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Evaluation of geometrically nonlinear terms in the large-deflection

and post-buckling analysis of isotropic rectangular plates

Alfonso Pagania,∗, Ehsan Daneshkhaha,†, Xiangyang Xua,‡, Erasmo Carreraa,§,

aMul2 Group, Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, 10129 Torino, Italy;

Abstract:
The nonlinear mechanical response of highly flexible plates and shells has always been of primary

importance due to widespread applications of these structural elements in many advanced engineer-
ing fields. In this study, the Carrera Unified Formulation (CUF) is used in a total Lagrangian
framework to analyze the large-deflection and post-buckling behavior of isotropic rectangular plates
based on different nonlinear strain assumptions. The scalable nature of CUF provides us with the
ability to tune the structural theory approximation order and the strain-displacement assumptions
opportunely. In this work, the Newton- Raphson linearization scheme with a path-following con-
straint is used in the framework of 2-D CUF to solve the geometrically nonlinear problems to draw
important conclusions about the consistency of many assumptions made in the literature on the
kinematics of highly flexible plates. In this regard, the effectiveness of the well-known von Kármán
theory for nonlinear deformations of plates is investigated with different modifications such as the
thickness stretching and shear deformations due to transverse deflection. The post-buckling curves
and the related stress distributions for each case are presented and discussed. According to the
results, the full Green-Lagrange nonlinear model could predict the nonlinear behavior of plates effi-
ciently and accurately, whereas other approximations produce considerable inaccuracies in the case
of thick plates subjected to large rotations and deflections.

Keywords: Carrera Unified Formulation; Geometrical nonlinear plates; Green-Lagrange strains,
Nonlinear geometric relations.

1 Introduction

Highly flexible plate structures are used extensively in different engineering applications. Many
applications of plates can be found in the engineering; for instance, the use of very thin circular
plates in computer hard disk drives, rectangular and trapezoidal plates in the wing skin, cantilever
rectangular plates in nano-resonators for drug detection, and clamped circular thin nano-plates of
graphene in nano-devices for pressure measurement [1]. Plates are initially flat structures having two
dimensions much larger than the third one and can sustain extension, compression, in-plane shear,
bending, twisting, and transverse shear loads [2]. Nonlinearity occurs in mathematical formulation
of most physical problems. If certain quantities of the formulation are small, the problem may be
considered linear. Two common sources of nonlinearity are geometry and material. The geometric
nonlinearities arise purely from geometric consideration and nonlinear strain-displacement relations.
On the other hand, the material nonlinearities arise due to the nonlinear constitutive behavior of
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the material of the system [3]. Due to the necessity of a safe and reliable design, the effects of these
nonlinearities in the mechanical responses of plates have always been of fundamental importance.

Many studies have been carried out with the focus on the large deflections of plates [4, 5, 6, 7].
Levy [8, 9] presented theoretical analysis for the large deflections of plates. Rushton [10] investigated
the large deflection of variable-thickness plates. Turvey and Osman [11] conducted a study on
the large deflection of Mindlin plates and introduced the relevant governing equations using the
Dynamic Relaxation method. Alijani and Amabili [12] introduced a numerical solution for nonlinear
static bending and vibration of plates to predict the correct thickness stretching. The same authors
carried out an analysis on functionally graded rectangular plates to investigate the effect of thickness
deformation [13]. Wu et al. [14] studied the large deflection and post-buckling of thin and moderately
thick plates by using Carrera Unified Formulation (CUF) and the Newton–Raphson linearization
scheme combined with a path-following method. They presented the Fundamental Nucleus (FN) of
secant and tangent stiffness matrices for the plates and investigated the effect of different boundary
conditions on the large deflection analysis of plates.

Furthermore, some researchers focused on the large deflection of laminated plates [15, 16, 17].
Shukla and Nath [18] obtained analytical solutions for laminated-composite plates with geometrically
nonlinear boundary value problems. Dash and Singh [19] presented a formulation for the nonlinear
bending of laminated plates considering transverse shear and large rotations. Carrera and Kröplin
[20] considered higher-order shear deformation theories for composite plates under large deflection
and post-buckling. Coda et al. [21, 22] proposed FE formulation for nonlinear analysis of laminated
plates and shells to obtain correct stress fields.

The post-buckling analysis of plates has been also studied by many researchers. Leissa [23]
presented a report document on the buckling and post-buckling behavior of laminated composite
plates and shells. Librescu and Chang [24] focused on the post-buckling in composite doubly-curved
shallow panels and analyzed the imperfection sensitivity. Turvey and Marshall [25] worked on
the buckling and post-buckling behavior of composite plates and prepared a comprehensive book on
this. Pagani and Carrera [26] used the unified formulation in combination with the Newton–Raphson
linearization method for geometrically nonlinear beams and formulated the Fundamental Nucleus
of secant and tangent stiffness matrices of refined beam theories. The same authors conducted an
analysis on the large-deflection and post-buckling of laminated composite beams [27]. Pagani et al.
[28] investigated the effect of various geometrically nonlinear assumptions in the response of beam
and thin-walled structures using a refined beam model in the domain of CUF with a total Lagrangian
scenario.

The main aim of this article is to investigate the effect of different geometric nonlinear relations
in the nonlinear analysis of plates using CUF. The use of CUF provides us with arbitrary expan-
sions of any order along the thickness. In this research, Lagrange polynomials are considered as the
functions for the expansion and different plate theories are considered with different orders of expan-
sion through the thickness. The selection of nonlinear CUF, provides us with arbitrary expansion
functions and the ability to consider different components of Green-Lagrange strain tensor. The
Newton-Raphson linearization scheme with the path-following constraint is used in the 2-D CUF
framework. This geometrically nonlinear model is validated with 1-D CUF for beam structures and
other available literature. Strains approximation of von Kármán for plates is considered with dif-
ferent modifications and the equilibrium curves and relevant stress distributions are compared and
discussed based on these nonlinear theories.

2 Preliminary considerations

If we consider a plate with the in-plane and through-the-thickness domains, respectively, in the x−y
plane and along the z axis, the displacement, the stress, and the strain vectors are as follows:
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u(x, y, z) = {ux uy uz}T

σ = {σxx σyy σzz σxz σyz σxy}T

ε = {εxx εyy εzz εxz εyz εxy}T

(1)

Considering linear elastic homogeneous material, the constitutive relation is:

σ = Cε, (2)

Interested readers are referred to text-books [30, 35] for more information about the explicit form
of the material matrix C in the case of metallic structures, as in this article.

By using the Green-Lagrange strain tensor for the geometrical relations, the following equation
could be considered between strain and displacement vectors.

ε = εl + εnl = (bl + bnl)u, (3)

where the linear and nonlinear differential operators bl and bnl are defined as:

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



P11
1

2
(∂x)2 P12

1

2
(∂x)2 P13

1

2
(∂x)2

P21
1

2
(∂y)

2 P22
1

2
(∂y)

2 P23
1

2
(∂y)

2

P31
1

2
(∂z)

2 P32
1

2
(∂z)

2 P33
1

2
(∂z)

2

P41∂x ∂z P42∂x ∂z P43∂x ∂z

P51∂y ∂z P52∂y ∂z P53∂y ∂z

P61∂x ∂y P62∂x ∂y P63∂x ∂y


, (4)

in which ∂x = ∂(·)/∂x, ∂y = ∂(·)/∂y, ∂z = ∂(·)/∂z, and P11 to P63 are the parameters used as
coefficients of nonlinear differential operator matrix to tune the kinematics assumptions opportunely,
see [28]. As will be discussed in the following sections of this article, the parameters of Pij play an
important role in the accuracy of the kinematic model of the problem and define the considered
geometrically nonlinear theory.

For instance, in the case of well-known von Kármán theory [29], nonlinear geometric relations of
the plate structures are:

εxxnl = 1
2(uz,x)2

εyynl = 1
2(uz,y)

2

εxynl = uz,xuz,y

(5)

As shown in Fig. 1, von Kármán strains approximation neglects all the nonlinear quadratic terms of
Eq. 4, except those which are related to the in-plane partial derivatives of the transverse displace-
ment. Therefore, for the case of von Kármán nonlinear plate, all the parameters of Eq. 4 are zero
except P13, P23, and P63. The matrix of these parameters based on different nonlinear models is
illustrated in Table 1. Based on Table 1, four modifications of the von Kármán nonlinear theory are
considered in this paper with the notations of vK+T , vK+S , vK+IN , and vK+All. For completeness
reasons, note that vK+T , vK+S , and vK+IN are referred to von Kármán nonlinear theory with the
modification of thickness stretching, shear deformations due to transverse deflection, and in-plane
components of the displacement. In addition, vK+All corresponds to von Kármán nonlinear the-
ory with all previously mentioned modifications. As will be discussed in Section 4, the selection of
the proper model for strain-displacement relations is vital for obtaining the reliable and accurate
nonlinear response of the structure.
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Figure 1: Main strain-displacement assumptions for the von Kármán nonlinear plate

Table 1: Geometrically nonlinear theories focused on in this research
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3 Carrera Unified Formulation (CUF)

Based on the Carrera Unified Formulation (CUF) for 2-D structures [30], the three-dimensional
displacement field is defined as a general expansion of primary unknowns as:

u(x, y, z) = Fs(z)us(x, y), s = 0, 1, · · · , N, (6)

where Fs is the set of thickness functions and us is the generalized displacement vector. As it is
clear from Eq. (6), the use of CUF provides us with arbitrary expansions of any order along the
thickness. In this research, Lagrange polynomials are considered as the functions for the expansion
(LE), which have been demonstrated to be very effective for several applications, including aerospace
and civil structures [31, 32, 33, 34]. Note that in the case of LE, the unknown variables are pure
displacements. Based on LE, different plate theories are considered by opportunely varying the
expansion order. These models will be referred to as LDN (Langrange Displacement-based of order
N). As an example, LD1, LD2, and LD3 are related to linear (two-node), quadratic (three-node),
and cubic (four-node) Lagrange expansion functions.

By using the finite element method, the displacement vector us can be approximated based on
the nodal parameters qsj and shape functions Nj as:

us(x, y) = Nj(x, y)qsj , j = 1, 2, . . . , p+ 1, (7)

where Nj is the j-th shape function and p is related to the order of the shape functions. In this
study, 2D nine node quadratic elements (Q9) are used for the shape function in the x − y plane.
More information abut Lagrange polynomials and shape functions can be found in [35].

3.1 Nonlinear governing equations

In this study, the Newton-Raphson method with a path-following constraint [36, 26, 27] is used
in order to solve geometrically nonlinear plate problems. The principle of virtual work states that
for arbitrary infinitesimal virtual displacement satisfying the prescribed geometrical constraints, the
virtual variation of internal strain energy must be equal to the virtual variation of the work of
external loadings [26]:

δLint = δLext (8)

The virtual variation of the internal strain energy in Eq. (8) can be calculated as:

δLint =< δεTσ > (9)

where < (·) >=
∫
V (·) dV and V = Ω × h is the initial volume of the plate structure under the

hypothesis of small deformations. δ represents the virtual variation operator. According to FEM
approximation, CUF, the introduced constitutive equations, and geometric relations, it is proved
that:

δLint = δqT
τi <

(
Bτi
l + 2Bτi

nl

)T
C
(
Bsj
l + Bsj

nl

)
> qsj

= δqT
τiK

ijτs
0 qsj + δqT

τiK
ijτs
lnl qsj + δqTτiTKijτs

nll qsj + δqT
τiK

ijτs
nlnl qsj

= δqTτiK
ijτs
S qsj

(10)

where Kijτs
S = Kijτs

0 + Kijτs
lnl + Kijτs

nll + Kijτs
nlnl is the Fundamental Nucleus of the secant stiffness

matrix.
Linearizing the virtual variation of the internal strain energy can yield the tangent stiffness

matrix as:

d(δLint) =< d(δεTσ) >=< δεTdσ > + < d(δεT)σ >= δqT
τiK

ijτs
T dqsj (11)
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where Kijτs
T = Kijτs

0 +Kijτs
T1

+Kijτs
σ . The first term < δεTdσ > in Eq. (11) requires the constitutive

equation to linearized. Therefore:

dσ = d(Cε) = Cdε = C(Bsj
l + 2Bsj

nl)dqsj (12)

< δεTdσ > = δqT
τi < (Bτi

l + 2Bτi
nl)

TC (Bsj
l + 2Bsj

nl) > dqsj

= δqT
τiK

ijτs
0 dqsj + δqT

τi

(
2Kijτs

lnl

)
dqsj + δqT

τiK
ijτs
nll dqsj + δqT

τi

(
2Kijτs

nlnl

)
dqsj

= δqT
τi

(
Kijτs

0 + Kijτs
T1

)
dqsj

(13)

where Kijτs
T1

= 2Kijτs
lnl +Kijτs

nll +2Kijτs
nlnl is the nonlinear contribution of the FN of the tangent stiffness

matrix stemming from the linearization of the constitutive relation. For the term, < d(δεT)σ >, we
have

< d(δεT)σ > = <



δquxτidquxsj

δquyτidquysj

δquzτidquzsj



T

(B∗nl)
Tσ >

= δqT
τi < diag

[
(B∗nl)

Tσ
]
> dqsj

= δqT
τi < diag

[
(B∗nl)

T(σl + σnl)
]
> dqsj

= δqT
τi(K

ijτs
σl

+ Kijτs
σnl

)dqsj

= δqT
τiK

ijτs
σ dqsj

(14)

where the diagonal terms of the 3 × 3 diagonal matrix diag
[
(B∗nl)

Tσ
]

are the components of the
vector (B∗nl)

Tσ. We have σl = Cεl, σnl = Cεnl, and Kijτs
σ = Kijτs

σl
+ Kijτs

σnl
.

More information about the mentioned geometrically nonlinear method are provided by [37,
38, 39]. Furthermore, explicit forms of tangent and secant stiffness matrices regarding the unified
formulation of geometrically nonlinear beam and plate structures are mentioned in [26] and [14],
respectively. The FN of the important stiffness matrices are given in the Appendix and particular
attention is paid to the terms Pij , which are used to penalize the FE arrays opportunely and give
the geometrical nonlinear terms of interest.

4 Numerical results

In this section, the numerical results are presented using the nonlinear method mentioned pre-
viously and 2-D CUF for plate structures to evaluate the importance of geometrically nonlinear
strain-displacement relations for the various problems under consideration. The nonlinear strain-
displacement relations used in the proposed study are mentioned in Table 1 of Section 2. In this
regard, first, large-deflection equilibrium curves of square plates under bending with fully clamped
(CCCC) edge conditions are presented. The post-buckling behavior of different plates are then
investigated. In both sections, the presented model is validated and compared with the previous
literature.

4.1 Large-deflection response of square plates

An isotropic square plate is considered for the first analysis case. The plate has a width of a = b =
1.2 m, whereas the thickness-to-width ratios are h/a = 0.02 and h/a = 0.1 (thin and moderately
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Figure 2: Square plate subjected to uniform pressure
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Figure 3: Convergence analysis for the CCCC moderately thick plate

thick plates, respectively). The plate is subjected to large deflection due to a transverse uniform
pressure and the edges are fully clamped (CCCC). The material is homogeneous with the Young
modulus and the Poisson ratio of E = 75 GPa and ν = 0.3, respectively. The loading state and the
support conditions for this case are shown in Fig. 2.

In this study, mesh sizes and various expansion functions in the thickness direction are considered
to carry out the convergence analysis. First, the number of plate elements is fixed at 12x12 Q9 and
the analysis is for the investigation of the theory order on the thickness dimension. In the second
analysis, the theory approximation order is fixed (LD2), whereas the number of finite elements is
varied. The results are shown in Fig. 3 which depicts the vertical displacement at the centroid of
the moderately thick plate for different pressure loadings. Based on the results presented in this
figure, 12x12 Q9 elements with LD2 CUF plate model are used for the subsequent analyses.

The large-deflection equilibrium curves of a square plate subjected to the uniform pressure are
plotted in Fig. 4 based on the full nonlinear, von Kármán, and linear CUF plate models. Furthermore,
the results are compared with those available in the literature [11]. The equilibrium curves for both
the thin plate (h/a = 0.02) and moderately thick plate (h/a = 0.1) are shown in Fig. 4. The
results show that the presented model of this study can predict large-deflection equilibrium curves
accurately. In addition, by the comparison of two illustrated graphs, it could be comprehended
that for the case of thin plate, the effect of all geometrically nonlinear strain-displacement relations
other than von Kármán theory, is not significant. Therefore, using von Kármán theory in the large-
deflection analysis of thin plates is reliable and accurate. However, for the case of moderately thick
plate, the discrepancies between the von Kármán theory and the full nonlinear model is significant
in the large deflections regime.

In order to evaluate the effects of different nonlinear strain-displacement relations on the equi-
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(a) Thin plate (h/a = 0.02)
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Figure 4: Large-deflection equilibrium curves of CCCC square plate

librium curves further, nonlinear analysis is performed based on Pij parameters introduced in the
previous section. The results are shown in the graphs of Fig. 5. This figure shows the fact that the
Linear theory (Lin) and the full nonlinear theory without von Kármán terms (FNL−vK) have the
most significant discrepancies in comparison with other investigated theories. In fact, for the case of
plate under bending, the difference between the von Kármán theory (vK), the full nonlinear theory
(FNL) and the other modifications which include the von Kármán terms (vK+T , vK+S , vK+IN , and
vK+All), is not so significant.

Also, for the mentioned problem of moderately thick plate under bending, the stress distributions
are investigated based on different nonlinear theories. This comparison is done for two states of
fixed load and fixed displacement in order to have a better understanding of the effect of different
nonlinear strain-displacement relations on the axial and shear stress distributions. First, through-
the-thickness distributions of the dimensionless transverse shear stress σxza

2/(Eh2) at the point
(x = a/6, y = b/2) of CCCC square plates based on different full nonlinear plate models at the fixed

load of Pza4

Eh4
= 200 are investigated. As illustrated in Fig. 6, LD1 and LD2 models are less accurate

in comparison with other ones. In fact, the LD1 and 1LD2 full nonlinear CUF plate models cannot
give a physically acceptable distribution of the shear stress, while the other higher order CUF plate
models can provide an accurate description of the quadratic shear stress distribution.

Through-the-thickness distributions of the dimensionless in-plane normal stress σxxa
2/(Eh2) at

the middle point (x = a/2, y = b/2) of CCCC square plates based on different geometrically

nonlinear plate models at the fixed load of Pza4

Eh4
= 200 are shown in Fig. 7 according to LD2 and

LD3 plate models. The results show that the difference between the prediction of axial stress for
investigated nonlinear theories is not significant for the case of plate under bending. Therefore, both
LD2 and LD3 plate models could offer accurate results for all the theories that consider von Kármán
terms.

Through-the-thickness distributions of the dimensionless transverse shear stress σxza
2/(Eh2) at

the point (x = a/6, y = b/2) of CCCC square plates based on different geometrically nonlinear plate

models at the fixed load of Pza4

Eh4
= 200 are shown in Fig. 8 according to LD2 plate model and LD3

plate model, respectively. The results show that the traction-free boundary condition (σxz = 0) of
the shear stress at the bottom surface (z = −h/2) is satisfied by the 1LD3 nonlinear plate model.
Note that the shear stress is not null at z/h=0.5, because of the fact that in the large displacement
regime the applied pressure has a component parallel to the plate top surface (conservative problem).

In the subsequent analysis, the effect on stress distribution of different approximation order and
geometric nonlinear approximation is investigated in the case of fixed displacement of uz

h = 1.5. In
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Figure 5: Effect of nonlinear strain-displacement relations on the equilibrium curves in the case of
CCCC moderately thick square plate under uniform pressure
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Figure 7: Through-the-thickness distributions of the dimensionless in-plane normal stress
σxxa

2/(Eh2) at the middle point (x = a/2, y = b/2) of CCCC moderately thick square plates

based on different geometrically nonlinear plate models at the fixed load of Pza4

Eh4
= 200
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Figure 8: Through-the-thickness distributions of the dimensionless transverse shear stress
σxza

2/(Eh2) at the point (x = a/6, y = b/2) of CCCC moderately thick square plates based

on different geometrically nonlinear plate models at the fixed load of Pza4

Eh4
= 200
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Figure 9: Through-the-thickness distributions of the dimensionless in-plane normal stress 10σxx
E at

the middle point (x = a/2, y = b/2) of CCCC moderately thick square plates based on different
geometrically nonlinear plate models at the fixed displacement of uz

h = 1.5

this case, the linear theory (Lin) and the full nonlinear theory without von Kármán terms (FNL−vK)
are also considered for the comparison of stress distributions (see Fig. 5). Through-the-thickness
distributions of the dimensionless in-plane normal stress 10σxx

E at the middle point (x = a/2, y =
b/2) of CCCC square plates based on different geometrically nonlinear plate models at the fixed
displacement of uz

h = 1.5 are shown in Fig. 9 according to LD2 plate model and LD3 plate model,
respectively. This figure shows the fact that the linear theory and the full nonlinear theories without
von Kármán terms have the most significant discrepancies in comparison with other investigated
theories. It can also be understood from the figure, that for the case of plate under bending, the
difference between the predictions of shear stress for the von Kármán theory, the full nonlinear
theory and the other modifications which include the von Kármán terms, is not so significant.

The through-the-thickness distributions of the dimensionless transverse shear stress 100σxz
E at the

point (x = a/6, y = b/2) of CCCC square plates based on different geometrically nonlinear plate
models at the fixed displacement of uz

h = 1.5 are shown in Fig. 10 according to the LD2 and LD3
plate models, respectively. The results show that the traction-free boundary condition (σxz = 0) of
the shear stress at the bottom surface (z = −h/2) is satisfied by the 1LD3 nonlinear plate model. In
addition, except for the full nonlinear theory, the discrepancies between the shear stress predictions
of other investigated nonlinear theories is not so significant.

4.2 Post-buckling analysis of slender plates

In this section, the post-buckling analysis of slender plates is presented based on different support
conditions and loading states for various nonlinear strain-displacement relations. For the first case,
width and thickness of the slender plates are a = 30 cm, b = 6 cm and h = 0.6 cm, respectively.
For the clamped edge condition u = v = w = 0 at x = 0. On the other hand, for the immovable
simply-supported edge condition u = v = w = 0 at z = 0 and x = 0. In addition, movable simply-
supported edge condition ‘S1’ satisfies v = w = 0 at z = 0 and x = a. The point compression load
is applied at the point (x = a, y = b/2, z = 0) and a small defection load is used to produce a
stable post-buckling nonlinear response. The material is homogeneous with the Young modulus and
Poisson ratio of E = 75 GPa and ν = 0.316, respectively.
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Figure 10: Through-the-thickness distributions of the dimensionless transverse shear stress 100σxz
E

at the point (x = a/6, y = b/2) of CCCC moderately thick square plates based on different geomet-
rically nonlinear plate models at the fixed displacement of uz

h = 1.5

4.2.1 Validation

In this section, the post-buckling equilibrium curves from the LD2 full nonlinear and the von Kármán
are compared with those from refined CUF beam models, which have been already widely validated
in [14, 26, 28]. The first plate case has one clamped edge and three free edges (CFFF), while
the second one has two immovable simply-supported and movable simply-supported edges in the
opposite direction and two other free edges (SFS1F). As illustrated in Fig. 11, the equilibrium
curves are demonstrated to be accurate and well correlated for both beam cases and slender plates.
In addition, it is evident from the figure that the von Kármán theory cannot predict the equilibrium
curves effectively in the beam model or in the plate LD2 model.

4.2.2 Post-buckling of slender plates with the (movable simply-supported)-free-(movable
simply-supported)-free (S1FS1F) edge conditions

In this section, the post-buckling equilibrium curves and stress distributions of slender plate under
the in-plane compressive point loads is investigated. The slender plate has the length, width and
thickness of a = 20 cm, b = 5 cm, and h = 0.4 cm, respectively. The edge conditions for this case
are (movable simply-supported)-free-(movable simply-supported)-free (S1FS1F). The post-buckling
equilibrium curves of this case are shown in Fig. 12 based on different geometrically nonlinear CUF
plate models. The results show the fact that for this case, only the full nonlinear model offers reliable
and accurate results. In fact, for this case the von Kármán theory and all other modifications cannot
predict the post-buckling equilibrium curves correctly.

In order to have a better understanding of the effect of different nonlinear strain-displacement
relations on the axial and shear stress distributions, the stress distributions for this case are com-
pared based on the investigated nonlinear theories. The through-the-thickness distributions of the
dimensionless transverse shear stress σxzh

2/P at the point (x = a/4, y = b/4) of S1FS1F slender

plates based on different full nonlinear plate models at the fixed load of Pa2

π2Elb
= 1.1 are presented

in Fig. 13. As illustrated in this figure, the LD2 model is less accurate in comparison with other
models. In fact, the LD2 full nonlinear CUF plate model cannot give a physically acceptable distri-
bution of the shear stress, while the other plate models can provide an accurate description of the
shear stress distribution.

Through-the-thickness distributions of the dimensionless in-plane normal stress σxxbh
2/(Pa) at

12



(a) One clamped edge and three free edges (CFFF) (b) (Immovable simply-supported)-free-(movable simply-
supported)-free (SFS1F)

Figure 11: Post-buckling equilibrium curves for slender plates subjected to an in-plane compressive
point load P based on plate and beam models (a) one clamped edge and three free edges (CFFF),
(b) (immovable simply-supported)-free-(movable simply-supported)-free (SFS1F)

Figure 12: Post-buckling equilibrium curves of slender plates under the in-plane compressive point
loads for the (movable simply-supported)-free-(movable simply-supported)-free (S1FS1F) edge con-
ditions based on different geometrically nonlinear CUF plate models
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Figure 13: Through-the-thickness distributions of the dimensionless transverse shear stress σxzh
2/P

at the point (x = a/4, y = b/4) of S1FS1F slender plates based on different full nonlinear plate

models at the fixed load of Pa2

π2Elb
= 1.1

the point (x = a/4, y = b/4) of S1FS1F slender plates based on different geometrically nonlinear

plate models at the fixed load of Pa2

π2Elb
= 1.1 are shown in Fig. 14 according to the LD2 plate model

and the LD3 plate model, respectively. The results show the fact that for this case of post-buckling,
only the full nonlinear model offers reliable and accurate results. In fact, for this case, neither the
von Kármán theory nor any other modifications can predict the axial stress distributions correctly.
It is also comprehended from the graphs that the selection of LD2 or 2LD3 does not influence the
results of axial stress considerably.

The through-the-thickness distributions of the dimensionless transverse shear stress σxzh
2/P at

the point (x = a/4, y = b/4) of S1FS1F slender plates based on different geometrically nonlinear

plate models at the fixed load of Pa2

π2Elb
= 1.1 are shown in Fig. 15 according to the LD2 plate model

and the LD3 plate model, respectively. The results show the fact that, the difference between shear
stress results obtained by the full nonlinear theory and the other nonlinear plate theories such as
the von Kármán and its modifications is considerable. Furthermore, the linear theory and the full
nonlinear theory without von Kármán terms cannot predict the shear stress distributions for either
the LD2 or 2LD3 plate models.

4.2.3 Post-buckling of slender plates with all edges simply-supported (S1S2S1S2)

In order to investigate the effect of edge and loading conditions on the post-buckling behavior of
plates, the equilibrium curves of slender plate in the previous section is considered with all the plate
edges simply-supported and a line compression load shown in Fig. 16. The resultant force of P is
applied at the middle-line of the cross section. Note that simply-supported edge conditions along
the length satisfy w = 0 at z = 0 and y = 0, b. Post-buckling nonlinear response of the slender plate
based on different nonlinear strain-displacement relations for this case is shown in Fig. 16. For this
case, the results show the fact that only the full nonlinear model offers reliable and accurate results.
However, the difference between the other full nonlinear theories such as the von Kármán theory
and other modifications is not as significant as the previous section 4.2.2 (see Fig. 12). Actually,
for this case the von Kármán theory and all other modifications cannot predict the post-buckling
equilibrium curves accurately and precisely as the full nonlinear theory. As a result, the assumption
of geometric nonlinear relations based on the edge and loading conditions of the plate structure can
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Figure 14: Through-the-thickness distributions of the dimensionless in-plane normal stress
σxxbh

2/(Pa) at the point (x = a/4, y = b/4) of S1FS1F slender plates based on different geo-

metrically nonlinear plate models at the fixed load of Pa2

π2Elb
= 1.1
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Figure 15: Through-the-thickness distributions of the dimensionless transverse shear stress σxzh
2/P

at the point (x = a/4, y = b/4) of S1FS1F slender plates based on different geometrically nonlinear

plate models at the fixed load of Pa2

π2Elb
= 1.1
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Figure 16: Post-buckling equilibrium curves of slender plates with all edges simply-supported
(S1S2S1S2) under the in-plane compressive line loads based on different geometrically nonlinear
CUF plate models

influence post-buckling curves significantly.

5 Conclusions

In this paper, the large-deflection and post-buckling of rectangular plates have been studied using
CUF. This framework has provided us with the ability to consider different geometric nonlinear
relations. Therefore, the well-known von Kármán theory for nonlinear deformations of plates has
been investigated with different modifications such as the thickness stretching and shear deformations
due to transverse deflection. In this regard, equilibrium curves and related stress distributions for
each case heve been presented and discussed. For the case of a plate under bending with CCCC
edge conditions, the equilibrium curves have been compared successfully with the available literature
for both thin plate and moderately thick plate. The equilibrium curves and the obtained stress
distributions have shown the fact that the consideration of different geometric nonlinear relations
for the moderately thick plates is more sensitive compared to the thin plates. Therefore, different
modifications other than von Kármán theory should be considered for the large deflections of thick
and moderately thick plates. Post-buckling behavior of plates has also been focused on and discussed
based on different nonlinear strain-displacement assumptions. It has been shown that for the case
of slender plates under the in-plane compressive point loads with the (movable simply-supported)-
free-(movable simply-supported)-free edge conditions, only full Green-Lagrange nonlinear model
can predict the nonlinear behavior of plates efficiently and accurately, while other approximations
produce considerable inaccuracies. In addition, for the post-buckling equilibrium curves of slender
plates with all edges simply-supported under in-plane compressive line loads, the results have been
more sensitive to the selected strain-displacement relations.
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Appendix A Components of the secant stiffness matrix based on
parameters of Pij

The nine components of the FN of the first-order nonlinear stiffness matrix Kijτs
nll (r, c) can be derived

as
For c = 1:

Kijτs
nll [r, 1] = < P11u,x[r]C11 Fτ FsNi,x Nj,x > + < P41u,x[r]C44 Fτ,z Fs,z NiNj >

+ < P61u,x[r]C66 Fτ FsNi,y Nj,y > + < P61u,x[r]C16 Fτ FsNi,y Nj,x >
+ < P11u,x[r]C16 Fτ FsNi,x Nj,y > + < P61u,y[r]C66 Fτ FsNi,x Nj,y >
+ < P21u,y[r]C12 Fτ FsNi,y Nj,x > + < P51u,y[r]C45 Fτ,z Fs,z NiNj >
+ < P61u,y[r]C16 Fτ FsNi,x Nj,x > + < P21u,y[r]C26 Fτ FsNi,y Nj,y >
+ < P41u,z[r]C44 Fτ Fs,z Ni,x Nj > + < P31u,z[r]C13 Fτ,z FsNiNj,x >
+ < P51u,z[r]C45 Fτ Fs,z Ni,y Nj > + < P31u,z[r]C36 Fτ,z FsNiNj,y >,

For c = 2:

Kijτs
nll [r, 2] = < P11u,x[r]C12 Fτ FsNi,x Nj,y > + < P61u,x[r]C66 Fτ FsNi,y Nj,x >

+ < P41u,x[r]C45 Fτ,z Fs,z NiNj > + < P11u,x[r]C16 Fτ FsNi,x Nj,x >
+ < P61u,x[r]C26 Fτ FsNi,y Nj,y > + < P61u,y[r]C66 Fτ FsNi,x Nj,x >
+ < P51u,y[r]C55 Fτ,z Fs,z NiNj > + < P21u,y[r]C22 Fτ FsNi,y Nj,y >
+ < P21u,y[r]C26 Fτ FsNi,y Nj,x > + < P61u,y[r]C26 Fτ FsNi,x Nj,y >
+ < P31u,z[r]C23 Fτ,z FsNiNj,y > + < P51u,z[r]C55 Fτ Fs,z Ni,y Nj >
+ < P41u,z[r]C45 Fτ Fs,z Ni,x Nj > + < P31u,z[r]C36 Fτ,z FsNiNj,x >,

For c = 3:

Kijτs
nll [r, 3] = < P11u,x[r]C13 Fτ Fs,z Ni,x Nj > + < P41u,x[r]C44 Fτ,z FsNiNj,x >

+ < P41u,x[r]C45 Fτ,z FsNiNj,y > + < P61u,x[r]C36 Fτ Fs,z Ni,y Nj >
+ < P51u,y[r]C55 Fτ,z FsNiNj,y > + < P21u,y[r]C23 Fτ Fs,z Ni,y Nj >
+ < P51u,y[r]C45 Fτ,z FsNiNj,x > + < P61u,y[r]C36 Fτ Fs,z Ni,x Nj >
+ < P41u,z[r]C44 Fτ FsNi,x Nj,x > + < P31u,z[r]C33 Fτ,z Fs,z NiNj >
+ < P51u,z[r]C55 Fτ FsNi,y Nj,y > + < P41u,z[r]C45 Fτ FsNi,x Nj,y >
+ < P51u,z[r]C45 Fτ FsNi,y Nj,x > .

The nine components of Kijτs
lnl can be easily obtained from Eq.

(
Kijτs
lnl

)T
= Kjisτ

nll /2.
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Finally, the nine components of the matrix Kijτs
nlnl[r, c] are provided in the following:

2×Kijτs
nlnl[r, c] = < P11P11u,x[r]u,x[c] C11 Fτ FsNi,x Nj,x > + < P41P41u,x[r]u,x[c]C44 Fτ,z Fs,z NiNj >

+ < P61P61u,x[r]u,x[c]C66 Fτ FsNi,y Nj,y > + < P11P61u,x[r]u,x[c]C16 Fτ FsNi,x Nj,y >
+ < P11P61u,x[r]u,x[c]C16 Fτ FsNi,y Nj,x > + < P61P61u,y[r]u,y[c] C66 Fτ FsNi,x Nj,x >
+ < P51P51u,y[r]u,y[c]C55 Fτ,z Fs,z NiNj > + < P21P21u,y[r]u,y[c]C22 Fτ FsNi,y Nj,y >
+ < P21P61u,y[r]u,y[c]C26 Fτ FsNi,x Nj,y > + < P21P61u,y[r]u,y[c]C26 Fτ FsNi,y Nj,x >
+ < P41P41u,z[r]u,z[c] C44 Fτ FsNi,x Nj,x > + < P31P31u,z[r]u,z[c]C33 Fτ,z Fs,z NiNj >
+ < P51P51u,z[r]u,z[c]C55 Fτ FsNi,y Nj,y > + < P41P51u,z[r]u,z[c]C45 Fτ FsNi,x Nj,y >
+ < P41P51u,z[r]u,z[c]C45 Fτ FsNi,y Nj,x > + < P11P21u,x[r]u,y[c]C12 Fτ FsNi,x Nj,y >
+ < P61P61u,x[r]u,y[c]C66 Fτ FsNi,y Nj,x > + < P41P51u,x[r]u,y[c]C45 Fτ,z Fs,z NiNj >
+ < P11P61u,x[r]u,y[c]C16 Fτ FsNi,x Nj,x > + < P21P61u,x[r]u,y[c]C26 Fτ FsNi,y Nj,y >
+ < P11P21u,y[r]u,x[c]C12 Fτ FsNi,y Nj,x > + < P61P61u,y[r]u,x[c]C66 Fτ FsNi,x Nj,y >
+ < P41P51u,y[r]u,x[c]C45 Fτ,z Fs,z NiNj > + < P11P61u,y[r]u,x[c]C16 Fτ FsNi,x Nj,x >
+ < P21P61u,y[r]u,x[c]C26 Fτ FsNi,y Nj,y > + < P11P31u,x[r]u,z[c]C13 Fτ Fs,z Ni,x Nj >
+ < P41P41u,x[r]u,z[c]C44 Fτ,z FsNiNj,x > + < P41P51u,x[r]u,z[c]C45 Fτ,z FsNiNj,y >
+ < P31P61u,x[r]u,z[c]C36 Fτ Fs,z Ni,y Nj > + < P11P31u,z[r]u,x[c]C13 Fτ,z FsNiNj,x >
+ < P41P41u,z[r]u,x[c]C44 Fτ Fs,z Ni,x Nj > + < P41P51u,z[r]u,x[c]C45 Fτ Fs,z Ni,y Nj >
+ < P31P61u,z[r]u,x[c]C36 Fτ,z FsNiNj,y > + < P21P31u,y[r]u,z[c]C23 Fτ Fs,z Ni,y Nj >
+ < P51P51u,y[r]u,z[c]C55 Fτ,z FsNiNj,y > + < P41P51u,y[r]u,z[c]C45 Fτ,z FsNiNj,x >
+ < P31P61u,y[r]u,z[c]C36 Fτ Fs,z Ni,x Nj > + < P51P51u,z[r]u,y[c]C55 Fτ Fs,z Ni,y Nj >
+ < P21P31u,z[r]u,y[c]C23 Fτ,z FsNiNj,y > + < P41P51u,z[r]u,y[c]C45 Fτ Fs,z Ni,x Nj >
+ < P31P61u,z[r]u,y[c]C36 Fτ,z FsNiNj,x >

In the formulations given above, u,x[r] denotes the r-th component of the vector ∂u/∂x (e.g. u,x[2] =
uy,x). Analogously, u,y[c] represents the c-th component of the vector ∂u/∂y, etc.
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