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a b s t r a c t

Sleep modes are widely accepted as an effective technique for energy-efficient networking:
by adequately putting to sleep and waking up network resources according to traffic
demands, a proportionality between energy consumption and network utilization can be
approached, with important reductions in energy consumption. Previous studies have
investigated and evaluated sleep modes for wireless access networks, computing variable
percentages of energy savings. In this paper we characterize the maximum energy saving
that can be achieved in a cellular wireless access network under a given performance con-
straint. In particular, our approach allows the derivation of realistic estimates of the
energy-optimal density of base stations corresponding to a given user density, under a
fixed performance constraint. Our results allow different sleep mode proposals to be mea-
sured against the maximum theoretically achievable improvement. We show, through
numerical evaluation, the possible energy savings in today’s networks, and we further
demonstrate that even with the development of highly energy-efficient hardware, a holis-
tic approach incorporating system level techniques is essential to achieving maximum
energy efficiency.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The ethical imperative to reduce their carbon footprint,
combined with the financial realities of increasing energy
costs, and the difficulties of network deployment in devel-
oping countries with unreliable power grids, has telecom-
munication network operators keenly interested in energy
saving approaches.

In cellular networks, reducing the power consumed by
base stations is, by far, the most effective mean to stream-
line energy consumption. As an example, in the case of
UMTS, one typical Node-B consumes around 1500 W, and
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the multitude of these devices accounts for between 60%
and 80% of the network’s energy consumption [1,2], often
representing the main component of an operator’s opera-
tional expenditures.

Several international research projects have recently
explored the possibilities for reducing energy consumption
of base stations [3–5], since the classical assumptions that
they can rely on access to a reliable supply of energy with
acceptable cost are challenged in the networking context
of today. While equipment manufacturers are working to
produce more energy-efficient hardware [6], as we show,
system-level approaches are called for, to obtain networks
with the lowest possible energy consumption. Base sta-
tions are deployed according to dimensioning strategies
that ensure acceptable user performance at peak
(worst-case) traffic loads. However, traffic loads fluctuate
modes,

http://dx.doi.org/10.1016/j.comnet.2014.10.032
mailto:balaji.rengarajan@acceleramb.com
mailto:gianluca.rizzo@hevs.ch
mailto:ajmone@polito.it
http://dx.doi.org/10.1016/j.comnet.2014.10.032
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2014.10.032


71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

2 B. RengarajanQ1 et al. / Computer Networks xxx (2014) xxx–xxx

COMPNW 5448 No. of Pages 12, Model 3G

1 December 2014

Q1
throughout the day. For example, we expect diurnal pat-
terns in the rate of user requests that mirror human pat-
terns. Additionally, as the users of the network move
during the day, they cause fluctuations in the spatial traffic
load seen by base stations serving different locations. In
[7,8], the possibility of reducing power consumption in cel-
lular networks by reducing the number of active cells in
periods of low traffic was considered, but the degradation
in performance experienced by users in such a scenario,
due to active base stations having to serve larger numbers
of users that are located farther away from their serving
base station was not explicitly taken into account. How-
ever, an important requirement for any energy saving mea-
sure, such as the introduction of sleep modes for base
stations, is that they must be (almost) transparent to users.
This means that the user-perceived performance must be
above the target threshold at peak hours, when the load
on the network is the highest, and all base stations are
active, as well as in non-peak periods, when the load is
lower, but the network is operating with reduced
resources. In other words, the performance sacrifices that
are implied by the introduction of energy-saving measures
must be compatible with the target design objectives.
Recently, several different approaches have been proposed
to turn off base stations to conserve energy and to make
the network energy consumption more proportional to uti-
lization. For a very recent survey see [2]. However, to the
best of our knowledge, the maximal energy savings that
can be achieved under some predefined performance con-
straint was considered only in [9]. In this paper, we expand
on the results in [9], and provide bounds on the minimum
density of base stations required to achieve a given perfor-
mance objective irrespective of the base station topology.

Our objective is to obtain a realistic characterization of
the potential energy savings that can be achieved by sleep
mode schemes under fixed user performance constraints,
and study the impact of base station layout, power con-
sumption model, and user density on the energy-optimal
configuration of the access network. The metric we use
to capture performance is the per-bit delay [10] (whose
inverse is the short-term throughput) perceived by a typi-
cal user. The network is constrained to maintain, at all
times, the average per-bit delay across users below a pre-
determined threshold. Our contributions are as follows:

� For a given base station layout, we develop a method
for estimating the density of base stations that min-
imizes energy consumption and which is sufficient
to serve a given set of active users, with fixed perfor-
mance guarantees.

� For base stations whose power consumption is inde-
pendent of load (not unlike current hardware), we
derive a layout-independent lower bound on the den-
sity of base stations required to support a particular
user density and thus an upper bound on energy saving.

� Through numerical evaluation, we compute bounds
on the maximum energy saving, and illustrate the
impact of various system parameters (user density,
base station layout, target per-bit delay, base station
energy model). We also assess the impact of user
Please cite this article in press as: B. Rengarajan et al., Energy-optimal b
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clustering and of correlation between user cluster
locations and base station locations. We demonstrate
that even with highly energy-efficient hardware,
system level techniques are crucial to minimizing
energy consumption. We find that the variability in
performance across users is sufficiently low, validat-
ing the choice of the mean of the per-bit delay as a
suitable metric for capturing user performance.

Our results are bounds with respect to what can be
achieved in real networks, since we assume that any base
station density is achievable, although this is clearly not pos-
sible in practice, since in real networks base stations can be
turned off, but their locations cannot be rearranged accord-
ing to traffic variations. The relevance of our bounds lies in
that they indicate what are the theoretical minimum base
station densities and energy consumption, allowing the
effectiveness of different proposals to be measured against
the maximum theoretically achievable improvement. With
respect to [9], in this paper we consider a more general
user traffic scenario, including both best-effort and con-
stant bit rate services, we study the effect of base station
sleep modes on the user terminal battery drain, and we
investigate the impact of nonuniform layouts of users
and base stations.

The paper is organized as follows. In Section 2, we pres-
ent our model for the distribution of users and of base sta-
tions, and we state the main assumptions underlying our
approach. In Section 3, we derive the average and the var-
iance of the per-bit delay. In Section 4, we use the results of
the previous sections to compute the energy-optimal base
stations density for a given user density, and to estimate
the achievable energy savings. Section 5 presents lower
bounds on the base station densities required to satisfy
the performance constraints. In Section 6, we present
numerical results, and we conclude the paper in Section 7.

2. Model and assumptions

We mostly consider the downlink information transfer
in a cellular access network, as typically it carries a larger
amount of traffic than the uplink, and it has a larger impact
on the energy consumption of the mobile network opera-
tor. However, we will also later verify the impact of our
results on the uplink, by looking at the increase in the aver-
age distance between end user terminals and base stations,
as well as at the end user terminal power consumption.

Users form a homogeneous planar Poisson point pro-
cess, Pu, with intensity ku users per square km, while base
stations form a planar point process, Pb, with density kb

base stations per square km.
While the methodology introduced in this paper is quite

general, and can be extended to many different base sta-
tion configurations, we restrict ourselves to the following
models for base station distribution across the service
area:

� Manhattan layout: base stations lie on the vertices of
a square grid, where the side of each square is
lb ¼ 1ffiffiffiffi

kb

p km.
ase station density in cellular access networks with sleep modes,

http://dx.doi.org/10.1016/j.comnet.2014.10.032


187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

B. RengarajanQ1 et al. / Computer Networks xxx (2014) xxx–xxx 3

COMPNW 5448 No. of Pages 12, Model 3G

1 December 2014

Q1
� Hexagonal layout: base stations lie at the centers of a

hexagonal tessellation of side lH ¼ 2
3
ffiffi
3
p

kb

� �1
2

km.

� Poisson layout: base stations are distributed over the
service area according to a two-dimensional homo-
geneous Poisson point process with density kb.

The first two distributions above reflect regular topolo-
gies often used for the analysis and design of cellular net-
works, while the third reflects the result of real life
constraints on the base station locations. For example, we
examined the distribution of the base stations operated
by an important international operator in the bay area of
Sydney, Australia [11]. The area we chose is densely popu-
lated, with an average base station density of 81.64 base
stations per square km, and is a good candidate for reduc-
ing the density of active base stations in periods of low
load. Fig. 1 displays the empirically determined distribu-
tion of the number of base stations within a randomly cen-
tered rectangle, along with a Poisson pdf with an expected
value matching the average number of base stations found
within the rectangle. While the Poisson pdf is not an exact
fit, it reasonably approximates the variability introduced
by practical constraints on base station location.

We assume that all base station densities are feasible. In
the case of the Manhattan and hexagonal layouts of base
stations, since only a subset of existing base stations can
be turned off, only a discrete subset of densities corre-
sponding to those that maintain the structure of the topol-
ogy can be achieved. However, in the homogeneous
Poisson process layout of base stations, if each base station
independently makes a decision to either turn off, or stay
on, according to some probability, the resulting point
process of base stations is a thinned homogeneous Poisson
process, and all base station densities are indeed
achievable.

The end user performance metric that we use is per-bit
delay of best effort data transfers.

Definition 2.1 (Per-bit delay). The per-bit delay, s, that a
user perceives is defined as the inverse of the short-term
user throughput, i.e., the actual rate at which the user is
269

270

271

272
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0

0.05

0.1

0.15

0.2

# base stations in an area of 0.0417 Km2

Base station distribution
Poisson pdf

Fig. 1. Empirical distribution of the number of base stations in a
rectangular area of downtown Sydney (AU), and Poisson distribution
with equal average.
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served, taking into account the capacity to the user as well
as the sharing of the base station time across all associated
users.

We will compute both the average and the variance of
the per-bit delay, and we will use them, together with per-
centiles, as performance metrics. The performance con-
straint that is enforced is as follows: if the average per-
bit delay experienced by a typical user, �s, is less than a pre-
defined threshold �s0 s, then users are said to perceive sat-
isfactory performance, and the corresponding base station
distribution is feasible. Here, the interpretation of a typical
user is that provided by Palm theory [12], and �s is com-
puted as the expectation of s with respect to the Palm dis-
tribution P0 associated with Pu. Intuitively, the Palm
distribution is the conditional distribution given that there
is a point belonging to Pu at the origin. The variance of the
per-bit delay allows the characterization of the spread of
the performance perceived by different end users at a
given time instant. It should be however observed that
user mobility makes the performance of each individual
user vary over time, reducing variance across users in the
long run. For this reason, we just use the average as a per-
formance constraint, but we also observe the variance, in
order to verify that performance differences across users
remain acceptable.

We assume that the network serves a mix of best effort
traffic and constant bit rate traffic (the latter can be voice,
or voice-like traffic, or video), that is served at strictly
higher priority than best-effort data traffic. We consider
that a fraction c of the users makes voice-like calls with
mean call holding time l�1

H and mean inter-call waiting
time l�1

W . The rate requirement for an active call is R0 bits
per second. The remaining fraction ð1� cÞ of the users
requests best-effort service. Base stations serve calls for
the fraction of time that ensures that the user achieves
exactly the target bit rate, a fraction of which is consumed
by voice-like calls, while the rest is filled by best-effort
data traffic. The active base stations in the network must
be capable of providing a user-perceived average per-bit
delay of at most �s0, while prioritizing voice-like traffic.
We assume that, due to the necessity of providing ade-
quate performance to best effort users, voice-like traffic
consumes a small fraction of the cell bandwidth, so that
the resulting blocking probability for voice calls is negligi-
ble. We assume best effort users are in saturation, i.e. they
are always receiving content.
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2.1. Channel and service model

In this paper, we do not consider the effect of interfer-
ence, fading and shadowing, and only take into account
distance-dependent path loss. We assume that users are
served by the base station that is closest to them, i.e., by
the base station that corresponds to the strongest received
signal, as it normally happens in reality. Denote by SðxÞ, the
location of the base station that is closest to a user located
at x, and by DðxÞ the distance between the user and the
closest base station. The number of active users associated
with base station SðxÞ is denoted NðSðxÞÞ. We denote the
capacity to a user located at a distance r from the base
ase station density in cellular access networks with sleep modes,
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station by CðrÞ bit/s per Hertz. The capacity can be mod-
eled, for example, using Shannon’s capacity law or other
models such as a quantized set of achievable rates.

We define qV to be the fraction of base station time that
is required, on average, to serve voice-like traffic. In order
to serve a call originating from a user at a distance jxj,
the base station has to devote a fraction of time equal to

R0
CðjxjÞ. For the base station to which the user located at the
origin is associated,

qV ¼
X
x2X

R0

CðjxjÞ :
l�1

H

l�1
H þ l�1

W

1SðxÞ¼Sð0Þ; ð1Þ

where l�1
H

l�1
H þl�1

W
is the average fraction of time that a user

requires voice service, and X is the set of voice user loca-
tions. 1SðxÞ¼Sð0Þ is the indicator function of the event that a
user at location x is served by same base station that serves
the user at the origin.

Base stations devote only the resources (time) that
remain after serving the voice calls to best effort users.
We assume that base stations use a processor sharing
mechanism to divide capacity among all the connected
best-effort users. By doing so, a notion of fairness is
imposed, since all best effort users associated with a par-
ticular base station are served for an identical fraction of
time.

2.2. Energy consumption model

We assume that base stations always transmit at a fixed
transmit power. When the base station density is higher
than that required to achieve the threshold expected per-
bit delay �s0, we assume that base stations only serve users
for the fraction of time required to satisfy the performance
constraint, and remain idle (i.e., not transmitting to any
user) for the rest. We denote with U the utilization of base
stations, i.e., U is the average fraction of time in which the
base station is transmitting.

We model the power in watts consumed by a base sta-
tion as k1 þ k2U, where k1 is the power consumed by keep-
ing a base station turned on with no traffic, and k2 is the
rate at which the power consumed by the base station
increases with the utilization. The first energy model that
we study reflects the current base station design, and
assumes that the bulk of the energy consumption at the
base stations is accounted for by just staying on, while
the contribution to energy consumption due to base sta-
tion utilization is negligible (i.e., k2 ¼ 0). We also study
energy consumption models with k1 and k2 chosen to
reflect a more energy-proportional scenario i.e., k1 � k2.
Typical values of these parameters in current BS models
can be found in [13].

3. Modeling user perceived performance

In this section we consider the case in which the net-
work only serves best effort users, i.e. c ¼ 0. We character-
ize the per-bit delay perceived by a typical best-effort user
who is just beginning service, as a function of the density
of users and base stations under the different base station
topologies.
Please cite this article in press as: B. Rengarajan et al., Energy-optimal b
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Theorem 3.1. The average per-bit delay �s perceived by a
typical best-effort user joining the system when the density of
base stations is kb and the density of users is ku, is given by:

� Hexagonal layout:
ase sta
�sH ¼ 6ku

Z 1
2
ffiffi
3
p

kb

� �1
2

0

Z yffiffi
3
p

� yffiffi
3
p

1
Cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ

dxdy ð2Þ
� Manhattan layout:
�sM ¼ ku

Z 1

2
ffiffiffi
kb

p

� 1

2
ffiffiffi
kb

p

Z 1

2
ffiffiffi
kb

p

� 1

2
ffiffiffi
kb

p
1

Cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ

dxdy ð3Þ
� Poisson layout:
�sP¼
Z 1

0

Z 1

0

Z 2p

0
e�kbAðr;x;hÞkuxdhdx

� �
e�kbpr2

kb2pr
CðrÞ dr:

ð4Þ
where Aðr; x; hÞ is the area of the circle centered at ðx; hÞ
with radius x that is not overlapped by the circle cen-
tered at ð0;�rÞ with radius r.
Proof (Proof Sketch). We leverage Slivnyak’s theorem [12],
and derive a formula for the mean per-bit delay
experienced by adding a point at the origin to Pu. The
mean per-bit delay depends on the capacity at which the
user at the origin can be served, which in turn depends
on the distance between the user and the serving base
station (the one that is closest to the origin). Further, the
per-bit delay perceived by any user is affected by the num-
ber of users that share the serving base station. The mean
per-bit delay experienced by the user at the origin can be
computed as:

E0½s� ¼ E0 CðDð0ÞÞ
NðSð0ÞÞ

� ��1
" #

¼ E0 NðSð0ÞÞ
CðDð0ÞÞ

� �
: ð5Þ

Here E0 denotes the expectation with respect to the Palm
distribution associated with Pu. A detailed proof, including
the formula to compute Aðr; x; hÞ, is in A. h

Further, we characterize the variance in the user-per-
ceived per-bit delay through the following theorem.

Theorem 3.2. The variance of the per-bit delay, r2, perceived
by a typical best-effort user joining the system when the
density of base stations is kb and the density of users is ku, is
given by:

� Hexagonal layout:
r2
H ¼ ��s2

H þ 6ku þ 9
ffiffiffi
3
p

l2
Hk2

u

� �Z ffiffi
3
p

2 lH

0

Z yffiffi
3
p

� yffiffi
3
p

� 1

ðCð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ2

dxdy ð6Þ
� Manhattan layout:
tion density in cellular access networks with sleep modes,
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Comp
r2
M ¼ ��s2

M þ ku þ
k2

u

kb

 !Z 1

2
ffiffiffi
kb

p

� 1

2
ffiffiffi
kb

p

Z 1

2
ffiffiffi
kb

p

� 1

2
ffiffiffi
kb

p

� 1

ðCð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ2

dxdy ð7Þ
443
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Z 1

0

Z 1

0

Z 2p

0
e�kbAðr;x;hÞku dhxdx

� �2"(

þ
Z 1

0

Z 2p

0
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�
e�kbpr2

kb2pr

CðrÞ2
dr

)
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Proof. see Appendix B. h

4. Optimizing base station energy consumption

In this section we explain how to derive, from the
energy model of base stations, the energy optimal density
of base stations which satisfies the performance con-
straints. To this end, the following result provides a link
between user performance and base station utilization,
under the mixed traffic model.

Theorem 4.1. For a given density of users, of base stations,
and a given share of voice users c, the average base station
utilization in the network, in the mixed traffic model, is given
by

Uðkb; kuÞ ¼ 1þ c R0
l�1

H

l�1
H þ l�1

W

�s0 � 1
� �� �

�sBE

�s0 ð9Þ

where �sBE is given by Theorem 3.1 for the different BS layouts.
For the proof, see Appendix C. Moreover, it is easy to

verify that U 6 1) �s 6 �s0, where �s is the expected per
bit delay for best effort users in the mixed traffic case.

Given the expression of the expected per bit delay, and
of the average utilization, the energy optimal BS density
derives from solving the following optimization problem:

OPTIMIZE(ku; �s0)

minimize
kb

kb k1 þ k2Uðkb; kuÞð Þ

subject toUðkb; kuÞ 6 1
kb;min 6 kb 6 kb;max

ð10Þ

OPTIMIZE being a problem with only one variable, it can
easily be solved by exhaustive search in the interval
½kb;min; kb;max�. The lower bound kb;min to BS density is typi-
cally determined by the minimum SNR (SINR) acceptable
at the receiver. The maximum BS density kb;max is deter-
mined by the considered BS technology. For very dense
BS deployments, other types of BS are typically considered,
with different maximum transmitted power and a differ-
ent energy model.

For energy models which are completely insensitive to
traffic (i.e. k2 ¼ 0) this problem boils down to finding the
BS density which satisfies the constraint on U with equal-
ity, i.e. the minimum feasible density for a given user
density.
cite this article in press as: B. Rengarajan et al., Energy-optimal b
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In the case of the energy model with k2 ¼ 0, energy con-
sumption is minimized by using the lowest base station
density that can achieve the desired user performance.
Given ku; kb and c, the per-bit delay �sBE perceived by a typ-
ical user in the pure best effort case can be evaluated using
the results from Section 3. Uðkb; kuÞ is decreasing in kb.
Thus, we can set the expressions of the average utilization
equal to one, to determine the minimum required base sta-
tion density k�b. For this energy model, that approximates
current base station power consumption trends, we deter-
mine lower bounds for the required base station density
and thus energy consumption, irrespective of base station
distribution, in the following section.

When k1 � k2, base stations utilization plays a key
role in determining the energy consumed. In this case,
it is easy to see that the desired user performance can
be achieved by the base stations with utilization less than
one. For best effort users, this means having base stations
actively serving them for a time fraction ð1� E0½qV �Þ �s

�s0 6

ð1� E0½qV �Þ, provided that �s 6 �s0. If, instead, �s > �s0, the
base station density kb cannot meet the performance con-
straint for best effort users. Thus, the base station serving
the typical user will be serving actively for a time frac-
tion equal to U, given by (9). From this, we can calculate
the energy consumed in order to satisfy the performance
constraint at any feasible base station density, and there-
fore determine the base station density that minimizes
energy consumption.

Moreover as it is evident from the expression of the
average base station utilization in (9) and from the for-
mulation of the optimization problem, a change in the
share of voice-like traffic over the total amount of traffic
served by the network (i.e. a change in c) has the same
effects on the energy optimal base station density as a
change in the coefficient k2 of the energy model, increas-
ing or decreasing the amount of energy proportionality
of the BSs.

Finally, note that quite counterintuitively, and despite
the different scheduling policy for best effort and voice like
traffic, when the target performance parameters for voice-
like and best effort traffic are comparable (more precisely,

when R0
l�1

H
l�1

H þl�1
W
¼ 1

�s0), the solution of the optimization prob-

lem is insensitive to the percentage of voice like traffic.
This seems to suggest that, with the assumptions made
for our system, it is the target QoS requirement more than
the type of traffic which impacts the energy optimal
configuration.
5. A lower bound on BS density

Clearly, the density of base stations required to support
a particular population of users depends on the geometry
of the base station layout. In this section, we determine a
lower bound on the base station density required to
achieve the target average per-bit delay across all base sta-
tion distributions, when there are only best effort users in
the network. This lower bound corresponds to the base sta-
tion density that minimizes energy consumption in the
case of the energy model with k2 ¼ 0.
ase station density in cellular access networks with sleep modes,
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Theorem 5.1. A lower bound on the minimum density of
base stations sufficient to serve a population of users with
density ku with an average per-bit delay �s0 for best-effort
users is given by k�b that satisfies

�s0 ¼ 2pku

Z 1ffiffiffiffiffi
k�

b
p

p

0

1
CðrÞ r dr ð11Þ

Also, there exists a configuration with base station density less
than 1:173k�b that is feasible.
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6. Numerical evaluation

In this section we estimate numerically, in some simple
scenarios, the potential energy savings that can be
obtained by turning off base stations in periods of low load,
while still guaranteeing quality of service. Base station
transmit power p is assumed to be 30 W. Base stations
work at a frequency of 1 GHz, and use a bandwidth of
10 MHz. We use a log distance path loss model, with path
loss at a reference distance of one meter calculated using
Friis equation, and with a path loss exponent a ¼ 3:5. We
assume that the rate perceived by users is given by Shan-
non’s capacity law.1 Thus, the capacity to a user located at
a distance r from the base station is given by

CðrÞ ¼ 107log2 1þ pr�a

N0

� �
bit=s, where N0 ¼ �174 dBm=Hz is

the power spectral density of the additive white Gaussian
noise. However, the maximum rate at which the base station
can transmit data is limited to 55 Mbps.

We considered different choices for the parameters of
the base stations energy model while always keeping the
total power consumed by a base station with utilization
100% at 1500 W. In one setting, the total energy consump-
tion does not vary with the base station utilization. In this
setting, we choose k1 ¼ 1500 W and k2 ¼ 0 W, in accor-
dance with typical values found in the literature. We refer
to this setting as the on–off setting. This choice of parame-
ters approximately models the behavior of base stations
currently deployed, in which the dependency of the energy
consumed on load is negligible. Moreover, as current
trends in base stations design aim at tying power con-
sumption to base station utilization, we considered a few
settings in which the energy consumed by a base station
depends on the utilization of the base station. These energy
proportional (EP) settings allow us to examine how strate-
gies for turning off base stations could evolve in the future.
We distinguish them by the ratio k2

k1þk2
that we use as a met-

ric for energy proportionality. For instance, a setting with
k1 ¼ 500 W and k2 ¼ 1000 W is denoted EP 66.6% and
one with k1 ¼ 100 W and k2 ¼ 1400 W is denoted EP
93.4%. In what follows, we only consider the case of pure
best effort traffic (i.e. c ¼ 0), as varying c has a the same
1 While using the Shannon capacity law can be considered unrealistic,
since we are only looking at the relative performance of different
configurations, it can be expected that the ratio between the actual
performances of two configurations to be compared is similar to the ratio of
their capacities.

Please cite this article in press as: B. Rengarajan et al., Energy-optimal b
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effect on the energy optimal configuration as a change in
the values of the coefficients of the BS energy model.

In Fig. 2, we plot the optimal base stations density (i.e.
the one that minimizes the average power consumption
per square km due to base stations, as described in Section
4) versus user density, for various base stations layouts and
energy settings. We also plot the lower bound on base sta-
tion density obtained as described in Section 5.

We focus first on the curves that represent the on–off
setting. Note that for this setting, energy consumption is
directly proportional to base station density. We see that
regular layouts (namely, the hexagonal and Manhattan
layouts) are the most energy efficient, and they are only
slightly worse than the lower bound in Theorem 5.1. The
Poisson layout consumes more energy due to the variabil-
ity in cell sizes. As we would expect, decreasing the target
average per-bit delay results in layouts with increased base
station densities. Fig. 2 also exhibits the base station den-
sity corresponding to the case where the number of users
per base station is held constant, i.e., a case where base sta-
tion density is directly proportional to user density. We can
see that decreasing base stations density proportionally to
user density results in a highly optimistic estimate of
energy savings. When user performance constraints are
taken into account, actual energy savings are much less.

Under the energy proportional model, the minimum
base station density that achieves the target performance
is not necessarily the one that minimizes energy consump-
tion. As illustrated in the figure, the base station density
that minimizes energy consumption is higher in this case
than under the on–off model. This indicates that as hard-
ware becomes increasingly energy proportional, cellular
layouts would tend towards higher densities of smaller
cells. The effect on energy consumption is discussed later.

We also observe that the gap in the energy-optimal
base station density between the on–off energy model
and the more energy proportional model decreases with
increasing user density. To understand the reason behind
this, we refer to Fig. 3. This figure shows that, at the
energy-optimal base station density, base station utiliza-
tion increases with user density. This increase is due to
the non-linearly increasing inefficiency in serving users
farther and farther away from the base station. Thus, at
higher user densities, base stations tend to operate closer
101 102 103 104

User density [# users/km2]

103.232 103.233

Fig. 2. Energy-optimal base stations density versus user density, for
Poisson base stations layout (unless otherwise indicated).
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to peak capacity and thus the difference between the two
energy models diminishes.

Note that the base station utilization under the on–off
energy model (not shown) in the energy-optimal base sta-
tion density is always 100%. For a given user density, this
utilization decreases as base stations become increasingly
energy proportional, indicating that base station densities
increase and cells become smaller.

The amount of energy savings achievable with sleep
modes is shown in Fig. 4. For a given energy model and a
target average per-bit delay, we consider a network that
is optimally planned for a peak user density of 105 users
per km2, and evaluate the amount of energy that can be
saved by switching off base stations in periods of lower
user density. We see that, when user density reduces from
105 to 103, we can achieve energy savings of up to 95% by
reducing accordingly the number of active base stations.
Moreover, a reduction of user density by a factor of 10 is
already sufficient to save more than 85% on the power con-
sumed at peak load. We can also observe that energy sav-
ings exhibit little dependence on either the specific target
average per-bit delay, or on the base station energy model.

The importance of sleep modes and system level tech-
niques is evident from Fig. 5, where we plot the average
power consumed per square kilometer for the Poisson lay-
out in two cases: (i) when sleep modes are used to adapt
640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

101 102 103 104 105
0

10

20

30

40

50

60

70

80

90

100

User density [# users/km2]

%
 o

f e
ne

rg
y 

sa
ve

d

τ=1μs, on-off
τ=10μs, on-off

τ=1μs, EP 93.4%

τ=10μ

104.09 104.1 104.11
83

83.5

84

84.5

s, EP 93.4%
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km2.
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the base station density to load, and (ii) when the network
is always provisioned for the peak load, so that power sav-
ings are only due to the energy proportionality of the base
station power consumption.

We observe that in case (i), when sleep modes are used,
energy proportional base stations result in a slightly more
energy efficient behavior at low user densities, as expected.
However, we clearly see that much of the reduction in
energy consumption is obtained through the intelligent
use of sleep modes to adapt the active base station density
to the user population, even in the absence of improved
hardware.

On the contrary, in case (ii), when sleep modes are not
used, and the base station density remains at the level
required to support the peak user density, energy propor-
tional base stations do provide large energy savings with
respect to current base stations whose power consumption
is almost independent of utilization. However, the power
consumption at low user densities is up to two orders of
magnitude higher in this case with respect to case (i), even
under highly optimistic (and probably unrealistic) assump-
tions on energy proportionality. This highlights the need to
tackle the problem of energy consumption in cellular
access networks through both improved hardware and
system level techniques. It also shows clearly that, even
under futuristic assumptions on the energy efficiency of
hardware, the intelligent use of sleep modes and other
dynamic provisioning techniques can be crucial to achiev-
ing maximum energy efficiency.

In Fig. 6 on the right y axis, we plot the minimum
amount of power consumed per user, and on the left y axis,
the optimal number of users per cell, both as a function of
user density, for Poisson base station layouts. We observe
how the per-user consumed power decreases with increas-
ing user density. At high user densities, cells are small and
base stations serve users that are relatively close. There-
fore, as path losses are inferior on average, this represents
a more energy efficient configuration. Moreover, as user
density grows, the number of users per cell in the
energy-optimal configuration increases while the size of
the cells decreases. We also note that the slope of these
curves is higher at low user densities. This is again due to
the inefficiency of serving users farther away from base
stations, which increases non-linearly with the size of the
ase station density in cellular access networks with sleep modes,
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cells. The inefficiency of serving low user densities sug-
gests that operators could gain substantially by cooperat-
ing and sharing infrastructure in periods of low demand,
as suggested in [14].

Numerical evaluations in addition allowed us to also
derive more complex performance indexes, such as per-
centiles of the per-bit delay, and the Chebyshev bound.
To obtain these quantities, we have numerically computed
statistics over a set of instances of user and BS distribu-
tions. For each scenario, we have considered a number of
instances sufficient to get a 98% confidence interval of
±1% of the value of the sample statistic.

In Fig. 7, we plot the ratio of the standard deviation of
the per-bit delay (as derived in Theorem 3.2) to the aver-
age, and compare it to the 95th percentile of the per-bit
delay derived from numerical evaluations, for the on–off
energy model. We also plot the bound on the 95th percen-
tile obtained using the Chebyshev bound, normalized by
the mean per-bit delay. As we can see, in the Poisson lay-
out the 95th percentile is never larger than three times
the average, and it does not vary significantly with user
density. Also, the ratio of standard deviation and percen-
tiles to the mean is very flat over the range of user
densities. The curves for the hexagonal layout show that
regular base station layouts translate into less variability
in the per-bit delay across users. As these results on
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variability do not take into account the averaging effect
on the user perceived per-bit delay induced by user mobil-
ity, we would expect variability in a more realistic situa-
tion with user mobility to be lower. Overall, these results
suggest that the mean per-bit delay (possibly with a safety
margin) is a reasonable design metric for sleep mode
algorithms.

6.1. Impact on energy consumption of mobile terminals

The adoption of sleep modes impacts not only the
downlink information transfer, but also the uplink trans-
mission quality, thus affecting the battery lifetime of
mobile terminals. Indeed, when the base stations density
is decreased (e.g. at night), the average distance of the user
terminal from its serving BS increases, bringing to an
increase of the energy consumed by mobile terminals,
hence to a decrease of battery lifetime. We have performed
a conservative, first order evaluation of this effect, assum-
ing for mobiles the following empirical model, derived
from [15,16], which relates the distance between the user
device and the BS to consumed power, for uplink
communications.

PðdÞ ¼ Pmin þ SðPtxðdÞ � PthÞþ ð12Þ

where Pmin is set to 2:1 W; S ¼ 0:136, and Pth ¼ 12 dBm.
From [15], we have that, for LTE, PtxðdÞ ¼ minðPmax; P0þ
adÞ, with Pmax ¼ 23 dBm; P0 ¼ �7 dBm.

The distance �d from the serving BS seen by the typical
user who has just joined the system, is computed as for
Theorem 3.1:

�d ¼ kb

Z 1

0
e�kbpr2

2pr2 dr ð13Þ

Fig. 8 shows the average distance seen by the typical
user to the nearest base station, and the power consumed
by a mobile terminal versus user density, assuming a Pois-
son BS distribution, with s ¼ 1 ls and on–off energy
model, and the energy optimal BS density shown in
Fig. 2. We see that even assuming mobile terminals are
constantly transmitting, the impact of sleep modes on their
power consumption is modest, and limited to very low
user densities.
ase station density in cellular access networks with sleep modes,
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6.2. Impact of clustered user distribution

Our analysis so far assumed that the distribution in
space of users and base stations is uniform. In real scenar-
ios, users’ distribution in space is far from being Poissonian
[17,18]. In particular, users typically form clusters, possibly
due to spatial constraints to their movements (e.g. users in
a same building, in a restaurant, in a shop, or on the curbs
of a street) or to features of the urban space acting like
’’attractors’’ for users (e.g. restaurants, pubs, bus stops),
making the likelihood to have a user around these attrac-
tors higher than in an uniform user distribution.

In order to have a first order assessment of the impact
of clustering on the potential of sleep modes for energy
savings, we have estimated numerically the energy opti-
mal base station density, when users are distributed
according to a version of Matern cluster process [19].
According to this model, users are distributed uniformly
in a number of cluster regions, which we assumed to be
circular in shape. The centers of these regions (called ‘‘par-
ent nodes’’) are uniformly distributed in the plane. Note
that clustering in the resulting distribution arises both
from users concentrating in cluster regions, and from the
overlapping of different cluster regions. For a given value
of density of parent nodes, varying the radius of the cluster
regions changes the degree of user clustering, producing
distributions which tend to the uniform distribution as this
radius increases.

In order to characterize the degree of clustering of the
resulting user distribution, we employed the pair correla-
tion function, which for small distances is related to the
probability, for a given point, of finding another point at
a given distance from it. For uniform distributions, such
function is constant and equal to one. For a given distance
between two points, values higher or lower than one indi-
cate positive or negative correlation, respectively.

Again, statistics have been computed numerically over a
set of instances of the Matern process, with a 98% confi-
dence interval of ±1% of the value of the sample statistic.
In Fig. 9 we plotted the pair correlation function for the user
distribution arising from our Matern model, versus the dis-
tance between two nodes, and for a parent node density of
6.8 nodes per km2. We considered cluster regions of area
Please cite this article in press as: B. Rengarajan et al., Energy-optimal b
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equal to 0.04 km2 and 0.25 km2. We see that the pair corre-
lation function decreases almost linearly for distances
approximately inferior to the radius of these regions, and
that beyond that distance it takes the same value as a
homogeneous Poisson point process. Moreover, we see that
decreasing the area of the cluster regions from 0.25 km2 to
0.04 km2 brings an increase of the values of pair correlation
function for short distances between users, indicating an
increase in the degree of clustering of the distribution.

In Fig. 10 we have plotted the energy optimal BS den-
sity, for the on–off energy model, and for a target per bit
delay of 1 ls, resulting from our numerical evaluations,
together with the optimal BS density for Poissonian user
and BS distribution derived with our method. We see that
by increasing the degree of clustering (obtained by
decreasing the area of cluster regions, as seen before) of
users, while keeping uniform the distribution of base sta-
tions, the energy optimal base station density increases
at high user densities, while at low user densities it
remains very close to the values it takes in the uniform
case. Indeed, in presence of user clustering, a uniform BS
distribution with the same density as derived for uniform
user distribution brings to overprovision areas with low
user densities while seriously underprovisioning areas
with high user densities. As with the chosen user distribu-
tion the majority of users are part of a cluster, the net effect
is one of underprovisioning. Therefore, in presence of user
clustering the energy optimal BS density is increased with
ase station density in cellular access networks with sleep modes,
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respect to a homogeneous user distribution. As we see in
the figure, this increase is minimal at values of user density
comparable to those of user cluster density, as at those
densities the clustering effect is minimal.

In real scenarios however, those factors acting as attrac-
tors for users tend also to influence base station locations,
so that actual base stations tend to cluster where users
cluster, typically to supply capacity in periods of peak traf-
fic around places such as tall buildings, stadiums, etc. In
order to characterize the impact of the correlation between
user locations and base station locations, we have run
numerical evaluations assuming base stations to be dis-
tributed according to a Matern clustered point process.
For these evaluations, for BS we have assumed the same
parent nodes and cluster regions as the user point process.
In Fig. 10 the line with square markers is the energy opti-
mal BS density for cluster regions of 2500 m2. We see that
when the attractors for users are also attractors for base
stations locations, the energy optimal base station density
is very close to the optimal density for the case of uniform
user and BS distribution, for the same value of mean user
density. These results suggest that the estimations of the
energy optimal base station densities and of the potential
energy savings derived with our analysis are valid also
for more realistic scenarios, where both users and base sta-
tions distributions are non uniform, and clustered around
the same attractors.

7. Conclusions

In this paper, we presented a novel approach for esti-
mating both the energy savings that can be achieved in cel-
lular access networks by using sleep modes in periods of
low traffic loads, as well as the energy-optimal base station
densities as a function of user density. By taking into
account the quality of service perceived by end users, our
approach allows the derivation of more realistic estimates
that can be used to evaluate the efficacy of schemes utiliz-
ing sleep modes to save energy. The proposed approach
can be applied to many base station configurations, and
to many energy models for base stations. By evaluating
numerically our results, we demonstrated that substantial
energy savings are possible through schemes that adapt
the density of base stations to the fluctuations in user den-
sity. We also showed that such system level schemes are
essential even if base stations themselves will become
more energy proportional.

Appendix A. Proof of Theorem 3.1

A.1. Hexagonal layout
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The first step above follows because the size of the hexa-
gons in the tessellation is fixed, and the number of users
served by the base station closest to the origin is indepen-
dent of the distance to the origin, and only depends on the
area of a hexagonal cell. The proof for the Manhattan lay-
out follows closely the above methodology.
891
A.2. Poisson layout

The case where base stations are distributed as a homo-
geneous Poisson point process is more involved, since the
size of the cell that the typical user belongs to is correlated
with the distance between the user and the base station.
For example, if the closest base station to a user is far away,
that base station is likely to be serving a large cell with
many users, and vice versa.

In the following, Bðc; rÞ denotes a ball of radius r cen-
tered at c.

�sP ¼E0 NðSð0ÞÞ
CðDð0ÞÞ

� �
¼
Z 1

0
E0 NðSð0ÞÞ

CðDð0ÞÞ

� 				r6Dð0Þ6 rþ dr
�

Pðr

6Dð0Þ6 rþ drÞ

¼
Z 1

0

E0½NðSð0ÞÞjr6Dð0Þ6 rþ dr�
CðrÞ PðBð0;rÞ

¼/Þkb2prdr

¼
Z 1

0

E0½NðSð0ÞÞjr6Dð0Þ6 rþ dr�
CðrÞ e�kbpr2

kb2prdr: ðA:1Þ

where PðBð0; rÞ ¼ /Þ is the probability that a ball of radius r
centered at the origin is empty. Now, we turn to deriving
the conditional expectation above. The expected number
of users attached to the base station serving the user at
the origin can be evaluated as follows:

E0½NðSð0ÞÞjr 6 Dð0Þ 6 r þ dr�

¼ E0
Z 1

0

Z 2p

0
1ðSðx;hÞ¼Sð0Þjr6Dð0Þ6rþ drÞku dhxdx

� �

¼
Z 1

0

Z 2p

0
PðSðx; hÞ ¼ Sð0Þjr 6 Dð0Þ

6 r þ drÞku dhxdx;

For the purpose of computing the conditional probability,
we assume without loss of generality that the base station
closest to the origin is located at ð0; rÞ. To evaluate the
probability that a user at a given location is served by
the same base station that serves a user at the origin, we
use a simple change of coordinates, that moves the base
station to the origin. In this shifted coordinate system,
the typical user placed at the origin is now located at
ð0;�rÞ. A user at location ðx; hÞ will also be served by the
base station at the origin, if there is no other base station
that is closer, i.e., if there is no base station in a circle of
radius x centered at ðx; hÞ. The probability that this is the
case, given that there are no base stations in a circle of
radius r centered at ð0;�rÞ, is given by expð�kbAðr; x; hÞÞ,
where Aðr; x; hÞ is the area of the circle centered at ðx; hÞ
with radius x that is not overlapped by the circle centered
at ð0;�rÞ with radius r. This non-overlapped area can be
computed using standard trigonometric identities.
ase station density in cellular access networks with sleep modes,
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Denoting the distance between the centers of the two cir-
cles by dðr; x; hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
, we have:
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Using the above expression, we obtain

E0½NðSð0ÞÞjr 6 Dð0Þ 6 r þ dr�

¼
Z 1

0

Z 2p

0
e�kbAðr;x;hÞku dhxdx: ðA:2Þ

Finally, we obtain the mean per-bit delay experienced by a
typical user by substituting expression (A.2) into (A.1).
Note that this methodology can be applied to other base
station layouts as well.

Appendix B. proof of Theorem 3.2
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Proof (Proof Sketch). For the variance of the per-bit delay,
we have
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. As users form

a Poisson point process, Var0½NðSð0ÞÞ� ¼ E0½NðSð0ÞÞ�. By
substituting, and computing the integrals as in the proof
of Theorem 3.1, we get the expressions for the variance
for regular BS layouts. The one for Poisson is obtained sim-
ilarly, by applying the same considerations to the expecta-
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Appendix C. Proof of Theorem 4.1

Proof. The utilization of a specific base station, for a given
instance of the point process of users, is given by the sum
of two contributions. The first is the fraction of BS time
dedicated to voice-like traffic, qv , whose expression is
given by (1). The second is the fraction of BS time
dedicated to best effort traffic. This last quantity, for a
single BS, is given by

qBE ¼ ð1� qvÞ
1
�s0

P
x2XBE

sðxÞ
NBEðSðxÞÞ

1SðxÞ¼Sð0Þ

� �

with XBE and Xv being the set of best effort users and of
voice-like users, respectively, on the plane. NBEðSðxÞÞ is
the number of best effort users served by the BS serving
the user at x, and sðxÞ is the per-bit delay of the user at

x, given by sðxÞ ¼ NBEðSðxÞÞ
1�qv

1
CðxÞ

� �
. Substituting, we get
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The average base station utilization is therefore given by

U ¼ E0½UðSð0ÞÞ� ¼ R0
l�1

H

l�1
H þ l�1

W

cþ ð1� cÞ
�s0
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from which (9) follows. h
Appendix D. Proof of Theorem 5.1

First, we examine the case of a single base station and
determine the shape of the cell that maximizes the area
(users) covered while still satisfying the performance
requirements.

Lemma Appendix D.1. When capacity to a user is a decreas-
ing function of distance, a base station maximizes the area
(number of users) covered while satisfying the performance
constraint on per-bit delay under the best-effort model by
serving an area that is a circle with the base station at the center.
Proof. Consider a maximal service area that satisfies the
per-bit delay constraint and is not a circle. There must exist
a region at a distance d1 from the base station that is not
included in the service area while another at a distance
d2 > d1 is. Let the average per-bit delay achieved by the
maximal service area be �sm. Consider swapping an area
of measure � at distance d2 with an area of the same mea-
sure at distance d1. The expected per-bit delay for the new
service area, �sn can be calculated as:

�sn ¼ �sm � ku�
Cðd2Þ

þ ku�
Cðd1Þ

Since Cðd1Þ > Cðd2Þ; �sn < �sm. Thus, the new service area
satisfies the per-bit delay constraint as well. We can con-
tinue this procedure until a region at a distance d0 from
the base station is included only if all regions at distance
d < d0 are included. h
Proof (Proof of Theorem 5.1). To determine a lower bound
on the density of base stations, we determine r�c , the radius
of the largest circular service area (users therein) that a
single base station can serve while meeting the per-bit
delay constraint. The area of this circle corresponds to
the maximum area of a cell that satisfies the performance
constraint. The density of base stations corresponding to
cells of this size provides the lower bound. The expected
user-perceived per-bit delay in a circular service area of
radius r�c can be computed similar to the case of the hexag-
onal layout as:

�sC ¼ 2pku

Z r�c

0

1
CðrÞ r dr; ðD:1Þ

providing the lower bound when k�b ¼ 1
pðr�c Þ

2.

Now, consider a hexagonal layout of base stations. If a
base station can support users within the circle that
superscribes a hexagon, then the base station can clearly
support the users in the hexagon. Thus, an upper bound for
the density of base stations required in a hexagonal layout,
ase station density in cellular access networks with sleep modes,
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and thus an upper bound on the minimal density of base
stations can be computed using the packing density of a

hexagonal layout to be: kU
b ¼

3
ffiffi
3
p
ðr�c Þ

2

2

� ��1
, which proves the

tightness result. h
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