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Abstract — Maintaining appropriate levels of Physical 
Activity (PA) and healthy lifestyles produces several health 
benefits. The U.S. Department of Health and Human Services 
recommended from 150 minutes to 300 minutes a week of 
moderate PA to obtain substantial health advantages. To 
promote well-being and healthy lifestyles, digital technologies 
play a very important role, since they can give a real-time 
feedback about the performed activities. In this study, we 
analyzed the lifestyle of a female group of university workers. We 
asked 23 healthy women belonging to the community of 
Politecnico di Torino to wear a device during a typical working 
day. The device was able to classify the activities performed by 
the subject in six classes: “resting” (i.e., sitting and laying), 
upright standing, walking, ascending stairs, descending stairs 
and “other activities” (comprising all the activities not included 
in the previous classes). We analyzed the time spent on each 
activity during the day and found that subjects spent, in average, 
almost one hour on dynamic activities (walking and stair 
climbing), that is in line with the recommendations.  However, 
subjects did not carry out these activities continuously, but they 
split them into relatively short intervals whose maximum 
duration was approximately 10 minutes. 

Keywords—physical activity, wearable sensors, human activity 
recognition, decision tree 

I.  INTRODUCTION 

Benefits of daily Physical Activity (PA) are well known 
and widely demonstrated. Wu et al. proved that 30 minutes of 
physical exercise five times a week reduce hospitalization in 
overweight and obese adults suffering from diabetes [1]. In a 
recent study by Schneider et al. [2], authors found that patients 
affected by Chronic Obstructive Pulmonary Disease (COPD) 
performing PA in combination with a non-sedentary lifestyle 
present markedly better clinical conditions than sedentary ones. 
Moreover, PA produces several benefits from the psychologic 
point of view [3]. These are only a few examples among 
numerous recent works demonstrating the benefits produced by 
a correct lifestyle. 

In 2018, the U.S. Department of Health and Human 
Services published the “Physical Activity Guidelines for 
Americans, 2nd edition” [4] to help people improving their 
health by a regular PA. This report recommends from 150 
minutes to 300 minutes a week of moderate PA to obtain 

substantial health benefits. Moreover, the same report 
highlights a difference of the PA levels in American adults 
between men and women: only 26% of men and 19% of 
women met the guidelines in 2016.  

In the broad contest of promoting well-being and healthy 
lifestyles, Digital Behavior Change Interventions (DBCIs) can 
play an essential role. The term DBCI identifies “an 
intervention that employs digital technology to promote and 
maintain health” [5]. The technologies suitable to this purpose 
can range from smartphones, personal computers, and tablets to 
wearable devices able to give a real-time feedback on the 
performed activities [6]. Wearable devices [7], [8] usually rely 
on a) a set of sensors acquiring signals that describe the activity 
accomplished by the subject, and b) a processing unit, 
responsible for signal recording and activity classification.  

As previously mentioned, women are more critical than 
men in maintaining appropriate levels of PA (19% of women 
vs  26% of men that met the guidelines [4]). The aim of this 
study is to analyze the lifestyle of a female group of university 
workers during a typical working day by using a wearable 
device. In particular, we monitored the time spent by each 
subject in performing different daily activities, to understand if 
their level of PA was in line with the current recommendations. 

II. MATERIALS AND METHODS 

A. Population and Experimental Protocol 

Twenty-three healthy women (age: 33 ± 11 years; age 
range: 24 - 60 years) were involved in this study. All the 
subjects were part of the community of Politecnico di Torino.  

A wearable device by Medical Technology, Torino, Italy, 
based on a magnetic and inertial measurement unit, acquired 
the signals. The sensor consists of a tri-axial accelerometer, a 
tri-axial gyroscope and a tri-axial magnetometer allowing for 
acquiring acceleration, rate of turn, and Earth-magnetic field, 
for a total of 9 signals. The measurement range was ± 4 g for 
the accelerometers, ± 2000 °/s for the gyroscopes, and  ± 4 G 
for the magnetometers. The sampling frequency was equal to 
80 Hz. The device was supplied with a 32-bit microprocessor 
equipped with a fixed point processing unit (ARM 4 Cortex). 



The wearable device was fixed on the lateral side of the 
right thigh, using an elastic band. The y-axis was oriented in 
down-top vertical direction, x-axis was aligned to the antero-
posterior direction, and z-axis was aligned to the medio-lateral 
direction. All subjects were asked to wear the device during a 
typical working day, from the morning to the evening. Each 
subject signed an informed consent form. 

The device was able to recognize five different kinds of 
activities: “resting” (i.e., sitting or laying), upright standing, 
walking, ascending, and descending stairs. Moreover, a further 
class of activities called “other activities” was considered, 
comprising all the activities not included in the previous 
categories. The details of the signal processing and 
classification algorithms implemented on the microcontroller 
are described below. 

B. Signal Processing  

To avoid bias due to magnetic disturbances on the 
magnetometer, only inertial signals (i.e., accelerometer and 
gyroscope signals) were used for the activity recognition. Each 
signal was segmented using a 5 s sliding window with an 
overlap of 3 s between subsequent windows. 

C. Activity Recognition 

 The microcontroller analyzed every window to recognize 
the type of activity performed by the subject.  

First of all, since static (“resting” and upright standing) and 
dynamic activities (walking, ascending and descending stairs) 
show very different signal characteristics, a first recognition 
step based on two rules was implemented to discriminate these 

two classes of movements:  

 if the variance of gyroscope signal in z direction is 
below 600 deg∙s-1, then the time window represents a static 
activity, otherwise it represents a dynamic activity. 

 Static activities were further separated in “resting” and 
“standing” according to the following rule: 

 if the mean value of acceleration in the y direction is 
below 8.5 m∙s-2, then the window is classified as 
“resting”, else the window is classified as standing. 

Thresholds used in this first rule-based recognition step 
were identified by analyzing the characteristic of the signals 
during static and dynamic activities, with the support of an 
expert in movement analysis. In particular, the first threshold 
(variance of gyroscope signal in z direction is below 600 deg∙s-

1) was due to the fact that during static activities the inertial 
signals are stable and almost constant, and thus they present a 
lower variability with respect to dynamic activities. The second 
threshold (mean value of acceleration in the y direction is 
below 8.5 m∙s-2) was set taking into account the value of the 
gravitational acceleration. In fact, during static activities the 
mean value of the accelerometer signal in vertical direction is 
almost equal to the gravitational acceleration, while in the other 
directions it is almost 0. During upright standing, the y axis is 
oriented in top-down vertical direction and, thus, its signal is 
centered around 9.8 m∙s-2. On the contrary, during resting 
(sitting or laying) the y axis is quite horizontal, and the 
corresponding signal has a mean value substantially lower 
(around 0 m∙s-2). For this reason, we set a threshold to 8.5 m∙s-2 
that allows to separate the two situations, admitting a certain 
degree of variability in the signals due to noise, small 

 

Fig. 1. Decision Tree (DT) classifier implemented on the wearable device for recognizing dynamic activities. Each node is associated to a variable (identified as 
‘x’ with the corresponding identification number) and a corresponding threshold. The leaves represent the class assigned to the window (1: walking; 2: ascending 
stairs; 3: descending stairs). 



movements, … 

All the windows recognized as dynamic by the application 
of the first rule were then fed into a Decision Tree (DT) 
classifier that separates the windows belonging to the 
remaining three classes (walking, ascending and descending 
stairs). The selection of this classifier emerged from a previous 
study, in which we demonstrated that DT can be easily 
implemented on a microcontroller and allows to reach very 
high recognition performances (> 90 %) [9]. 

A DT is a tree-like graph that, once constructed, is able to 
perform classification using a set of nested if… then rules based 
on specific variables and thresholds. In this case, the DT used a 
set of 32 variables, which were computed for each time-
window by the microcontroller. These variables, all belonging 
to the time-domain, were automatically selected during the 
construction of the DT, from an initial set of 221 features. 
Briefly, for each signal we extracted information about zero 
crossings and number, position, and duration of positive and 
negative peaks (33 features x 6 signals). Moreover, we 
computed single and double integration of the acceleration in 
the anteroposterior and vertical directions, and the single 
integration of the rate of turn in mediolateral direction. Other 
23 features were extracted from these signals. A detailed 
description of the initial set of features can be found in [6]. 
Only 32 variables were used by the DT: from the accelerometer 
signal, 1 feature was calculated in x direction, 6 features in y 
direction and 2 features in z direction; from the gyroscope 
signal, 3 features were calculated in x direction and 11 features 
in z direction; the remaining 9 features were calculated from 
the integrated signals. 

Fig. 1 shows the DT implemented on the device. In the tree, 
each node is associated to a variable (identified as ‘x’ with the 
corresponding identification number) and a corresponding 
threshold. The leaves represent the class assigned to the 
window (1: walking; 2: ascending stairs; 3: descending stairs). 

D. Post-processing 

Finally, we implemented a post-processing step based on 
majority voting on the activity assigned to each window, to 
reduce isolated classification errors: considering five 
subsequent windows, the most frequently recognized activity 
was assigned to the entire group of windows. In case of no 
prevalent activity in the group of 5 windows, all windows were 
assigned to the class “other activities”. 

III. RESULTS AND DISCUSSION 

The average recording time over the group of subjects 
(mean ± standard deviation) was 10.2 ± 1.7 hours.  

Fig. 2 shows the percentage of time spent in each activity 
during the day (the corresponding mean time, in minutes, is 
reported in brackets). Fig. 2 demonstrates that most of the time 
(about 70%) is spent “resting”, in particular in the sitting 
position. Almost 90 minutes are spent, on average, in upright 
standing (16.2% of the recording time). Dynamic activities, 
such as walking and stair climbing, take up only the 11.6% of 
the time, in average approximately one hour.  

 Fig. 3 shows the distribution of the longest continuous 
walking time for each subject. As it can be observed, only two 
subjects out of 23 walked continuously for more than 20 
minutes. On the average, the longest walking time without 
interruption is 10 minutes.  

 Analyzing these results in light of the recommendations of 
the U.S. Department of Health and Human Services, we can 
state that our population reaches the required levels of PA. In 
fact, our findings show approximately 60 minutes of dynamic 
activities in a typical weekday, corresponding to 300 minutes a 
week (considering only the working days). However, from an 
in-depth analysis of these activities, in particular walking, it is 
evident that this activity is not continuous, but it is divided into 
numerous intervals.  

IV. CONCLUSIONS 

This study analyzed the lifestyle of a female group of 
university workers during a typical working day, to verify if 
their level of PA was in line with the current recommendations. 
Our results show that the average time spent in dynamic 
activities (approximately one hour) reaches the requirements of 

 

Fig. 2.  Percentage of time spent in each activity during the day (the
corresponding mean time, in minutes, is reported in brackets). 

Fig. 3.   Distribution of the longest continuous walking time for each subject. 



the U.S. Department of Health and Human Services. However, 
these activities are not carried out continuously, but they are 
split into shorter activity intervals whose average duration is 10 
minutes. Although the calories spent for carrying out a specific 
activity do not depend on the fact that the activity is carried out 
continuously, to obtain a benefit from a cardiopulmonary point 
of view it is generally recognized that sessions of at least 20 
minutes continuous of walking are required. It follows that 
only a minority of the subjects that participated in this study (2 
out of 23) really reaches the prescribed levels of PA. 

However the use of wearable devices, able to return a real-
time feedback about the performed activities, could help people 
to increase awareness about their health and pushed them to 
reach suitable levels of PA. 
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