
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effect of large displacements on the linearized vibration of composite beams / Carrera, E.; Pagani, A.; Augello, R.. - In:
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS. - ISSN 0020-7462. - STAMPA. - 120:(2020), p. 103390.
[10.1016/j.ijnonlinmec.2019.103390]

Original

Effect of large displacements on the linearized vibration of composite beams

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.ijnonlinmec.2019.103390

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.ijnonlinmec.2019.103390

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2813916 since: 2020-04-20T12:44:11Z

Elsevier Ltd



Effect of large displacements on the vibration response of
composite beams

E. Carrera*, A. Pagani�, R. Augello�

Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: Natural frequencies and mode shapes are functions of the equilibrium state. In
the large displacement regime, pre-stresses may modify significantly the modal behaviour of
structures. In this work, a geometrical nonlinear total Lagrangian formulation that includes
cross-sectional deformations is developed to analyse the vibration modes of composite beams
structures in the nonlinear regime. Equations of motion are solved around nonlinear static
equilibrium states, which are identified using a Newton-Raphson algorithm along with a path-
following method of arc-length type. Different boundary conditions and stacking sequences are
analysed. It is shown that vibration modes are strongly modified by nonlinear phenomena.
Moreover, models that do not describe those effects accurately may results in misleading re-
sults, especially if compression is dominant. In fact, results show a crossing phenomenon in
the post-buckling regime of an asymmetric cross-ply beam, whereas it is completely unforeseen
by the linearized analysis.

Keywords: Nonlinear vibration; Mode aberration; Composite beams; Geometrical nonlinear
analysis; Carrera Unified Formulation.

1 Introduction

The design process and the verification of composite structures demand for accurate evaluation
of their dynamic characteristics; i.e., natural frequencies and mode shapes. Since the modal
behaviour of a structure is strictly related to the equilibrium condition and the pre-stresses,
the dynamic characteristics can change as the equilibrium state changes, which is particularly
true in the case of large displacements and rotations when the equilibrium is far from the
trivial state.

The static and dynamic properties of a body undergoing considerable pre-stress conditions
were analyzed by Biot [1], who developed a nonlinear theory, including first and second
order terms to describe the kinematic relations. Abkarov [2] offered a review of analyses
carried out on the evaluation of the dynamic properties of bodies with initial stresses. For
example, Akbarov and Ozisik [3] conducted a study on the dynamic properties of a pre-
stressed nonlinear layer. The influence of initial stress on dynamic characteristics was also
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studied for elastic plates, for both isotropic (see Ogden and Roxburgh [4] and Herrmann [5])
and composite structures (see Sun and Whitney [6]).

Vibration of structures is a topic widely investigated by researcher and scientists. To evalu-
ate the dynamic properties of composite structures, many authors analyzed the free vibration
characteristics for their studies. The work made by Virgin [7] presented a deep analysis of
the vibration properties of slender structures subjected to compressive loadings. Moreover,
based on Timoshenko beam theory [8], Ke et al. [9] analyzed the dynamic characteristic of
functionally graded nanocomposite beams using von Kármán geometrical nonlinear approxi-
mation, while Zhu et al. [10] conducted comparable analyses in the case of carbon nanotube
reinforced composite plates. Leissa [11, 12] and Leissa and Qatu [13] proposed a description
of classical plate and shell theories, considering different geometrical and material character-
istics. Regarding composite beams, Hodges et al. [14] showed methods for the evaluation of
the natural frequencies and the associated modal shapes, using the Finite Element Method
(FEM) to solve the equations of motion. Moreover, free vibrations of composite beams were
investigated by Chandrashekhara et al. [15], considering rotary inertia and first-order shear
deformations, and by Chandrashekhara and Bangera [16], using a refined higher-order shear
deformation theory. Both works showed the effect of geometric and material properties and
boundary conditions on dynamic properties of composite beams. Moreover, Song and Li-
brescu [17] analyzed the free vibration of anisotropic beams with thick - and thin-walled
cross-sections, whereas Lee [18] studied delaminated composite beams, adopting a layerwise
approach. Regarding plates, Kant and Swaminathan [19] used a higher-order theory to de-
velope a refined model for the free vibration analysis of laminated sandwich plates. Besides,
simply-supported multilayered composite plates were studied by Noor and Burton [20].

During the last years, composite structures have been largely adopted in many engineer-
ing applications, from the automotive to the aerospace fields. For this reason, scientists
and researchers were led to develop ad-hoc mathematical models to describe the mechanical
behaviour of composite structures. A comprehensive review about the modeling of compos-
ite laminates for one- and two-dimensional structures can be found in Kapania and Raciti
[21, 22] and Zhang and Yang [23]. As an example, Reddy [24] proposed a two-dimensional
shear deformation theory of composite plates. The works by Hodges [25] and Chia [26] pre-
sented an overview of the geometrically nonlinear behaviour of composite beams and plates,
respectively. The literature of works about the behaviour of composite structures in the large
displacement and rotation field is vast, indeed. As an example, the work by Zhang and Kim
[27] is mentioned, which proposes a quadrilateral plate element for the geometrical nonlinear
analysis of laminated composite plate. The model is based on first-order shear deformation
theory and von Kármán geometrical nonlinearity, with a total Lagrangian approach. With
the same assumptions, Zhang and Liew [28] analyzed the geometrical nonlinear behaviour of
carbon nanotube reinforced composite plates.

The present work intends to investigate the change of natural frequency and associated
mode shapes in the case of large displacements/rotations of composite beam structures. A
similar approach can be found in a real application, see Abramovich et al. [29] and Arbelo
et al. [30], who developed a not-destructive method for the evaluation of critical buckling
load of metallic structure, by interpolating until singularity the natural frequencies calculated
experimentally at progressive loadings. The proposed nonlinear model was developed in the
framework of the Carrera Unified Formulation (CUF) [31, 32]. According to CUF, any theory
of structures can be expressed as a generic expansion of the primary unknowns. In this
manner, the order of the theory is considered as input of the analysis, so that the generation
of low- to high-order finite beam elements is possible. The nonlinear governing equations are
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written, in fact, in terms of fundamental nuclei, that can be opportunely expanded according
to the order of the theory. Over the last few years, CUF has been expanded to deal with
various engineering problems, such as micromechanics [33], civil engineering structures [34],
nonlinear problems [35, 36], hygrothermal analysis [37] and multi-field problems [38].

This paper is organized as follows: (i) first, CUF and the related finite element is briefly
introduced in Section 2; (ii) subsequently, Section 3 shows the linearized eigenvalue problem
solved along the geometrical nonlinear analysis to evaluate the mode change. The fundamental
nuclei of both secant and tangent stiffness matrices are introduced next; (iii) then, Section
4 reports the obtained results, and those deal with a cantilever asymmetric beam subjected
to bending uniform pressure, the post-buckling of a simply-supported symmetric beam and
a cantilever asymmetric beam undergoing a compressive load with three different stacking
sequences considered; (iv) finally, the main conclusions are reported in Section 5.

2 Higher-order one-dimensional element

Let us suppose a one-dimensional (1D) structure, with the cross-section laying on the xz-
plane of a Cartesian reference system. Then, y represents the direction of the beam axis. The
displacement vector is given by:

u(x, y, z; t) =
{
ux uy uz

}T
(1)

The stress, σ, and strain, ε, components are expressed in vectorial form with no loss of
generality,

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)

In this work, composite beam structures are considered. The constitutive relation takes the
form:

σ = Cε (3)

where C represents the material matrix, see [36]. Note that linear elastic materials are
considered in this study. As far as the geometrical nonlinear relations are concerned, the
Green-Lagrange strains are retained; they read

ε = εl + εnl = (bl + bnl)u (4)

where bl and bnl are the linear and nonlinear differential operators, respectively. Interested
readers may refer to [35, 39] for more details about bl and bnl.
According to the Carrera Unified Formulation (CUF) (see Carrera et al. [32]), in the case of
1D structure, the three-dimensional displacement field u(x, y, z; t) can be expressed as:

u(x, y, z; t) = Fs(x, z)us(y; t), s = 1, 2, ....,M (5)

where Fs are the expansion functions of the coordinates x and z on the cross-section, us is
the vector of the displacements along the beam axis direction, M stands for the number of
the terms used in the expansion, and the subscript s indicates summation. The proposed
work adopts Lagrange polynomials as Fs to approximate the beam theory kinematics. In this
manner, higher-order models with layerwise capabilities can be implemented with ease (see
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the work by Carrera and Petrolo [40] for more details). As an example, the displacement field
evaluated through one L9 polynomial is quadratic and reads:

ux(x, y, z; t) = F1(x, z)ux1(y; t) + F2(x, z)ux2(y; t) + ...+ F9(x, z)ux9(y; t)
uy(x, y, z; t) = F1(x, z)uy1(y; t) + F2(x, z)uy2(y; t) + ...+ F9(x, z)uy9(y; t)
uz(x, y, z; t) = F1(x, z)uz1(y; t) + F2(x, z)uz2(y; t) + ...+ F9(x, z)uz9(y; t)

(6)

where ux1, . . . , uz9 are the displacement of the points of the cross-sectional elements and F1

to F9 are functions of the cross-sectional coordinates and represent the first 9 Lagrange poly-
nomials of order 3. Complex cross-section geometries and piece-wise higher-order kinematics
can be developed by opportunely using a combination of Lagrange polynomials. More details
about the Lagrange expansion are described in [41].
To approximate the displacement field over the beam axis, the Finite Element Method (FEM)
is adopted. The generalized displacement vector us(y) is approximated as follows:

us(y; t) = Nj(y)qsj(t) j = 1, 2, . . . , p+ 1 (7)

where Nj stands for the j-th shape function, p is the order of the shape functions and j
indicates summation. qsj is the following vector of the FE nodal parameters:

qsj(t) =
{
qxsj qysj qzsj

}T
(8)

For the sake of brevity, the shape functions Nj are not reported here. They can be found
for instance in Bathe [42] and in Carrera et al. [32]. The proposed research work makes
use of classical 1D finite Lagrangian elements with four nodes (B4) which provides a cubic
interpolation along the y axis.

3 Linearized vibration modes of structures undergoing

large displacements

Using the principle of virtual work, the equations of motion of a un-damped elastic body
subjected to inertia forces and no external forces can be expressed as follows:

δLint = −δLine (9)

where Lint stands for the work of the internal forces, Line is the work made by the inertial
loads, and δ denotes the virtual variation. Given the stress (σ) and strain (ε) vectors as in
Eq. (2), the virtual variation of the internal strain energy can be written as

δLint =

∫
V

(
δεTσ

)
dV (10)

where V represents the body volume. Introducing CUF (Eq. (5)) and FEM (Eq. (7)) equations
into Eq. (4), the strain vector reads, in algebraic form:

ε =
(
Bsj
l + Bsj

nl

)
qsj (11)
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where Bsj
l and Bsj

nl are linear and nonlinear algebraic matrices. Those matrices are not
explicitely reported here for the sake of brevity, but they can be found in [36].
Introducing Eq. (11) and the constitutive relation (Eq. (3)) into Eq. (10), one has:

δLint = δqTτi

∫
V

(
(Bτi

l + 2Bτi
nl)

TC(Bsj
l + Bsj

nl) dV
)
qsj

= δqTτiK
ijτs
0 qsj + δqTτiK

ijτs
lnl qsj + δqTτiK

ijτs
nll qsj + δqTτiK

ijτs
nlnl qsj

= δqTτiK
ijτs
S qsj

(12)

where Kijτs
S is the secant stiffness matrix, Kijτs

0 is the linear contribution of the secant stiff-
ness matrix and Kijτs

lnl , Kijτs
nll and Kijτs

nlnl are the nonlinear contributions. These contributions
are written in the form of the so-called fundamental nuclei (FN). By opportunely choosing
the index for the cross-sectional expansion functions and axial shape functions, FN can be
arbitrarily expanded in order to reach any order of theory to model the structure. The explicit
derivation of the stiffness FN can be found in [35].
The evaluation of the linearized free vibration modes around nonlinear equilibrium states (see
Fig. 1) demands for the linearization of the equations of motion of Eq. (9). The linearized
form of the Eq. (9) yelds:

δ(δLint) = −δ(δLine) (13)

As far as the linearization of the internal strain energy is concerned, it reads:

δ(δLint) =

∫
V

δ
(
δεTσ

)
dV

=

∫
V

δεT δσ dV +

∫
V

δ
(
δεT
)
σ dV

(14)

where the first term in right-hand-side calls for the linearization of the constitutive relations,
whereas the second term will involve the linerization of the geometrical relations. Introducing
Eq. (11) into the Eq. (14), δ(δLint) takes the form:

δ(δLint) = δqTτi
(
Kijτs

0 + Kijτs
T1

)
δqsj + δqTτiK

ijτs
σ δqsj

= δqTτiK
ijτs
T δqsj

(15)

where Kijτs
T represent the FN of the tangent stiffness matrix. Note that Kijτs

T = Kijτs
0 +Kijτs

T1
+

Kijτs
σ . Kijτs

0 is the linear contribution, Kijτs
T1

equals to 2Kijτs
lnl + Kijτs

nll + 2Kijτs
nlnl, and Kijτs

σ

represents the so-called geometric stiffness [43]. It takes into account both linear and nonlinear
pre-stress states. The explicit form of the tangent stiffness matrix is given in [35]. In the next
step - by using the aforementioned relations, assuming constant mass, neglecting higher-order
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nonlinearities, and after opportune manipulations - the linearization of the virtual variation
of the inertia loadings is expressed as follows:

δ(δLine) = δ

(∫
V

δuTρ ü dV

)
= δ

(
δqTsjM

ijτs q̈τi
)

= δqTsjM
ijτs δq̈τi

(16)

where Mijτs is the FN of the elemental, linear mass matrix. Substituting Eqs. (15) and (16)
into the Eq. (13), one has:

δqTτiK
ijτs
T δqsj = −δqTτiMijτs δq̈sj (17)

Given the nature of the problem in hand and the hypothesis made, it is reasonable to assume
harmonic motion around linearized states along the nonlinear equilibrium path. Thus, one
has:

δqsj(t) = δq̄sj e
iωt

δq̈τi(t) = −ω2 δq̄sj e
iωt

(18)

Finally, substituting Eq. (18) into Eq. (17), the equations of motion take the form of a linear
eigenvalue problem: (

Kijτs
T − ω2Mijτs

)
δq̄sj = 0 (19)

Note that:

� Given a structure and prescribed the boundary conditions, the quasi-static problem is
solved, see [35, 36]. In particular, the geometrical nonlinear problem is solved using the
Newton-Raphson method, along with an opportune arc-length path-following constraint.
More detail about the arc-length method adopted can be found in the works by Crisfield
[44, 45] and Carrera [46].

� For each equilibrium state of interest, the tangent stiffness matrix is calculated, see Fig.
1.

� Here, Eq. (19) is expanded versus the indexes τ and s (theory approximation order)
and i and j (shape function) to give:(

KT − ω2M
)
δq = 0 (20)

� Natural frequencies and normal modes of the structure subjected to pre-stress states
are found by solving the following equation:

det
(
KT − ω2M

)
= 0 (21)

� Note that natural frequencies and mode shapes of the resting structure (q = 0) are
obtained by linearizing the system in hand around the trivial solution to give:

det
(
K0 − ω2M

)
= 0 (22)
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Figure 1: KT at the equilibrium conditions of a nonlinear equilibrium path.

4 Numerical results

In this section, we demonstrate how natural frequencies of composite structures are affected
by large displacements/rotations and pre-stress states. Quasi-static nonlinear analyses of
symmetric and asymmetric laminated beams subjected to various boundary conditions and
loadings were carried out first. Linearized vibrations were thus performed to show important
mode aberration and to highlight the high efficacy of the proposed model.

4.1 Vibration of asymmetric beam subjected to large bending dis-
placement

A cantilever beam undergoing large deflection due to a uniform transverse pressure was con-
sidered in the first analysis case. The beam is composed by two layers of an orthotropic
material with Young moduli E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, Poisson’s ratios ν12 =
ν13 = ν23 = 0.3 and shear moduli G12 = G13 = 3.45 GPa and G23 = 4.14 GPa. Figure 2
shows the loading condition of the proposed analysis case, along with the cross-section of the
beam and the stacking sequence, which is [90◦/0◦]. The ratio between the thickness and the
width of the cross-section t/w is equal to 0.6, and the length-to-side ratio L/w is 9. For all
the subsequent analyzed cases, 10 B4 elements and a layerwise approximation employing one
L9 discretization per layer were used in the context of CUF. The nonlinear static behavior of
this beam model was already validated in [36]. Figure 3 reports the quasi-static equilibrium

L

p
0

x

z 90°

0°
t

t/2

w

t/2

Figure 2: Loading condition and cross-section geometry of the asymmetric cross-ply beam.

curve for the analyzed beam. The solution is achieved using an arc-length method, and the
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deformed configurations of some nonlinear condition are depicted.
The natural frequencies of the nonlinear analysis are calculated next. At each step of the
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Figure 3: Equilibrium curve of the asymmetric cross-ply beam subjected to vertical pressure.

p∗ =
p0 L

4

E2 h4
. Reference results from Pagani and Carrera [36].

equilibrium path, free vibrations are evaluated making use of the local tangent stiffness of the
deformed configuration. Table 1 shows the values of the natural frequencies for two bend-
ing and one torsional modal shapes. The values of uz/L are referred to Fig. 3. It can be
noticed that the first natural frequency increases as the load rises. By contrast, the natural
frequencies of the second bending modal shape decreases until uz/L equals to 0.608, and then
it increases, reaching the value of 12.72 at the end of the equilibrium path. The two bending
mode shapes in the table correspond to the first two natural frequencies, whose trends are
reported in Fig. 4 along with those of the 3rd, 4th, and 5th natural frequencies. Also, Ta-
ble 1 demonstrates that the torsional natural frequency increases for higher pre-stresses and
exhibits oscillations in high displacement ranges. For the sake of completeness, the trends of
the the natural frequencies from the 6th to the 10th are shown in Fig. 5. Curve 8 corresponds
to the natural frequency of the torsional modal shape. In Fig. 5, the attention is focussed
on the distribution of the 7th, 8th and 9th natural frequencies, between f = 120Hz and
f = 160Hz. Here, we underline the crossing between mode 7 and mode 8 (second torsion)
and the interaction with mode 9. Also, Fig. 6 shows the evolution of these modes all along
the quasi static equilibrium path of the structure.

4.2 Vibration of symmetric laminated beam-column

The post-buckling behaviour of a symmmetric cross-ply slender beam is addressed hereafter.
The loading and boundary conditions are reported in Fig. 7. The analyzed beam is simply
supported and undergoes an axial compression load. Due to the geometric and material
symmetry, a small load d is necessary to be applied to enforce the unstable solution branches,
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uz/L f1 f2 f4
0.000 5.77 14.11 41.20
0.078 5.81 14.03 41.88
0.155 5.89 13.74 43.03
0.230 6.24 13.44 45.40
0.327 6.22 12.74 46.43
0.419 6.52 12.24 48.27
0.505 7.42 12.21 51.85
0.608 7.53 11.69 51.50
0.698 9.31 12.54 56.66
0.795 9.85 12.72 54.48

Table 1: Natural frequencies (Hz) of the bending modes and torsional mode at various steps
of the nonlinear analysis. Cantilever asymmetric beam subjected to transverse pressure case.
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Figure 4: Natural frequencies (Hz) from 1st mode to 5th mode. Cantilever asymmetric beam
subjected to transverse pressure case.
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Figure 5: Frequency aberration from 6th mode to 10th mode for the cantilever cross-ply beam
subjected to bending pressure with particular attention given to the 120 Hz and 160 Hz range.

as depicted in the figure. d is applied at the middle cross-section of the beam and along
the transverse direction. The beam is made of three layers of an orthotropic material with
Young moduli E1 = 155.0 GPa, E2 = E3 = 15.5 GPa, Poisson’s ratios ν12 = ν13 = ν23 = 0.25
and shear moduli G12 = G13 = 9.3 GPa and G23 = 7.75 GPa. The geometric conditions are
reported in Fig. 7, and the length-to-side ratio equals L/t = 50, with a square cross-section.
The stacking sequence is [0◦/90◦/0◦], and each layer has the same thickness, which is equal
to t/3.
The post-buckling quasi-static equilibrium curve of the simply-supported beam is reported
in Fig. 8, which shows the transverse displacement versus the loading P according to the
high-order 3L16 beam model, see Ref. [36]. The displacement is measured at the middle
cross-section. Some of the deformed configurations are reported in the same figure. In the
next step, at each equilibrium state of the nonlinear analysis, first 10 natural frequencies are
calculated. Table 2 reports the natural frequencies of the first two bending and the torsional
modal shapes. It can be noticed that the frequency of the first bending mode decreases and
almost goes to zero in correspondence of the critical buckling load, and then it increases, as
expected. The same behaviour is demonstrated in [47], for the buckling case of a metallic
beam. The natural frequency of the second bending mode shape has the same trend, but there
is no evidence of this modal shape at higher load values. The same phenomenon happens
in the case of the torsional mode, which suddenly drops from the value of 0.16274 Hz at
P ∗ = 7.921 to 0.11762 Hz at P ∗ = 8.119.
Figure 9 shows the trend of the first six natural frequencies as a function of the compression
load. In detail, Fig. 9(a) demonstrates the first two bending modes (whose frequencies are
also reported in Table 2). Figure 9(b) shows the 3rd and the 4th modes, which represent the
bending mode in the yz and the yx planes, respectively. The 3rd natural frequency disappears
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(a) Mode 8A. uz/L = 0.000 (b) Mode 7A. uz/L = 0.000 (c) Mode 9A. uz/L = 0.000

(d) Mode 8B. uz/L = 0.230 (e) Mode 7B. uz/L = 0.000 (f) Mode 9B. uz/L = 0.230

(g) Mode 7C. uz/L = 0.698 (h) Mode 8C. uz/L = 0.698 (i) Mode 9C. uz/L = 0.698

Figure 6: Modal shapes of the 7th, 8th and 9th natural frequencies of the asymmetric cross-ply
beam subjected to vertical pressure. Numbers refer to Fig. 5.
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Figure 7: Loading condition and cross-section geometry of the simply-supported symmetric
cross-ply beam.
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sion. P ∗ =
p0 L
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E2 h4
. Reference results from Pagani and Carrera [36].

when P ∗ = 8.955, as previously seen for the 2nd mode. The 4th mode, instead, presents an
oscillatory behaviour around P ∗ = 8.400. A similar trend is evident for the 5th and 6th modes
in Fig. 9(c). Figure 10 reports the mode shapes of the previously reported frequencies in
correspondence of the buckling load. Next, Fig. 11 shows the trend of the natural frequencies
from the 7th to the 10th. Figure 11(a) reports the trend of the torsional and bending mode.
The natural frequency of the torsional mode suddenly drops at P ∗ = 8.119, going below
the 6th mode. Finally, Fig. 11(b) shows the changes of two bending frequencies. The
correspondent modal shapes are reported in Fig. 12.

4.3 Nonlinear vibration of asymmetric laminated beam-column and
comparison with trivial linearized solution

As a final example, asymmetric cross-ply cantilever beam subjected to compression is ad-
dressed. The beam is made of two layers with E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, ν12
= ν13 = ν23 = 0.3, G12 = G13 = 3.45 GPa and G23 = 4.14 GPa. Three different stacking
sequences have been analyzed, [0◦/45◦], [0◦/90◦] and [15◦/−45◦]. A loading P is applied at
the free end as shown in Fig. 13, which also reports the geometric properties, L/w = 9, t/w =
0.6. The two layers have the same thickness t/2. One L16 Lagrange polynomial is employed
to approximate the kinematics of each layer on the cross-section in a layerwise sense and, on
the other hand, 10 B4 are used along the beam axis. Fig 14 shows the nonlinear trend
of the z-coordinate displacement of the free end for each stacking sequence and for different
compression states. This static response was validated in [36]. As for the previous analysis
cases, at each equilibrium step of the quasi-static response, the linearized eigenvalue problem
is solved by accounting for the tangent stiffness, and the trend of the natural frequencies is
investigated.
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P ∗ f1 f2 f7
0.00 0.01400 0.01611 0.16930
1.243 0.01285 0.01503 0.16916
4.473 0.00922 0.01187 0.16891
7.045 0.00454 0.00847 0.16870
7.618 0.00138 0.00719 0.16862
7.885 0.00070 0.00703 0.16802
7.921 0.00124 0.00664 0.16274
8.119 0.00309 − 0.11762
8.955 0.00557 0.01184 −
12.43 0.00829 − −

Table 2: Natural frequencies (Hz) of bending modes and torsional mode at various steps of
the nonlinear analysis. Simply-supported symmetric beam subjected to compression case.
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Figure 9: Natural frequency trends of the first 6 modes for the simply-supported symmetric

beam subjected to compression. P ∗ =
P L2

b h3E2

.
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(a) Mode 1A. P ∗ = 4.473 (b) Mode 2A. P ∗ =
4.473

(c) Mode 1B. P ∗ = 8.400 (d) Mode 2B. P ∗ = 8.400

(e) Mode 3A. P ∗ = 4.473 (f) Mode 4A. P ∗ = 4.473 (g) Mode 3B. P ∗ = 8.400 (h) Mode 4B. P ∗ = 8.400

(i) Mode 5A. P ∗ = 4.473 (j) Mode 6A. P ∗ = 4.473 (k) Mode 5B. P ∗ = 8.400 (l) Mode 6B. P ∗ = 8.400

Figure 10: Modal shapes of the of the first 6 modes for the simply-supported symmetric beam

subjected to compression. Numbers refer to Fig 9. P ∗ =
P L2
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Figure 11: Natural frequency trends of the 7th, 8th (a), 9th and 10th (b) modes for the

simply-supported symmetric beam subjected to compression. P ∗ =
P L2

b h3E2
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(a) Mode 7A. P ∗ = 4.473 (b) Mode 8A. P ∗ =
4.473

(c) Mode 7B. P ∗ = 8.119 (d) Mode 8B. P ∗ = 8.400

(e) Mode 9A. P ∗ = 4.473 (f) Mode 10A. P ∗ =
4.473

(g) Mode 9B. P ∗ = 8.400 (h) Mode 10B. P ∗ =
8.400

Figure 12: Modal shapes of the 7th, 8th, 9th and 10th modes for the simply-supported

symmetric beam subjected to compression. Numbers refer to Fig 9. P ∗ =
P L2

b h3E2
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Figure 13: Loading condition and cross-section geometry for the cantilever asymmetric cross-
ply beam subjected to compression.
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Figure 15: Natural frequency trends of the first 4 modes for the cantilever asymmetric cross-

ply beam subjected to compression. (a) [0◦/45◦], (b) [0◦/90◦], (c) [15◦/−45◦]. P ∗ =
P L2

E2 b h3
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(a) Mode 1A. P ∗ =
0.292

(b) Mode 2A. P ∗ =
0.292

(c) Mode 3A. P ∗ =
0.292

(d) Mode 4A. P ∗ =
0.292

(e) Mode 1B. P ∗ =
0.995

(f) Mode 2B.
P ∗ = 0.995

(g) Mode 3B.
P ∗ = 0.995

(h) Mode 4B.
P ∗ = 0.995

Figure 16: Modal shapes of the first 4 modes for the cantilever asymmetric cross-ply beam

subjected to compression. Numbers refer to Fig. 15(a). P ∗ =
P L2

E2 b h3
.

Figures 15 shows the distribution of the natural frequencies of four modes for the [0◦/45◦],
[0◦/90◦] and [15◦/−45◦] stacking sequences, respectively. Moreover, Figures 16, 17 and 18
show the modal shapes of the 4 modes, for P ∗ = 0.3 and P ∗ = 1. Clearly, the modal shapes
are the same for the three lamination cases. In detail, the 1st and the 2nd modes are the
bending in the yz and yx plane respectively, the 3rd is a bending mode and the 4th is the tor-
sional mode. The interesting aspect of this analysis arises from the study of the distribution
of the first two natural frequencies of the [0◦/90◦] stacking sequence case (see Fig. 15(b)).
In fact, around P ∗ = 1.250, a crossing phenomenon between the two natural frequencies
appears. This is also demonstrated by Figure 18, where the modal shape at P ∗ = 1.630 is
further depicted, to show the aberration between the 1st and the 2nd modes.
Finally, an analysis of the difference between linearized frequencies evaluated around trivial

states and linearized frequencies calculated around nonlinear equilibrium states is proposed.
Figure 19 shows the trend of the linearized and nonlinear frequencies associated at the first
two modes for the three stacking sequences previously analysed. It can be pointed out that
the first natural frequencies (that is associated to the bending mode in the yz plane) disappear
when the buckling-like phenomenon occurs within the structure. For the second mode, the
frequency evaluated around the trivial state is always higher than the nonlinear one, except
for the [15◦/−45◦] stacking sequence case, where it becomes lower after P ∗ reaches the value
of 1.3. Also, it is clear that crossing and veering phenomena are completely unforeseen by
the trivial linearized model. Moreover, for the [0◦/45◦], the linear and nonlinear distribution
of the axial and transverse component of the stress tensor are reported in Figs. 20 and 21.
Clearly, for the σyy component, the trend is similar for both analyses, but for the nonlinear
cases the stress reaches higher values. Instead, for the σyz component, the trend between the
two analyses is different, and the L16 Lagrange polynomial along with the layerwise approach
can catch the parabolic trend of the stress for the nonlinear case. As for the σyy, also the σyz
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(a) Mode 1C. P ∗ =
0.292

(b) Mode 2C. P ∗ =
0.292

(c) Mode 3C. P ∗ =
0.292

(d) Mode 4C. P ∗ =
0.292

(e) Mode 1D. P ∗ =
0.995

(f) Mode 2D.
P ∗ = 0.995

(g) Mode 3D.
P ∗ = 0.995

(h) Mode 4D.
P ∗ = 0.995

(i) Mode 1E P ∗ =
1.630

(j) Mode 2E.
P ∗ = 1.630

(k) Mode 3E.
P ∗ = 1.630

(l) Mode 4E.
P ∗ = 1.630

Figure 17: Modal shapes of the first 4 modes for the cantilever asymmetric cross-ply beam

subjected to compression. Numbers refer to Fig. 15(b). P ∗ =
P L2

E2 b h3
.

18



(a) Mode 1F. P ∗ =
0.292

(b) Mode 2F. P ∗ =
0.292

(c) Mode 3F. P ∗ =
0.292

(d) Mode 4F. P ∗ =
0.292

(e) Mode 1G.
P ∗ = 0.995

(f) Mode 2G.
P ∗ = 0.995

(g) Mode 3G.
P ∗ = 0.995

(h) Mode 4G.
P ∗ = 0.995

Figure 18: Modal shapes of the first 4 modes for the cantilever asymmetric cross-ply beam

subjected to compression. Numbers refer to Fig. 15(c). P ∗ =
P L2

E2 b h3
.
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Figure 19: Linearized frequency around nonlinear equilibrium states (continuous line) and
linearized frequency around trivial state (dashed line) of the 1st and 2nd frequency for the
cantilever asymmetric cross-ply beam subjected to compression. (a) [0◦/45◦], (b) [0◦/90◦], (c)

[15◦/−45◦]. P ∗ =
P L2
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has higher values for the nonlinear case, as expected.
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Figure 20: Through the thickness distribution of axial stress component according to linear
and full geometric nonlinear analyses for P ∗ = 0.3 (a) and P ∗ = 1 (b). The stacking sequence

is [0◦/45◦]. σ∗
yy =

σyy h
2

P
. Cantilever asymmetric cross-ply beam subjected to compression

case.

5 Conclusions

The present research paper has demonstrated that composite structures can be subjected to
severe frequency changes and modes aberration as a consequence of geometrical nonlinear
equilibrium states. For this purpose, we have used the Carrera Unified Formulation (CUF),
which, when combined to variational principles and finite element approach, generates a
unique framework for the implementation of low- to high-fidelity models for composite struc-
tures, including eventually layerwise kinematics. A path-following method is used to solve the
nonlinear quasi-static problem of composite beams subjected to mechanical loadings, whereas
the evaluation of the dynamic properties demands for the linearization of the equations of mo-
tion at each equilibrium state of the whole equilibrium path. It is demonstrated that the most
critical change of the modal shapes occurs in the case of structure subjected to compression
load. In the post-buckling regime, in fact, some modes fade and others show an oscillatory
behaviour (bending modes) or a sudden drop of the natural frequency associated (torsional
mode). Finally, a crossing phenomenon between the first two modes appears in the post-
buckling regime of a cross-ply beam with cross-ply lamination [0◦/90◦]. In contrast, the other
stacking sequences analyzed ([0◦/45◦] and [15◦/−45◦]) do not show such a behaviour, which
demonstrate that dynamics aberrations can be tailored with the use of composite materials.
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Figure 21: Linear and nonlinear distribution of σyz along the thickness for (a) P ∗ = 0.3 and
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