
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A visual editing tool supporting the production of 3D interactive graphics assets for public exhibitions / Cannavo', Alberto;
DE PACE, Francesco; Salaroglio, Federico; Lamberti, Fabrizio. - In: INTERNATIONAL JOURNAL OF HUMAN-
COMPUTER STUDIES. - ISSN 1071-5819. - STAMPA. - 141:102450:(2020). [10.1016/j.ijhcs.2020.102450]

Original

A visual editing tool supporting the production of 3D interactive graphics assets for public exhibitions

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.ijhcs.2020.102450

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.ijhcs.2020.102450

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2811413 since: 2020-07-03T08:09:13Z

Elsevier

A Visual Editing Tool Supporting the Production of 3D
Interactive Graphics Assets for Public Exhibitions

Alberto Cannavò, Francesco De Pace, Federico Salaroglio,
Fabrizio Lamberti*

Dipartimento di Automatica e Informatica of Politecnico di Torino, 10129 Torino, Italy

(e-mail: firstname.lastname@polito.it)

Abstract

The introduction of interactive assets in public exhibitions is capable to sig-
nificantly enhance the visitors’ user experience. However, the creation of in-
teractive applications could represent a challenging task, especially for users
lacking computer skills. Visual programming languages (VPLs) – one of the
instruments belonging to the broad categories of methods and tools devised
to support end-user development (EUD) – promise to o↵er an intuitive way
to overcome these limitations, by providing easy-to-use and e�cient inter-
faces for encoding applications’ logic. Moving from these considerations, this
paper first analyses pros and cons of tools devised so far to support the gen-
eration of interactive contents. Then, it presents the design of a new tool
named Visual Scene Editor (VSE), which allows users with little to no pro-
gramming skills to create 3D interactive applications by combining available
assets through an interactive, visual process. Both objective and subjective
measurements have been collected with both skilled and unskilled users to
evaluate the performance of the proposed tool. A comparison with existing
solutions shows a reduction in the time required to complete the assigned
tasks, of the complexity of the logic created, as well as of the number of
errors made, confirming the suitability of the VSE for the said purpose.

Keywords: End-user development (EUD), visual programming languages
(VPLs), interactive assets, 3D graphics, virtual and augmented reality,
human-machine interaction, natural user interfaces (NUIs)

⇤Corresponding author

Preprint submitted to International Journal of Human-Computer Studies April 13, 2020

1. Introduction

Today, computer graphics assets are widely used in various application do-
mains, encompassing movie and video-game production (Zyda (2005); Schmal-
stieg and Stork (2019); Lamberti et al. (in press)), manufacturing (Polvi et al.
(2018); De Pace et al. (2019)), data science (Samsel et al. (2018)), etc.

A particularly promising field is represented by interactive applications
which are designed to improve the users’ experience in public exhibitions
(Sanna et al. (2016); Wojciechowski et al. (2004)). Several museums, like the
Virtual Archaeological Museum (MAV) in Italy1, the National Museum of
Zurich in Switzerland2, the National Museum of Singapore3, and the Cleve-
land Museum of Art4 in the USA, among others, are already taking advantage
of new technologies to present interactive experiences to their visitors.

Similar solutions are being explored also, e.g., for marketing purposes,
in trade fairs (Yoon et al. (2015)), shopping areas (Jo and Kim (2019); Liu
(2014)), etc. Examples are, for instance, the virtual reality experience devel-
oped by Mastercard and Swarovski for the Atelier Swarovski in the USA5,
the augmented reality app developed by IKEA6, the virtual tour designed to
visualize the new cabins of All Nippon Airways planes7, the immersive test
drive simulation developed for the Volvo XC908, etc.

The idea is to make the experience more engaging and enjoyable, by
replacing static contents with virtual assets that users can interact with
through natural user interfaces (NUIs). Reconstructed historical landmarks,
ancient or modern artworks, commercial products and any other item can
be visualized and manipulated through projected holograms/walls, virtual/
augmented reality systems, tangible/gestural interfaces, etc.

The adoption of interactive technologies is proven to be capable to en-
hance understanding, giving more people access to knowledge (Bekele et al.

1MAV: https://www.museomav.it/museum/?lang=en
2Ideas of Switzerland, National Museum of Zurich: https://www.landesmuseum.ch/

ideas-of-switzerland
3Story of the forest, National Museum of Singapore: https://www.nationalmuseum.sg/

our-exhibitions/exhibition-list/story-of-the-forest
4ARTLENS, Cleveland Museum of Art: http://www.clevelandart.org/artlens-gallery
5Atelier Swarovski: https://mstr.cd/2wZcAce
6IKEA’s Place app: https://bit.ly/32cbghp
7All Nippon Airways’s Aeronautics VR: https://mbryonic.com/portfolio/ana/
8Volvo’s XC90 Test drive VR: http://framestorevr.com/volvo2

2

(2018)). Moreover, interactive exhibitions can increase the interest of visi-
tors, customers, etc., bringing them back to the museum or the shop several
times (Alexander et al. (2013)). Lastly, in Jeon et al. (2019) it was shown
that interactive art and interactive experiences, in general, share a number of
aspects with the field of human-computer interaction, like creativity, embodi-
ment, a↵ect, and presence. This strict connection ensures that improvements
made to one of these fields is also reflected in the other.

However, the design and implementation of interactive applications is
a very time-consuming and skill-intensive task, which requires significant
computer skills (Sanna et al. (2016); Wojciechowski et al. (2004)). For this
reason, the availability of tools able to ease the development steps, indepen-
dently of the particular application domain as well as of the device chosen
for visualization and interaction is extremely important.

Activities in the above direction are generally classified in the broad area
of end-user development (EUD). EUD aims at making end-users able to
create and manage complex systems/interfaces without the need to possess
professional software development skills (Barricelli et al. (2019)). EUD en-
compasses various methods, techniques and tools, from co-design and simul-
taneous editing applications (Serim et al. (2015)) to Wiki and Web mashup
environments (Aghaee and Pautasso (2014); Ardito et al. (2012)), to name
a few. For instance, concerning the graphics domain, Kim and Yoon (2005)
exploited EUD approaches to develop a case-based design scheme support-
ing designers in reusing prior experience. In (Lee et al. (2010)), the authors
presented a Web-based editor that allows users to e↵ectively design new in-
terfaces by combining available templates. More recently, in (Swearngin et al.
(2018)) a tool was proposed to reconstruct vector graphics from images and
let designers rapidly edit them. A review of the most representative works
in the EUD domain can be found in Maceli (2017).

Among EUD solutions, a significant role is played by end-user program-
ming (EUP) techniques, which are meant to let users create their own pro-
grams by using programming paradigms suited to their skills (Burnett and
Sca�di (2014)). EUP comprises di↵erent approaches, such programming by
example (Billard et al. (2008)) natural language programming (Zhan and
Hsiao (2018)), visual programming (Barricelli et al. (2019)), etc.

Visual programming languages (VPLs), in particular, have increasingly
attracted the attention of both researchers and developers (Paternò (2013)).
These languages, which are widely used for educational purposes (Broll et al.
(2017); Ventura et al. (2015)), remove the need for writing blocks of code us-

3

ing a given syntax by replacing text with a visual representation. Concepts
that are typical of traditional programming languages (like variables, func-
tions, etc.) are replaced, e.g., by colored blocks which can be plugged each
other or connected by drawing arrows through an intuitive interface in order
to define the intended application’s logic. Works in the literature have shown
the benefits of VPLs in terms of users’ engagement, satisfaction, motivation
and performance (Broll et al. (2017); Pinto-Llorente et al. (2018)).

Moving from these considerations, this paper presents a tool, called Vi-
sual Scene Editor (VSE), which allows users with limited or no programming
skills (later referred to also as unskilled users, for brevity) to create inter-
active 3D applications by adding to available graphics assets the required
behaviors and interaction capabilities. Newly generated interactive contents
can then be visualized, in principle, on any traditional computer or large
display, as well as in immersive virtual reality environments, on augmented
reality headsets, etc. Visitors of the exhibition may interact with the gener-
ated contents by using both traditional interfaces (mouse and keyboard) or
some kind of NUIs, e.g., based hand/body gestures, voice, gaze, etc. In the
current implementation, computer and holographic displays were considered,
together with hand gesture-based interactions.

The design of the VSE builds upon a previous experience with a VPL-
based tool developed for the considered purpose, named Leap Embedder
(LE) and presented in Sanna et al. (2016). The tool was designed with the
aim to simplify the usage of the Blender Game Engine (BGE)9, a real-time
environment which has been already exploited to create interactive 3D appli-
cations in various domains, including cultural heritage (Herrmann and Pas-
torelli (2014); Bustillo et al. (2015)), production control (Lind and Skavhaug
(2012)), molecular modeling (Waldon et al. (2014)), etc. The BGE natively
provides users with an integrated VPL, which allows them to define the con-
nections between events recognized by the system (e.g., an interaction on a
virtual asset) and actions to perform within the graphics environment (e.g.,
in response to that interaction).

The LE was meant, at the same time, to ease the original graphics no-
tation of the BGE and to let the users easily integrate hand gesture-based
interactions (gathered through the Leap Motion sensor10, hence the name

9BGE: https://docs.blender.org/manual/en/latest/game engine/
10Leap Motion sensor: https://www.leapmotion.com/

4

of the tool). Despite innovations that were introduced in the LE, it still
maintained the native object-centric paradigm used in the BGE (and other
tools) to define the application’s logic, based on so called “logic bricks” that
are attached to individual interactable objects communicating via message
passing. This choice limited the improvement in terms of usability that could
be guaranteed by the new interface and the simplified notation.

The VSE tool that is introduced in this paper represents an evolution
of the LE. In fact, it leverages the lessons learned with that experience and
integrates them with hints coming from the literature related to the use of
EUD approaches and, specifically, of VPLs in various application contexts.
The result is a di↵erent interaction paradigm, in the following referred to as
scene-centric (hence, the acronym), which proved to be capable to support
the creation of 3D interactive applications achieving better performance with
respect to both the LE and BGE. It is worth observing that, although the
paper’s focus is on public exhibitions, interactive applications created with
the VSE (as well as with the other tools mentioned in the paper) can be tar-
geted in principle to any other domain, especially when required application-
development skills are missing.

The remaining of the paper is organized as follows. Section 2 reviews
relevant works found in the literature pertaining interactive applications for
public exhibitions, EUD and VPLs, by also discussing the main features of
the tools mentioned above. Section 3 introduces the VSE, by providing de-
tails on the design and implementation of its interface and notation. Section 4
shows how to practically use the VSE for creating an interactive application
for a possible exhibition. Section 5 and Section 6 illustrate the setup used
in the experimental evaluation and analyze the results, respectively. Lastly,
Section 7 concludes the paper, by suggesting possible directions that are
worth further investigation.

2. Related Work

In this section, the use of interactive applications in public exhibitions is
briefly discussed. Afterwards, starting from the literature concerning EUD
applications, the state of the art related to the use of VPLs in the EUP
domain is presented and analyzed. Finally, details concerning the LE (and
the BGE) are provided.

5

2.1. Applications for Public Exhibitions

Several works demonstrated already how interactive applications can be
exploited to boost the e↵ectiveness of public exhibitions.

For instance, works like (Song et al. (2004)) and (Rubino et al. (2015))
focused on museum visits. In (Song et al. (2004)), a virtual environment
was developed to allow users to virtually visit a reconstructed heritage sce-
nario. The experience was enhanced by means of a virtual tour guide which
was capable to present di↵erent information depending on the actual visitor’s
interests. In (Rubino et al. (2015)), the authors presented an augmented real-
ity location-based mobile game to support the exploration of a real museum.
Users were requested to earn as many points as possible by completing a set
of objectives (e.g., by physically reaching some specific points of interest or
by solving small quizzes). Although adults seemed less enticed in using the
application due to the adopted cartoon-style interface, results showed that
the proposed system provided a compelling learning experience, proving to
be more e↵ective than a traditional portable audiovisual guide.

Other works focused on outdoor settings. For instance, Christou et al.
(2006) and Cassidy et al. (2019) presented two di↵erent solutions to improve
the fruition and enjoyment of archaeological sites. In particular, in (Christou
et al. (2006)), a CAVE-like system was proposed to enable virtual visits to
an ancient Greek temple. Besides the 3D visualization, immersive sounds
and haptic interactions were exploited to improve the user experience. In
(Cassidy et al. (2019)), an immersive virtual reality system was proposed to
support interaction with archaeological remains.

Works presented so far demonstrated the potential of using these new
technologies to facilitate learning and boost the experience with public ex-
hibitions targeted, e.g., to cultural heritage. However, as said, the growing
di↵usion of these alternative ways to communicate information is posing new
challenges to the research community concerning the process of developing
the required interactive applications.

The above aspect is confirmed by various works in the literature which
proposed solutions to help developers create, manipulate and validate inter-
active exhibitions. For instance, in (Wojciechowski et al. (2004)), a tool tar-
geted to the museum sta↵ or the curators of an exhibition aiming to simplify
the creation of Web-based as well as of virtual and augmented reality-based
cultural heritage applications based on predefined templates was proposed.
Only a few visualization templates were available, namely, a tree-based one
with metadata, and a virtual gallery walkthrough-based one with on-request

6

visualization of artwork details. The authoring interface only let the user se-
lect which elements to include in the exhibition and where to position them
(in the latter visualization). Other interactions that could be required in
(slightly) more complex applications serving the purpose were not supported.
Ibrahim and Ali (2018) developed a set of guidelines to be considered in the
design of virtual environments supporting cultural learning scenarios. A sim-
ilar problem was tackled in (Andreoli et al. (2018)), where the design steps
to follow during the whole development cycle of a serious game for cultural
heritage is presented. Other works focused on investigating which are the
attributes that can a↵ect the user experience, e.g., in an interactive virtual
reality-based showroom (Yoon et al. (2015)), on identifying the set of senses
to be stimulated in a multi-sensory art exhibition (Vi et al. (2017)), on how
to reduce new phenomena like cybersickness in public, virtual environments
(Liu (2014)), on how visitors move (Loke and Robertson (2009)) or behave
(Nakanishi (2004); Gault et al. (2015)) in such spaces, etc.

2.2. End-User Development

EUD techniques have been e↵ectively employed in a number of domains.
Many applications have been developed, for instance, in the field of smart
environments and Internet of Things (IoT), where a huge amount of devices
(and generated data) have to be handled (Tetteroo et al. (2015)). As a matter
of example, in (Desolda et al. (2017)), a set of tools that enable users with no
programming skills to manage and customize smart home spaces is presented.
Di↵erent wizard-based interfaces easing the definition of rules controlling
the activation of smart devices have been compared and evaluated by both
technical and non-technical end-users. Ghiani et al. (2017) proposed a similar
environment to customize the behavior of IoT devices which can be applied
to di↵erent use cases. Experiments indicated that end-users appreciated the
devised environment, especially the possibility to have a preview of the e↵ect
of rules being created.

The cultural heritage context adopted EUD techniques to let domain
experts directly intervene in the creation of interactive exhibitions. The as-
sumption is that their strong involvement should help to guarantee the qual-
ity of the generated output (McDermott et al. (2014)). For instance, Ardito
et al. (2018) presented a visual composition paradigm letting end-users with
no computer skills to program smart devices used in personalized tours. Ex-
periments carried out in the archaeological domain showed that experts were
able to create the intended experiences, but also recorded moderate values

7

of mental e↵ort which could have been caused by the need to continuously
switch among di↵erent windows to define the application logic. In (Ghiani
et al. (2009)), EUD tools were exploited to provide end-users with the ability
to edit the main information of a museum guide, as well as to create interac-
tive experiences and games with museum digital assets by arranging museum
virtual rooms, managing RFID localized artworks, etc.

EUD methods have been also applied to the creation of general-purpose
video-games. For instance, in (Ioannidou et al. (2009)), an EUD tool was
designed to let 10-year-old children easily develop interactive video-games
using an agent-based framework. Menestrina and De Angeli (2017) proposed
an EUD framework to let end-users with no programming skills to model
the behavior of Non-Player Characters, whereas Protopsaltis et al. (2011)
presented a solution to support the retargeting of existing serious games to
other domains.

There are also interesting applications of EUD to the programming of au-
tonomous systems. As a matter of example, Leonardi et al. (2019) introduced
an EUD environment to control a humanoid robot. By means of a simpli-
fied rule-based notation, end-users can easily program complex robot actions
leveraging available sensors and actuators without knowing the underlying
technical details.

EUD methods have been exploited also in the field of mobile application
development. For instance, in (Danado and Paternò (2014)), the authors
proposed an EUD environment to create mobile applications on handheld
devices. Puzzle metaphors and drag-and-drop interactions greatly helped
users to work on small-size devices, hiding unnecessary complexity. A simi-
lar work is presented in (Francese et al. (2017)), where EUD tools leveraging
simple drag-and-drop interactions were exploited to combine available ser-
vices and develop complex pervasive applications. Results showed that the
proposed paradigm was judged as intuitive and easy to manage, although
concerns were raised about element identification methods.

Finally, EUD techniques have been applied to the creation of Web sites
and Web applications. In (Kumar et al. (2011)), a tool aimed to simplify
the production of Web pages based on provided examples is presented. The
tool leverages human-generated training data to automatically retarget con-
tents for new pages. A similar approach based on templates is reported in
(Kim (2010)). In (Valderas et al. (2006)), an ontology-based strategy is de-
signed to ease the development of Web applications by generating functional
prototypes from formal specifications.

8

2.3. Visual Programming Languages

As said, in the context of EUD, a relevant role is played by VPLs. A VPL
is a high-level language that allow users to create software programs and
other kinds of computer-based artifacts by means of visual graphic elements,
without the need to use a canonical text-based syntax (Jost et al. (2014)).

One of the first acknowledged VPLs dates back to the sixties, when
Sutherland at MIT developed a system named Sketchpad to support Com-
puter Aided Drafting (CAD) (Sutherland (1964)). The system was meant
to let users generate 2D contents by moving an optically tracked probe on
a computer screen. Some years later, Ellis et al. (1969) developed an an-
cestor of flowchart-based VPLs. Like in the prototype by Sutherland, this
system allowed users to define flowcharts by employing a tracked probe, and
resulting diagrams were displayed on a computer screen.

Thanks to technological progresses, from the preliminary examples above
VPLs rapidly improved their e�ciency and e↵ectiveness, passing from man-
aging a few simple graphics primitives (like lines, circles, etc.) to several
distinct complex shapes, thus providing users with the ability to create richer
representations and to deal with larger problems.

This evolution contributed at extending the range of possible application
scenarios for VPLs, which started to be used also for education purposes, e.g.,
to develop problem-solving skills and make programming more accessible.
Thus, for instance, in (Kato and Tominaga (2009)), the Lego Mindstorms’
VPL-based environment named NXT Software11 was employed to teach me-
chanics and robotics concepts. In (Pinto-Llorente et al. (2018)), another
educational environment by Lego named WeDo12 was used to teach younger
students the basics of computer programming. Experiments confirmed that
students learned more concepts with that tool than in a traditional lesson.
In (Ventura et al. (2015)), a gaming environment named CodeCraft was
proposed to teach the fundamentals of coding. The environment fosters a
problem-based learning approach, which requires the users to solve a series of
puzzle games involving 3D virtual elements by using a VPL. In (Broll et al.
(2017)), another VPL-based framework was developed to teach distributed
programming concepts. The framework allows users to invoke code executed
remotely on a di↵erent machine, by sending messages with structured data

11NXT: https://education.lego.com/en-us/middle-school/intro/mindstorms-ev3
12WeDo: https://education.lego.com/en-us/elementary/shop/wedo-2

9

payload. Experiments carried out with users with no programming skills
confirmed the e↵ectiveness of the framework, as they were able to develop
simple but functioning applications.

In this paper, the interest is especially on the application of VPLs to
EUP. Thus, for instance, in (Weintrop et al. (2018)), a VPL-based paradigm
for controling a robotic arm is presented. The interface allows end-users to
program the robot by dragging-and-dropping predefined routines and com-
bining them in a single sequence of instructions. The VPL was compared with
two commercial programming environments (by ABB and Universal Robots).
Results indicated that the proposed VPL allowed users to program the robot
faster than with the other environments, keeping the same level of accuracy.
Concerning public exhibitions, Stratton et al. (2017) presented a VPL-based
tool to generate engaging exhibits by using visual blocks. The tool exploits
an event-based approach combined with pluggable, colored blocks that act as
callback. The proposed tool was evaluated in a cultural heritage scenario, in
which experts had to create a Web-based application letting visitors interact
with 2D contents through simple hand gestures.

2.4. Leap Embedder

The literature reviewed above shows that EUD applications encompass
a number of heterogeneous domains. However, it seems that a field that
has received yet only little attention is that concerning the creation of 3D
interactive applications targeted to public exhibitions.

Tools devised so far to address this specific domain either do not support
3D elements, or only manage a few predefined application configurations.
Indeed, general-purpose tools devised, e.g., for 3D video-game development
could be exploited to this purpose, but they may be too complex to use by
unskilled users (users could be required to directly handle 3D geometries,
manage lighting and cameras, etc.). Alternatively, special-purpose tools tar-
geting other domains could be considered, but contents and interactions re-
quired in the application of interest may not be supported.

To the best of the authors’ knowledge, one of the few tools that was
developed to fill this gap is the LE (Sanna et al. (2016)). According to
the authors, the design of the LE tool started from considering that the
development of a 3D application relies on contents that are produced by
using modeling and animation tools. Among the various alternatives, the

10

authors found that there was at least one graphics suite, namely Blender13,
which also integrated a real-time physics engine (the BGE) that could be used
to develop 3D interactive applications and games by working with created or
imported contents. With the BGE, application logic can be created using an
event-driven, VPL-based syntax that relies on three di↵erent types of logic
bricks, namely “sensors”, “controllers” and “actuators” (“wired” together).
Logic is “attached” to game objects, which can communicate by exchanging
“messages”. Users can also define custom, scripted controllers using Python,
if needed.

The basic idea behind LE was to replace the above notation with another
visual syntax encompassing a reduced, redesigned set of logic bricks, simply
referred to as “blocks”. Since the main application domain envisaged for pro-
duced contents was represented by public exhibitions, LE was also designed
to ease the integration of NUI-based interaction modalities (hand gestures
were managed, in particular). Application logic created with the stand-alone
LE tool can then be imported in the BGE for execution.

The Graphics User Interface (GUI) of the LE is shown in Fig. 1 (a high-
resolution version of this figure is available for download14). On the left and
top sides (1), the general settings are shown. The center area (2) consists of
several tabbed panels: each panel corresponds to an object, and it allows the
user to define object’s behavior by combining blocks. Finally, on the right side
(3), the list of available 3D objects is shown. Like in the BGE, a per-object
visual organization of the logic is adopted. Event sensing is performed with so
called “Wait for” blocks and “Gesture” blocks: the former block type replaces
all the BGE’s sensors, which are managed by means of a selector (together
with associated parameters) directly in the block widget, whereas the latter
block type is meant to support the definition of user interaction. Controllers
are removed: support for scripted logic is not provided, given the target
represented by users lacking programming skills. Actuators are those of the
BGE. However, since communication with several di↵erent objects is very
common in interactive applications, the “Message” actuator was redesigned
to support multiple destinations for a given message (still requesting user
configuration).

In Sanna et al. (2016), a comparison between the LE and the BGE was

13Blender: https://www.blender.org/
14High-resolution version of Fig. 1: http://tiny.cc/gqoqmz

11

(a)

Figure 1: GUI of the LE.

performed by involving three user categories, i.e., beginner, intermediate and
skilled (based on their previous knowledge of Blender). Experimental results
obtained in creating an interactive application with the two tools showed
that beginner and intermediate users where not able to complete the task
with the BGE, which was found to use a very sophisticated notation and
interaction paradigm for defining the application logic. Skilled users were
able to complete the task with both the tools, but were much faster with the
LE than with the BGE. With the LE, intermediate and beginner users were
five to 10 times slower than skilled users.

3. Visual Scene Editor

This section illustrates the main limitations of LE and introduces the
solutions that have been devised to cope with them. Afterwards, the archi-
tecture of the VSE tool and its GUI are discussed in detail, by describing
the process followed in designing and implementing them.

12

3.1. LE Limitations and Proposed Solutions

Two experts in the computer interaction field with years of experience
in using 3D computer graphics software (like Blender, Autodesk’s Maya15,
etc.) and video-game/interactive application development environments (like
Unity, Unreal Engine, etc.) were asked to evaluate the LE.

They replicated the same tasks proposed in (Sanna et al. (2016)), with
the aim to identify which aspects of the LE could be enhanced to improve
the performance of unskilled users and the usability of the tool. A signifi-
cant di�culty in finding/distinguishing elements used in the definition of the
application logic was lamented. Concerns were also raised on the amount of
parameters which had to be configured in each block (basically moving the
original complexity of the BGE there). In fact, although the LE design sim-
plified inter-object (especially one-to-many) communications, the adopted
paradigm is still based on messages explicitly defined by the users. Lastly,
and most importantly, the LE’s object-centric approach was criticized; the
e↵ect of using this approach is not only that the logic is distributed onto
single objects (which could be regarded as a plus from a programmer’s per-
spective), but that also visualization is “centered” (like in the BGE) onto
selected object. Thus, users are not allowed to observe the behavior of mul-
tiple objects at a time, making it di�cult to define and monitor relations
among them.

Considering the above comments, three areas requiring intervention were
identified, namely, visual elements identification, inter-object communication,
and relations visualization.

The design of the VSE moved from these considerations, which led to the
creation of a VPL-based tool exploiting a scene-centric approach, in which the
users are provided, at development time, with a high-level view of an entire
“scene”. A scene is intended as a container of 3D elements that are visible
and users can possibly interact with at a certain time when the application
is executed. These elements are shown all together in the tool’s GUI, so
that connections and interactions among them can always be immediately
spotted. Moreover, the LE message-based communication mechanism was
simplified, introducing an event-based approach that lets the users define
behaviors involving multiple objects without having to manually specify all
the possible parameters. Finally, taking into account also hints coming from

15Autodesk Maya: https://www.autodesk.com/products/maya/overview

13

the review of the state of the art, a color-based scheme has been implemented
to simplify element identification, a multi-panel interface has been adopted,
and a preview functionality has been developed. More details on how the
above solutions have been implemented are provided in the following.

3.1.1. Visual Elements Identification

In order to improve the recognizability of the visual elements, VSE draws
inspiration from VPL-based tools that rely on visual-blocks. Such tools use
shapes and colors to make the users capable to uniquely identify user inter-
face’s elements and logic’s components. Shapes usually provide text fields
that describe their function, whereas colors are used to cluster the shapes de-
pending on their purpose. Moreover, they usually provide a layout that helps
users to cluster similar interface’s elements, by using panels and windows.

Many shape-color based tools exist, such as miniBloq16, ToonTalk (Kahn
(1995)), Snap!17, etc. Among them, Scratch (Maloney et al. (2010)) has
indeed drawn most of the attention. Scratch was designed to assist primary
school students to learn computer programming by creating 2D graphics
programs.

Scratch’s notation, which has been exploited also for the creation of in-
teractive exhibits (Stratton et al. (2017)), relies on several distinct colored
blocks, which can be combined in an indented “script” to generate a func-
tional program. Each block represents a specific operation, and the shape
of the block indicates which are the other blocks it can be connected to.
Blocks are divided in several “categories”, each represented by a specific
color which allows them to be clearly identified by the users. The Scratch’s
notation and the panel-based organization of its GUI proved to be particu-
larly e↵ective. For instance, in (Ouahbi et al. (2015)), a comparison with a
traditional programming environment exploiting a text-based language was
performed. Results indicated that unskilled users preferred to create pro-
grams with Scratch, showing interest in continuing to develop with it. Simi-
lar findings were obtained by Sáez-López et al. (2016), whose results showed
benefits in using Scratch for both learning coding concepts and developing
computational thinking abilities.

Thus, inspired by design choices above, the VSE’s GUI has been split

16miniBloq: http://blog.minibloq.org/
17Snap!: https://snap.berkeley.edu/

14

in panels, each providing di↵erent functionalities. Users can visualize all the
panels at once, without having to switch among di↵erent windows or tabs (as
in the LE or other tools, like, e.g., that in (Ghiani et al. (2017))). Further-
more, as it will be shown in detail in the following, colors and indentation
have been used to improve the readability of the application’s logic elements,
helping users to visually assign objects to scene and easily recognize scene-
to-object relations.

3.1.2. Inter-object Communication

Although, as said, the LE improved the messaging system compared to
the BGE, messages still have to be manually specified in terms of both sender
and receiver, making it di�cult for the user to manage communications be-
tween objects.

VSE overcomes this limitation by adopting the event-condition-action

approach (Desolda et al. (2017)). This approach is exploited by tools like,
e.g., AgentCubes (Ioannidou et al. (2009)), GameSalad18, Click Team19, etc.
Among the various alternatives, the implementation adopted in Kodu20 was
specifically considered.

Kodu is a VPL-based environment that has been created by Microsoft
Research to make video-game programming accessible to children. With
Kodu, users can create interactive 3D scenarios by developing programs that
can exploit also sophisticated features which are typical of professional game
design, like camera control, collision detection, etc. (MacLaurin (2011)). Its
e↵ectiveness as a tool for exploring other computer science concepts rather
than just video-game programming has also been investigated in the past
(Stolee and Fristoe (2011)).

The key feature of Kodu is that it is completely event-driven (Fowler et al.
(2012)). Users define so called “rules” (1), which are evaluated according to
the “if this happens, do that” paradigm. As illustrated in Fig. 2 (a high-
resolution version of this figure is available for download21), rules are specified
using graphics “tiles” (2), the building blocks of the language, which can be
assembled in “When-Do” strips. Like the Scratch’s scripts, Kodu’s rules are
attached to active objects. The “+” operator (3) is used to connect the

18GameSalad: https://gamesalad.com/
19Click Team: www.clickteam.com
20Kodu: https://www.kodugamelab.com/
21High-resolution version of Fig. 2: http://tiny.cc/4uvqmz

15

1

32

Figure 2: GUI of Kodu.

“When” and “Do” parts of a rule: when the events described by the tiles
on the left side of the “+” operator occur, the actions on the right side are
executed.

In the VSE, the Kodu’s event-driven approach has been directly inte-
grated in each application logic’s elements. Users can define complex rules
by clicking on the “When-Do” buttons of an object, then wiring an ele-
ment’s output to the input of another one. In fact, Kodu’s rule strips have
been replaced by the linking-and-wiring paradigm, which is used in many en-
vironments like the BGE, but also AudioMulch22, Audulus23, Nuke24, Node-
RED25, and SpaceBrew26, among others, and whose e↵ectiveness has been
already evaluated in various domains (Lizcano et al. (2016); Spahn and Wulf
(2009)).

3.1.3. Relations Visualization

Lastly, as anticipated, in order to make it easier for the users to visual-
ize the communications occurring among objects, the VSE has introduced a
scene-centric approach that overcomes the object-centric one adopted by the

22AudioMulch: http://www.audiomulch.com/
23Audulus: audulus.com/
24Nuke: https://www.foundry.com/products/nuke
25Node-RED: https://nodered.org/
26SpaceBrew: https://docs.spacebrew.cc/

16

LE (and BGE). Basically, besides serving as a container of virtual, interac-
tive objects to be displayed at interaction time, a scene is expected to be a
convenient way to organize the user’s work. Each VSE project can consist
of multiple scenes, each containing one or more interactive/not-interactive
assets. Each scene is associated with a specific color (chosen by the user)
that, as said, helps the user to identifying the assets’ relations. Depending
on the complexity of the project and on the user’s approach, the number of
scenes and assets can be so large to make it impossible to simultaneously
visualize all the scenes with their assets and relations. Thus, the VSE shows
all the assets and relations of a scene plus the relations of the scene’s assets
with objects in other scenes at once. In this way, users do not need to change
panel or window to work on a scene. Moreover, they are not forced to se-
lect a specific asset to visualize its “When-Do” relations, which are always
displayed (possibly summarized, or collapsed).

3.2. Architecture and Usage Workflow

The high-level architecture of the tool and the intended usage patterns
are illustrated in Fig. 3. The creation and visualization of the interactive
assets takes place through the steps reported in the following.

First, a file containing assets (like video and audio clips, text descrip-
tions, static or animated 3D models, etc.) is loaded. The creation of these
assets does not require any programming skills, since it involves the use of
modeling and animation suites like Blender or Maya, etc. Assets do not
need to be created in Blender: the only requirement is that they can be
exported to a Blender- (VSE-) compatible .blend file. Assets may be also
purchased or downloaded for free from a number of online catalogues like,
e.g., BlendSwap27, Free3D28, and Blender for Architecture29 (for 3D mod-
els), or Bendsound30 and Free Music Archive31 (for audio files). Imported
assets will constitute the library of objects that will possibly appear in the
3D interactive application being created.

Once the library is loaded, the user can start to organize the available
objects into scenes, by choosing objects to show at a given time. Once the

27BlendSwap: https://www.blendswap.com/
28Free3D: https://free3d.com/it/3d-models/blender
29Blender for Architecture: http://blender-archi.tuxfamily.org
30Bendsound: https://www.bensound.com/
31Free Music Archive: https://freemusicarchive.org/

17

Figure 3: High-level architecture and usage workflow of the proposed tool.

scenes are created, the user defines the methods for transitioning from one
scene to another, and the behaviors (like the playback of an animation or the
appearance of a text description) to be activated when specific events (like
an input provided by the user, a collision between two objects, etc.) occur.
In the VSE, the set of relationships between events recognized and actions
to be activated is named “Interface Logic”.

Once the Interface Logic (or part of it) has been defined, the user can
export the project to a XML file. This file may be used later to implement
changes in the logic using the VSE, or can be imported in Blender to run the
interactive application in the BGE (for previewing, e.g., during development,
testing or deployment). The import operation is performed with an add-on,
named Visual Scene Importer. This add-on automatically translates the
Interaction Logic to the visual description based on sensors, controllers and
actuators which is recognized by Blender’s Logic Editor. When the import
is completed and the corresponding bricks and connections are added, the
user can further modify the 3D visualization or the Interface Logic through
Blender’s native windows (e.g., the 3D View and the Logic Editor). It is
worth observing that, although at present the framework selected to run the
interactive application is the BGE, other frameworks, like, e.g., Unity or
Unreal Engine, could be also used in the future, without the need to make

18

any change to the VSE. In fact, in order to support new frameworks, only
the script that is in charge of translating the XML file generated by VSE
into the target application logic (currently based on BGE bricks) should be
re-implemented.

The rendering of the interactive assets generated in real-time by the BGE
can be visualized through the selected output devices. As said, currently a
2D display and a holographic case (more details are provided in Section 4)
have been considered, though in principle any other visualization means sup-
ported by Blender (or other tools, in the future), including stereoscopic dis-
plays, augmented/virtual reality systems, etc., could be easily integrated. At
present, users can interact with produced contents by using hand gestures or
traditional interfaces (like mouse and keyboard). However, since the BGE
can be fully scripted, support for other interaction methods that can be han-
dled to the host computer (like body gestures, voice control, etc.) could be
integrated as well.

It is worth observing that, in the high-level architecture (and usage work-
flow) depicted in Fig. 3, the VSE presented in this paper fully replaces the
LE tool proposed in Sanna et al. (2016). All the BGE’s scriptable functions
that were implemented in the LE were considered also in VSE, thus mak-
ing the new tool able to support the same tasks and to manage the same
construction complexity that could be achieved with the reference one. The
export format used by the VSE is more sophisticated than that of the LE;
hence, a dedicated import add-on (not shown) had to be developed.

3.3. GUI’s Design Steps

Considering the limitations of the LE reported in Section 3.1, a new tool
was created to let unskilled users produce 3D interactive contents in an ef-
fective, e�cient and satisfying way. A new GUI and a new graphics notation
were defined through design and development steps that considered the feed-
back collected on the previous tool, as well as the outcomes of literature
review and established usability principles (Nielsen (1995)).

The GUI of the VSE and its visual notation can be regarded as the out-
comes of a process that involved continuous refinements and improvements.
Starting from the initial mockup based on the Scratch’s panel-based lay-
out, di↵erent content organizations (e.g., position of objects in panels, links
between them, etc.) and interaction methodologies (e.g., drag-and-drop, se-
lection from a list, etc.) were experimented and modified when judged as not

19

(a)

(b)

Figure 4: Initial mockup of the VSE’s GUI: a) panels for managing the objects (right) in
di↵erent scenes (left), and b) panels for defining the Interface Logic for the selected object.

appropriate (Fig. 4a). Since from the first mockup, the GUI was designed
around the Kodu’s “When-Do” paradigm (Fig. 4b).

However, this mockup proved not to be completely e↵ective. One of
the issues was associated with the di�culty of setting the various parameters
required for the definition of the Interface Logic. The problem was the limited
space to manage this operation allocated in the interface (bottom-right panel
in Fig 4b). In the final implementation, a dedicated, adjustable panel was
allocated to the definition of the behaviors for the selected object.

20

However, the most serious issue was related to the impossibility to visu-
alize the interactions among di↵erent objects (created by wiring the “When”
block of an object with the “Do” block of another object). It was addition-
ally realized that this limitation, already present in Kodu’s rule strips, was
intensified by the message-passing approach used, e.g., in the BGE and the
LE. In fact, this approach requires the users to specify (and remember) the
actual message to pass to target objects, without actually seeing them at the
time of defining the message.

As said, to deal with these issues, it was decided to exploit the link-
and-wire paradigm in order to allow users define relations (later referred to
as “Links”) among “When-Do”-based blocks attached to di↵erent objects.
Because of this choice, a di↵erent content organization letting the user see
more than one object at the same time had to be implemented, which led to
an organization based on the said scene-centric approach.

Other aspects that were considered to define the final implementation of
the GUI are colors and indentation. Colors have been used to make it easier
for the user to recognize a specific scene (and consequently the related links)
and the When-Do buttons whereas indentation has been used to organize
contents in the “When-Do” blocks.

3.4. GUI’s Functionalities and Visual Notation

The final version of the main window of the VSE’s GUI is shown in Fig. 5
(a high-resolution version of this figure is available for download32). In the
following, the core components are described through dedicated sub-sections.

3.4.1. Library

Once the user has loaded a .blend file or a previous project, the interface
presents, on the right side, the list of available objects which can be added to
the scenes (1). Objects are represented by a small icon (showing a preview
of the object’s appearance when rendered in the 3D program) and a name.
The list contains not only 3D geometries (like Cube, Sphere, etc., in Fig. 5)
but also, e.g., lamps (like, LampA, LampB, etc.) which could be used in the
scenes to implement a given lighting. Like in common modeling suites, if
a given object is organized in a structured fashion (i.e., it has one or more
child objects, which inherit transformations applied to their parents), then it

32High-resolution version of Fig. 5: http://tiny.cc/j4nqmz

21

is visualized in a tree within the library. Adding a parent object to the scene
would automatically add all its children. A search bar lets the user filter
objects based on their name. When an object is selected (like TorusDue, in
the figure), a larger version of the preview is displayed on the bottom-right
side of the interface.

3.4.2. Scenes

The panel labeled as (2) in Fig. 5 shows the scenes and the Interface
Logic defined for them. A scene can be represented in either a collapsed
or expanded way. Only one scene at a time can be expanded, allowing the
user to edit it. The collapsed visualization (used for scenes Schema, Start
and Scene 2 in the figure) reports only the name of the scene, the color
assigned to it, and two buttons which allow the user to perform delete and
edit operations. When the expanded visualization is chosen for a scene (like
for scene Scene 3), all the collapsed scenes are automatically rearranged in
the panel in order not to be covered by the selected scene.

On the top of the expanded scene (3), a toolbar provides the user with
several configuration functionalities. For instance, the user can select the
color for the scene (which will be used for drawing Links) and set its name;
automatic coloring and naming are also implemented. A checkbox allows
the user to set the current scene as the first to be launched when the BGE
is started and the interactive application is executed. The starting scene is
highlighted with the color assigned to it (like for the scene named Start in
the figure). A button is available to let the user duplicate the current scene,
creating a copy with the same objects and the same Interaction Logic.

Under the toolbar, a large panel (right side) allows the user to manage
objects appearing in the given scene (4) and to define their behavior using
“When-Do” blocks (5). A smaller panel (left side) is meant to let the user
define global behaviors a↵ecting the whole scene: this functionality, which is
accessed via a dedicated button, will be discussed later.

3.4.3. Objects

A new object can be added to a scene by dragging it from the library. As
for the scenes, objects can be visualized either in collapsed or expanded way.
However, in this case, many objects can be expanded at a given time. This
way, it is possible for the user to define (and see) relations among objects.

In the collapsed visualization, only the name of the object and the buttons
to delete and edit it (i.e., pass to the expanded visualization) are shown.

22

6

4

12

7

53

Figure 5: Final implementation of the VSE’s GUI: 1) object library, 2) scenes, 3) selected
scene, 4) scene’s objects, 5) object’s “When-Do” blocks, 6) menu bar, and 7) status bar.

When expanded, each object presents a title bar with the name and
the delete button. Under the toolbar, a preview of the object is provided,
together with three additional buttons. The first button is used to change
object’s visibility in the scene. The second button is used to make the object
a pointer for the current scene. The pointer is the visual representation of
the target of user’s interaction. For instance, in the current implementation,
when the mouse and the 2D display are selected as input and output devices,
respectively, the movement of the mouse is transferred to the pointer object
and the basic cursor is replaced with the representation of the pointer object
itself. If the holographic case with hand tracking input is selected, cursor
position is controlled by the 3D position of the user’s hand in the tracked
space. The last button activates the collapsed visualization for the object.

The bottom part of each object allows the user to define the Interaction
Logic through “When-Do” blocks. By default, each object comes with an
empty “When-Do” block. As the user starts modifying the default block
by clicking the corresponding button, a new block is automatically added;
moreover, if an action is specified for a “Do” block, a new “Do” block is
automatically created under the same “When” block.

When the user has configured a “When-Do” block, an icon and a short
description of the selected action/condition are added to the button (for

23

instance, the KeyTap event for the “When” block defined for the Cube object,
or the Animation playback of the “When” block defined for the SuzanneTre
object, in the figure).

The types of events recognized and actions supported will be presented
in Section 3.4.6.

3.4.4. Links

The “When-Do” approach described above and adopted also in Kodu
can be used when the conditions to be recognized and the actions to be
executed concern the same object. As said, to overcome the inter-object
communication method based on message-passing used in the BGE and the
LE, the VSE introduced the concept of Link. Links are lines drawn between
objects, which allow a condition detected by a given object to activate an
action associated with another object, thus simplifying the creation of the
logic.

A Link can be created by drawing a line (with a drag-and-drop operation)
from the “When” block of an object to a “Do” block of another object. Links
can be used also to change or reload a scene. In this case, the link has to be
created between the “When” block of an object and a scene’s toolbar.

The color of the Links is that of the scene that contains the object the
connection originates from. As a matter of example, in Fig. 5 the Links
between objects of Scene 3 are red since all the Links start from an object in
Scene 3 (whose color is red), whereas the Link that has been defined to pass
from the Start scene to Scene 3 is blue, since it originates from an object
(not visible in the figure, due to the collapsed visualization) contained in the
Start scene (which is assigned the blue color).

A click with the right mouse button over a “When-Do” block shows a
menu that allows the user to delete the block and/or remove a specific out-
going Link.

3.4.5. Templates and Scene Behaviors

In Fig. 5, it is possible to notice in the left-top corner of the scene panel
(2), a scene named Schema. The Schema scene is a sort of template that
can be used to specify object/behaviors that are present/valid in/for all the
scenes without the need to repeat the definition in each scene. It is generated
automatically when a new project is created, and it is visually represented
as a normal scene. With respect to the other scenes, however, it cannot be
renamed, deleted or moved. Moreover, it is not possible to duplicate it, or

24

set it as the initial scene. A practical use of the Schema scene could be that
of setting the lighting for all the scenes, or implementing the shared logic
for managing the cursor. If the user specifies two di↵erent behaviors for the
same object in the Schema scene and in a normal scene, the definition in the
Schema scene is ignored.

As anticipated, for each scene it is also possible to define so called “Glob-
alWhen” blocks, which are responsible for handling events that pertain the
whole scene and not just a particular object in it. For instance, the action
of changing the current scene when a specific gesture is recognized during
interaction with a given object is something that can be dealt with using a
canonical “When-Do” block. However, changing the current scene indepen-
dent of where the gesture is actually performed is something that should be
delegated to the “GlobalWhen” block.

3.4.6. When-Do Blocks

The configuration of each “When-Do” block is accomplished through ded-
icated windows.

For “When” conditions, the interface is structured in three tabbed panels
(Fig. 6), grouping semantically related events.

By means of the Gesture panel (Fig. 6a), the user can indicate the hand
gesture to be recognized in order to trigger an event. As said, the device cur-
rently used for hand gestures recognition is the Leap Motion sensor. Hence,
the panel shows only the four supported gestures, i.e., circle, swipe, key tap
and screen tap. More details about these gestures can be found in the doc-
umentation of the Leap Motion SDK33. For sake of simplicity, mouse events
are mapped onto recognized gestures.

The Timing panel (Fig. 6b) is used to specify conditions influenced by
time. In particular, the OnLoad option is set to trigger an event when the
scene is loaded (in the case the condition is specified in a GlobalWhen block)
or when the object is added to the scene (if specified in the “When” block
of an object). Option Always triggers events in a continuous way, whereas
Delay fires the event after the specified time interval.

The Proximity panel (Fig. 6c) is meant to manage events associated with
spatial conditions (two objects that collided or are close to each other at
runtime).

33Leap Motion SDK documentation: https://bit.ly/2XOMXHP

25

(a) (b) (c)

Figure 6: Window for specifying parameters of a “When” block: a) Gesture panel, b)
Timing panel, and c) Proximity panel.

For managing actions associated with a “Do” block, the window includes
two tabbed panels (Fig. 7).

With the Action panel (Fig. 7a), the user can define three types of actions
to be executed on the object (the playback of an animation, the reproduction
of a sound and the change of the object’s visibility) and the corresponding
parameters (the animation or the sound to be played, the starting and end
frame of the animation, whether the object is visible or hidden).

By means of the Objects panel (Fig. 7b), the user can manage actions that
involve the creation and removal of objects in/from the scene. Intuitively,
the Delete option removes the object, Add places a new object in the same
position of the current object, whereas Replace deletes the current object
and adds a new one (specified by the user) to the scene.

3.5. Software Modules

To implement the VSE tool, the JavaFX graphic library34 was used. The
software modules shown in Fig. 8 were organized according to the Model
View Controller (MVC) software design pattern.

The View includes the modules listed below:

34JavaFX: https://www.oracle.com/technetwork/java/javafx/overview/

26

(a) (b)

Figure 7: Window for specifying parameters of a “Do” block: a) Action panel, and b)
Object panel.

• Project Window: it manages the graphics components belonging to the
main window;

• Scene Container: it is the visual container exploited by the user to
assembly the current scene;

• Node: corresponds to one of the assets inserted into the current scene
and configured by the user;

• When/Do Block: it allows the user to visualize and configure each of
the “When” conditions and “Do” actions for a given asset.

The Model contains the following modules:

• Input Manager: it is the data structure representing the possible input
device(s) to be managed by the interactive application;

• Blend Scene: it contains information concerning the library of objects
that can be used to develop the application;

• Interaction Logic: it is the data structure holding the logic of the ap-
plication being created;

• XML Project Wrapper: it stores the information required to create the
XML file exporting VSE project data in a format that can be loaded
in the BGE.

27

Figure 8: Architecture of the proposed VSE tool: software modules.

Finally, the Controller is based on the modules below:

• Blender Loader: it contains functions needed to import into the VSE
assets made with Blender (or exported in a compatible format);

• GUI Controller: it supervises the behavior of the main window;

• Node Controller: it controls the asset configuration.

4. Use Case

In order to show how it could be exploited in a real usage scenario,
the VSE was used to generate an interactive application for a possible vir-
tual exhibition of a known artwork. An ancient Egyptian artifact, namely
the bust of the Queen Nefertiti exposed at the Berlin’s Neues Museum
was considered. The assets used in the 3D program are those exploited in
(Sanna et al. (2016)). The application was used in public exhibitions on vir-
tual/augmented reality and other emerging technologies which were hosted
at the authors’ university.

The overall setup of the exhibit is illustrated in Fig. 9. The output device
is represented by a custom-made holographic case: the device leverages the
well-known Pepper’s ghost e↵ect to project 3D digital images on a pyramid

28

Figure 9: Overall setup of the system used for demonstrating the virtual exhibition of the
bust of Queen Nefertiti.

Figure 10: Holographic case.

shaped glass using a video source (the projecting monitor) which is hidden
to the visitor in the top of the case (Fig. 10).

User interaction is based on hand tracking and hand gestures. A Leap
Motion sensor mounted in the case is used to gather hand movements in the
3D space in front of it.

The application consists of nine scenes, which are illustrated below.

• Start (Fig. 11a): it provides a brief presentation of the gestures rec-
ognized by the system that allow the visitor to interact with the 3D
contents; when the visitor performs a key tap gesture on the Start la-
bel displayed in the center of the holographic space, the application is
launched and the next scene (Menu) is displayed.

29

• Menu (Fig. 11b): it allows the visitor to choose among three di↵erent
scenes to visualize: Video, History and 3D Model; a key tap performed
on one of the corresponding icons loads the new scene; a circle gesture
can be used to return to the Menu scene.

• Video (Fig. 11c): it plays a video introducing the artwork.

• History (Fig. 11d): it contains a sequence of text descriptions, which
present the history of Queen Nefertiti; descriptions can be scrolled using
swipe gestures.

• 3D Model (Fig. 11e): it shows a 3D model of the Queen Nefertiti’s
bust; an animation that rotates the model clockwise is automatically
played; when the visitor performs a tap gesture on the labels indicating
the collar, eyes, mouth and head to the bottom of the holographic
projection, a new scene is loaded where the selected part is highlighted
on a grayed model using colors (see below).

• Collar, Eyes, Mouth and Head (Fig. 11f): the part of the artwork
selected in the previous scene is highlighted, and a text description
appears providing further information of the bust’s detail. If the visitor
performs a circle gesture, the current scene is closed and 3DModel scene
is reloaded.

This use case was selected because it is an example of how scenes can be
arranged to present di↵erent types of assets, namely, graphics widgets (like
buttons, panels, labels, etc.), 3D models (the model of the Queen Nefertiti’s
bust and its details), animations (e.g., to rotate the bust in the 3D Model
scene), and videos (as in the Video scene).

A video showing the generated interactive application is available for
download35. Three videos showing the realization of the application using
the BGE, the LE and the VSE tools are also available, which allow to qualita-
tively compare the di↵erent levels of complexity of both the creation process
and the resulting logic36.

35Queen Nefertiti, video of the resulting application: http://tiny.cc/bydtbz
36Queen Nefertiti, video of the creation process: http://tiny.cc/axdtbz

30

(a) (b) (c)

(d) (e) (f)

Figure 11: Some of the scenes crated for the Queen Nefertiti use case: a) Start, b) Menu,
c) Video, d) History, e) 3D Model, and f) Head (Collar, Eyes and Mouth are similar).

5. Experimental Evaluation

With the aim to evaluate the performance of VSE with respect to other
tools, two experiments were carried out by involving subjects with di↵er-
ent levels of expertise in (interactive) application development and design
of public exhibitions. In the following, user groups composition for the two
experiments is first introduced. Tasks to be performed and experimental
methodology are then described. Finally, criteria considered in the evalua-
tion are discussed.

5.1. Experiments and Participants

The first experiment represented a preliminary study (later referred to as
S1) aimed to set the baseline for the evaluation of the tools’ performance.
Hence, it involved three users skilled in computer programming, precisely, 3D

31

game/application developers with years of experience with various languages
and suites, including Blender and the BGE.

The second experiment was designed as a user study (later referred to
as S2) aimed to investigate tools’ e↵ectiveness and usability with potential
end-users. Hence, the user group consisted of 14 volunteers aged between 22
and 29 years (µ = 25.93, � = 1.94), selected among students enrolled in the
B.Sc. degree on Design and Visual Communication at Politecnico di Torino
37. They were expected to possess skills in the fields of visual communication
and product design, with extremely basic programming experience and no
knowledge of the considered tools. Based on available statistics, during the
degree program (e.g., in internships, as well as in course and thesis projects)
as well after graduation, many of them will be working in the field targeted
by the present work.

5.2. Tasks

The interactive application to be developed in both the studies was a
simplified version of the planner tool on the IKEA website38. The original
tool allows IKEA’s customers to create/customize, e.g., a sofa by assembling
several components, like loungers, poufs, etc. and choosing sizes and loca-
tions for them. Once completed the assembly, customers can visualize an
animation for the created product.

Participants were requested to create three scenes (labeled from 1 to 3),
each containing several interactive 3D objects. In each scene, they were
requested to manage various conditions (corresponding to di↵erent user in-
teractions) and activate corresponding actions (i.e., changing the visibility of
an asset, playing an animation, etc.).

A high-level representation of the expected application’s workflow is pre-
sented in Fig. 12, whereas the actual aspect of the resulting application when
imported and visualized in the BGE is illustrated in Fig. 13.

Scene1 (Fig.13a) is the start scene, and represents an introduction to the
actual application. The scene contains only two objects: Start Panel and
Start Button. The interaction to be implemented in this scene is a key tap
gesture on the Start Button, which triggers a transition to Scene2.

Scene2 is the scene in which the customer is provided with the instructions
for using the application (Fig. 13b), and can configure the sofa by choosing

37 Design and Visual Communication B.Sc.: https://didattica.polito.it/laurea/design/en
38IKEA’s planner: https://bit.ly/2OsIG6P

32

Scena_1

Start_Panel

Start_Button

KeyTap: set Scene2

(a)
Scena_2

Instruction_Button

Lounger Sofa_2x

Button.000 Button.001

Next_Button

Instruction_Panel

KeyTap: Visibility false
KeyTap:
Visibility false

KeyTap:
Visibility True

KeyTap: set Scene3

KeyTap:
Visibility True

(b)
Scena_3

Sofa&Lounger

Swipe Any:
Play Action -``Sofa_Lounger.Action’’ ΀1-250]
Play Sound -``Kalimba.mpϯ’’

(c)

Figure 12: Overview of the scenes to be created: a) Scene1, b) Scene2, and c) Scene3.

33

components from a list (Fig. 13c). In order to make the task not repetitive
and reduce the completion time of the overall experiment, it was decided to
partially implement the logic of this scene, limiting the number of compo-
nents to be managed and the interactions to be implemented. Thus, partic-
ipants were requested to insert into the scene and configure only the follow-
ing assets: Instruction Panel, Instruction Button, Button.000, Button.001,
Sofa 2x, Lounger, Next Button. The interactions to be managed in Scene2
are listed below:

1. a key tap gesture on Instruction Button changes the visibility to false
for the Instruction Button itself, as well as for the Instruction Panel,
the Lounger, and the Sofa;

2. a key tap gesture on Button.000 and Button.001 sets the visibility to
true for the Lounger and the Sofa 2x, respectively;

3. a key tap gesture on Next Button triggers a transition to Scene3.

Scene3 (Fig. 13d) is the scene in which the customer can visualize the
assembled sofa. It includes only the Sofa&Lounger object. The interaction
to be created activates the reproduction of a sound and the playback of an
animation when a swipe gesture is performed on the Sofa&Lounger.

5.3. Methodology

Because of the expertise of the involved subjects, in study S1 it was
possible to test the creation of the above scenes with the VSE and with two
other tools, i.e., the LE and the BGE. Based on results achieved in this study
(Section 6.1), in study S2 volunteers were only asked to operate with the VSE
and the LE.

All the participants were first introduced to the experiments. The way
to work with the tools was then explained (when needed), by letting them
familiarize with the interfaces. When they felt ready to start the experiment,
participants were asked to first create the three scenes with one of the tools.
Afterwards, they were invited to do the same with the other tool(s). The
order was continuously switched, in order to limit the impact of learning
e↵ects in the evaluation.

The creation of the application was split in two steps. In the first step,
instructions describing scene composition and interactions to be implemented
were presented to the participants by showing them the workflow in Fig. 12.
Afterwards, only for study S2, participants were suggested to take some
notes about the application to be created, by filling in a table-based template

34

(a) (b)

(c) (d)

Figure 13: Scenes of the application created by participants of the user study as rendered
by the BGE: a) Scene1, b) Scene2 (instructions visualization), c) Scene2 (sofa assembling),
and d) Scene3. For sake of readability, colors in this figure have been altered w.r.t. the
Blender’s native ones which were seen by the participants during the experiment.

with their annotations (templates for the VSE and the LE are reported in
Table 1 and Table 2, respectively). This step simulated a design process
that could let users organize contents by following the working schema of
the specific tool used to implement the application. Before taking notes,
users were given the possibility to adjust the structure of the template (e.g.,
adding/removing columns, etc.), in order to let them make the annotations
more aligned with their mental structures. In the second step, participants
were asked to develop the three scenes (possibly using the notes). Progress
was supervised. At the end, participants were informed about the possible
presence of errors, and were asked to fix them in order to develop a fully
working set of scenes.

35

When On Do On

KeyTap Object1 Set Visibility False Object2

Table 1: Table template to use with the VSE: interaction “on key tap gesture on Object1,
change the visibility of Object2 to false” is represented.

Sender Msg Subject Msg Text Receiver Action

Object1 OnKeyTap Set Visibility False Object2
Change

the visibility

Table 2: Table template to use with the LE: interaction “on key tap gesture on Object1,
send a message to Object2 for setting its visibility to false” is represented.

Participants could have a preview of the application being created by gen-
erating the XML file (with the export function of the VSE and the LE) and
importing it in the BGE. The presence of critical errors like, e.g., forgetting
to set a cursor or defining the start scene, could prevent the generation of
the XML file and, consequently, the visualization of the preview.

Three videos showing the execution of the above tasks with the BGE, the
LE and the VSE are available for download39.

5.4. Metrics

Because of the di↵erences between studies S1 and S2, the evaluation re-
quired the definition of two sets of metrics.

In particular, for study S1, two objective measures were collected, namely,
the amount of time and the number of visual components (bricks/blocks and
connections) employed by the skilled users to create the interactive appli-
cation with the three tools. Two di↵erent times were measured during the
experiment: the first one is the time needed by the participant to obtain his
or her best results, whereas the second one is the time to fix possible errors
identified by the supervisor. These times were then cumulated to determine
the overall completion time for creating the application. Moreover, at the
end of the experiments, skilled users were requested to provide feedback on
their experience in an interview.

For study S2, objective metrics encompassed completion time and number
of errors made. In addition to the two definitions of completion time given

39Videos of the experiments with the three tools: http://tiny.cc/8biqkz

36

above, a third definition was added to take into account the time needed
by participants to fill in the table template describing the application to
be implemented. Subjective aspects were assessed by means of a post-test
questionnaire organized in four sections40:

• Q1: general users’ information, familiarity with 3D and programming
languages/tools (visual or not);

• Q2: evaluation of system usability based on the SUS questionnaire
(Brooke (1996));

• Q3: evaluation of the task load based on NASA Task Load Index, or
NASA-TLX (Hart and Staveland (1988));

• Q4: users’ preferences.

Concerning Q4, users had to express their preference for the two tools
on a 1–5 scale (with 1 meaning high appreciation for the VSE, 3 neutral,
5 high appreciation for the LE) by considering four di↵erent aspects, i.e.,
scene, object and interaction/relation management, and overall preference.
Possible comments or reasons for their choice were also collected. Users were
invited to fill in the questionnaire after having completed the tasks with both
the tools.

6. Results

In this section, results for the two studies are presented.

6.1. Study S1

Fig. 14 shows objective results obtained in the preliminary study. Fig. 14a
reports the overall completion time, including both the time to finish the
tasks (to the best of participants’ understanding) and the time possibly re-
quired to fix errors (identified by the supervisor). Fig. 14b and Fig. 14c show
the number of visual elements (blocks and connections, or Links, respectively)
required to assemble the three scenes.

40Questionnaire: http://tiny.cc/w9nqkz

37

154

579

1.227

0

200

400

600

800

1000

1200

1400

VSE LE BGE
(a)

16

34

85

0
10

20

30

40

50

60
70
80
90

VSE LE BGE
(b)

7

0

57

0

10

20

30

40

50

60

VSE LE BGE
(c)

Figure 14: Objective results for study S1 (skilled users): a) average completion time for
developing the application (seconds), b) number of blocks and c) number of connections
or Links used.

Given the limited number of participants, results were not analyzed us-
ing statistical tools, but they were rather studied in an explorative way by
considering means and variances.

With respect to completion time, observing the large di↵erences among
the average values and the small variances, it appears that VSE allowed
participants to be much faster than the other tools. Moreover, in absolute
terms, VSE also required participants to assemble/join a lower number of
elements (blocks and connections). Connections are not accounted for the
LE, since they are created automatically by the tool when the related blocks
are selected. Due to the relatively high number of blocks (twice those of
the VSE), selection required a considerable amount of time, slowing down
the logic definition process. The VSE outperformed the BGE, being roughly
seven time faster and requiring a considerably lower number of both blocks
and connections. This fact is related to the need to define Message sensor-
actuator pairs (and related connections) in place of a single Link connecting
the “When” and “Do” blocks when two di↵erent objects had to communicate.

Comments gathered at the end of the experiments can be summarized as
follow:

• the VSE could simplify repetitive operations that characterize both
the BGE and the LE, like, e.g., the activation of an action on an asset
upon recognition of a condition on another asset; simplification comes
from the fact that the VSE is able to automate tasks that need to be

38

performed manually with the latter tools (e.g., setting up the message
subject and content for both the sender and the receiver);

• although the LE was found to be similar to the BGE (a software that
participants already knew), the VSE could be more easy to use by those
who are not familiar with message-based communications and/or with
programming paradigms;

• di↵erently than both the BGE and the LE, the VSE provides users
with a high-level view of the overall application being created, as well
as of the interactions among assets; this aspect of VSE could help to
design and manage the workflow of the application better than with
the other two tools.

6.2. Study S2

Objective results for the second study in terms of completion time and
number of errors are reported in Fig. 15. Statistical significance was analyzed
using paired Student’s t-tests (p = 0.05).

It can be easily seen that the VSE allowed participants to complete the
assigned tasks in almost half of the time than with the LE. In fact, partici-
pants were, on average, 43.29% faster with the VSE than with the LE to fill in
the table template (p = 0.0034), and 51.58% faster with the VSE than with
the LE to create the application (p = 0.0001). Moreover, with the VSE they
made, on average, roughly 11% of the errors made with the LE (p = 0.0001).
The possibility to visualize all the connections among objects at the same
time greatly lowered the time spent in adjusting the visualization. Further-
more, since in the LE the concept of message used in the underlying BGE
was not abstracted, participants were still forced to manually set all the mes-
sage parameters through a process that required a considerable amount of
time compared to the mechanism used in the VSE (drawing a Link between
the “When” and “Do” blocks). It is worth observing that, when operating
with the VSE, most of the participants took advantage of the Schema scene
to define components shared among all the scenes (cursor and lamps); with
the LE, they would have been forced to specify the presence of these objects
in each scene.

Regarding subjective results, according to section Q1 of the question-
naire, the majority of the participants stated that they had familiarity with
graphics suites like Blender and Maya as well as with video and photo editing

39

255

450

0

200

400

600

800

1000

1200

VSE LE
(a)

379

859

0

200

400

600

800

1000

1200

VSE LE
(b)

0,36

3,14

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

VSE LE
(c)

Figure 15: Objective results for study S2 (unskilled users): a) average completion time for
representing the application’s workflow (seconds), b) completion time for developing the
application (seconds), and c) number of errors.

tools like Adobe Photoshop41 and Adobe Premiere42 (Fig. 16a); these kinds
of software are regularly used in the classes of the considered B.Sc. program,
where students are taught how to manage (visual) product design and com-
munication. A small percentage of them said to have little or no experience
with node-based programming tools and VPLs (Fig. 16b and Fig. 16c). Fi-
nally, roughly 70% of participants stated to have little experience with tools
and languages for developing video-games and/or interactive applications
(Fig. 16d).

Regarding results of section Q2, participants found the VSE as charac-
terized by a higher usability compared to the LE. In particular, the VSE
obtained a SUS score equals to 79.10 compared to the 53.57 achieved by the
LE (p = 0.0001). According to Brooke (1996), the VSE score corresponds
to the C grade in the SUS scale, which classifies usability as “Acceptable”,
whereas the score of LE corresponds to the F grade, that is,“Marginally ac-
ceptable”. According to provided feedback, the capability of the VSE to
automatically manage some key operations (like creating inter-object com-
munications) reduced the number of operations to perform. This aspect made
the participants perceive the VSE as easier to use and more satisfying than
the LE. Furthermore, the possibility to take advantage of an overall view to

41Adobe Photoshop: https://www.adobe.com/products/photoshop.html
42Adobe Premiere: https://www.adobe.com/products/premiere.html

40

7,14

28,57

21,43

42,86

(a)

64,29

28,57

7,14

(b)

78,57

14,29

7,14

(c)

28,57

57,14

14,29

(d)

sometimes once a month once a week everydaynever

Figure 16: Results of section Q1 of the questionnaire concerning users’ experience with: a)
graphics suites, b) node-based programming tools, c) VPLs, and d) tools for video-game
and/or interactive application development.

visualize all the interactions at the same time allowed participants to learn
the VSE more quickly than the other tool.

These conclusions are also confirmed by the NASA-TLX results (section
Q3). In particular, participants perceived the VSE as characterized by a
lower workload than the LE (33.48 for VSE, 59.78 for LE, p = 0.0001), letting
them achieve better results (performance) with less e↵ort (mental demand)
as well as with less errors to be dealt with at the end of the experience
(frustration).

Results of section Q4 appear to confirm the above findings (Fig. 17). On
average, roughly 85.5% of the participants preferred the VSE to the LE in
all the aspects considered. Only slightly less than 10% of the participants
preferred the LE, stating that, although the message mechanism was di�cult
to manage, the GUI was cleaner and easier to understand.

7. Conclusions

In this paper, a new tool supporting the generation of 3D applications
for interactive exhibitions targeted to users with limited to no programming
skills has been presented. In the development of the new tool, named VSE,
EUD principles as well as pros and cons of related VPL-based environments
like Scratch, Kodu, BGE and LE, among others, have been considered.

Di↵erently than some of the previous works, the proposed tool adopts a
scene-centric approach for managing asset connections, which allows users to
better visualize the elements composing the various scenes and their interac-

41

64,29
28,57

7,14

(a)

35,71

35,71

21,43

7,14

(b)

50,00
35,71

7,14
7,14

(c)

42,86

42,86

7,14
7,14

(d)

Strongly VSE VSE Neutral LE Strongly LE

Figure 17: Results of section Q4 of the questionnaire about users’ preference regarding:
a) scene, b) object, and c) interaction/relation management, and d) the tool, overall.

tions. However, from other previous works it inherits features like, e.g., the
“if this happens, do that” paradigm, which helped to make the definition of
object’s behaviors more intuitive.

Experiments have been performed to evaluate the e↵ectiveness of the VSE
with respect to both the BGE and the LE. Results obtained by involving
users with both 3D graphics and programming skills showed that the VSE
allows them to create the intended application in a shorter time and using
a lower number of blocks. Regarding target end-users (i.e., users with little
to no programming experience but with a background in design and visual
communication), with the VSE they were able to complete the assigned tasks
saving time, as well as making a lower number of errors. The superiority of
VSE was also confirmed by subjective results, which indicated a superiority
of the proposed tool for all the usability dimensions considered. Overall, the
VSE was largely preferred to the LE.

As said, the domain of public exhibitions was tackled in this paper. In
particular, the flexibility of the VSE was shown by exploiting it for the cre-
ation of two di↵erent applications: the first one (the use case) focused on a
cultural heritage interactive exhibit, the second one (used in the experiments)
targeted to customers of either physical or online stores. Notwithstanding,
the VSE could be used also to create 3D interactive applications required in
other contexts.

Based on encouraging results obtained with the current study, future
works will be devoted to expand the number of possible interactions sup-
ported by the interface, considering, for example, the integration of new
input devices (like smartphones or smartwatches, with their embedded gy-

42

roscopes, accelerometers, microphones, etc.), other sensors (to manage, e.g.,
body gestures and/or voice commands, etc.), or richer hand gestures (like
gestures performed with both the hands). The possibility to manage a wider
set of conditions and actions (like the change of the object’s size and shape,
etc.) will be also considered. Based on the feedback received, a new software
component will be implemented in order to let users obtain a preview of the
interactive application being created directly within the VSE, without the
need to export the logic being created to the graphics engine for visualizing
it. E↵orts will be put in developing custom import scripts able to trans-
late the XML file generated by the tool into data required for reconstructing
scenes into other real-time 3D graphics engines, like Unity or Unreal Engine.
Finally, since in this paper the focus was put more or development than
on creative aspects, a more in-depth investigation of the tool in the latter
dimension will be required.

References

Aghaee, S., Pautasso, C., 2014. End-user development of mashups with
naturalmash. Journal of Visual Languages & Computing 25, 414–432.

Alexander, J., Barton, J., Goeser, C., 2013. Transforming the art museum
experience: Gallery One, in: Proceedings of Museums and the Web.

Andreoli, R., Corolla, A., Faggiano, A., Malandrino, D., Pirozzi, D., Ranaldi,
M., Santangelo, G., Scarano, V., 2018. A framework to design, develop, and
evaluate immersive and collaborative serious games in cultural heritage.
Journal on Computing and Cultural Heritage 11, 4.

Ardito, C., Buono, P., Desolda, G., Matera, M., 2018. From smart objects
to smart experiences: An end-user development approach. International
Journal of Human-Computer Studies 114, 51–68.

Ardito, C., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi,
M., 2012. Composition of situational interactive spaces by end users: A
case for cultural heritage, in: Proceedings of the 7th Nordic Conference on
Human-Computer Interaction: Making Sense Through Design, pp. 79–88.

Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A., 2019. End-user de-
velopment, end-user programming and end-user software engineering: A
systematic mapping study. Journal of Systems and Software 149, 101–137.

43

Bekele, M.K., Pierdicca, R., Frontoni, E., Malinverni, E.S., Gain, J., 2018.
A survey of augmented, virtual, and mixed reality for cultural heritage.
Journal on Computing and Cultural Heritage 11, 7.

Billard, A., Calinon, S., Dillmann, R., Schaal, S., 2008. Robot Programming
by Demonstration. Berlin, Heidelberg. pp. 1371–1394.

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A.,
Weeden-Wright, S.L., Vanags, C., Swartz, J.D., Lu, M., 2017. A visual
programming environment for learning distributed programming, in: Pro-
ceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, pp. 81–86.

Brooke, J., 1996. SUS - A quick and dirty usability scale. Usability Evaluation
in Industry 189, 4–7.

Burnett, M.M., Sca�di, C., 2014. The Encyclopedia of Human-Computer
Interaction. The Interaction Design Foundation, Aarhus, Denmark.

Bustillo, A., Alaguero, M., Miguel, I., Saiz, J.M., Iglesias, L.S., 2015. A
flexible platform for the creation of 3D semi-immersive environments to
teach cultural heritage. Digital Applications in Archaeology and Cultural
Heritage 2, 248–259.

Cassidy, B., Sim, G., Robinson, D.W., Gandy, D., 2019. A virtual reality
platform for analyzing remote archaeological sites. Interacting with Com-
puters 31, 167–176.

Christou, C., Angus, C., Loscos, C., Dettori, A., Roussou, M., 2006. A versa-
tile large-scale multimodal VR system for cultural heritage visualization,
in: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, pp. 133–140.

Danado, J., Paternò, F., 2014. Puzzle: A mobile application development
environment using a jigsaw metaphor. Journal of Visual Languages &
Computing 25, 297–315.

De Pace, F., Manuri, F., Sanna, A., Zappia, D., 2019. A comparison between
two di↵erent approaches for a collaborative mixed-virtual environment in
industrial maintenance. Frontiers in Robotics and AI 6, 18.

44

Desolda, G., Ardito, C., Matera, M., 2017. Empowering end users to cus-
tomize their smart environments: model, composition paradigms, and
domain-specific tools. ACM Transactions on Computer-Human Interac-
tion 24, 1–52.

Ellis, T.O., Heafner, J.F., Sibley, W., 1969. The GRAIL language and oper-
ations. Technical Report. RAND Corp. Santa Monica, CA.

Fowler, A., Fristce, T., MacLauren, M., 2012. Kodu game lab: A program-
ming environment. The Computer Games Journal 1, 17–28.

Francese, R., Risi, M., Tortora, G., 2017. Iconic languages: Towards end-
user programming of mobile applications. Journal of Visual Languages &
Computing 38, 1–8.

Gault, P., Mastho↵, J., Johnson, G., 2015. Dicer: A distributed consumer
experience research method for use in public spaces. International Journal
of Human-Computer Studies 81, 49–71.

Ghiani, G., Manca, M., Paternò, F., Santoro, C., 2017. Personalization of
context-dependent applications through trigger-action rules. ACM Trans-
actions on Computer-Human Interaction 24, 1–33.

Ghiani, G., Paternò, F., Spano, L.D., 2009. Cicero designer: An environment
for end-user development of multi-device museum guides, in: International
Symposium on End User Development, pp. 265–274.

Hart, S.G., Staveland, L.E., 1988. Development of nasa-tlx (task load index):
Results of empirical and theoretical research, in: Advances in Psychology.
volume 52, pp. 139–183.

Herrmann, H., Pastorelli, E., 2014. Virtual reality visualization for pho-
togrammetric 3D reconstructions of cultural heritage, in: International
Conference on Augmented and Virtual Reality, pp. 283–295.

Ibrahim, N., Ali, N.M., 2018. A conceptual framework for designing virtual
heritage environment for cultural learning. Journal on Computing and
Cultural Heritage 11, 11.

Ioannidou, A., Repenning, A., Webb, D.C., 2009. Agentcubes: Incremental
3D end-user development. Journal of Visual Languages & Computing 20,
236–251.

45

Jeon, M., Fiebrink, R., Edmonds, E.A., Herath, D., 2019. From rituals to
magic: Interactive art and HCI of the past, present, and future. Interna-
tional Journal of Human-Computer Studies .

Jo, D., Kim, G.J., 2019. Iot+ ar: pervasive and augmented environments for
digi-log shopping experience. Human-centric Computing and Information
Sciences 9, 1.

Jost, B., Ketterl, M., Budde, R., Leimbach, T., 2014. Graphical programming
environments for educational robots: Open Roberta-yet another one?, in:
Proceedings of the IEEE International Symposium on Multimedia, pp.
381–386.

Kahn, K., 1995. Metaphor design. Case study of an animated programming
environment, in: Proceedings of the 1995 Computer Game Developer Con-
ference.

Kato, S., Tominaga, H., 2009. A practical lesson of introductory program-
ming exercise with Lego robot control and game project, Proceedings of the
Association for the Advancement of Computing in Education. pp. 1747–
1752.

Kim, H., 2010. E↵ective organization of design guidelines reflecting designer’s
design strategies. International Journal of Industrial Ergonomics 40, 669–
688.

Kim, H., Yoon, W.C., 2005. Supporting the cognitive process of user inter-
face design with reusable design cases. International Journal of Human-
Computer Studies 62, 457–486.

Kumar, R., Talton, J.O., Ahmad, S., Klemmer, S.R., 2011. Bricolage:
example-based retargeting for web design, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2197–2206.

Lamberti, F., Cannavò, A., Montuschi, P., in press. Is immersive virtual
reality the ultimate interface for 3D animators? IEEE Computer Magazine
, 1–7.

Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S.R., 2010. De-
signing with interactive example galleries, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2257–2266.

46

Leonardi, N., Manca, M., Paternò, F., Santoro, C., 2019. Trigger-action
programming for personalising humanoid robot behaviour, in: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, pp.
1–13.

Lind, M., Skavhaug, A., 2012. Using the Blender Game Engine for real-
time emulation of production devices. International Journal of Production
Research 50, 6219–6235.

Liu, C.L., 2014. A study of detecting and combating cybersickness with fuzzy
control for the elderly within 3D virtual stores. International Journal of
Human-Computer Studies 72, 796–804.

Lizcano, D., López, G., Soriano, J., Lloret, J., 2016. Implementation of end-
user development success factors in mashup development environments.
Computer Standards & Interfaces 47, 1–18.

Loke, L., Robertson, T., 2009. Design representations of moving bodies
for interactive, motion-sensing spaces. International Journal of Human-
Computer Studies 67, 394–410.

Maceli, M.G., 2017. Tools of the trade: A survey of technologies in end-
user development literature, in: International Symposium on End User
Development, pp. 49–65.

MacLaurin, M.B., 2011. The design of Kodu: A tiny visual programming
language for children on the Xbox 360, in: ACM Sigplan Notices, pp.
241–246.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E., 2010. The
Scratch programming language and environment. ACM Transactions on
Computing Education 10, 16.

McDermott, F., Maye, L., Avram, G., 2014. Co-designing a collaborative
platform with cultural heritage professionals, in: Proceedings of the 8th
Irish Human–Computer Interaction Conference, pp. 18–24.

Menestrina, Z., De Angeli, A., 2017. End-user development for serious games,
in: New Perspectives in End-User Development. Springer, pp. 359–383.

47

Nakanishi, H., 2004. Freewalk: A social interaction platform for group be-
haviour in a virtual space. International Journal of Human-Computer
Studies 60, 421–454.

Nielsen, J., 1995. 10 usability heuristics for user interface design. Nielsen
Norman Group .

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., Lahmine, S., 2015.
Learning basic programming concepts by creating games with Scratch
programming environment. Procedia Social and Behavioral Sciences 191,
1479–1482.

Paternò, F., 2013. End user development: Survey of an emerging field for
empowering people. ISRN Software Engineering 2013.

Pinto-Llorente, A.M., Casillas-Mart́ın, S., Cabezas-González, M., Garćıa-
Peñalvo, F.J., 2018. Building, coding and programming 3D models via a
visual programming environment. Quality & Quantity 52, 2455–2468.

Polvi, J., Taketomi, T., Moteki, A., Yoshitake, T., Fukuoka, T., Yamamoto,
G., Sandor, C., Kato, H., 2018. Handheld guides in inspection tasks:
Augmented reality versus picture. IEEE Transactions on Visualization
and Computer Graphics 24, 2118–2128.

Protopsaltis, A., Auneau, L., Dunwell, I., de Freitas, S., Petridis, P., Arnab,
S., Scarle, S., Hendrix, M., 2011. Scenario-based serious games repurpos-
ing, in: Proceedings of the 29th ACM international conference on Design
of communication, pp. 37–44.

Rubino, I., Barberis, C., Xhembulla, J., Malnati, G., 2015. Integrating a
location-based mobile game in the museum visit: Evaluating visitors’ be-
haviour and learning. Journal on Computing and Cultural Heritage 8,
15.

Sáez-López, J.M., Román-González, M., Vázquez-Cano, E., 2016. Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using Scratch in five schools. Computers &
Education 97, 129–141.

48

Samsel, F., Klaassen, S., Rogers, D.H., 2018. Colormoves: Real-time inter-
active colormap construction for scientific visualization. IEEE Computer
Graphics and Applications 38, 20–29.

Sanna, A., Lamberti, F., Bazzano, F., Maggio, L., 2016. Developing touch-
less interfaces to interact with 3D contents in public exhibitions, in: Pro-
ceedings of the International Conference on Augmented Reality, Virtual
Reality and Computer Graphics, pp. 293–303.

Schmalstieg, D., Stork, A., 2019. Unified patterns for realtime interactive
simulation in games and digital storytelling. IEEE Computer Graphics
and Applications 39, 100–106.

Serim, B., Ahmed, I., Ylirisku, S., 2015. Extreme co-design: Prototyping
with and by the user for appropriation of web-connected tags, in: 5th
International Symposium on End-User Development, p. 109.

Song, M., Elias, T., Martinovic, I., Mueller-Wittig, W., Chan, T.K., 2004.
Digital heritage application as an edutainment tool, in: Proceedings of the
ACM SIGGRAPH International Conference on Virtual Reality Continuum
and its Applications in Industry, pp. 163–167.

Spahn, M., Wulf, V., 2009. End-user development of enterprise widgets, in:
International Symposium on End User Development, pp. 106–125.

Stolee, K.T., Fristoe, T., 2011. Expressing computer science concepts through
Kodu game lab, in: Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education, pp. 99–104.

Stratton, A., Bates, C., Dearden, A., 2017. Quando: Enabling museum
and art gallery practitioners to develop interactive digital exhibits, in:
International Symposium on End User Development, pp. 100–107.

Sutherland, I.E., 1964. Sketchpad - A man-machine graphical communication
system. Simulation 2, R–3.

Swearngin, A., Dontcheva, M., Li, W., Brandt, J., Dixon, M., Ko, A.J., 2018.
Rewire: Interface design assistance from examples, in: Proceedings of th e
2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12.

49

Tetteroo, D., Markopoulos, P., Valtolina, S., Paternò, F., Pipek, V., Bur-
nett, M., 2015. End-user development in the Internet of Things era, in:
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems, pp. 2405–2408.

Valderas, P., Pelechano, V., Pastor, O., 2006. Towards an end-user develop-
ment approach for web engineering methods, in: International Conference
on Advanced Information Systems Engineering, pp. 528–543.

Ventura, M., Ventura, J., Baker, C., Viklund, G., Roth, R., Broughman,
J., 2015. Development of a video game that teaches the fundamentals of
computer programming, in: Proceedings of the Annual IEEE Region 3
Technical, Professional, and Student Conference, pp. 1–5.

Vi, C.T., Ablart, D., Gatti, E., Velasco, C., Obrist, M., 2017. Not just
seeing, but also feeling art: Mid-air haptic experiences integrated in a
multisensory art exhibition. International Journal of Human-Computer
Studies 108, 1–14.

Waldon, S.M., Thompson, P.M., Hahn, P.J., Taylor II, R.M., 2014. Sketch-
bio: A scientist’s 3D interface for molecular modeling and animation. BMC
Bioinformatics 15.

Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D.C.,
Franklin, D., 2018. Evaluating coblox: A comparative study of robotics
programming environments for adult novices, in: Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, pp. 1–12.

Wojciechowski, R., Walczak, K., White, M., Cellary, W., 2004. Building
virtual and augmented reality museum exhibitions, in: Proceedings of the
9th International Conference on 3D Web technology, pp. 135–144.

Yoon, S.Y., Choi, Y.J., Oh, H., 2015. User attributes in processing 3D
VR-enabled showroom: Gender, visual cognitive styles, and the sense of
presence. International Journal of Human-Computer Studies 82, 1–10.

Zhan, Y., Hsiao, M., 2018. A natural language programming application
for Lego Mindstorms EV3, in: 2018 IEEE International Conference on
Artificial Intelligence and Virtual Reality, pp. 191–192.

Zyda, M., 2005. From visual simulation to virtual reality to games. Computer
38, 25–32.

50

	Introduction
	Related Work
	Applications for Public Exhibitions
	End-User Development
	Visual Programming Languages
	Leap Embedder

	Visual Scene Editor
	LE Limitations and Proposed Solutions
	Visual Elements Identification
	Inter-object Communication
	Relations Visualization

	Architecture and Usage Workflow
	GUI's Design Steps
	GUI's Functionalities and Visual Notation
	Library
	Scenes
	Objects
	Links
	Templates and Scene Behaviors
	When-Do Blocks

	Software Modules

	Use Case
	Experimental Evaluation
	Experiments and Participants
	Tasks
	Methodology
	Metrics

	Results
	Study S1
	Study S2

	Conclusions

