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Abstract: Flame retardant systems based on bio-sourced products combine quite high fire

performances with the low environmental impact related to their synthesis and exploitation. In this

context, this work describes a new all bio-sourced flame retardant system designed and applied to

cotton fabrics. In particular, it consists of phytic acid (PA), a phosphorus-based naturally occurring

molecule extracted from different plant tissues, in combination with biochar (BC), a carbon-rich

solid product obtained from the thermo-chemical conversion of biomasses in an oxygen-limited

environment. PA and BC were mixed together at a 1:1 weight ratio in an aqueous medium, and

applied to cotton at different loadings. As revealed by flammability and forced combustion tests,

this bio-sourced system was able to provide significant improvements in flame retardance of cotton,

even limiting the final dry add-on on the treated fabrics at 8 wt.% only. The so-treated fabrics were

capable to achieve self-extinction in both horizontal and vertical flame spread tests; besides, they

did not ignite under the exposure to 35 kW/m2 irradiative heat flux. Conversely, the proposed flame

retardant treatment did not show a high washing fastness, though the washed flame retarded fabrics

still exhibited a better flame retardant behavior than untreated cotton.

Keywords: cotton; flame retardance; phytic acid; biochar; thermal stability; flammability tests; cone

calorimetry tests; durability

1. Introduction

The ease of flammability represents a major issue for cotton textiles, especially in those application

fields, where fire-proofing is strictly required. In fact, when exposed to an irradiative heat flux or put

in contact with a flame, this cellulosic material is easily ignited and the combustion takes place with

high burning rate, leaving a negligible residue. In order to overcome this limitation, cotton needs to be

effectively flame retarded, i.e., treated with specific chemical products intended to minimize the rate of

flame spread and to inhibit sustained combustion [1–4].

For this purpose, over the last 50 years, different flame retardants (FRs) have been conceived,

synthesized and applied to cotton, achieving high fire performances for the treated fibers and fabrics

and therefore overcoming the above-mentioned problem. Among the different flame retardant systems

for cotton cellulosic textiles, from halogenated products (mainly based on chlorinated or brominated

structures), showing a high efficiency, but, at the same time, a high environmental impact and in

some cases, toxicity, persistency, bioaccumulation [5], both the academics and industrial companies

have addressed the research towards the development of safer products. This was achieved first

with the design of flame retardants based on the phosphorus (alone or in combination with nitrogen)
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chemistry [6–8], thus obtaining very efficient and more green FR additives; then, more recently,

nanofiller-based systems have been developed and successfully exploited [4,9].

Aiming at further designing and utilizing products with lower environmental impact, in the last

decade several scientific papers started to investigate the big potentialities of biomacromolecules and

bio-sourced products like proteins, nucleic acids, pomegranate rind extracts, banana pseudostem sap,

among a few to mention, as effective flame retardant for either natural (i.e., cellulosic) or synthetic

(mainly polyester) textiles [10–15].

These products possess three main advantages: first, their chemical structure and composition is

very suitable for conferring flame retardant features to fabrics, as biomacromolecules and bio-sourced

products contain some key elements (namely, phosphorus, nitrogen, sulfur), which are responsible

for the activation of the flame retardant mechanisms [16]. Then, they are usually easily dispersible

or soluble in water: this represents an advantage, as it bans the use of organic solvents with high

environmental impact or even high toxicity. Finally, the FR treatments on the fabrics can be performed

using the already available finishing units (i.e., industrial impregnation/exhaustion plants).

Specifically referring to phosphorus-based biomacromolecules, these FR additives usually exploit

a condensed phase mechanism, assisting the formation of stable aromatic char [10,11]: this is possible

because of the creation of phosphoric acids species upon the activation of the biomacromolecule,

which favor dehydration reactions on the underlying textile substrate, remarkably limiting the

production of organic flammable gases that can further fuel the combustion process. This mechanism

is further enhanced when P-containing biomacromolecules are combined with a carbon source [17,18],

as proposed in the present work.

In particular, here we take advantage from a new flame retardant “green” recipe that exploits

the combination of phytic acid, a naturally occurring molecule, extracted from different plant tissues

(e.g., oil seeds, soy beans and cereal grains [16]) and bearing six phosphate groups (28 wt.% of

phosphorus based on molecular weight), with biochar, a carbon-rich solid product obtained from the

thermo-chemical conversion of biomasses in an oxygen-limited environment [19,20].

Biochar, in particular, represents a very good carbon source that can be effectively exploited during

the flame retardant action in condensed phase for enhancing the formation of a stable protective char

on the burning cellulosic substrate [21].

The scientific literature already reports some interesting works dealing with the application of

phytic acid-based flame retardants to different types of textile materials. In particular, this eco-friendly,

biocompatible and nontoxic organic polyphosphoric acid has been successfully utilized as flame

retardant for wool [22], silk [23], poly(lactic acid) nonwoven fabrics [24] and, more recently, cotton

fabrics [25–28].

To the best of our knowledge, the flame retardant effects provided by the proposed all-bio-sourced

system to cotton fabrics have not been investigated so far.

Therefore, first we combined PA and BC, keeping 1:1 weight ratio, in an aqueous medium,

and applied to cotton at different loadings (from 4 to 10 wt.%), aiming to identify the best flame

retardant treatment with the lowest dry add-on. The morphology of cotton and of the treated fabrics

was investigated by means of SEM and FTIR-attenuated total reflection (ATR) spectroscopy analyses.

As revealed by flame spread tests performed either in vertical or horizontal configuration on the

different treated fabrics, it was possible to provide self-extinction to the cellulosic substrate limiting

the final dry FR add-on to 8 wt.% only. This loading was also responsible for impeding the ignition

of the fabrics under the cone calorimeter, using an irradiative heat flux of 35 kW/m2. Then, this

most FR performing system in flame spread tests was further investigated as far as its thermal and

thermo-oxidative behavior is considered and compared to that of untreated cotton and of the fabrics

treated with BC or PA only. Finally, the durability (i.e., washing fastness) of the proposed flame

retardant treatment was evaluated, comparing the flame retardance of the washed treated fabrics with

the pristine counterparts.



Polymers 2020, 12, 811 3 of 15

2. Materials and Methods

2.1. Materials

Cotton fabrics (220 g/m2 and 0.2 mm thick) were purchased from Fratelli Ballesio S.r.l. (Torino, Italy).

Phytic acid (PA, as 50 wt.% aqueous solution) was purchased from Tokyo Chemical Industry Co.,

Ltd. (Oxford, United Kingdom) and used as received.

Ultra-pure 18.2 MU deionized water was supplied by a Q20 Millipore system (Milano, Italy).

Exhausted coffee powder collected from Bar Katia (Turin, Italy) and supplied by Vergnano Spa

(Torino, Italy) as an Arabica mixture was employed as raw material for the preparation of Biochar.

More specifically, the exhausted coffee was collected and dried at 105 ◦C for 72 h. Coffee samples

(100 g) were pyrolyzed using a vertical furnace and a quartz reactor (heating rate: 15 ◦C/min) and kept

at 800 ◦C for 30 min in argon atmosphere [19,20].

2.2. Preparation of Phytic Acid/Biochar Dispersions

The dispersions were prepared by mixing phytic acid and biochar at a 1:1 weight ratio. The mixtures

were diluted under vigorous mechanical stirring with distilled water, in order either to promote

the dispersion of the biochar into the aqueous solution, or to tune the final dry add-on on the

cellulosic substrate.

2.3. Application of Phytic acid/Biochar Dispersions to Cotton Fabrics

Cotton fabrics were cut into square pieces (10 cm × 10 cm), weighted and then impregnated

with the dispersions. The impregnated fabrics were put on a glass substrate and dried in an oven at

80 ◦C for 20 min. Then, the final dry add-on on the cotton samples (i.e., the dry weight gain (A%),

wt.%) was determined by weighing each sample before (Wi) and after the impregnation with PA-BC

dispersion and the subsequent thermal treatment (Wf). The weight gain was calculated using the

following formula:

A% =

W f −Wi

Wi
∗ 100

For a first set of impregnations, the dry add-on values were varied between 4 and 10 wt.%;

furthermore, two cotton fabrics were treated with phytic acid (sample name: COT + PA) or biochar

only (sample name: COT + BC, Table 1), achieving 8 wt.% dry add-on.

Table 1. Composition of the treated cotton fabrics investigated.

Sample Code
PA

(wt.%)
BC

(wt.%)
Wet Pickup

(wt.%)
Dry Add-On A%

(wt.%)

COT+PA 100 0 78 8

COT+BC 0 100 84 8

COT+PA+BC(4) 50 50 85 4

COT+PA+BC(6) 50 50 86 6

COT+PA+BC(8) 50 50 87 8

COT+PA+BC(10) 50 50 87 10

Table 1 lists the investigated composition, the wet pickup values and the different dry add-ons on

the treated fabrics.

2.4. Characterization Techniques

A Perkin Elmer Spectrum 100 IR spectrometer equipped with an attenuated total reflection (ATR)

diamond accessory was employed for collecting the FTIR-ATR spectra of untreated and treated cotton
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fabrics. FTIR-ATR spectra were recorded at wavelengths from 500 to 4000 cm−1 with 4 cm−1 resolution;

for each specimen, 16 scans were collected.

A LEO-1450VP Scanning Electron Microscope (Zeiss, New Jersey, USA; beam voltage: 5 kV),

coupled to an energy dispersive X-ray (EDX) micro-analyzer (mod. INCA Energy 300, Oxford

instruments, Abingdon, UK) was employed to study the surface morphology of both untreated and

treated samples. For the analysis, cotton fabric pieces (0.5 cm × 0.5 cm) were cut and fixed to conductive

adhesive tapes and gold-metalized.

The thermal and thermo-oxidative stability of the fabrics was evaluated by thermogravimetric

(TG) analyses in nitrogen and air, respectively, from 50 to 700 ◦C with a heating rate of 20 ◦C/min.

To this aim, a TAQ500 analyzer (TA Instrument Inc., Waters LLC, DE, USA) was used, placing the

samples (approximately 8 mg) in open alumina pans, in inert or oxidative atmosphere (gas flow:

35 mL/min).

Horizontal and vertical flame spread tests were carried out on untreated cotton and on treated

fabrics according to UL94 standard.

Cone calorimetry tests were performed according to the ISO 5660 standard. More specifically,

square specimens (10 cm × 10 cm) were irradiated with a heat flux of 35 (raised to 50 kW/m2, when

ignition at 35 kW/m2 did not occur) in horizontal configuration; the fabrics were placed on a sample

holder and maintained in the correct position using a metallic grid. For each formulation, the test

was repeated three times and the results averaged. A standard deviation of 2% was calculated for

the following parameters: Time to Ignition (TTI, s), Total Heat Release (THR, kW/m2), peak of Heal

Release Rate (pkHRR, kW/m2). The residues at the end of the tests were also evaluated.

Finally, the washing fastness of the treated fabrics was determined following the AATCC test

method 61 (2A)-1996 in the presence of a non-ionic detergent at 38 ± 3 ◦C.

3. Results and Discussion

3.1. FTIR-ATR Spectroscopy

The effectiveness of the deposition of the coatings on the cotton fabrics has been assessed through

FTIR-ATR spectroscopy. Figure 1A–D compares the FT-IR spectra of untreated cotton, cotton treated

with PA, pure PA and COT+PA+BC(8). Figure 1A shows the characteristic peaks of cellulose for

untreated cotton (namely: v(OH) at ca. 3300 cm−1, v(CH2) at 2900 cm−1, δ (OH) at 1640 cm−1, δ (CH2) at

1425 cm−1, δ (CH) at 1370 cm−1, δ (OH) at 1310 cm−1, v(C–C) at 1020 cm−1 and δ (OH) at 894 cm−1) [29].

Figure 1C shows the FTIR-ATR spectrum of phytic acid: three characteristic peaks, located at 1650,

1060 and 980 cm−1 and corresponding to stretching vibration of P=O, asymmetric and symmetric

stretching of P–O–C, are present [29]. These peaks are still detectable in COT+PA (Figure 1C).

In addition, the spectrum of cotton treated with phytic acid and biochar (Figure 1D) still shows

the presence of some typical vibrational modes of cellulose, though these signals are less intense and

defined because of the application of the flame retardant treatment.

3.2. Morphology of the Treated Fabrics

SEM-EDX observations have been performed in order to assess the morphology of the cotton

fabrics before and after the application of the flame retardant treatment and to assess the presence of the

flame retardant. Pure cotton is characterized by a quite smooth texture as evidenced in Figure 2, while

the treated cotton fabrics (Figure 3 presents the typical morphology of COT + PA + BC(8) sample) show

the appearance of some micro-sized BC particles on the surface. The elemental analysis carried out by

energy dispersive X-ray spectroscopy on some areas where BC particles appear (Figure 4) confirms

the presence of C, O and P elements (i.e., the main phytic acid and BC constituents, obviously not

excluding the C and O contribution from the cellulosic substrate). It is noteworthy that PA, as already

observed in sol-gel systems containing this bio-sourced product [27], is likely to coat the fibers with a

homogeneous layer; BC micro-sized particles are quite well distributed on the fiber surface.
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Figure 1. FTIR-attenuated total reflection (ATR) spectra of cotton (COT) (A), cotton+phytic acid

(COT+PA) (B), PA (C) and cotton+phytic acid+biochar (COT+PA+BC(8)) (D).                   
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Figure 2. SEM images of untreated cotton at different magnifications.
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Figure 3. SEM images of COT+PA+BC(8) at different magnifications.
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Figure 4. Energy dispersive X-ray (EDX) mapping of COT+PA+BC(8).

3.3. Flame Spread Tests

Flame spread tests, carried out either in vertical and horizontal configuration on cotton and

on the different treated fabrics were exploited for a preliminary screening of the flame retardant

properties, trying to identify the lowest final dry add-on that ensured self-extinction in both vertical

and horizontal tests.

Table 2 lists the results of vertical flame spread tests. First of all, it is noteworthy that the treatment

with BC alone is not able to provide any enhancement, as the treated fabrics are not classified; conversely,

the deposition of the phytic acid coating (8 wt.% add-on) makes self-extinguishing the underlying

fabric, significantly increasing, at the same time, the residue at the end of the tests (53%). This latter

is further enhanced (up to 85%) by partly replacing PA with BC, keeping the same final dry add-on

of 8 wt.% and still achieving self-extinction: this finding is a clear indication of the synergistic effect

taking place between PA and BC, which, together, significantly intensify the char-forming effect of

PA, leading to the creation of a very stable carbonaceous residue. In addition, it is noteworthy that,

irrespective of the UL94 classification achieved (i.e., NC or V0), all the treated textiles at the end of

vertical flame spread tests show dense and coherent residues, maintaining the texture of the pristine

fabric (Figure 5).
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Table 2. Results of vertical flame spread tests performed on cotton and on the treated fabrics.

SAMPLE Total Dry Add-On (%) SELF-EXTINCTION Residue (%) Classification

COT / NO 0 NC

COT+BC 8 NO 0 NC

COT+PA 8 YES 53 V0

COT+PA+BC(4) 4 NO 51 NC

COT+PA+BC(6) 6 NO 55 NC

COT+PA+BC(8) 8 YES 85 V0

COT+PA+BC(10) 10 YES 90 V0
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SAMPLE Total add-
on (%) 

t1 
(s) 

t2 
(s) 

ttot 
(s) 

Burning 
rate  

(mm/s) 
Residue  

(%) 

COT / 12 40 63 1.58 0 
COT+BC 8 13 41 63 1.58 0 
COT+PA 8 / / / / 92 

COT+PA+BC(4) 4 15 45 70 1.42 57 
COT+PA+BC(6) 6 / / / / 95 
COT+PA+BC(8) 8 / / / / 97 
COT+PA+BC(10) 10 / / / / 97 

Figure 5. Residues after vertical flame spread tests. (A) COT, (B) COT+BC, (C) COT+PA,

(D) COT+PA+BC(4), (E) COT+PA+BC(6), (F) COT+PA+BC(8), (G) COT+PA+BC(10).

The results from vertical flammability tests are further confirmed by those obtained in the

horizontal configuration: the latter are collected in Table 3. In addition, Figure 6 shows the typical

images of the residues at the end of the tests: again, the residues are very coherent and the burnt part

of the specimens still keeps the texture of the fabric, hence indicating a good protection exerted by the

flame retardant treatment on the underlying cellulosic substrate.

Table 3. Results of horizontal flame spread tests performed on cotton and on the treated fabrics.

SAMPLE
Total

Add-On (%)
t1

(s)
t2

(s)
ttot

(s)
Burning Rate

(mm/s)
Residue

(%)

COT / 12 40 63 1.58 0

COT+BC 8 13 41 63 1.58 0

COT+PA 8 / / / / 92

COT+PA+BC(4) 4 15 45 70 1.42 57

COT+PA+BC(6) 6 / / / / 95

COT+PA+BC(8) 8 / / / / 97

COT+PA+BC(10) 10 / / / / 97
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Figure 6. Residues after horizontal flame spread tests. (A) COT, (B) COT+BC, (C) COT+PA,

(D) COT+PA+BC(4), (E) COT+PA+BC(6), (F) COT+PA+BC(8), (G) COT+PA+BC(10).

3.4. Cone Calorimetry Tests

In order to further support the flammability data discussed in the previous paragraph, forced

combustion tests were performed on cotton and on the fabrics treated with the PA/BC flame retardant

coating. The obtained data are listed in Table 4. Figure 7 shows the typical HRR curves vs. time.

First of all, it is worthy to note that, when exposed to 35 kW/m2 irradiative heat flux, the only sample

to ignite was COT+PA+BC(4); because of the activation of PA before the starting of the degradation of

cotton, TTI is anticipated as compared to the untreated fabric. Furthermore, HRR, pkHRR and THR

values of the FR-treated sample are significantly reduced and the final residue (10.4%) is remarkably

increased: all these findings are a clear indication of the formation of a stable char, which protects the

underlying fabric during the exposure to the heat flux. Conversely, all the specimens with a dry add-on

of 6 wt.% or higher, do not ignite at 35 kW/m2, leaving, at the end of the tests, very high residues

ranging within 22 and 25%. This finding clearly indicates that the concurrent presence of PA and BC in

the flame retardant coating shows synergistic effects occurring between the two constituents.

Table 4. Forced-combustion data for untreated and treated cotton fabrics.

Sample
Time to

Ignition (s)
HRR

(kW/m2)
pkHRR
(kW/m2)

Time to
Peak (s)

THR
(MJ/m2)

Residue
(%)

Heat flux: 35 kW/m2

COT 19 15.6 96 38 2.0 0

COT+PA+BC(4) 10 12.4 53 20 1.5 10.4

COT+PA+BC(6) No ignition 22.1

COT+PA+BC(8) No ignition 24.5

COT+PA+BC(10) No ignition 24.7

Heat flux: 50 kW/m2

COT 15 16.9 105 32 2.1 0

COT+PA+BC(6) 7 14.3 65 20 2.0 12.5

COT+PA+BC(8) 7 11.7 56 16 1.9 15.5

COT+PA+BC(10) 6 10.9 53 15 1.2 18.7
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Figure 7. Heal Release Rate (HRR) vs. time curves for treated and untreated cotton fabrics (heat flux:

35 kW/m2).

Table 4 also collects the forced combustion data obtained at 50 kW/m2. It is worthy to highlight

that at this irradiative heat flux the flame retarded fabrics ignite; in addition, the decrease of HRR,

pkHRR and THR values, and the rise of the residues as well, are strictly related to the increase of the

dry add-on. Finally, some typical images of the residues after forced combustion tests performed at the

two irradiative heat fluxes are shown in Figure 8.
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Figure 8. Residues of COT (A), COT+PA+BC(10) (B), COT+PA+BC(8) (C), COT+PA+BC(6) (D) and

COT+PA+BC(4) (E) after cone calorimetry tests performed at 35 kW/m2. Residues of COT+PA+BC(10)

(F), COT+PA+BC(8) (G) and COT+PA+BC(6) (H) after cone calorimetry tests performed at 50 kW/m2.

3.5. Thermal And Thermo-Oxidative Stability of The Treated Fabrics

Thermogravimetric (TG) analyses have been utilized for evaluating the thermal and

thermo-oxidative stability of untreated cotton and the fabric treated with PA or BC alone, or with

the best combination of the two, having the lowest dry add-on that provided self-extinction in flame
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spread tests (i.e., COT+PA+BC(8)). TONSET, the maximum weight loss temperatures (Tmax1 and Tmax2),

the corresponding residues and the final residue at 700 ◦C are listed in Table 5. Figure 9A–D shows the

typical TG and dTG curves.

Table 5. Results from thermogravimetric analyses in nitrogen and air for cotton and for the

treated fabrics.

Sample
Code

TONSET

(◦C)
Tmax1

(◦C)
Residue

@Tmax1 (%)
Tmax2

(◦C)
Residue

@Tmax2 (%)
Residue

@ 700 ◦C (%)

Atmosphere: nitrogen

COT 358 386 48.3 - - 3.8

COT+PA 270 290 75.0 - - 37.0

COT+BC 311 341 71.0 - - 4.9

COT+PA+BC(8) 250 241 89.1 - - 36.0

Atmosphere: air

COT 350 368 53.0 514 7.3 3.5

COT+PA 265 296 73.0 550 30.2 20.0

COT+BC 321 337 65.5 425 14.0 3.9

COT+PA+BC(8) 248 263 80.2 540 28.5 13.1                   
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Figure 9. Thermogravimetric (TG) and dTG curves in N2 (A,B) and air (C,D) of untreated and treated

cotton fabrics.
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In nitrogen atmosphere, the decomposition of untreated cotton takes place according to a single

main degradation step; the degradation onset occurs at about 358 ◦C and the maximum degradation

rate is observed at 386 ◦C (Table 5). The presence of PA or BC or their combination on the fabric

substrate is responsible for an anticipation of the cellulose decomposition temperature as revealed

by Tmax and TONSET, which are shifted towards lower values (i.e., 270, 311 and 250 ◦C, for COT+PA,

COT+BC and COT+PA+BC(8). These shifts, as already assessed in sol-gel derived systems containing

PA [30], are more evident when phytic acid is present in the flame retardant formulation, as it starts

decomposing prior to the decomposition of the cellulosic substrate. This finding has been already

found for cotton fabrics treated with selected biomacromolecules [10]: when the flame retardant

coating activates, it favors the formation of a stable char, able to behave as a thermal barrier, in place

of the formation of combustible gaseous products that could further stimulate the degradation of

the cellulosic material [20]. In addition, the residues at 700 ◦C for all the fabrics treated with the

formulations containing PA are much higher with respect to that obtained for untreated cotton, again

confirming the protection exerted by the deposited PA-containing coatings on the underlying fabric.

In air, cotton decomposition occurs by two steps. The first (dTG peak at 368 ◦C, Table 5) involves

two competitive pathways, which produce aliphatic char and volatile products; during the second step

(dTG peak at 514 ◦C, Table 5), the aliphatic char is converted into an aromatic form, producing CO and

CO2 as a consequence of simultaneous carbonization and char oxidation [21].

As already observed in an N2 atmosphere, the flame retardant treatment anticipates the

decomposition of the cellulosic substrate: in fact, TONSET and Tmax1 values are shifted towards

lower temperatures as compared to untreated cotton. At the same time, a stable char is formed,

as revealed by the residues calculated at Tmax2 and 700 ◦C, which remarkably increase when cotton is

treated with FR finishing containing PA, alone or in combination with BC. Once again, this behavior is

ascribable to the activation of phytic acid, which decomposes prior the cellulosic substrate, favoring

dehydration reactions on the fabric to take place, thus forming a protective stable char layer, limiting,

at the same time, the development of combustible gaseous species.

3.6. Durability of the Designed FR Treatments

For many application fields, the washing fastness of the flame retarded fabrics is an important

issue that can significantly limit their practical use. Therefore, some tests for evaluating the durability

were performed according to the AATCC test method 61 (2A)-1996 on selected treated fabrics; then,

the fabrics were subjected to horizontal flame spread tests: the obtained data are collected in Table 6,

while Figure 10 shows the residues at the end of the tests.

Table 6. Horizontal flame spread tests performed on cotton and on selected flame retardant (FR) treated

samples after washing.

SAMPLE
Dry

Add-On (%)
t1

(s)
t2

(s)
ttot

(s)
Burning Rate

(mm/s)
Residue

(%)

COT / 12 40 63 1.58 0

COT+PA W 8 13 44 69 1.44 2

COT+BC W 8 13 43 64 1.56 0

COT+PA+BC(8) W 8 15 48 75 1.33 18
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Figure 10. Residues after vertical flame spread tests performed on washed fabrics. (A) COT, (B)

COT+PA W, (C) COT+BC W, (D) COT+PA+BC(8) W.

The obtained results clearly indicate that the FR treated fabrics have poor resistance to washing

cycles: in fact, even the fabrics that achieved self-extinction (see Table 3), lose this feature after laundry.

However, after washing, COT+PA+BC(8) (coded as COT+PA+BC(8) W in Table 6) still performs better

with respect to untreated cotton, leaving a coherent residue at the end of the burning test (Figure 10D).

Furthermore, Table 7 compares the forced-combustion data for COT, COT+PA+BC(8) and

COT+PA+BC(8)W (i.e., the best performing sample before and after washing cycles, respectively).

Figure 11 shows the corresponding HRR vs. time curves. The significant loss of the flame retardant

coating as a consequence of the washing cycles allows the sample to ignite at 35 kW/m2 irradiative heat

flux; however, the thermal parameters of the washed sample are still better than those of untreated

cotton, because of the effect of the FR coating that resisted to the washing process (see EDX analysis,

shown in Figure 12, of the residue after horizontal flame spread tests of COT+PA+BC(8) W; the residues

after cone calorimetry tests are displayed in Figure 13).

Table 7. Combustion data for untreated and treated cotton fabrics after washing (heat flux: 35 kW/m2).

Sample
Time to

Ignition (s)
HRR

(kW/m2)
pkHRR
(kW/m2)

Time to
Peak (s)

THR
(MJ/m2)

Residue
(%)

COT 19 15.6 96.4 38 2.0 0

COT+PA+BC(8) No ignition 24.5

COT+PA+BC(8) W 10.5 14.8 80.9 22 1.6 12.5                   

 

 
                                 

   

 

 

 

                             

                             
           

Figure 11. HRR vs. time curves for cotton and for COT+PA+BC(8) before and after washing (heat flux:

35 kW/m2).
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Figure 12. EDX mapping of the residue of COT+PA+BC(8) W after horizontal flame spread tests.

                   

 

 
                                 

   

 

 

 

                             

                             
           

Figure 13. Residues of COT (A), COT+PA+BC(8) (B) and COT+PA+BC(8)W (C) after cone calorimetry

tests (heat flux of 35 kW/m2).

The removal of flame retardant was reasonably due to the weak interactions between BC and the

cotton fabrics represented by hydrogen-like bonds between hydroxylic functionalities of cotton and

π−orbital systems of BC graphitic domains. As observed by Levitt et al. [30], these interactions are

weaker than typical hydrogen bonds, with a maximum value close to 21 kJ/mol: therefore, a simple

washing treatment can easily remove most of the coating from the underlying cellulosic substrate.

4. Conclusions

In this work, a novel all bio-sourced flame retardant waterborne system comprising phytic acid

and biochar was designed and applied to cotton fabrics. The combination of the two components

allowed developing flame retardant synergistic effects on the cellulosic substrate. In particular, flame

spread tests showed that it was possible to achieve self-extinction with a very limited final dry add-on

(i.e., 8 wt.%) on the fabrics. Furthermore, in forced-combustion tests, no ignition was observed for the

fabrics treated with both PA and BC at 8 wt.% add-on, when exposed to 35 kW/m2 irradiative heat

flux. Conversely, the washing fastness of the treated fabrics was not acceptable, as the FR features

were significantly lost after washing cycles, though the washed flame retarded fabrics still exhibited

higher flame retardant features with respect to untreated cotton. Therefore, future research work

will be devoted to improve the durability of the proposed treatment, trying to maintain either a low

environmental impact or the bio-source characteristics of the new modified flame retardant coatings.
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