
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling and Simulation of Cyber-Physical Electrical Energy Systems with SystemC-AMS / Chen, Yukai; Vinco, Sara;
JAHIER PAGLIARI, Daniele; Montuschi, Paolo; Macii, Enrico; Poncino, Massimo. - In: IEEE TRANSACTIONS ON
SUSTAINABLE COMPUTING. - ISSN 2377-3782. - ELETTRONICO. - 5:4(2020), pp. 552-567.
[10.1109/TSUSC.2020.2973900]

Original

Modeling and Simulation of Cyber-Physical Electrical Energy Systems with SystemC-AMS

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TSUSC.2020.2973900

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2809755 since: 2020-12-17T18:21:54Z

IEEE

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 1

Modeling and Simulation of Cyber-Physical
Electrical Energy Systems with SystemC-AMS

Yukai Chen, Member, IEEE , Sara Vinco, Member, IEEE , Daniele Jahier Pagliari, Member, IEEE ,
Paolo Montuschi, Fellow, IEEE, Enrico Macii, Fellow, IEEE, Massimo Poncino, Fellow, IEEE

Abstract—Modern Cyber-Physical Electrical Energy Systems (CPEES) are characterized by wider adoption of sustainable energy
sources and by an increased attention to optimization, with the goal of reducing pollution and wastes. This imposes a need for
instruments supporting the design flow, to simulate and validate the behavior of system components and to apply additional
optimization and exploration steps. Additionally, each system might be tested with a number of management policies, to evaluate their
economic impact. It is thus evident that simulation is a key ingredient in the design flow of CPEES. This paper proposes a framework
for CPEES modeling and simulation, that relies on the open-source standard SystemC-AMS. The paper formalizes the information and
energy flow in a generic CPEES, by focusing on both AC and DC components, and by including support for mechanical and physical
models that represent multiple energy sources and loads. Experimental results, applied to a complex CPEES case study, will prove the
effectiveness of the proposed solution, in terms of accuracy, speed up w.r.t. the current state of the art Matlab/Simulink, and support for
the design flow.

Index Terms—Design-time Optimization, Power Modeling and Simulation, Cyber-Physical System, Electrical Energy System,
Sustainable Energy Planning, Design Space Exploration, SystemC, SystemC-AMS.

F

1 INTRODUCTION

THE increased attention to climate change and pollution,
together with the adoption of the Paris agreement of

2015, impose a more sustainable design of Cyber-Physical
Electrical Energy Systems (CPEES), with the objective of
optimizing the processes of generation, distribution, stor-
age, and consumption of energy [1]–[3]. The adoption of
sustainable power sources allows indeed to reduce the envi-
ronmental impact, at the price of a higher instability of the
CPEES due to the intermittent nature of the environmental
quantities, e.g., solar irradiance and wind [4]–[6]. A careful
design is thus crucial to ensure a good balance between
power generation and consumption, and to correctly size
the components of the CPEES. Computer-aided modeling
and simulation tools are the key solutions to assess the
CPEES performance under different scenarios (e.g., choice of
components number and type, topologies, and management
policies), but also to evaluate its economic impact [7], [8].
The traditional approach to the design of CPEES relies
on a model-based paradigm, which uses built-in models
provided by commercial simulation platforms like Mat-
lab/Simulink. While robust and easy to use, commercial
tools lack many important and desirable features: as pro-
prietary tools, they are not easily extensible, and across-
version compatibility is not guaranteed. Furthermore, they
are not designed to efficiently co-simulate the physical
portion (usually continuous-time) and the cyber portion

• Y. Chen, S. Vinco, D. Jahier Pagliari, P. Montuschi and M. Poncino are
with the Department of Control and Computer Engineering, Politecnico
di Torino, Turin, Italy (e-mail: {yukai.chen, sara.vinco, daniele.jahier,
paolo.montuschi, massimo.poncino}@polito.it).

• E. Macii is with the Interuniversity Department of Regional and Ur-
ban Studies and Planning, Politecnico di Torino, Turin, Italy (e-mail:
enrico.macii@polito.it).

Manuscript received xxxxx; revised xxxx.

(usually discrete-time) of the system.
To tackle these limitations, recently several approaches have
appeared in the literature that aim at applying methods
borrowed from the domain of electronic systems design
[9]–[12]. One common feature shared by these solutions is
that they rely on a database of pre-characterized models
of CPEES components, with a pre-defined abstraction level
and semantics, and do not allow to seamlessly replace a
model of a component with a different implementation [10].
The goal of this work is to go beyond the limitations of the
current state of the art, by building an open-source framework
for CPEES modeling and simulation that allows easy extensibility
and modularity. This work borrows the underlying paradigm
introduced in [13], which proposes a multi-layer framework
based on SystemC-AMS. Such framework, however, has as
its main objective that of simultaneously simulating dif-
ferent extra-functional properties (e.g., temperature, relia-
bility), where power is yet another property. Moreover, its
focus are smart electronic systems rather than large-scale
CPEES; as such, it supports only the DC power domain,
and it does not envision any modeling of the environment
or of physical evolution. Thus, this work takes inspiration
from [13], but steers that paradigm towards the support
for larger-scale CPEES, targeting also the AC domain and
including the support of the physical domain.
The following are the specific contributions of this paper:

• The construction of a modeling and simulation
framework for CPEES that takes into account both
the AC and the DC domains, thanks to the introduc-
tion of a novel representation in SystemC-AMS of AC
voltage and currents, that are non natively supported
by the language. The AC domain is supported with
three different levels of detail, to have three different
accuracy-simulation speed tradeoffs;

0000–0000/00/$00.00 © 2015 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 2

• The support of the physical domain, by adapting the
semantics of the Models of Computations (MoCs)
of SystemC-AMS to the characteristics of mechanical
components, as an example of physical domain;

• An explorative analysis of an instance of CPEES that
shows the effectiveness of the proposed framework
in terms of accuracy, flexibility, modularity and sim-
ulation speed.

The paper is organized as follows. Section 2 reviews the
current state of the art on CPEES simulation, and it pro-
vides the necessary background on SystemC-AMS. Section
3 presents the proposed framework, detailing the models,
their interfaces and their implementation in SystemC-AMS.
The experimental analysis occupies Sections 4-7. Section
4 focuses on the AC domain. Sections 5 to 7 analyze a
reference CPEES case study, that undergoes design and
exploration of alternative configurations. Finally, Section 8
draws our conclusions.

2 BACKGROUND

2.1 CPEES design and simulation
Several approaches for modeling and simulation of CPEES
have been proposed in literature, addressing different appli-
cation contexts and CPEES sizes.
Hardware-in-the-loop approaches mix real devices with
software-simulated models through sensors and actuators,
or through the integration of power electronic devices such
as inverters, to test the integration of new technology in
a controlled environment [14], [15]. The resulting accuracy
is higher w.r.t. software simulation, but application is re-
stricted to small- and mid-scale CPEES.
Proprietary tools, such as Matlab/Simulink, are usually con-
sidered the de facto standard [12]. The designer can choose
among a number of pre-defined components, or rather
implement his own designs, by relying on the provided
libraries. However, as closed and proprietary tools, they
are not easily extensible and they restrict the possibility of
developing custom component libraries and the evaluation
of alternative models. Furthermore, the simulation back-
bone is proprietary and it does not guarantee across-version
compatibility.
Equation-based approaches, such as Modelica, decompose
the system into elementary components, modeled with basic
physics equations or with predefined models [16], [17]. This
constrains the types of descriptions that are supported, and
it does not allow to effectively model the cyber portion
of a CPEES. The same limitation applies to ad-hoc C++
simulators [9], as they tend to focus on specific aspects of
the CPEES and to provide restricted libraries of components
that can be instantiated and configured.
Co-simulation approaches simulate specific aspects of the
CPEES in their native environment, combined with other
tools to estimate, e.g., the impact of network latency on
control policies, or the application of electricity rates [12],
[18], [19]. This leads to a very time-demanding and error-
prone process for integrating components with different
implementations, e.g., with discrete and continuous time
behaviors. Additionally, co-simulation moves the focus from
CPEES design to its interaction with other domains, and
therefore to a global estimation of the power flow, without

allowing to accurately reproduce the behavior of the CPEES
components.
The main limitation of the previously presented approaches
is that support for CPEES modeling is limited, either in
terms of models or in the scale of the supported CPEES. Our
work targets a wider support for CPEES in an open source
framework, based on SystemC-AMS, thus avoiding the inte-
gration of heterogeneous tools and allowing the application
of the methodology to a wider range of component models.
Some attempts have been made to adopt the standard Sys-
temC framework also in the context of CPEES. [11] uses the
Transaction-level Modeling (TLM) and AMS extensions of
SystemC for abstracting and modeling physical behaviors.
However, the support for the power domain is limited
to high-level waveforms or to physical equations. At the
same time, [13], [20] proved that SystemC-AMS can support
also complex circuit models for the CPEES components. In
spite of that, only DC components are supported and the
environment or the physical evolution are supported only
as input traces.
This work takes inspiration from [13], but with the goal of
enlarging the support for EES, targeting also the AC domain
and a more accurate modeling of those physical aspects that
heavily affect power production and consumption.

2.2 SystemC-AMS

SystemC-AMS extends C/C++ for modeling and simulating
analog/mixed-signal systems, including hardware-software
systems and also non-functional, continuous time domains
[13]. SystemC-AMS is extremely flexible, as it provides
different MoCs to cover a variety of domains that can be
executed within the same simulation infrastructure, such as
pure algorithms (e.g., control policies), equations and linear
networks, and also timed behaviors, as exemplified by the
high-level schema in Figure 1.

SYSTEMC-AMS KERNEL

SC_MODULE{
SC_METHOD(policy);

sensitive<<CTRL;

}

SC_MODULE{
g = new sca_lsf::sca_gain("gain");

d = new sca_lsf::sca_dot("dot");

}

SCA_TDF_MODULE{
if(in.read()) >0)

out.write(f(in.read()));

}

SC_MODULE{
c = new sca_eln::sca_c ("capacitor");

r = new sca_eln::sca_r("resistor");

}

CIRCUIT (-EQUIVALENT)

TIMED/PERIODIC

CONTROL

SIGNAL PROCESSING

Figure 1. Heterogeneity of the descriptions supported by SystemC-AMS.

Control algorithms and digital discrete-time computation
can be modeled as standard SystemC processes, by follow-
ing the typical event-driven semantics of hardware descrip-
tion languages (HDL, top-left corner), or by adopting the
Timed Data-Flow (TDF) MoC, which builds a static sched-
ule of modules by considering their producer-consumer
communication dependencies and their activation time step
(bottom-left corner).
Continuous-time models can be modeled in two ways.
Signal processing modules are implemented at Linear Signal

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 3

DISCRETE TIME

STATIC NON LINEAR

CONTINUOUS TIME

DYNAMIC LINEAR

NON CONSERVATIVE CONSERVATIVE

TDF

TIMED DATAFLOW

LSF

LINEAR SIGNAL FLOW

ELN

ELECTRICAL LINEAR NETWORK

MODEL CHARACTERISTICS

SYSTEMC AMS MoCs

SYSTEMC-AMS SIMULATION KERNEL

Figure 2. Main characteristics of the SystemC-AMS abstraction levels.

Flow (LSF) through a library of pre-defined primitive mod-
ules (e.g., integrators or delay, bottom-right corner). Circuit
descriptions can be modeled as Electrical Linear Network
(ELN) components through the instantiation of predefined
linear primitives (e.g., resistors or capacitors, top-right cor-
ner). ELN is the only conservative MoC, and it ensures that
energy conservation laws are satisfied.
The competitive advantage of SystemC-AMS is that all
these different abstraction levels co-exist in a single simulation
environment that relies on a single simulation kernel; the latter
handles both timed events and equations that require a
continuous solver, and it ensures correct conversion of the
signals between domains, as sketched by Figure 2.
SystemC-AMS is chosen as the reference language for the
proposed framework for a number of reasons. The presence
of multiple MoCs allows covering a wide range of domains
using a single language; moreover, SystemC-AMS natively
provides converters between MoCs, thus guaranteeing cor-
rectness and hiding synchronization details when different
MoCs are simulated concurrently. SystemC-AMS also sup-
ports multiple time steps in one single run, so that each
component can have its own individual time resolution.
Such flexibility with respect to MoC, time resolution, and ab-
straction level makes SystemC-AMS a perfect candidate for
simulating CPEES, where very heterogeneous components
(i.e, cyber or physical) are present, and different degree of
accuracy might be desired for different components. Last
but not least, as it will be shown in the results section,
the native management of synchronization and the use of
a single simulation kernel (i.e., no co-simulation) result in
excellent simulation performance.

3 MODELING AND SIMULATION FRAMEWORK

The goal of CPEES simulation is to trace power flow,
i.e., power production, distribution, and consumption. The
multi-layer framework of [13] made the first effort to for-
malize the energy flows in CPEES; the key element was the
definition of a standardized architecture, with a common
bus and a precise taxonomy of components, their interfaces,
and semantics. However, [13] focused on small-size elec-
tronic systems and did not support neither the modeling the
environment or physical quantities (e.g., mechanical com-
ponents) nor the alternating current (AC) electrical domain.
This work, while being focused only on the power flow and
not considering other quantities, it generalizes its scope to
support all kinds of components included in CPEES, plus
the physical domain.

Figure 3. Generic CPEES architectural template with model-specific
connections. For the sake of readability, AC interfaces use the (P, PF)
interface, that may be replaced by (V, I), depending on the chosen
modeling style.

Figure 3 shows the template of a CPEES used in the pro-
posed framework; as in [13], a bus-based architecture is
used for scalability, mimicking the structure of a typical
computing system. Three main “actors” are envisioned:
loads (acting as energy consumers), Power Sources (PS,
acting as energy generators), and Energy Storage Device
(ESD). Blocks involved in energy exchange are instances of
these three types of elements.
The “energy bus” represents a well-defined power (voltage)
level, and the connections among blocks occur through
the bus. Therefore, every block has its own bus adapter
that allows to safely connect a block to it (in figure, the
shaded blocks between the various elements and the bus).
This structure closely mimics the real electrical connections,
where the bus is a common connector, and the adapters are
power converters. There is however a fundamental differ-
ence between this intuitive view of the bus as a connector:
the “energy bus” manages the distribution within the sys-
tem (either as an ideal conductor or with some power loss),
and its operations are managed by a policy that monitors the
components to determine the optimal flow of power. For
instance it could monitor the State-of-Charge (SOC) of an
ESD to determine whether it can provide energy or it has to
be charged.
As the target is realistic CPEES, Figure 3 actually includes
two power domains, namely DC and AC, each with its own
bus. Components do interface only to one given domain,
and the two domains are connected through a block denoted
as Bridge. This is again consistent with the real electrical
connection: when an AC bus and a DC bus co-exist, there is
a clear separation between the two domains, and the Bridge
is a bi-directional AC/DC converter. Finally, the template
includes the grid as a special component on the AC domain.
The template of Figure 3 exemplifies also the interfaces of
the various modules, that will be described in the next
section.

3.1 Interfaces

The interfaces of the various types of blocks fundamentally
differ based on whether they are DC or AC components.
Figure 3 summarizes the main differences for the block
interfaces in the two domains.

3.1.1 DC modules
In the DC domain we can represent current and voltage as
values that change over time. Power is thus represented as

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 4

I-V EVOLUTION INTERFACE

DC

The operating conditions

are defined by discrete

values of voltage and

current over time

AC

The operating conditions

are defined as two

sinusoidal curves

(characterized by phase

Φ and amplitude),

reproducing the

evolution of AC current

and voltage over time

The operating conditions

are defined as the RMS

of acutal power and a

factor PF, that is a bias

for the phase Φ between

the sinusoidal curves of

current and voltage

ACTIVE POWER

APPARENT

POWER REACTIVE

POWERφ

Figure 4. Comparison of AC and DC interfaces.

a pair of values (I, V) that can be represented in SystemC-
AMS by using standard signals and ports. Voltage and
current are kept as distinct signals, as many DC elements
operate at different voltages (e.g., a battery pack output vs.
a 5V DC load).

3.1.2 AC modules
In the AC domain, electric current periodically reverses
direction according to a sinusoidal behavior. This compli-
cates AC representation in a functional language such as
SystemC-AMS, which only supports sinusoidal curves as
sources of non-conservative data (e.g., the sin_src LSF
block). To solve this issue, we propose two different inter-
faces for the AC domain, depending on the desired level of
accuracy with respect to the true sinusoidal behavior:

• The first option is to keep the same interface as for
the DC domain (i.e., current and voltage signals), and
to reproduce thus the sinusoidal behavior of current
and voltage. This will imply extending the standard
blocks defined by SystemC-AMS for the modeling of
sinusoidal signals, as will be explained in Section 3.1.2.
The sinusoidal curves will naturally preserve the major
characteristics of AC current and voltage: amplitude and
phase. Depending on the type of component, the two
sinusoidal curves will be out of phase by a degree φ.
Both phase φ and amplitude of the sinusoidal curves
(current in particular) may vary over time.
• The second option is to abstract the sinusoidal behav-

ior, and to preserve only an aggregated value. This is
achieved by using the Root Mean Square (RMS) values of
the sinusoidal curves: in this way AC power, voltage and
current can be represented by a single value that evolves
over time, as in the DC domain. RMS current and voltage
are however not sufficient to model power in the AC
domain: the existence of a phase φ between current and
voltage implies that some power is not transferred but
rather wasted. AC power is thus made of: active power,
i.e., power that performs work, and reactive power, i.e.,
power dissipated due to a phase φ between current
and voltage (bottom of Figure 4). The (vectorial) sum

of the two is called apparent power, that is the power that
must be taken into account during simulation. Power
of AC components in this second representation is thus
represented by (i) the RMS of active power over time P ,
and (ii) the power factor PF = cosφ. The latter must
be represented through an explicit port as the PF is
typically not constant, as it may vary for a given AC
load (e.g., due to different operations, for instance in a
washing machine). For the AC domain it is not necessary
to decouple voltage and current as in the AC bus the
RMS amplitude of the voltage is normally standardized
(e.g., 110, 220, or 380V) and current is therefore implicitly
derived from power.

Interface signals will obviously have a direction depending
on functionality: loads will receive power, PSs will generate
power, whereas ESDs and the grid will be bidirectional as
they can serve both functions. Converters will inherit the
directions from the blocks they are connecting.
Notice finally that all components (but the grid) have ad-
ditional control/status ports that are not involved in the
power flow; these ports might be driven by energy man-
agement policies that decide the power flow based on the
overall system state. As an example, one such port for an
ESD will be used to control the direction of the power flow
(charge/discharge) based on SOC of ESD, whereas for a load
it could represent the possibility of disabling it.

3.1.3 Interface modeling in SystemC-AMS
Each component of the system is mapped onto a SystemC
module, and the system topology formalized in Figure 3
is reflected by the connections between such components.
Component ports are mapped onto SystemC TDF ports
(sca_tdf::sca_in or sca_tdf::sca_out) for perfor-
mance reasons, as TDF generates the least amount of events
to be managed. “Data” ports (those carrying power infor-
mation, i.e., I , V , P , and PF) are of type double, while
control information (status/commands) are either bool or
int.

3.2 Models
Once the interface has been defined, SystemC modules must
be populated with the implementation of the components.
Each CPEES component is associated with a model that
reproduces its dynamics depending on the environment or
on system conditions.
To determine the corresponding mapping onto SystemC-
AMS constructs, our framework categorizes models accord-
ing to two-dimensional space (Table 1): the first dimension
concerns the domain (cyber vs. physical), whereas the sec-
ond one is relative to the underlying simulation semantics.
Each simulation semantics will correspond to a different
modeling style, and to the mapping onto a specific SystemC-
AMS MoC (introduced in Section 2.2). To determine how
a model should be implemented, it is thus necessary to
understand its classification according to Table 1; e.g., if
the model is a circuit (-equivalent) or purely functional,
different SystemC-AMS constructs will be used for its im-
plementation. Note that, for a given model of a component,
the classification according to Table 1 is unambiguously
determined : if the model includes a mix of two modeling

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 5

Table 1
Models classification of CPEES components, some examples for each type of semantics for models with the relative references.

SEMANTICS
Functional Signal Flow Circuit-equivalent

DOMAINS Discrete time models, e.g., functions, poly-
nomials, equations.

Continuous time, including integra-
tion, derivative and delay operators.

Electrical circuit models with
energy conservation, including,
e.g., resistors and capacitors.

Cyber Management policies implemented by the
bus to monitor power flow, enable power
sources and/or energy storage devices, and
control the loads [13].

– –

Physical Abstract the complex physical and mechan-
ical dynamics as equations and functional
models [21], [22].

Reproduce the behavior of a physical
system as signals and high level prim-
itives, such as state space equations,
integrators and delays [23], [24].

Reproduce physical behaviors
through ELN primitives that
emulate the dynamics of non-
electrical phenomena [25], [26].

SystemC-AMS TDF (Section 3.2.1) LSF (Section 3.2.2) ELN (Section 3.2.3)

styles, then the model must be divided in two sub-blocks,
each mapped to SystemC-AMS separately.
The Section will provide three examples of implementation
in SystemC-AMS of models, each corresponding to one
column of Table 1. The first three subsections reflect the
columns of Table 1. The last subsection is devoted to the
modeling of AC, that requires a separate discussion.

3.2.1 Functional Models

Functional models can be reproduced by implementing the
function in C++ or as a digital process. As an example of
functional model we use a DC/AC converter (inverter). This
is an interesting case as power conversion requires non-
linear devices like diodes that are not currently supported
by SystemC-AMS. Although it is not possible to model
the detailed circuit implementation in SystemC-AMS, it is
probably not necessary to have such a level of detail for
a component that fundamentally only adapts power levels.
Therefore, we could abstract the operations of the inverter in
terms of its efficiency, i.e., of ratio between the generated AC
power w.r.t. the input DC power, that is usually available
from datasheets [27], [28]. This information is sometimes
given as a plot of efficiency vs. the ratio of the input DC
power and the output rated power (Figure 5.a). We can
therefore build a functional model by fitting the curves to
a polynomial with two inputs (ratio of input DC power and
rated power P and the operating voltage V) and use this
equation as a model, as shown in Figure 5.b.
Figure 5.c shows the SystemC-AMS implementation of the
functional model of the inverter. Given that the module
contains only a functional model, it is implemented as a
SystemC-AMS TDF model (line 1, denoted by the keyword
SC_TDF_MODULE), as this reduces the activation overhead:
TDF modules are in fact scheduled statically at fixed time
steps, thus avoiding the cost of determining what ports
changed value. The module has two ports P and PF on
the AC side, and two ports V and I for the DC side. The
initialize() method (line 11) is invoked at the begin-
ning of the simulation to reset all values and to set the acti-
vation timestep of the current module. The processing()
method (line 6) is invoked at discrete time steps, and it
describes the inverter behavior over time: it calculates the
efficiency (η) with the empirical equation in Figure 5.b (line
8), and then derives real power (line 9).

1. SCA_TDF_MODULE (inverter){

2. sca_tdf::sca_in<double> I, V, PF;

3. sca_tdf::sca_out<double> P;

4. double eta, p, real, …;

5. };

6. inverter:processing(){

7. p = I.read() * V.read();

8. eta = 0.88 + 0.74*p – 2.7*exp(p,2) + 4.8*exp(p,3)

– 4.17*exp(p,4) + 1.39*V.read();

9. P.write((p * eta)/(1 + PF.read()));

10. }

11. inverter:initialize(){ …}

η = 0.88 + 0.74p

–2.70p2 + 4.80p3

– 4.17p4 + 1.39v

a. b.

c.

Figure 5. Efficiency curves for an inverter and corresponding functional
model implemented in SystemC-AMS.

3.2.2 Signal Flow Models
Signal flow models represent a physical system as sig-
nal values that propagate in one direction and that are
elaborated by linear elements, e.g. gain, Laplace functions,
integrators. Such constructs can be directly mapped onto
the corresponding LSF primitives, that are instantiated and
connected in a way that reproduces signal propagation.
As an example, Figure 6 shows the high level structure of
a wind turbine (a), a subset of its equations (b), the cor-
responding SystemC-AMS LSF system (c), and a few lines
of the corresponding code (d). The difference between the
angular speed of the turbine rotor and of the generator rotor
is mapped onto a sca_lsf::sca_sub primitive (lines 5-8),
while the integrator estimating the angle Θ is mapped onto
a sca_lsf::sca_integ primitive (lines 9-11).

3.2.3 Circuit Equivalent Models
Circuit equivalent models are implemented as a network of
SystemC-AMS ELN primitives, instantiated and connected
as in their circuit specification.
As an example, we choose a circuit equivalent model
of a battery [26]. The circuit on the right of Figure 7
is implemented by mapping its elements to ELN prim-
itives: e.g., current source IB is instantiated as an ELN

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 6

GENER-

ATORWIND
GEAR

BOX

ωM ωE

��

�� �

� � ���� 	 ��

a.

b.

1. sca_integ * thetaInteg;

2. sca_sub * subW;

3. sca_signal idtWm, idtWg, sumW, thetaSig;

4. …

5. addW = new sca_lsf::sca_sub("subW");

6. subW->x1(idtWg);

7. subW->x2(idtWm);

8. subW->y(sumW);

9. thetaInteg = new sca_integ("thetaInteg", 1.0, 1.0);

10. thetaInteg->x(sumW);

11. thetaInteg->y(thetaSig);

12. …

d.

c.

Figure 6. Example of signal flow model implemented in SystemC-AMS.

1. SC_MODULE (battery){

2. sca_tdf::sca_in<double> I;

3. sca_tdf::sca_in<bool> En;

4. sca_tdf::sca_out<double> V, SOC,

E;

5. sca_eln::sca_tdf::sca_isource* Ib;

6. sca_eln::sca_tdf::sca_vsink* Vsoc;

7. sca_eln::sca_c* Cm;

8. sca_eln::sca_node n1;

9. sca_eln::sca_node_ref gnd;

10. …

11. SC_CTOR (battery){

12. Ib = new sca_isource("Ib");

13. Ib->inp(in);

14. Ib->p(n1);

15. Ib->n(gnd);

16. Cm = new sca_c("Cm");

17. Cnom->p(n1);

18. Cnom->n(gnd);

19. Cnom->value=20880;

20. }};
n1

Figure 7. Example of circuit model implemented in SystemC-AMS, by
mapping circuit elements to ELN primitives.

sca_eln::sca_isource object (lines 11-13), and capac-
itor CM as a sca_eln::sca_c object (lines 14-15). The
connection between ELN primitives is achieved through the
instantiation of nodes (e.g., node n1).

3.2.4 AC Models
The discussion on SystemC-AMS implementation of
AC signals deserves a separate section. SystemC-
AMS supports AC only partially: both the primitive
to generate a sinusoidal signal (sca_lsf::sca_source)
and the primitives to generate sinusoidal cur-
rent and voltage (sca_eln::sca_vsource and
sca_eln::sca_isource) assume phase and amplitude

to be fixed throughout the simulation, which is not realistic
for AC simulation.
This limitation turns out to be an opportunity to represent
the AC domain with different simulation accuracy/speed
tradeoffs, by either abstracting the sinusoidal behavior of
AC signals, or extending the SystemC-AMS support for
these type of signals. We thus propose three levels of details
for AC modeling

• abstract AC modeling, by representing the AC behavior as
discrete values of active power and power factor over
time;
• sinusoidal AC modeling, by representing AC signals as

pure sinusoidal curves with varying amplitude and
phase;
• accurate AC modeling, as in the previous item, but reflect-

ing more closely the dynamics of AC signals.

3.2.4.1 Abstract AC modeling: The first AC modeling op-
tion consists of abstracting the AC signals and approximate
them as discrete values over time, as in the DC domain.
This corresponds to the interface (P, PF), that exports actual
power and the power factor. This corresponds to a strong
simplification of AC signals, as sinusoidal curves are repre-
sented by the evolution over time of their RMS and phase
φ, represented by PF = cosφ. In this way, the sinusoidal
nature of AC current and voltage is totally lost.
Nonetheless, it is important to observe that RMS and phase
are the typical quantities measured by meters and made
available for appliances [29], [30]. More detailed models
(such as the precise electrical components of a load) are
almost never available for single appliances, let alone at the
level of an entire home or a micro-grid. Thus, this abstrac-
tion is reasonable for system-level design and exploration of
CPEES.
The AC signals can thus be generated by a TDF module,
that writes in output the values of P and PF (e.g., loaded
from files) with a chosen sampling frequency, as in the top
code fragment of Figure 8.
3.2.4.2 Sinusoidal AC modeling: AC current and voltage
can be modeled as sinusoidal signals if the values of am-
plitude and phase over time are known. The voltage curve
typically has fixed amplitude in the AC domain (i.e., 110,
220, or 380V, represented by Vref) and the phase is 0 (as
the phase is calculated with respect to the voltage curve
itself). Conversely, current values may vary over time, and
it is thus necessary to have traces of both amplitude and
phase over time. In case this information is available as the
RMS of actual power and the PF, it is possible to derive this
information as follows:

• The amplitude of the sinusoidal curve can be derived
from the RMS of power and the amplitude of voltage:
P ·
√

2/Vref ;
• The phase is instead derived as arccos (PF).

Note that a change of amplitude and phase (and of P or
PF) implies a change in the configuration of the sinusoidal
curve: this can not however be expressed directly with
SystemC-AMS primitives (e.g., sca_lsf::sca_source),
as these do not allow to vary amplitude and phase of
sinusoids over time.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 7

1. SCA_TDF_MODULE (abstractAC){

2. sca_tdf::sca_out<double> P, PF;

3. ifstream inp, inpf;

4. double pvalue, pfvalue;

5. };

6. abstractAC :processing(){

7. inp >> pvalue; inpf >> pfvalue;

8. P.write(pvalue);

9. PF.write(pfvalue);

10. } …

1. SCA_TDF_MODULE (sinusoidalAC){

2. sca_tdf::sca_out<double> V, I;

3. ifstream inp, inpf;

4. double p, pf;

5. int t, freq, ampl;

6. };

7. sinusoidalAC:processing(){

8. inp >> p; inpf >> pf;

9. V.write(Vconst*sin(2*M_PI*freq*t);

10. ampl = p*sqrt(2)/Vconst;

10. I.write(ampl*sin(2*M_PI*freq*t + acos(pf));

11. } …

Figure 8. Simple example of abstract (top) and sinusoidal (bottom)
modeling of AC.

For this reason, we extended SystemC-AMS by defining a
module that supports the generation of sinusoidal curves
with varying amplitude and phase. This is achieved by
defining a TDF module that computes the equation for
sinusoidal curves:

amplitude · sin(2 · π · frequency · t+ phase)

the equation is the same as the one used by
sca_lsf::sca_source, but amplitude and phase may
thus vary over time:

V = Vref · sin(2 · π · frequency · t)

I = (P ·
√

2/Vref) · sin(2 · π · frequency · t+ arccosPF)

The resulting interface is thus (V, I) as any other DC com-
ponent; this solution allows one to reproduce the dynamic
processing of alternating (sinusoidal) signals in SystemC-
AMS. The bottom code fragment of Figure 8 shows an
example of this modeling style.
Although this modeling style restores the continuous-time
semantics of voltage and current, every sample is computed
independently of the others; therefore, when a change of
phase occurs, the transition introduces a discontinuity in
the sinusoidal curves. This is not the real behavior of AC
currents and voltages, for which phase transitions occur
smoothly. A solution for this issue is proposed in the next
section.
3.2.4.3 Accurate AC modeling: This latter modeling style
allows solving the issues just mentioned and aims at re-
producing the smooth transitions due to phase and/or
amplitude changes. The only solution to reproduce such
an accurate behavior is to make AC explicit as a sinusoidal
voltage source, where any change in amplitude and phase
of current is generated by the activation of separate circuit
branches, that can be connected and disconnected over time

by means of switches. An example is shown in Figure 9,
where the three branches represent three conceptual electri-
cal loads with different characteristics (e.g. different reactive
components) that can be activated at different times by
acting on the corresponding switch. Due to the different
electrical elements of the branches, each one will have a
different impact on the total current absorbed from the
voltage source, both in terms of transient behavior and at
steady-state. The time constants of such electrical elements
ensure a smooth transition whenever changes of amplitude
and phase occur. The circuit can be reproduced by using
SystemC-AMS ELN primitives (as explained in Section 3.2.3;
some mappings are shown in Figure 9). Note that the circuit
terminals are left open, as this circuit constitutes a load of a
larger CPEES.
It is however important to note that modeling an AC com-
ponent at this level of detail requires information about its
characteristics in terms of reactive behavior (the amount of
inductive or capacitive behavior, if any). This information
is typically not available unless measurements are carried
out on the actual devices [31]–[33], and is thus generally not
consistent with the system-level semantics of the proposed
approach, that rather focuses on the design phase and on
providing a long-term estimation of the behavior of the
CPEES. The characteristics of this modeling approach will
be further discussed in the experimental section.

sca_

rswitch

sca_l

sca_r

sca_c

Figure 9. Example of circuit modeling different AC modes: the three
branches are activated at different times and generate different ampli-
tude and phase of the AC sinusoidal curves.

3.3 SystemC-AMS Simulation

The support for multiple levels of abstraction of SystemC-
AMS allows the simultaneous presence of heterogeneous
components: all descriptions (TDF, LSF or ELN) can be used
in a single simulation run.
The execution flow of SystemC-AMS simulation is classified
into three phases, summarized in Figure 10.
The initial phase is called elaboration: the SystemC-AMS
kernel builds the module hierarchy and the data structures
necessary to handle simulation, including the activation
condition of each module, i.e., the activation time step
of TDF modules, and the list of input signals for Sys-
temC processes and for ELN and LSF modules. Note that
SystemC-AMS provides signal converters between the three
abstraction levels, thus guaranteeing a correct and efficient
conversion between them.
During the elaboration phase, the SystemC-AMS simula-
tion kernel also builds the equation system generated by

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 8

Figure 10. Execution flow of SystemC-AMS simulation as managed by
the simulation kernel.

ELN and LSF equations, as derived from the instantiated
primitive modules, their connections and the application of
conservation laws.
The next phase is initialization: the SystemC-AMS kernel
sets module parameters, initializes system components (for
TDF) and sets the equation initial conditions (ELN and LSF).
The last phase simulation is the core of SystemC-AMS sim-
ulation: in each simulation cycle, the SystemC-AMS kernel
determines the next event to be triggered and the corre-
sponding execution queue, it numerically solves the corre-
sponding equations modeling system behaviour over time
by using lightweight numerical methods (i.e., backward
Euler and trapezoidal methods with optimization methods
like LU decomposition and Woodbury formulas).
It is worth emphasizing that the choice of TDF for ports
and synchronization allows efficient simulation: it allows
to build a static activation sequence of the modules, that
is used to run the entire simulation; this reduces to the
minimum any synchronization and management cost, and
it hides any conversion overhead from the designer. Addi-
tionally, connected elements may run at different time steps:
it is enough to set the rate between them, so that SystemC-
AMS decouples their activation and automatically buffers
signal values.

4 ANALYSIS OF AC MODELING

In order to demonstrate the characteristics of the different
modeling styles for the AC domain, we propose a simple
case study where the AC load is alternatively modeled
with one of the three approaches in Section 3.2.4. This will
allow to reason in terms of accuracy w.r.t. the AC dynamics,
possible approximations and simulation overhead.
To this extent, we simulated the AC circuit in Figure 9 for a
six hours span, with the three different levels of detail:

• the individual components of the circuit are accurately
simulated at the electrical level in what we call the
accurate modeling;
• the other two levels are reproduced by extracting the

RMS and phase for each 1s windows, that are then used
to build P and PF traces for the abstract model and the
sinusoidal waves for the sinusoidal model.

Figure 11. Snapshot of simulation of the accurate AC implementation of
the circuit in Figure 9 simulated in Simulink (dashed) and SystemC-AMS
(solid) with only an amplitude change.

All such simulations are then compared w.r.t the accurate
Simulink implementation, to have a measure of accuracy
and of relative simulation speed. The outcomes are reported
in Table 2. We adopted SystemC-AMS 2.1 and Matlab 2018a.
Simulations were run on a server with Intel Xeon 2.40GHz
CPU (16 cores, 2 threads each), a 128GB RAM, and Ubuntu
18.04.1.

4.1 Analysis of accuracy
To have an overall measure of accuracy, we used the error
on the overall estimated energy (Column Total Energy), but
also three different indicators for comparing the Simulink
and SystemC-AMS traces (Column Power Trace) [34]:
• the coefficient of determination R2;
• the Legates coefficient of efficiency;
• the Willmott’s index of agreement.

All these three indicators use higher values to indicate better
accuracy (maximum value is 1).
The accurate AC model implemented in SystemC-AMS ex-
hibits a high level of accuracy w.r.t. the corresponding
Simulink, with only a 0.7% difference in the total estimated
energy. This is evident also from the indicators in Table 2,
that exhibit very high accuracy compared to Simulink (val-
ues are very close to 1).
To have a visual proof of accuracy, Figures 11 and 12 show
two snapshots of simulation for the current curves.
Figure 11 shows an amplitude change due to switch con-
figuration at time 100ms: both before and after time 100ms
SystemC-AMS (solid) shows a high fidelity w.r.t. Simulink
(dashed). The amplitude change (caused by the resistor in
branch 3 of Figure 9) generates a small error, due to a more
sudden reaction of SystemC-AMS. This difference is due to
the different solvers used by the two tools.
At time 1000ms switch configuration is changed again, this
time modifying both amplitude and phase of the sinusoidal
curve. As evident from Figure 12, the change is propagated
gradually on the sinusoidal curve, until stable behavior
is achieved around time 1200ms. This is an effect of the
inductance and the capacitance present in the activated
branch 1 in Figure 9. It is important to note that SystemC-
AMS follows well Simulink evolution, despite a small error
occurring in the first two sinusoidal periods.
When moving to sinusoidal AC modeling, the fidelity of sim-
ulation w.r.t. accurate Simulink is lowered. This is evident
from Figure 13: the transient behavior (already reported
in Figure 12 for the same time interval, solid) cannot be

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 9

Table 2
Accuracy and simulation speed of SystemC-AMS w.r.t. Simulink in different AC modeling levels.

Level of
AC Modelling

Implementation
Methodology

Accuracy Simulation
time (s)

Speedup
(×)Total Energy Power Trace

Value (Wh) Diff (%) R LCE WIA

Accurate Simulink 1,313.9 0.0 1.0000 1.0000 1.0000 1,513.42 1.00
SystemC-AMS 1,304.4 0.7 0.9999 0.9942 0.9971 141.32 10.71

Sinusoidal Simulink 1300.9 1.0 0.9999 0.9940 0.9970 1,023.97 1.48
SystemC-AMS 1,300.9 1.0 0.9999 0.9940 0.9970 106.22 14.24

Abstract Simulink 1,300.9 1.0 N/A 2.73 554.37
SystemC-AMS 1,300.9 1.0 N/A 0.21 7,206.76

Figure 12. Snapshot of simulation of the accurate AC implementation of
the circuit in Figure 9 simulated in Simulink (dashed) and SystemC-AMS
(solid) with both amplitude and phase change.

reproduced by a pure sinusoidal curve (sinusoidal AC mod-
eling, dashed), that changes amplitude and phase abruptly.
This generates a sudden shift of the first sinusoidal wave
generated at time 1000ms (due to the phase change), while
amplitude coincides again only around time 1200ms. This
implies a larger error between the two modeling styles.
However, as shown in Table 2, the relative error on the
total energy consumed by the circuit is only 1.0%. It is
important to note that the error is not due to SystemC-AMS,
but is rather replicated also by Simulink when the same
modeling style is adopted: the error is thus not caused by
the language, but rather by the adopted modeling style. This
is clear from Table 2: since the values of three indicators and
of the total energy consumption are exactly the same for the
two rows related to Sinusoidal AC modelling (i.e., Simulink
and SystemC-AMS).

Figure 13. Snapshot of simulation of the accurate AC implementation
and of the sinusoidal AC implementation of the circuit in Figure 9
simulated SystemC-AMS.

The abstract AC modeling style is a byproduct of the sinu-
soidal AC curves. Instead of using amplitude and phase
to reconstruct the sinusoidal curve, such values are repre-
sented as aggregate values: the RMS of the curve and the
power factor. However, the accuracy will be, by definition,
identical to the case of sinusoidal AC curves (since those
curves are simply generated using the P and PF values
extracted for each 1s period), and will thus suffer from the

same inaccuracies in case of phase changes. This is shown by
the fact that the total energy error for the abstract modeling
is the same as for the sinusoidal case in Table 2. The values
of the three statistical performance indicators cannot be
computed for this modeling style, since each 1s window
of sinusoidal power trace is replaced by a single P and
PF pair: it is thus not possible to compare the sinusoidal
behavior with one single sample.

4.2 Analysis of simulation speed

In order to investigate the simulation speed achieved by
the different AC modeling levels, we built one system in
both Simulink and SystemC-AMS, which simply includes
one load, one inverter and one power source. The load part
represents the circuit of Figure 9, modeled using one of the
three different AC modeling levels in each simulation run.
The power source is a battery pack, chosen big enough to
ensure 6 hours of simulation. The battery pack and the in-
verter are modeled with lightweight models (Sections 3.2.3
and 3.2.1), so to highlight the contribution of load modeling
on simulation time.
We conduct 6 hours simulation in both Simulink and
SystemC-AMS by using the three different AC modeling
levels. We used the tic toc commands to record the
simulation time of Simulink, and the time command for
estimating the simulation time of SystemC-AMS. Simulation
times are calculated as the average over 50 simulations to
eliminate the influence of other tasks running on the server.
Simulation time is reported in Table 2.
Simulation speed does not improve evidently when moving
from the accurate to the sinusoidal modeling style: both
of them conduct simulation by using a 1ms time step; in
other words, although the sinusoidal AC modelling does
not model actual electrical elements in the load, it does not
achieve a very large speed-up as it still has to reproduce
frequent samples of the AC sinusoidal curves. Furthermore,
in both modes the SystemC-AMS implementation is always
10 times faster than the corresponding Simulink implemen-
tation.
When using the abstract AC modeling level, the simulation
speed dramatically improves (more than three orders of
magnitude) since the time step becomes 1s and there is no
electrical network in the simulation. This does not imply
a higher error in energy estimation, as already discussed
in the previous section: the abstract modeling style is thus
a winning simulation speed-accuracy trade off when long
simulations are required, e.g., to have an estimation of the
CPEES evolution over year-long time windows.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 10

5 CPEES CASE STUDY

In order to demonstrate the effectiveness of the proposed
framework, we show its application on a case study similar
to the CPEES described in [35]: it includes a wind turbine,
a photovoltaic (PV) array, a battery pack, a common DC
bus, a grid-interface inverter and various AC loads. Figure
14 shows the structure of the case study mapped to the
template of Section 3, while Table 3 provide the details about
the various components, the corresponding models and the
simulation setup.

Figure 14. Test case study used in our validation [35].

6 SIMULATION RESULTS

To evaluate the effectiveness of the proposed framework,
we compared a SystemC-AMS implementation of the above
case study with the corresponding Simulink, and compared
the relative accuracy and performance. We implemented the
system in SystemC-AMS 2.1 and Matlab 2018a, respectively;
simulations were run with a fixed time step of 1 ms on a
server with Intel Xeon 2.40GHz CPU (16 cores, 2 threads
each) and 128GB RAM, with Ubuntu 18.04.1.
The Simulink and the SystemC-AMS descriptions have been
implemented at the same level of abstraction, i.e., for each
component we adopted the same kind of model, and AC
loads use the “abstract” AC modeling style (RMS power
and PF) rather than the sinusoidal behavior. This ensures
that the modeling complexity is comparable, and that no
artificial overhead is introduced on either side.
The adoption of abstract AC models is motivated by the
analysis reported in Section 4: the computational complexity
of the accurate AC models would make unfeasible simula-
tions over a day-long or year-long horizon, like the ones
carried in this section and in Section 7. AC modeling is
indeed just a part of the big picture, while the general
objective is a fast simulation environment for the analysis of
an entire CPEES (including energy storage and renewables),
which should privilege speed with respect to accuracy.
Nevertheless, we have shown that an accurate AC modeling
is possible, at the cost of sacrificing simulation speed.

6.1 Simulation Results
Figure 15 depicts system evolution on one example week for
environmental traces relative to the NREL Solar Radiation
Research Laboratory in Colorado. The figure highlights that

the proposed framework allows to trace very different quan-
tities (e.g., the dynamics of an electro-mechanical device
such as the wind turbine or the internal evolution of the
battery pack) in a single simulation run.
In order to appreciate the details of the simulation, Fig-
ure 16 zooms into a shorter 12-hour period. As shown in
Figure 16.(c), five representative “regions” can be identified
in the 12-hour simulation, with different relations between
produced and consumed power. From 2:00am to about
6:00am (I), total power generation is typically larger than
the load demand, and, as battery pack SOC is within the
10%–90% operation range, the extra generated power is
used to charge the batteries, and thus there is no interaction
with the grid. A second interval (II) from about 6 to 7 am
shows that total power generation is still larger than the load
demand; however, with the battery pack already charged at
90%, the additional generated power is sold to the grid, as
shown by the red area in (c). From about 7am to around
10 am (III) the load demand exceeds the generated power,
thus discharging the battery pack, as visible in (b). As total
power generation is still modest, when the pack reaches 10%
SOC it is necessary to purchase power from the grid (IV)
for a short time (in the specific example between around
10:10am and 10:25am, the blue area in (c)). Then the load
demand decreases and the generation increases so we start
re-charging the pack (V).

6.2 Comparison against Simulink

6.2.1 Accuracy Comparison
For the assessment of the accuracy of the SystemC-AMS
simulation against Simulink, we did a trace-by-trace com-
parison of the power consumption of the individual com-
ponents of the testcase. As the errors are very small, we
summarize them in a table rather than showing the result-
ing waveforms, on which the errors would not be visible.
Table 4 reports the average and maximum errors of the
power traces of each system components; results clearly
show that the proposed SystemC-AMS framework can track
very accurately all the components: the largest maximum
error εmax is for the wind turbine and is less than 0.5%,
while the average errors are in all cases negligible.

6.2.2 Performance Comparison
To evaluate simulation performance, we compared Simulink
and SystemC-AMS on different lengths of simulated time.
We used the same way described in section 4 to calculate
the simulation times of Simulink and SystemC-AMS. Table
5 reports simulation times and the speedup of SystemC-
AMS over Simulink, for different simulated times (i.e., from
half a day to 6 days). From the Table, it is evident that
SystemC-AMS is significantly faster than Simulink, with an
almost constant speedup around 262 to 265 times, regard-
less of the simulation length. The difference of simulation
time is explained by the difference in terms of solver and
implementation of the models: the presence of a mechanical
model forces Simulink to use the ode14x solver, as Simulink
contains both dynamic and algebraic equations even af-
ter Simcape model simplification, thus implying a quite
heavy overhead. On the other hand, SystemC-AMS uses a
lightweight first order solver based on Euler’s method.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 11

Table 3
Details of the CPEES case study.

Component Description
PV Array The PV system comprises of a PV array for a total rated power of 10kW and a DC-DC converter. We built the model of one

SunPower A300 [36] module (54.7V and 5.49A rated voltage and current), and then scaled it up to the size of the PV array
(30 modules). The module model was built using the curves provided in the A300 datasheet with the method of [22], i.e.,
empirical expressions of I and V as a function of irradiance and temperature. The model is fully functional and it is thus
implemented as a TDF module in SystemC-AMS.

Wind
Turbine

The wind turbine has a power rating of 10kW. As its power production is affected also by the complex laws controlling the
mechanical evolution, we adopted a mechanical model similar to [24], which was split it in two sub-modules: one for the
TDF part, implementing the aerodynamic model and most of the drive train and the induction generator; the other for the
LSF part, devoted to the constructs requiring a signal flow approach as exemplified in Figure 6. The model takes into account
a number of physical and mechanical aspects, including rotor torques, tip speed ratio, a simple blade pitching mechanism
and the impact of inertia and of gear ratio in the process of transforming mechanical power into electrical power.

Battery
Pack

The battery pack includes 2,400 Li-Ion cells wth 3.4Ah nominal capacity and 3.7V rated voltage (NCR18650B). We first built
a circuit-equivalent model [26] of a single battery cell and scaled it up to the size of pack using a 40-series, 60-parallel
configuration. The resulting model has been implemented by mapping the linear circuit elements onto ELN primitives, as
exemplified in Figure 7.

AC Loads The AC loads reproduce the power consumption of the appliances of 15 houses to represent a residential community. Traces
are taken from the UK Domestic Appliance Level Electricity dataset (UK-Dale) [37], that provides traces of power factor,
apparent power and active power with a 1 second time step. Traces have been condensed in a single AC load component
implemented in TDF.

Converters DC-DC converters are modeled in terms of their conversion efficiency as a function of the input voltage, output voltage and
current, by using the model in [38]. For the inverters, we considered that their efficiency tends to be constant and almost
independent on input power, whenever this is at least 15% of rated power and are thus modeled as a constant efficiency
ranging from 92% to 97% depending on the connected component.

Grid The role of the grid here is only to keep track of the power imbalance between demand and supply. This allows us to abstract
from any low-level detail, and to consider the grid as an ideal voltage source with virtually infinite power and energy. The
grid is thus implemented as a simple functional TDF block, that receives in input over time the amount of power requested
from or returned to the grid.

Buses Both buses are considered as ideal charge transfer interconnects with a 430V for the DC bus and 380V for the AC bus.
Cyber
Policies

The DC bus is provided with an energy management policy similar to the one proposed in [39]. AC loads are satisfied by
the PSs whenever possible, and the battery pack is used to compensate whenever necessary (until its state of charge reaches
a minimum of 10%). If the sum of energy stored in the battery pack and the power generated from the PSs cannot satisfy the
AC loads, the houses purchase energy from the grid. Otherwise, if the demand of the AC loads is less than the total power
generation of the PSs, the unused power is used to charge the battery pack until it reaches 90% SOC, and then it is sold back
to the grid.

Environment The traces of irradiance and wind speed have been downloaded from the NREL datasets [40]. As the time resolution of
irradiance and wind speed traces is different from those of the load. We adopted the methodology proposed in [13] to solve
the issue of different time resolutions.

Table 4
Accuracy of proposed framework w.r.t Simulink.

Component εmax (%) εavg (%)
PV Power 0.29 1.05e-05
WT Power 0.46 1.08e-04
Ibatt 0.1362 0.0110
Vbatt 0.0875 0.0102

SOCbatt 0.0963 0.0107

Table 5
Simulation time and Speedup vs. Simulink (1s time step).

Simulation Simulink SystemC-AMS Speedup
(Days) (s) (s) (X)

0.5 116.81 0.445 262.49
1 233.21 0.882 264.41
2 456.92 1.726 264.73
3 682.02 2.586 263.73
4 921.19 3.492 263.80
5 1,165.66 4.387 265.71
6 1,388.35 5.243 264.80

However, the adoption of different solvers alone is not
enough to explain such a high simulation speedup. To fur-
ther investigate the simulation complexity of Simulink and
SystemC-AMS, we thus focused on the organization of the
simulation and the content of each of the two frameworks.
The SystemC-AMS simulation framework is organized in 36
SystemC-AMS modules. All three Model of Computations
(MoCs) in SystemC are adopted in our simulation: 4 ELN

primitives for building the electrical equivalent model of the
battery, 17 LSF primitives for implementing wind turbine
mechanical model and 15 TDF modules for all other EES
components. The effective TDF synchronization adopted
for inter-module communication ensures faster simulation
evolution and information propagation in the EES. On the
other hand, the complexity of the implemented Simulink
framework is much higher: it includes 628 blocks from
Simulink and Simscape libraries. Such a large number of
blocks illustrates that the accurate simulation involved het-
erogeneous components and requires a lot of computation.
According to the profile report generated by Simulink, the
heaviest computational blocks are from the wind turbine
mechanical model, that account (on average) for 14.7% of
simulation time. Other blocks with a heavy effect on simula-
tion speed are 6 ActionPort blocks, 30 Simscape electronics-
related blocks, 8 lookup tables, and 5 integration blocks.
Additionally, 15 PS-Simulink and Simulink-PS converters
influence the overall simulation speed. Last but not least,
the whole EES is organized in 64 sub-systems, which add
an overheard at initialization time. These numbers show
that the simulation speedup is achieved not only thanks to
the native characteristics of the language, but also through
a well-designed structure of the SystemC-AMS framework.
This is confirmed by comparing Table 5 with Table 2. In
fact, the latter refers to a simpler circuit where the impact
of framework organization is less relevant. In that case,

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 12

Figure 15. One-week long simulation of the CPEES. Irradiance and wind profiles (a); load consumption of the whole residential community (b); the
power generated by the wind turbine and the PV array (c); SOC of the battery pack (d); the power flow with respect to the grid (e).

Figure 16. Zoom-in of some of the quantities plotted in Figure 8 for a 12-
hour period: Total power consumption and sustainable generation (a);
battery pack SOC (b); power flow to/from the grid (c), with emphasis on
five periods involving different power flow balances.

the speedup achieved by SystemC-AMS with respect to
Simulink for the same abstract modeling style was around
10-13x, which can be charged to the language and com-
piler efficiency. Conversely, Table 5 reports a much larger
speedup, which is motivated by the aforementioned differ-
ences in the two frameworks.
As an additional element of analysis, we verified the im-
pact of simulation time step on speedup (Figure 17). The
data show that the speedup of SystemC-AMS obviously

decreases for decreasing time steps, where Simulink does
fewer calls to the solver over a given amount of time. How-
ever, this decrease is not particularly marked: even with a
10s time step our framework still guarantees a speed-up of
about 250X. For a 1ms time step the speed-up reaches about
370X, and Simulink cannot even manage to complete the 5-
and 6-day simulation due to memory space limitations.

Figure 17. Simulation speedup of SystemC-AMS w.r.t. Simulink for
different simulation time steps (x-axis) and simulation lengths (in days,
different colors).

7 DESIGN SPACE EXPLORATION (DSE)
Thanks to its computational efficiency, our framework al-
lows running Design Space Explorations (DSE) over sig-
nificantly long time horizons. In this section, we present
two DSE experiments on the CPEES of Figure 14. The
first one carries out an exhaustive exploration of different
configurations to determine the one with the largest profit;
the second one adds a constraint on the initial investment.

7.1 DSE Setup
We consider the amount of power sources and of energy
storage as parameters of the DSE. For the PV array and

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 13

Figure 18. Total profit of different configurations for Case 1 and for different lengths of simulated time.

Figure 19. Total profit of different configurations for Case 2 and for different lengths of simulated time.

the battery pack, which are intrinsically modular, this cor-
responds to the number of PV modules and of battery
cells; conversely, the wind turbine is considered either as
included or removed. Table 6 indicates the cost information
of these three elements. The total costs (device cost + in-
stallation cost) of wind turbine and PV array are $1.95/W
and $2.25/W , respectively, and their average operation and
maintenance (O&M) cost is $15/kW/Year [41]. We set the
total cost of battery pack to $200/kWh [42] (one NCR18650
battery cell costs≈ $2.5), and its O&M cost is $10/kW/Year.

Table 6
Cost and lifetime of CPEES components.

Component Cost O&M Cost Lifetime
[$] [$/kW/Year] [Years]

Wind Turbine 19,500 15 20
PV Module 675 15 20
Battery Cell 2.5 10 8

For the electricity cost, we used the selling/buying prices
reported in [43] (Table 7).

Table 7
Electricity Prices for different times of the day.

Price Category Value ($/kWh) Time span
Buying F1 0.220 10am-3pm 6pm-9pm

Buying F2 0.215 7am-10am 3pm-6pm
9pm-11pm

Buying F3 0.200 11pm-7am
Selling 0.030 all day

The total profit of the CPEES is defined by Equation 1.
We do not consider possible government incentives in our
profit analysis due to the significant differences in local
policies. Therefore, our profit analysis can be treated as a
conservative one.

Profit =(Pown × pbuy) + (Pextra × psell)−
(Pgrid × pbuy)− Ccapital − Co&m

(1)

where:

Pown = Generated power for own use
Pextra = Extra generated power sold to the grid
Pgrid = Power bought from utility grid
pbuy = Electricity buying price
psell = Electricity selling price
Ccapital = Capital investment for all devices
Co&m = Global O&M cost

7.2 Exhaustive Exploration

The first experiment is an exhaustive DSE to determine the
configuration with the highest economic benefit. The ranges
of the variables are set as follows: when the wind turbine is
not present (Case 1), the number of PV modules varies from
0 to 150 in steps of 10; when present (Case 2), the number of
PV modules varies from 0 to 100. In both cases, the number
of battery cells varies from 0 to 10,000, in steps of 1,000. We
use the same AC loads and the same traces of irradiance
and wind speed used in Section 6.
The exploration results for Case 1 are shown in Figure 18.
The x- and y-axis represent the various configurations, in
terms of the number of PV modules and battery cells. The z-
axis represents the profit, computed as in Equation 1, where
negative values denote a loss. The profits of various configu-
rations in these 3D plots change from flat to convex surfaces
when prolonging simulations up to 8 years. Interestingly,
the results show that, in absence of incentives (which could
lower the initial investment cost) there is no profitable
configuration that can be obtained by any configuration of
PV array and battery pack, even after 8 years of operations.
Notice that the profit would further worsen after the eighth
year, due to the cost of battery pack replacement.
When including the wind turbine (Figure 19), although the
shapes of the curves are similar to Case 1, there exist some
configurations that can lead to a profit after the sixth year.
The main reason why the wind turbine brings such a benefit

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 14

is that it complements the absence of power generation
by PV array during the night or during cloudy or rainy
days, providing a better coverage of energy generation in
particular during peak hours, which are not generally the
most irradiated.
It is worth emphasizing that this analysis required year-
long simulations, made possible only thanks to the fast
simulation speed of the proposed framework: simulation of
1 year only took about 145s on average. Considering the 250-
350x speedup discussed before, this would have required
about a half day of simulation in Simulink.

Table 8
Highest profit configuration for different years.

Year PV Batt. Profit[$] Year PV Batt. Profit[$]
1 0 0 -19,030 7 30 3,000 8,400
2 0 1,000 -16,260 8 40 3,000 17,220
3 0 1,000 -13,140 9 40 2,000 19,960
4 0 1,000 -10,010 10 50 2,000 28,730
5 10 2,000 -5,710 11 50 3,000 37,970
6 30 3,000 380 12 60 3,000 48,110

Table 8 lists the optimal points of the surfaces obtained
by the above exploration at each year boundary and for
1 to 12 years horizon, with the relative configuration of
PV modules and battery cells. Interestingly, the optimal
solution corresponds to different configurations in different
years. As expected, the profit increases with the length of
the observation interval; notice however that this includes
the cost of battery replacement after the eighth year, so the
actual quantification is not trivial. In particular, it can be
observed how it is not convenient to excessively increase
the size of the battery pack, as the replacement cost will
adversely affect the profit.

7.3 Exploration with Fixed Capital Cost
In the previous exploration there was no bound on the
initially invested capital and only the maximization of the
profit was sought. An alternative scenario is one where an
initial investment is decided upfront and used a constraint.
The exploration variables are the same as before, but in this
case they will be constrained by the cost boundary. Based
on the conclusion we drew in the previous analysis, we
consider configurations that include one wind turbine; the
actual available capital for PV modules and battery cells
is therefore $30,500, i.e., $50,000−$19,500 (the wind turbine
cost). Table 9 lists 16 configurations with $30,500 capital cost.

Table 9
Different configurations with same capital cost.

Config. No. PV Battery Config. No. PV Battery
1 0 12,200 9 24 5,720
2 3 11,390 10 27 4,910
3 6 10,580 11 30 4,100
4 9 9,770 12 33 3,290
5 12 8,960 13 36 2,480
6 15 8,150 14 39 1,670
7 18 7,340 15 42 860
8 21 6,530 16 45 50

As a further variable, we selected two different locations:
one in Arizona (dry and windy weather, with up to 90%

Table 10
Optimal configurations at different years for each location.

Oregon Arizona
Year Config Profit (K$) Config Profit (K$)

1 13 -43.674 12 -42.044
2 13 -36.545 12 -34.088
3 13 -31.024 12 -26.132
4 13 -22.602 12 -17.931
5 13 -18.373 12 -10.112
6 13 -8.483 12 -1.993
7 13 -5.723 12 4.291
8 13 1.584 12 14.299
9 15 1.994 13 15.199
10 14 8.134 13 23.549

sunny days) and the other in Oregon (with a mild wet
climate).
Figure 20 shows the design exploration results for a time
horizons from 1 to 10 years. Both surfaces exhibit a ditch
after year 8 due to the cost of replacing the battery pack.
The points with largest profit are significantly different for
the two location: $8, 134 in Oregon vs. $25, 230 in Arizona,
respectively. Both faster wind speed and higher irradiance
in Arizona cause a much higher profit than in Oregon. Thus,
the break-even of CPEES occurs at different times: after the
eighth year in Oregon and after the seventh year in Arizona.

Figure 20. Profit statistics over ten years of the configurations listed in
Table 9 at different locations.

Clearly, the optimal configurations are also different for the
two locations. Table 10 shows the profit of the optimal con-
figuration at each year for both locations. Interestingly, the
optimal solution changes depending on the target horizon.
With a eight year horizon, the best Oregon configuration
is #13 (36 PV modules combined with 2,430 battery cells),
while in Arizona is #12 (33 PV modules with 3,240 battery
cells). The difference is due to the fact that in Oregon
the lesser energy harvested by power sources is mostly
consumed by the loads rather than stored in the battery,
and a larger battery is not useful; conversely, in Arizona the
availability of harvested energy motivates the use of larger
batteries and fewer PV modules. Intuitively, the battery
replacement event shifts the optimal solution to configura-
tions with larger PV arrays and smaller battery packs: after
the eighth year, the optimal configurations become #14 for
Oregon (with 1,670 battery cells) and #13 for Arizona (with
2,480 battery cells).
Needless to say, running all these experiments over such
long time intervals is possible only thanks to the extremely
fast simulation speed of our framework.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 15

8 CONCLUSIONS

An accurate assessment of the power flow in a CPEES
and its relative economic implications requires accurate and
efficient simulation tools that are also flexible in supporting
different types of models. This paper proposed a SystemC-
AMS framework that features all these requirements, allow-
ing an efficient simulation of CPEES in which components
are possibly represented with very different levels of details
and of time semantics. We demonstrate the flexibility and
high computing efficiency of our modeling and simulation
framework by running different design space exploration
experiments that span time horizons longer than 10 years
while requiring only minutes of simulation time, still keep-
ing excellent accuracy vs. state-of-the-art simulation tools.

REFERENCES

[1] P. Lopion, P. Markewitz, M. Robinius, and D. Stolten, “A review
of current challenges and trends in energy systems modeling,”
Renewable and sustainable energy reviews, vol. 96, pp. 156–166, 2018.

[2] E. Bellan, “JRC annual report 2016,”
https://ec.europa.eu/jrc/en/publication/annual-reports, pp.
1–38, 2016.

[3] G. Fulli, M. Masera, A. Spisto, and S. Vitiello, “A change is com-
ing: How regulation and innovation are reshaping the European
Union’s electricity markets,” IEEE MPE, vol. 17, no. 1, pp. 53–66,
2019.

[4] A. Maffei, S. Srinivasan, D. Meola, G. Palmieri, L. Iannelli, O. H.
Holhjem, G. Marafioti, G. Mathisen, and L. Glielmo, “A cyber-
physical systems approach for implementing the receding horizon
optimal power flow in smart grids,” IEEE TSUSC, vol. 3, no. 2, pp.
98–111, 2018.

[5] Y. Li, J. Si, S. Ma, and X. Hu, “Using energy-aware scheduling
weather forecast based harvesting for reconfigurable hardware,”
IEEE TSUSC, vol. 4, no. 1, pp. 109–117, 2019.

[6] H. Xu, X. Jin, F. Kong, and Q. Deng, “Two level colocation demand
response with renewable energy,” IEEE TSUSC, 2019.

[7] H.-K. Ringkjøb, P. M. Haugan, and I. M. Solbrekke, “A review
of modelling tools for energy and electricity systems with large
shares of variable renewables,” Elsevier RSER, vol. 96, pp. 440–459,
2018.

[8] L. Liu, H. Sun, C. Li, T. Li, J. Xin, and N. Zheng, “Exploring highly
dependable and efficient datacenter power system using hybrid
and hierarchical energy buffers,” IEEE TSUSC, 2018.

[9] S. Yue, D. Zhu, Y. Wang, M. Pedram, Y. Kim, and N. Chang,
“Simes: A simulator for hybrid electrical energy storage systems,”
in Proc. of IEEE ISLPED, 2013, pp. 33–38.

[10] Y. Kim, D. Shin, M. Petricca, S. Park, M. Poncino, and N. Chang,
“Computer-aided design of electrical energy systems,” in Proc. of
ICCAD. IEEE, 2013, pp. 194–201.

[11] J. M. Molina, X. Pan, C. Grimm, and M. Damm, “A framework
for model-based design of embedded systems for energy manage-
ment,” in Proc. of IEEE MSCPES, 2013, pp. 1–6.

[12] M. A. Al Faruque and F. Ahourai, “A model-based design of cyber-
physical energy systems,” in Design Automation Conference (ASP-
DAC), 2014 19th Asia and South Pacific. IEEE, 2014, pp. 97–104.

[13] S. Vinco, Y. Chen, F. Fummi, E. Macii, and M. Poncino, “A layered
methodology for the simulation of extra-functional properties in
smart systems,” IEEE TCAD, vol. 36, no. 10, pp. 1702–1715, 2017.

[14] J. Leonard, R. Hadidi, and J. C. Fox, “Real-time modeling of multi-
level megawatt class power converters for hardware-in-the-loop
testing,” in Proc. of IEEE EDST, 2015, pp. 566–571.

[15] B. Palmintier, B. Lundstrom, S. Chakraborty, T. Williams,
K. Schneider, and D. Chassin, “A power hardware-in-the-loop
platform with remote distribution circuit cosimulation,” IEEE TIE,
vol. 62, no. 4, pp. 2236–2245, 2014.

[16] P. Palensky, E. Widl, and A. Elsheikh, “Simulating cyber-physical
energy systems: Challenges, tools and methods,” IEEE TSMC,
vol. 44, no. 3, pp. 318–326, 2013.

[17] M. D. Ilic, L. Xie, U. A. Khan, and J. M. Moura, “Modeling of
future cyber–physical energy systems for distributed sensing and
control,” IEEE TSMCA, vol. 40, no. 4, pp. 825–838, 2010.

[18] A. Banerjee, J. Banerjee, G. Varsamopoulos, Z. Abbasi, and S. K.
Gupta, “Hybrid simulator for cyber-physical energy systems,” in
Proc. of IEEE MSCPES, 2013, pp. 1–6.

[19] P. Palensky, A. van der Meer, C. Lopez, A. Joseph, and K. Pan,
“Applied cosimulation of intelligent power systems: Implement-
ing hybrid simulators for complex power systems,” IEEE MIE,
vol. 11, no. 2, pp. 6–21, 2017.

[20] C. Unterrieder, M. Huemer, and S. Marsili, “SystemC-AMS-based
design of a battery model for single and multi cell applications,”
in Proc. of PRIME, 2012, pp. 1–4.

[21] N. Chang, D. Baek, and J. Hong, “Power consumption character-
ization, modeling and estimation of electric vehicles,” in Proc. of
IEEE ICCAD, 2014, pp. 175–182.

[22] S. Vinco, Y. Chen, E. Macii, and M. Poncino, “A unified model of
power sources for the simulation of electrical energy systems,” in
Proc. of ACM GLS-VLSI, 2016, pp. 281–286.

[23] B. Vernay, A. Krust, G. Schröpfer, F. Pêcheux, and M.-M. Louerat,
“SystemC-AMS simulation of a biaxial accelerometer based on
mems model order reduction,” in Proc. of IEEE DTIP, 2015, pp.
1–6.

[24] K. Ohyama and T. Nakashima, “Wind turbine emulator using
wind turbine model based on blade element momentum theory,”
in Proc. of IEEE SPEEDAM, 2010, pp. 762–765.

[25] K. Caluwaerts, D. Galayko, and P. Basset, “SystemC-AMS hetero-
geneous modeling of a capacitive harvester of vibration energy,”
in Proc. of IEEE WAMS, 2008, pp. 142–147.

[26] Y. Chen, E. Macii, and M. Poncino, “A circuit-equivalent battery
model accounting for the dependency on load frequency,” in Proc.
of IEEE DATE, 2017, pp. 1177–1182.

[27] SE4K–SE10K datasheet, SolarEdge, 2017,
www.solaredge.com/sites/default/files/se-three-phase-inverter-
datasheet.

[28] A-301/302-150 series datasheet, Meanwell, 2016, www.meanwell-
bg.com/files/M2017H1/A300-150-SPEC.PDF.

[29] “Openzmeter: An efficient low-cost energy smart meter and power
quality analyzer,” MDPI Sustainability, no. 11, 2018.

[30] M. Pipattanasomporn, M. Kuzlu, S. Rahman, and Y. Teklu, “Load
profiles of selected major household appliances and their demand
response opportunities,” IEEE Transactions on Smart Grid, vol. 5,
no. 2, pp. 742–750, 2014.

[31] P. Meehan, C. McArdle, and S. Daniels, “An efficient scalable time-
frequency method for tracking energy usage of domestic appli-
ances using a two-step classification algorithm,” MDPI Energies,
vol. 7, pp. 7041–7066, 2014.

[32] National Instruments, “What is LabVIEW?”
https://www.ni.com/en-us/shop/labview.html, 2019.

[33] Allegro MicroSystems, “ACS712: Fully integrated, hall-
effect-based linear current sensor IC with 2.1 kVRMS
voltage isolation and a low-resistance current conductor,”
https://www.allegromicro.com/en/Products/Sense/current-
sensor-ics, 2019.

[34] C. A. Gueymard, “A review of validation methodologies and
statistical performance indicators for modeled solar radiation data:
Towards a better bankability of solar projects,” Renewable and
Sustainable Energy Reviews, vol. 39, pp. 1024 – 1034, 2014.

[35] S. K. Kim, J. H. Jeon, C. H. Cho, J. B. Ahn, and S. H. Kwon, “Dy-
namic modeling and control of a grid-connected hybrid generation
system with versatile power transfer,” IEEE TIE, vol. 55, no. 4, pp.
1677–1688, 2008.

[36] SUNPOWER, 300 solar panel, https://www.energymatters.com.au/
images/sunpower/sunpower-300.pdf.

[37] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from
five UK homes,” Scientific Data, vol. 2, no. 150007, 2015.

[38] S. Park, Y. Wang, Y. Kim, N. Chang, and M. Pedram, “Battery
management for grid-connected PV systems with a battery,” in
Proc. of ISLPED, 2012, pp. 115–120.

[39] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-sharing
model with price-based demand response for microgrids of peer-
to-peer prosumers,” IEEE TPWRS, vol. 32, no. 5, pp. 3569–3583,
2017.

[40] National Renewable Energy Laboratory, “Measurement and In-
strumentation Data Center,” https://midcdmz.nrel.gov/.

[41] International Renewable Energy Agency, “Renewable power gen-
eration costs in 2017,” https://www.irena.org/publications/2018,
2017.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XXX 2020 16

[42] M. Safoutin, J. McDonald, and B. Ellies, “Predicting the future
manufacturing cost of batteries for plug-in vehicles for the US en-
vironmental protection agency (EPA) 2017–2025 light-duty green-
house gas standards,” WEVJ, vol. 9, no. 3, p. 42, 2018.

[43] S. Magnani, L. Pezzola, and P. Danti, “Design optimization of a
heat thermal storage coupled with a micro-chp for a residential
case study,” Energy Procedia, vol. 101, pp. 830–837, 2016.

Yukai Chen (M’15) received the M.Sc. degree
in computer engineering and the Ph.D. degree
in computer and control engineering from the
Politecnico di Torino, Turin, Italy, in 2014 and
2018, where he is currently a Postdoctoral Re-
search Fellow. His current research interest in-
cludes computer-aided design for integrated cir-
cuits and cyber physical energy systems, with
particular emphasis on the modeling and simu-
lation of extra-functional properties.

Sara Vinco (M’09) is Assistant Professor with
tenure track at Politecnico di Torino, Turin, Italy.
She received the Ph.D. degree in computer sci-
ence from the University of Verona, Verona,
Italy, in 2013. Her current research interests in-
clude energy efficient electronic design automa-
tion and techniques for the simulation and valida-
tion of heterogeneous embedded systems and
cyber-physical production systems.

Daniele Jahier Pagliari (M’15) received the
M.Sc. and Ph.D. degrees in computer engineer-
ing from Politecnico di Torino, Torino, Italy, in
2014 and 2018, respectively. He is currently an
Assistant Professor in the same institution. His
research interests include computer-aided de-
sign of digital systems, with particular empha-
sis on low-power optimization and approximate
computing.

Paolo Montuschi (M’90-SM’07-F’14) is a Full
Professor with the Department of Control and
Computer Engineering and a member of the
Board of Governors with Politecnico di Torino,
Torino, Italy. His research interests include com-
puter arithmetic, computer graphics, and intelli-
gent systems. He is a Fellow of the IEEE, Life
Member of the International Academy of Sci-
ences of Turin, and of Eta Kappa Nu, the Honor
Society of IEEE.

Enrico Macii (SM’02-F’05) is a Full Professor
of Computer Engineering with the Politecnico
di Torino, Torino, Italy. He holds a PhD degree
in computer engineering from the Politecnico di
Torino. His research interests are electronic digi-
tal circuits and systems, with a particular empha-
sis on low-power consumption aspects, energy
efficiency, sustainable urban mobility, clean and
intelligent manufacturing. He is a Fellow of the
IEEE.

Massimo Poncino (SM’12-F’18) is a Full Pro-
fessor of Computer Engineering with the Politec-
nico di Torino, Torino, Italy. His current research
interests include several aspects of design au-
tomation of digital systems, with emphasis on
the modeling and optimization of energy-efficient
systems. He received a PhD in computer engi-
neering and a Dr.Eng. in electrical engineering
from Politecnico di Torino. He is a Fellow of the
IEEE.

