x (0, ·))

ð ek⇢0k
1

W0
⇣

3kv0k
1 +5 kv00k

1
k⇢0k

1
J1

⌘
T

TV (⇢ 0).

Remark 3. Following the ideas of Lemmas 2 and 4 in [10], it is possible to find the local

time extension to the above estimates for the case M > 1.

Next Theorem follows from Theorem 1 and Lemmas 3, 4 and 5.

Theorem 2 (Convergence to weak solutions, case M = 1). Let us consider the Cauchy

problem (1.1)-(1.4) with M = 1 ⇢, 0(x) 2 BV(R; [0, 1]), under the assumptions (H1) - (H3).
If (2.15) and (2.9) ⇢ hold, then the approximate solution x constructed by the scheme (2.23)
converges to a weak solution of (1.1)- (1.4).
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Proof. Under conditions (2.15) and (2.9), the approximate solutions ⇢ x constructed by the
numerical scheme (2.23) are uniformly bounded and uniformly bounded total variation. The
result follows by standard application of Helly’s Theorem, see [16,Proposition 4.1] or [13,
Lemma 5.6].

3 Two simple schemes for the non-local multi-class traffic flow
model

In Section 4, we consider the following conservative schemes for the multi-class model(1.1)
in the form

⇢n+1
i,j = ⇢ n

i,j

⇣
F n

i,j+1/2 F n
i,j 1/2

⌘
, i = 1, ..., M. (3.1)

First, we consider the Godunov-type scheme , which was introduced in [14] in the scalar case
and then extended to (1.1) in [10], with numerical flux

F n
i,j+1/2 := ⇢ n

i,j V n
i,j+1/2 . (3.2)

We recall that for scheme (3.1)-(3.2) the positivity is guaranteed if

ð 1
vmax

M k k 1

.

We consider also the approximate solutions constructed via the following adapted Lax-Friedrichs
flux, that was used [3, 9] in the scalar case and in [10] for system (1.1):

F n
i,j+1/2 :=

1
2

⇣
⇢n

i,j V n
i,j 1/2 + ⇢ n

i,j+1 V n
i,j 3/2

⌘
+
↵

2

⇣
⇢n

i,j ⇢n
i,j+1

⌘
, (3.3)

where ↵ vmax
M k k 1 is the viscosity coefficient and ð↵  1 the CFL condition.

3.1 A second-order Godunov scheme
Schemes (3.1)-(3.2) and (3.1)-(3.3) are only first-order accurate. We propose here a second-
order accuracy scheme,constructed using MUSCL-type variable extrapolation and Runge-
Kutta temporal di↵erencing. To implement it, we approximate ⇢ i (x, tn ) by a piecewise linear
functions in each cell, i.e. ⇢̂i,j (x, tn ) = ⇢ n

i,j + n
i,j (x x j ), where the slopes n

i,j are calculated
via the generalized minmod limiter, i.e.

n
i,j =

1
x minmod(#(⇢ n

i,j ⇢n
i,j 1),

1
2

(⇢n
i,j+1 ⇢n

i,j 1), #(⇢n
i,j+1 ⇢n

i,j )),

where # 2 [1, 2] and

minmod(a, b, c) :=

(
sgn(a) min{|a|, |b|, |c|} if sgn(c) = sgn(b) = sgn(a)
0 otherwise.

This extrapolation enables one to define left and right values at the cell interfaces respectively
by

⇢L
i,j+1/2, := ⇢̂i,j (x j + x/2, t n ) = ⇢ n

i,j + n
i,j x/2,

11



⇢R
i,j 1/2, := ⇢̂i,j (x j x/2, t n ) = ⇢ n

i,j
n
i,j x/2.

In order to define the corresponding velocity approximations, we set

r̂ n
j+k =

MX

i=1

⇢̂n
i,j+k = r n

j+k + ⇥ n
j+k (x x j+k ),

where ⇥n
j+k :=

MX

i=1

n
i,j+k , and

V̂ n
i,j+1/2 := v i ((ˆ ⇤r  wi )(t n , xj+1/2 )) = v max

i  

0

@ x
+1X

k=1

! k
i r n

j+k + x
+1X

k=1

!̃ k
i,j ⇥n

j+k

1

A (3.4)

for i = 1, . . . , M , j 2 Z, where !̃ k
i,j := 1

x

R x/2
x/2

y! i (y + (k 1/2) x) dy . The MUSCL
version of the i-th flux component thus reads

f n
i,j+1/2 := ⇢ L

i,j+1/2 V̂ n
i,j+1/2 .

To achieve formal second-order accuracy also in time, we use second-order RungeKutta (RK)
time stepping. More precisely, if we write our scheme with first-order Euler time di↵erences
and second-order spatial di↵erences formally as

⇢n+1
j = ⇢ n

j L j (⇢ n ) := ⇢ n
j

⇣
Fn

j+1/2 Fn
j 1/2

⌘
, (3.5)

then the RK version takes the following two-step form
8
<

:
⇢

(1)
j = ⇢ n

j L j (⇢ n )
⇢n+1

j = 1
2(⇢ n

j + ⇢ (1)
j ) 2

L j (⇢ (1)
j ).

(3.6)

Lemma 6.For any T > 0, under the CFL condition

ðt 
x

2vmax
M k k 1

, (3.7)

the scheme (3.6) is positivity preserving on R⇥  [0, T ].

Proof. Let us assume that ⇢ n
i,j 0 for j 2 Z and i = 1, . . . , M . The positivity of the

reconstructed values ⇢ L
i,j+1/2 and ⇢ L

i,j+1/2 is guaranteed by the positivity preserving property
of the chosen limiter [19, 20]. It suffices to prove that ⇢ n+1

i,j 0 in (3.5). Due to ⇢ n
i,j =

1
2(⇢R

i,j 1/2 + ⇢ L
i,j+1/2 ), the i-th term in (3.5) can be written in the form

⇢n+1
i,j =

1
2
⇢R

i,j 1/2 +
✓

1
2

V̂ n
i,j+1/2

◆
⇢L

i,j+1/2 + ⇢ L
i,j 1/2 V̂ n

i,j 1/2 0,

under the CFL condition (3.7).
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4 Numerical results
In this section, we solve (1.1) numerically in the intervals x 2 [a, b] with suitable bound-
ary conditions and t 2 [0, T ], for values of a, b and T specified later. We propose several
test cases to illustrate the behaviour of the L-AR schemes (2.20) and (2.21) in comparison
with first-order Lax-Friedrichs (Lax-F) (3.1)-(3.3) and Godunov (3.1)-(3.2) schemes and the
second-order Godunov scheme (Godunov2)(3.6). As benchmarks, we consider the numerical
examples studied in [14, Section 4.2] for the scalar case and in [10, Sections 4.1-4.2]for the
multi-class system case.

From now on, we refer to the numerical scheme (2.23) applied in a component-wise manner
with velocities (2.3) and ⇢ n+1,

i,j+1/2 computed with (2.20) and (2.21) (respectively (2.22)) as L-
UBee (respectively L-NBee) scheme. For each integration, we set t to satisfy the most
restrictive CFL condition (3.7). Clearly, the computational bottleneck in these schemes is the
discrete convolution term (2.3) corresponding to (1.3).This is a classical problem in scientific
computing, which can be e↵ectively evaluated using fast convolution algorithms, mainly based
on Fast Fourier Transforms [21].

For each numerical test, we specify the type of boundary conditions that are imposed.
Given a uniform partition of [a, b], {I j } N

j=1 with x = (b a)/N , for absorbing boundary
conditions, we define ⇢ n

i,j in the ghost cells for i = 1, . . . , M as follows:

⇢n
i,0 = ⇢ n

i,1 , and ⇢n
i,N+j = ⇢ n

i,N , for j = 1, 2, . . . , L,

and for periodic boundary conditions,

⇢n
i,0 = ⇢ n

i,N , and ⇢n
i,N+j = ⇢ n

i,j , for j = 1, 2, . . . , L,

with L > max i=1,...,M ⌘i / x.

Since we cannot compute the exact solution explicitly, we use the second-order Godunov
scheme with a refined mesh to obtain a reference solution.The L1-error for the cell average
is given by

L 1( x) =
MX

i=1

0

@ 1
N

NX

j=1

⇢| i,j ⇢ref
i,j |

1

A ,

where ⇢ i,j and ⇢ 
ref
i,j are the cell averages ofthe numerical approximation and the reference

solution respectively. The Experimental Order of Accuracy (E.O.A.) is naturally defined by

( x) = log 2

⇣
L 1( x)/L 1( x/2)

⌘
.

4.1 Test 1, scalar case
We consider the problem (1.1) for M = 1, with initial datum

⇢0(x) =

(
1, if 1/3 ð ð  x  2/3
1
3
, otherwise,

(4.1)

for x 2 [0, 1], with absorbing boundary conditions, and di↵erent non-increasing kernel func-
tions with ⌘  = 0.1. In Figure 1, we display the numerical approximations obtained with
the schemes presented in the previous sections, computed with 1/ x = 80 at T = 0.1.
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Figure 1: Test 1: Comparison of the numerical solutions at T = 0.1 corresponding to the initial
condition (4.1), computed with 1/ x = 80 and di↵erent kernel functions. (a) !(x) = 1 ⌘/ ,
(b) !(x) = 2(⌘ x)⌘/ 2, (c) !(x) = 3(⌘ 2 x2)/(2⌘3).

Fig. 1a show the result for !(x) = 1 ⌘/ , Fig. 1b for !(x) = 2(⌘ x)⌘/ 2 and Fig. 1c for
!(x) = 3(⌘ 2 x2)/(2⌘3). The reference solution is computed with 1/ x = 10240. The
numerical solutions obtained with L-UBee and L-NBee approximate adequately shocks and
rarefaction waves according to the theoretical results of Theorem 2.In particular, concerning
the shock waves,L-AR schemes capture the reference solution better than the second-order
Godunov scheme, whereas the solutions computed with Lax-Friedrichs and Godunov schemes
are more di↵usive. In the presence of rarefaction waves, L-UBee scheme produces “stair-
caising” due to the particular choice of the antidi↵usive scheme. We can observe the same
“staircaising” phenomena also for the linear advection and other equations [4, 5].

Table 1 shows the approximate L1( x)-errors and the numerical orders of accuracy ( x)
for the di↵erent schemes.We computed numerical approximations with 1/ x = 40⇥  2q for
q = 1, 2, ..., 5. Clearly, the error of the L-AR schemes decreases when the mesh is refined and
we observe that for each level of refinement, the L1-error of the L-AR schemes is smaller
than the respective errors of Lax-Friedrichs and Godunov schemes.In conclusion, when the
solution presents discontinuities, we can compare the performances of the L-AR schemes with
those of a second-order scheme.

1 2 3 4 5
q

10 -4

10 -3
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rr
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(b)
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Godunov
Lax-Friedrichs
Godunov2
L-NBee
L-UBee
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Figure 2: Test 1. Initial condition (4.1). Approximate L1-error for di↵erent numerical schemes
with: (a) constant kernel function !(x) = 1 ⌘/ , (b) decreasing kernel function !(x) = 2(⌘
x)⌘/ 2, (c) concave kernel function !(x) = 3(⌘ 2 x2)/(2⌘3).

Now, in order to determine the correct order of accuracy of the L-AR schemes, we consider
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Scheme !(x) = 1 ⌘/ !(x) = 2(⌘ x) ⌘/ 2 !(x) = 3(⌘ 2 x2)/(2⌘3)
1/ x L1 error ( x) L1 error ( x) L1 error ( x)

Godunov 80 1.81e-02 – 1.62e-02 – 1.64e-02 –
160 1.12e-02 6.98e-01 7.73e-0.3 1.06 8.72e-03 9.11e-01
320 7.85e-03 5.10e-01 6.15e-03 3.29e-01 6.53e-03 4.19e-01
640 5.33e-03 5.58e-01 3.43e-03 8.43e-01 4.01e-03 7.04e-01
1280 3.62e-03 5.58e-01 2.51e-0.3 4.50e-01 2.76e-03 5.39e-01

Lax-F 80 3.48e-02 – 2.89e-02 – 2.94e-02 –
160 2.50e-02 4.81e-01 1.72e-02 7.50e-01 1.91e-02 6.23e-01
320 1.86e-02 4.24e-01 1.35 e-02 3.46e-01 1.48e-02 3.67e-01
640 1.29e-02 5.28e-01 8.94e-03 5.7e-01 1.02e-02 5.38e-01
1280 8.72e-03 5.64e-01 6.670e-03 4.23e-01 7.30e-03 4.70e-01

L-NBee 80 9.30e-03 – 8.93e-03 – 9.24e-03 –
160 4.29e-03 1.11 4.78e-03 9.01e-01 4.50e-03 1.03e-01
320 2.51e-03 7.47e-01 2.52e-03 9.27e-01 2.37e-03 9.25e-01
640 1.58e-03 1.11 1.15e-03 1.13 1.08e-03 1.13
1280 6.57e-04 8.17e-01 6.46e-04 8.31e-01 6.19e-04 8.05e-01

L-UBee 80 1.00e-02 – 8.90e-03 – 9.09e-03 –
160 4.58e-03 1.13 4.40e-03 1.02 4.82e-03 9.16e-01
320 2.7e-03 7.62e-01 2.87e-03 6.61e-01 2.62e-03 8.80e-01
640 1.15e-03 1.23 1.38e-03 1.05 1.37e-03 9.30e-01
1280 9.48e-04 2.76e-01 9.69e-04 5.13e-01 9.00e-04 6.11e-01

Godunov2 80 1.20e-02 – 1.08e-02 – 1.01e-02 –
160 6.54e-03 8.70e-01 5.5e-03 9.71e-01 5.96e-03 8.86e-01
320 3.82e-03 7.73e-01 3.35e-03 7.17e-01 3.51e-03 7.64e-01
640 2.29e-03 7.42e-01 1.76e-03 9.25e-01 1.94e-03 8.53e-01
1280 1.23e-03 8.89e-01 1.02e-03 7.87e-01 1.08e-03 8.42e-01

Table 1: Test 1. Approximate L 1-error and E.O.A. for di↵erent numerical schemes and
with di↵erent kernel functions and ⌘  = 0.1 corresponding to the initial condition (4.1).

a smooth initial datum
⇢0(x) = 0.5 + 0.4 sin(⇡x) (4.2)

for x 2 [ 1, 1], with periodic boundary conditions and compute the numerical approximation
at T = 0.15 for di↵erent kernel functions with ⌘  = 0.1. The reference solution is computed
with 1/ x = 10240. In Table 2 and Figure 3 we compute the L 1-error and E.O.A. ( x).
We recover the correct order of accuracy for the second-order Godunov scheme.Instead, we
obtain just first-order accuracy for L-AR schemes. However, it is worth underlying that the
L1-error of the L-NBee scheme is smaller than the corresponding error for Lax-Friedrichs and
Godunov schemes.For the L-UBee scheme,we obtain first order accuracy and the L 1-error
for each level of refinement is bigger than the error of the other first order numerical schemes,
due to the antidi↵usive property of the UBee scheme.

4.2 Test 2.Cars and trucks mixed traffic
In this test case, we consider a stretch of road populated by cars and trucks as in the example
proposed in [10, Section 4.1].The space domain is given by the interval [ 1, 1] and we impose
absorbing conditions at the boundaries.The dynamics is described by the equation (1.1) with
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Scheme !(x) = 1 ⌘/ !(x) = 2(⌘ x) ⌘/ 2 !(x) = 3(⌘ 2 x2)/(2⌘3)
1/ x L1 error ( x) L1 error ( x) L1 error ( x)

Godunov 80 1.28e-03 – 1.33e-03 – 1.33e-03 –
160 6.44e-04 9.88e-01 6.73e-0.4 9.95e-01 6.68e-04 9.94e-01
320 3.23e-04 9.94e-01 3.38e-04 9.97e-01 3.34e-04 9.97e-01
640 1.62e-04 9.97e-01 1.69e-04 9.99e-01 1.67e-04 9.98e-01
1280 8.11e-05 9.98e-01 8.47e-0.5 9.99e-01 8.38e-05 9.99e-01

Lax-F 80 1.58e-03 – 1.92e-03 – 1.76e-03 –
160 7.24e-04 1.12 8.14e-04 1.24 7.73e-04 1.18
320 3.46e-04 1.07 3.70e-04 1.14 3.59e-04 1.10
640 1.69e-04 1.03 1.77e-04 1.06 1.74e-04 1.05
1280 8.35e-05 1.02 8.67e-04 1.03 8.55e-05 1.02

L-NBee 80 4.55e-04 – 4.30e-04 – 4.36e-04 –
160 2.23e-04 1.02 2.24e-04 9.43e-01 2.24e-04 9.65e-01
320 1.10e-04 1.01 1.14e-04 9.72e-01 1.13e-04 9.83e-01
640 5.49e-04 1.01 5.76e-05 9.86e-01 5.69e-05 9.92e-01
1280 2.74e-05 1.00 2.89e-05 9.93e-01 2.85e-05 9.96e-01

L-UBee 80 2.30e-03 – 2.14e-03 – 2.16e-03 –
160 1.75e-03 3.96e-01 1.23e-03 7.97e-01 1.26e-03 7.72e-01
320 1.48e-03 2.49e-01 1.18e-03 5.59e-02 1.20e-03 8.05e-02
640 9.82e-04 5.89e-01 8.39e-04 4.98e-01 8.41e-04 5.09e-01
1280 5.06e-04 9.56e-01 4.53e-04 8.88e-01 4.63e-04 8.61e-01

Godunov2 80 2.86e-05 – 2.89e-05 – 2.89e-05 –
160 6.80e-06 2.07 6.74e-06 2.10 6.76e-06 2.09
320 1.53e-06 2.15 1.53e-06 2.14 1.53e-06 2.14
640 3.42e-07 2.16 3.42e-07 2.16 3.41e-07 2.16
1280 7.72e-08 2.15 7.75e-08 2.14 7.73e-08 2.14

Table 2: Test 1. Approximate L1-error and E.O.A. , with smooth initial condition (4.2) and
di↵erent kernels function with ⌘  = 0.1.

M = 2, and the following initial conditions and parameter values

⇢1(0, x) = 0.5 [ 0.6, 0.1](x), ! 1(x) =
2
⌘1

✓
1

x
⌘1

◆
, ⌘1 = 0.3, vmax

1 = 0.8,

⇢2(0, x) = 0.5 [ 0.9, 0.6](x), ! 2(x) =
2
⌘2

✓
1

x
⌘2

◆
, ⌘2 = 0.1, vmax

2 = 1.3.
(4.3)

In this setting, ⇢1(t, x) and ⇢ 2(x, t) describe the density of trucks and cars respectively. We
have a red traffic light located at x = 0.1, which turns green at the initial time t = 0.
In Figure 4, we display the reference solution of equation (1.1) with initial conditions and
parameters (4.3), computed with with 1/ x = 5120 at increasing time instants (T = 0.25 in
Fig. 4a, T = 0.5 in Fig. 4b and T = 1 in Fig. 4c). We can observe that cars, initially located
behind trucks, overtake the slower class while impacting its flow.

In Figure 5, we display separately the two density components of the approximate solutions
computed using all the considered schemes with 1/ x = 80, compared to the reference
solution of Figure 4. The numerical tests indicate that for M > 1, the L-AR solutions are
anti-di↵usive for each class and they keep this anti-di↵usive behavior for the whole simulation
time. We observe that the L-NBee solution approaches very well the reference solution for
each class at di↵erent times. On the other hand, the L-UBee solution shows “stairs” in the
presence of rarefaction-waves.

In Table 3 and Figure 6, we compute the approximate L1-error and the E.O.A at time
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Figure 3: Test 1. Initial condition (4.2). Approximate L1-error for di↵erent numerical schemes
with: (a) constant kernel function !(x) = 1 ⌘/ , (b) decreasing kernel function !(x) = 2(⌘
x)⌘/ 2, concave kernel function !(x) = 3(⌘ 2 x2)/(2⌘3) (c).
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Figure 4: Test 2: Density profiles corresponding to (1.1)-(4.3), computed by second-order
Godunov scheme with 1/ x = 5120, at di↵erent times.

T = 0.5. We observe that the performance of L-AR schemes are comparable with those of
the second-order Godunov scheme.In particular, we have that the L-NBee L 1-error is the
smallest for each level of refinement.

1/ x Godunov Lax-F L-NBee L-UBee Godunov2
1/ x L1-err ( x) L1-err ( x) L1-err ( x) L1-err ( x) L1-err ( x)

80 2.7e-02 – 4.8e-02 – 5.2e-03 – 1.6e-02 – 8.5e-03 –
160 1.9e-02 0.53 3.4e-02 0.52 2.9e-03 0.83 5.8e-03 1.5 5.5e-03 0.64
320 1.3e-02 0.57 2.3e-02 0.55 1.2e-03 1.3 2.4e-03 1.2 3.0e-03 0.84
640 8.6e-03 0.58 1.6e-02 0.57 5.1e-04 1.3 1.4e-03 0.74 1.7e-03 0.87
1280 5.7e-03 0.59 1.0e-02 0.58 3.6e-04 0.51 9.4e-04 0.63 8.0e-04 1.0

Table 3: Test 2. Non-local multi-class LWR model. Initial condition (4.3), with decreasing
kernel functions, final time T = 0.5. The reference solution is computed with 1/ x = 5120.

4.3 Test 3.Autonomous and human-driven mixed traffic
This test is intended to study how the presence of Connected Autonomous Vehicles (CAVs)
impacts road traffic performances, as proposed in [10, Section 4.2].Let us consider a circular
road modeled by the space interval [ 1, 1] with periodic boundary conditions at x = ±1. All
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Figure 5: Test 2. (a)-(c)-(e) Profile of ⇢ 1 (trucks); (b)-(d)-(f) profile of ⇢ 2 (cars) computed
with di↵erent numerical schemes at di↵erent times and 1/ x = 80.

the vehicles have the same maximal speed, but the interaction radius of CAVs is much grater
than the one of human-driven cars. Moreover, we consider a constant convolution kernel
to model the behaviour of CAVs, since the information they get about surrounding traffic
is transmitted through wireless connections and it does not deteriorate with distance. We
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1,2,⌘ 1 = 0.3,⌘ 2 = 0.1

consider the following initial data and parameters

⇢1(0, x) = (0.5 + 0.3 sin(5⇡x)), ! 1(x) =
1
⌘1

, ⌘1 = 1.0, vmax
1 = 1,

⇢2(0, x) = (1 ) (0.5 + 0.3 sin(5⇡x)), ! 2(x) =
2
⌘2

✓
1

x
⌘2

◆
, ⌘2 = 0.05, vmax

2 = 1,

(4.4)

where ⇢ 1 is the density of autonomous vehicles and ⇢ 2 the density of human-driven vehicles.
The parameter 2 [0, 1] gives the penetration rate of autonomous vehicle.Figure 7a displays
the reference solution of (1.1)-(4.4) with = 0.9, computed by the second-order Godunov
scheme with 1/ x = 10240 at time T = 1.5. In Table 4 and Figure 7b we compute the
approximate L1-error and the E.O.A at time T = 1.5.

In Figure 8, we display separately the two classes and we compare the approximate solu-
tions computed by all the considered schemes with 1/ x = 320, and the reference solution.
Again, the numerical solutions obtained using the L-AR schemes are more anti-di↵usive than
those produced by first-order schemes.We observe a good behavior of the L-NBee scheme.On
the other hand, the L-UBee scheme approaches the reference solution very well in the presence
of shock-waves.On the other hand, the usual “stairs” appear in presence of rarefaction-waves.

We observe that the performances of L-NBee schemes are comparable with those of the
second-order Godunov scheme.It is worth pointing out that despite the “staircaising” phe-
nomenon the L-UBee L1-error is still smaller than the L1-error of the other first-order schemes.

5 Conclusions
We extended the L-AR schemes proposed in [5, 6] to the non-local multi-class traffic flow
model proposed in [10]. We provided some properties of the L-AR scheme and we proved
the convergence to weak solutions in the scalar case.The proposed numerical tests indicate
that these schemes are competitive with the first and second-order schemes proposed in the
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Figure 7: Test 3. (a) Reference solution of Test 3 at time T = 1.5 computed with 1/ x =
10240. (b) Approximate total L 1-error for di↵erent numerical schemes.
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Figure 8: Test 3. (a) Profile of ⇢ 1; (b) profile of ⇢ 2, computed with di↵erent numerical schemes
at time T = 1.5 and 1/ x = 320.
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Godunov Lax-F L-NBee L-UBee Godunov2
1/ x L1-err ( x) L1-err ( x) L1-err ( x) L1-err ( x) L1-err ( x)
320 5.2e-02 – 8.5e-02 – 3.0e-03 – 1.3e-02 – 3.1e-03 –
640 3.1e-02 0.76 5.8e-02 0.56 1.4e-03 1.1 5.7e-03 1.3 1.4e-03 1.1
1280 1.7e-02 0.87 3.5e-02 0.73 3.9e-04 1.8 2.8e-03 1.0 3.7e-04 1.9
2560 8.9e-03 0.93 1.9e-02 0.85 1.9e-04 1.0 1.4e-03 1.0 2.0e-04 0.84

Table 4: Test 3. Initial condition (4.4), with di↵erent kernel functions, final time T = 1.5.
The solutions are computed with 1/ x = 160⇥  2q for q = 1, ..., 4.

literature, in particular when more than one class are involved. If the initial datum has jump
discontinuities, the performance of L-AR schemes are comparable with those of the second-
order Godunov scheme. The improvement to higher order of accuracy is an involved issue
that can be studied in the near future.
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