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Abstract 

The design of appropriate and successful quality-inspection strategies plays an important role 

within manufacturing organizations. It is one of the leverage factors to ensure customers the 

expected quality level of products. In the case of low-volume or single-unit productions, such as 

those produced with emerging Additive Manufacturing (AM) technologies, the design of quality 

controls may be problematic due to the lack of historical data and the inadequacy of traditional 

statistical approaches. In literature some studies focused on the design and selection of in-process 

inspection strategies for low-volume productions. However, in some cases, such as AM 

productions, in-process inspections may not be adequate, easy to perform or cost-effective. To this 

end, the present work aims at identifying a general methodology for planning offline inspections 

for low-volume productions. The specific research question addressed concerns how to select the 

best compromise between effectiveness and affordability of alternative offline inspection 

strategies for such productions. The proposed method consists of formulating a probabilistic model 

for predicting defects and defining two performance indicators that outline the overall 

effectiveness and affordability of an offline inspection strategy. This approach is finally applied to 

a real low-volume AM production of parts manufactured by Selective Laser Melting (SLM) 

technique. 

 

Keywords: quality control; offline inspection; inspection design; low-volume production; Additive 

Manufacturing 
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1. Introduction 

In a highly competitive context such as the global market, ensuring high product quality has 

become a key factor to withstand competition. In this regard, organizations are increasingly 

investing in the development and implementation of quality control systems (QCS) that can 

provide consumers with high quality products in line with their expectations (Azadeh et al. 2015; 

Mirdamadi et al. 2013). Moreover, QCS has always been the most cost-effective tool to reduce 

inefficiencies within the organizational supply chain (Mohammadi et al. 2015). In addition, due to 

the increasing complexity and customization of products, more and more sophisticated, flexible 

and therefore expensive quality control systems are required. Accordingly, designing effective and 

affordable inspection strategies represents an essential and challenging issue in quality control 

(Franceschini et al. 2018).  

Inspection Process Planning (IPP) is the activity that defines which quality characteristics of a 

product should be inspected, where and when (Zhao, Xu, and Xie 2009; Pfeifer 2015; Mohammadi 

et al. 2015). Inspections may be designed using different strategies and following statistical or 

heuristic procedures (Montgomery 2012; Mandroli, Shrivastava, and Ding 2006; Tang and Tang 

1994). Moreover, since products are increasingly customized and complex and therefore require 

highly changeable production processes, it is of increasing importance to develop appropriate 

control strategies, defining test procedures, cases and resources, in order to identify the most 

critical and vulnerable process characteristics (Colledani et al. 2014). 

In the planning of inspections, a distinction between in-process and offline inspection strategies 

must also be considered. In in-process inspections, also called online inspections in the scientific 

literature, units are inspected during the manufacturing process (Tzimerman and Herer 2009; 

Tirkel et al. 2016; Azadeh et al. 2015; W. Wang 2009). On the other hand, in offline inspections 

the finished products are inspected after the manufacturing process is completed (Tzimerman and 

Herer 2009; Kang et al. 2018). Offline inspections consist in inspecting a random item from the 

batch and, based on the inspection result, a decision is taken on what to do next (Tzimerman and 

Herer 2009; Colledani and Tolio 2009; Raz, Herer, and Grosfeld-Nir 2000; C.-H. Wang 2007; 

Finkelshtein et al. 2005). In-process inspection regimes are considered more economical and 

effective than offline inspection ones (Tzimerman and Herer 2009). However, there are situations 
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in which in-process inspections are not adequate, impossible to perform or not economically 

convenient; hence, offline inspections are required (Tzimerman and Herer 2009). 

When designing an inspection strategy, not only effectiveness, but also cost-efficiency must be 

considered. According to Emmons and Rabinowitz (2002), implementing a quality system is 

expensive and requires valuable resources. As companies invest large amounts in products and 

production systems, implementing an efficient inspection strategy is of much importance to reduce 

quality related costs (Emmons and Rabinowitz 2002).  

Several techniques such as cost-benefit models (Savio 2012), simulation (Neu et al. 2002; Neu 

et al. 2003; Münch et al. 2002), optimization models (Hanne and Nickel 2005; Shiau 2003) and 

mathematical programming models (Mohammadi et al. 2015) have been proposed to plan 

inspection processes. However, these techniques are highly applicable to massive production, but 

are not so suitable for small-sized productions. Indeed, the effectiveness of possible inspection 

strategies is strictly related to the production typology and volume (Genta, Galetto, and 

Franceschini 2018; Galetto et al. 2018). In the case of mass production, statistical process control 

(SPC) techniques are straightforwardly applied (Montgomery 2012); on the other hand, in low-

volume productions, i.e., single-units or small-sized-lots, traditional statistical techniques may be 

not appropriate (Trovato et al. 2010; Celano et al. 2011; Marques et al. 2015; Del Castillo et al. 

1996; Pillet 1996; Khoo and Quah 2002). 

Previous works focused on designing in-process quality-inspection strategies in the case of low-

volume productions, e.g. assembly processes, that are decomposable into a number of steps in 

which specific defects can occur (Franceschini et al. 2018; Genta, Galetto, and Franceschini 2018; 

Galetto et al. 2018; Trovato et al. 2010; Ho and Trindade 2009; Galetto, Verna, and Genta 2020). 

However, in literature a scant number of studies investigated the planning of offline inspection 

strategies in low-volume manufacturing productions, that is the typical case of Additive 

Manufacturing (AM) processes. To date, only few authors proposed analytical methods for in-

process defect detection and control strategies to implement corrective or adaptive actions once a 

defect has been detected during the process (Tapia and Elwany 2014; Everton et al. 2016; Rao et 

al. 2015; Grasso and Colosimo 2017; Colosimo 2018; Tsung et al. 2018). As a result, quality 



4  E. Verna et al.  

inspections performed on AM products are mainly restricted to offline controls, i.e., carried out at 

the end of the production process.  

The aim of this paper is to provide a powerful approach to assist inspection designers in early 

phases of inspection planning in selecting the most suitable offline quality-inspection strategy for 

low-volume manufacturing processes with specific application to AM. The work focuses the 

attention on a specific research question, concerning how to select the best compromise between 

effectiveness and affordability of alternative offline inspection strategies in a low-volume AM 

production. In order to answer this question, a probabilistic model for defect prediction is defined 

and two indicators for comparing alternative combinations of inspection strategies according to 

their effectiveness and cost are proposed.  

The rest of this paper is organized into four sections. Section 2 illustrates the probabilistic model 

and the relevant characteristic parameters. Section 3 presents two inspection indicators related to 

the overall effectiveness and total cost of an inspection strategy. In Section 4, a case study 

concerning the practical application of the proposed method to the low-volume production of 

mechanical components produced using an AM technique, the Selective Laser Melting (SLM) 

process. Section 5 summarizes the original contributions of this research, focusing on its 

implications, limitations and possible future developments. 

2. Modelling manufacturing process and inspection strategy 

Consider a manufacturing process in optimal settings condition in which there are m input 

variables that influence the final quality of each single product, which is evaluated through the 

measurement of n output variables. In this situation, each input variable may potentially affect 

each output variable with different levels of intensity. In order to check the conformity of the 

product, many different inspection strategies aimed at evaluating the output variables may be 

performed, such as dimensional verifications, visual checks, comparison with reference exemplars, 

mechanical tests, etc. (Savio et al. 2016; See 2012; Bress 2017). For each inspection activity, there 

is a risk of detecting a defect when it is not present (type I error), and a risk of not detecting it 

when it is actually present (type II error). Although these risks can be minimized by using 
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sophisticated (manual and/or automatic) quality monitoring techniques, they can never be 

eliminated. 

In the proposed model, schematized in Fig. 1, each input variable is denoted as Xi, where the 

index i is included between 1 and m. The output variables are denoted as Yj, where j is included 

between 1 and n. Each output variable Yj can be associated to three model parameters: 

• 𝑝𝑌𝑗: probability of occurrence of a defect related to output variable Yj in nominal operating 

conditions;  

• 𝛼𝑌𝑗 : probability of erroneously detecting a defect related to output variable Yj (i.e., type-I 

inspection error);  

• 𝛽𝑌𝑗: probability of erroneously not detecting a defect related to output variable Yj (i.e., type-II 

inspection error). 

The estimation of the model parameters, which are supposed to be random variables, is not a 

trivial issue. The probabilities of occurrence of defects, 𝑝𝑌𝑗, are strictly related to the intrinsic 

characteristics of the process. On the other hand, the inspection errors 𝛼𝑌𝑗  and 𝛽𝑌𝑗 depend on the 

quality of the inspection activity (including the inspection typology and procedure, the inspectors’ 

technical skills and/or experience, the environmental conditions, etc.) (Duffuaa and Khan 2005; 

Kang et al. 2018; Tzimerman and Herer 2009; Tang and Schneider 1987). Both probabilities of 

occurrence of a defect (𝑝𝑌𝑗) and inspection errors (𝛼𝑌𝑗  and 𝛽𝑌𝑗), in practical applications, may be 

estimated by the implementation of probabilistic models and/or empirical methods (historical data, 

previous experience on similar processes, process knowledge, etc.) (Franceschini et al. 2018; 

Genta, Galetto, and Franceschini 2018; Galetto et al. 2018).  
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 Fig. 1. Schematic of a production process with m input variables and n output variables and the 

related model parameters. 

2.1. Estimation of defective-output variable probability 

The basic assumption of the model is that there is a relationship among input and output 

variables. Consequently, if a defective-output variable occurs, it may be caused by some input 

variables. The probabilities of occurrence of defective-output variables may be therefore obtained 

using the mathematical function relating input and output variables (Montgomery 2017). In 

addition, the proposed methodology requires the knowledge of the input variables values that result 

in the best values of the responses. Finally, the specification limits of the output variables (upper 

specification limit, USL, and lower specification limit, LSL) are needed in order to determine 

whether the products meet the specifications imposed by regulations and/or company standards. 

Input variables can be discrete or continuous variables. In this paper only continuous variables are 

dealt with in detail.  

Consider for example a case with only one output variable, denoted as Y, and one input variable, 

called X. The relationship between the two variables is given by the function Y = f(X). However, 

in realistic cases, this function is not exactly defined, i.e., the coefficients of the mathematical 

model are affected by uncertainty. Furthermore, also the optimal value of the input variable (x*), 

i.e. the value that optimizes the response output, is not exactly defined because of the uncertainty 

of the measurement device. For that reason, a variability range must be associated to it (by defining 

an upper UL and a lower LL variation limit, as illustrated in Fig. 2). The probability distribution 
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associated to X depends on the characteristics of the input variable. For instance, if the values are 

all equiprobable in the interval, a uniform distribution should be considered. As shown in Fig. 2, 

the variance of the probability distribution of the output variable may be estimated by composing 

the uncertainties associated to both the input variable and the mathematical function, through the 

law of composition of variances (Ver Hoef 2012).  

 

Fig. 2. Estimation of the probability of occurrence of defective-output variable (𝑝𝑌). 

 

More in general, if there are m input variables, 𝑿 = [𝑥1, … , 𝑥𝑚]
T, the uncertainty of each one 

contributes to the variance of the related 𝑌𝑗 output variable, together with the contribution of the 

mathematical function coefficients, 𝑨 = [𝑎0, 𝑎1, … , 𝑎𝑚]
T, as shown in Eq. (1), which is expressed 

in matrix form: 

T

j j

j( ) cov( )
Y Y

VAR Y
    

     
    

K
K K

   (j=1,…,n)                                     (1) 

where K is the vector of size 2m+1 of the input variables and the coefficients of the mathematical 

function, defined as 𝑲 = [𝑿, 𝑨]T , 𝑐𝑜𝑣(𝑲)  is the variance-covariance matrix and jY 
 
 K

 is the 

vector of the partial derivatives of 𝑌𝑗 with respect to each component of K. In 𝑐𝑜𝑣(𝑲), the element 

in the l, q position is the covariance between 𝐾𝑙 and 𝐾𝑞, defined as:  

,( , ) ( ) ( )l q l q l qcov K K VAR K VAR K=    (2) 

x* X

Y

𝑝𝑌   
𝑌 =  ( )

LSL

LL UL

 
 
 

USL

Law of variance 

composition
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where 𝜌𝑙,𝑞  is the Pearson correlation coefficients between the parameters 𝐾𝑙  and 𝐾𝑞 (Devore 

2011).  

Given that the distribution of output variable 𝑌𝑗  originates by many different random 

contributions, according to the central limit theorem (Montgomery 2012), it can be approximated 

to a Normal distribution (see Section 4.3). Hence, the probability of occurrence of the defective-

output variable 𝑝𝑌𝑗, which represents the probability that 𝑌𝑗 falls outside the specification limits 

(LSL and USL), may be estimated by computing the area of the normal distribution outside the two 

specification limits by Eq. (3): 

1 ( )
jY jp P LSL Y USL= −     (3) 

3. Indicators of inspection effectiveness and cost 

According to authors’ previous studies and re-elaborating the proposed probabilistic model for 

in-process inspections, the following probabilities can be calculated for each j-th output variable 

(Franceschini et al. 2018; Genta, Galetto, and Franceschini 2018): 

signalling the output varia 1ble  as defe( ) ( ) (1 )ctive
j j j jY Y Y YjY p pP  =  − + −   (4) 

signalling the output variable  as )not defe 1ctive( ) ( ) (1
j j j jj Y Y Y Yp pP Y  =  + −  −  (5) 

where j = 1, …, n, i.e. the total number of output variables. 

It is worth noting that Eqs. (4) and (5) are obtained under the hypothesis that the probabilities 

of occurrence of each defective output variable, 𝑝𝑌𝑗, and the relevant inspection errors, 𝛼𝑌𝑗  and 

𝛽𝑌𝑗 , are independent. The above probabilities represent the “elementary bricks” for the 

construction of two indicators depicting the performance of inspection strategies in terms of 

effectiveness and cost (Franceschini et al. 2018; Genta, Galetto, and Franceschini 2018). 

Let us now define n Bernoulli random variables (𝑊𝑗) as follows: 

• 𝑊𝑗 =0, when either (i) the truly defective output variable Yj is detected as such or (ii) the 

output variable Yj is not defective; 

• 𝑊𝑗 =1, the truly defective output variable Yj is not detected as such. 
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According to Eq. (4) and (5), the following two relationships are obtained: 

( 0) (1 ) (1 )
j j jj Y Y YP W p p= =  − + −                (6) 

( 1)
j jj Y YP W p = =    (7) 

where j is included between 1 and n.  

Therefore, the mean number of real defective-output undetected for the j-th output-variable is: 

( )
j j jY j Y YD E W p = =                                (8) 

Considering the overall inspection strategy, the mean total number of defective-outputs which 

are erroneously not detected can be defined as: 

1 1

( )
j j

n n

tot j Y Y

j j

D E W p 
= =

= =                     (9) 

The variable Dtot is assumed as a first approximation of inspection effectiveness, since it 

provides an indication of the overall effectiveness of the inspection strategy performed on the 

product. It should be pointed out that Eq. (9) is obtained under the hypothesis of no statistical 

correlation between random variables, i.e. between the model parameters (inspection errors and 

defect probabilities) of different output variables. This correlation will be investigated in future 

research. 

Regarding each output variable Yj, the total cost for inspection and defects removal can be 

expressed as (Genta, Galetto, and Franceschini 2018): 

(1 ) (1 )
j j j j j j jY j j j Y Y j Y Y j Y YC FC c NRC p URC p NDC p  = + +   − +  −  +              (10) 

where: 

• FCj is the fixed cost for controlling and keeping the input variables at the values which result in 

the best values of the response, and within their variability range; 

• cj is the cost of the j-th inspection activity (e.g., manual or automatic inspection activities); 

• NRCj is the necessary-repair cost, i.e., the necessary cost for removing defects of the j-th output 

variable; 

• URCj is the unnecessary-repair cost, i.e., the cost incurred when identifying false defective-
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output variables; e.g., despite there is no cost required for defective-output variables removal, 

the overall process can be slowed down, with a consequent extra cost; 

• NDCj is the cost of undetected defective-output variables, i.e., the cost related to the missing 

detection of defective-output variables. 

Eq. (10) requires, in addition to the estimates of the probabilities 𝑝𝑌𝑗, 𝛼𝑌𝑗  and 𝛽𝑌𝑗, the evaluation 

of the costs FCj, cj, NRCj, URCj, NDCj , which are considered fixed parameters as a preliminary 

approximation. Typically, FCj, cj and NRCj are known costs. URCj is usually relatively easy to 

estimate, while NDCj is usually hard to estimate since it may depend on difficult-to-quantify 

factors, such as external failure costs including legal fees related to customer lawsuits, loss of 

future sales from dissatisfied customers, product recalls, product return costs, after-sales repair 

costs, etc. (Galetto et al. 2018). 

The total cost for inspection and defective-output variables removal related to the overall 

inspection strategy (n output variables) can be expressed as: 

1 1

(1 ) (1 )
j j j j j j j

n n

tot Y j j j Y Y j Y Y j Y Y

j j

C C FC c NRC p URC p NDC p  
= =

 = = + +   − +  −  +  
                     (11) 

Eq. (11) may be considered a preliminary approximation of the total cost of the inspection 

strategy. However, even for this indicator, it is assumed that no statistical correlation between 

inspection errors and defect probabilities of different output variables occurs. In some 

circumstances, e.g. cost sharing between the output variables, Ctot might overestimate the costs 

related to the inspection strategies when correlation between variables occurs. 

The general methodology is organized according to the following steps: 

1. identification of input and output variables; 

2. designing experimental plans in order to obtain the mathematical functions (regression models) 

relating each output variable with input variables; 

3. responses optimization (searching for the best values of the regression models); 

4. identification of all the sources of uncertainty, including the uncertainty of the mathematical 

function variables and the resolution interval of input variables; 

5. estimation of probabilities of occurrence of defective-output variables; 
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6. estimation of variables related to inspections, such as inspection errors and inspection costs; 

7. comparison of alternative inspection strategies. An inspection strategy is defined as the 

combination of inspection methods used to perform quality controls on output variables. Each 

inspection strategy is evaluated by two indicators of (i) inspection effectiveness and (ii) 

inspection costs. The combination of these indicators allows the manufacturer to choose the 

most suitable one.  

The proposed methodology will be described in detail through the case study in the next Section 

4.  

4. Case study: low-volume Additive Manufacturing production 

4.1. SLM Process 

Consider the low-volume production of components by Additive Manufacturing process based 

on Selective Laser Melting (SLM) technique, also called Direct Metal Laser Sintering (DMLS). 

In this process, a high-density object is built up layer by layer through the consolidation of metal 

powder particles with a focused laser beam that selectively scans the surface of the powder bed 

(Gibson, Rosen, and Stucker 2014). The aluminium samples, produced using the AlSi10Mg alloy, 

were prepared by SLM with an EOS M290 machine. In this machine, a powerful ytterbium (Yb) 

fiber laser system in an argon atmosphere is used to melt powders with a continuous power up to 

400 W, a scanning rate up to 7 m/s, and a spot size of 100 μm. During the production process, 

three areas can be identified in the parts: up-skin, down-skin and in-skin, as shown in Fig. 3 (a). 

The up-skin is the region on the part layer above which there is no area to be exposed. The bottom 

region which is in contact with the building platform below it and laser exposed areas above it is 

called down-skin. The third area, the in-skin, is the region where there are above and below 

exposed areas. For each layer, a contour of the layer structure is exposed with the contour speed 

and the laser power. After that, the inner area is solidified by means of the laser beam which moves 

line after line several times. The distance between the lines is called hatching distance. Once the 

inner area is solidified, a second exposure of the exterior part contour is carried out in order to 

increase the accuracy of the building process (Calignano et al. 2013). Several studies (Krishnan et 
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al. 2014; Tian et al. 2017; Trevisan et al. 2017) have shown that this region-wise differentiated 

parameter setting can achieve control of material properties, such as surface finishing and 

mechanical properties. In fact, according to Fig. 3 (a), up- and down-skin parameters are related 

to surface properties, while in-skin parameters to the core average properties of the component.  

 

Fig. 3. (a) Schematic of up-skin, in-skin and down-skin areas; (b) Geometry of specimen. 

4.2. Output variables optimization 

 In this case study, the output variables measured on the specimens were macro-hardness and 

up-skin roughness. It is evident from the literature that controlling and changing process variables 

may result in different quality outputs of the parts. Specifically, the most influencing process 

variables on the hardness of the parts are laser power, scan speed and hatching distance of the in-

skin (Krishnan et al. 2014). For the surface roughness, process parameters chosen were laser 

power, scan speed and hatching distance of the up-skin (Calignano et al. 2013). The specimens, 

whose dimensions are 22x10x10 mm, were designed, according to Fig. 3 (b), in order to measure 

both surface roughness and hardness. The different inclinations of the sample will allow to evaluate 

how the roughness changes with the variation of the surface considered. In this study, the 

roughness of the upper surface is analysed in detail. 

In order to obtain optimal process parameters that result in the best values of hardness and 

roughness, two experimental plans were designed. Specifically, two 33 full factorial design were 

performed in order to investigate possible quadratic effects of input variables. For the first 

response, the hardness, the three input variables relevant to the in-skin, laser power (PI), scan 

speed (vI) and hatching distance (hdI), were kept at three levels. Similarly, three levels were chosen 

for the three input variables for up-skin, laser power (PU), scan speed (vU) and hatching distance 

(hdU) (see Table 1). In this experiment, the down-skin roughness was not specifically investigated.  

a b 

1

2
2

2

3
3
3 2

4
4

4

Legend

1: down-skin

2: up-skin

3: in-skin

4: overlapping

341
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Variable values used were the same of those of the up-skin. Consequently, the results achieved for 

the up-skin can also be reasonably exploited for the assessment of the down-skin. The choice of 

the levels of the process variables set in both the experimental plans allowed to get a wide range 

of energy density function, ψ, which is calculated as follows: 

3

J

mmd

P

h v t


 
=     

                 (12) 

where P and v are respectively the laser power and scan speed, hd is hatching distance and t is 

layer thickness. Specifically, in the first experiment ψ varied from 35.09 to 124.58 J/mm3 and in 

the second from 44.97 to 134.47 J/mm3. Energy density is strictly related to the degree of 

consolidation of the powder particles and may cause defects by creating turbulences in the melt 

pool (Read et al. 2015). Consequently, it is often adopted in literature as reference parameter for 

the setup of a planned experimentation (Trevisan et al. 2017). The experiments were not 

randomized because the high repeatability of the machine allowed building the samples in a single 

job, by varying process parameters for each sample (Calignano et al. 2013; Read et al. 2015). This 

approach, as a first approximation, is the one adopted in the computer experiment field (Sacks et 

al. 1989). 

Table 1. Process parameters values used in the two planned experimentations. 

Hardness HB [HB] Roughness Ra [µm] 

Process 

Variable 
Values Fixed Parameter Value 

Process 

Variable 
Values Fixed Parameter Value 

PI [W] 340 – 355 - 370 Layer thickness [µm] 30 PU [W] 340-355-370 Layer thickness [µm] 30 

vI [mm/s] 900 – 1300 - 1700 Spot size [mm] 0.1 vU [mm/s] 800-1000-1200 Spot size [mm] 0.1 

hdI [mm] 0.11 – 0.15 – 0.19 PU [W] 355 hdU [mm] 0.11-0.16-0.21 PI [W] 355 

  vU [mm/s] 100   vI [mm/s] 1300 

  hdU [mm] 0.16   hdI [mm] 0.15 

 

After the production, the 27 specimens for hardness measurements were polished. Then, the 

Brinell hardness test was performed according to the industrial standard ISO 6506-1:2014 (ISO 

6506-1:2014). The test was carried out using a sphere with a diameter of 2.5 mm and applying a 

force of 62.5 kgf, thus evaluating Brinell hardness in the scale HBW 2.5/62.5. For simplicity of 
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notation, the measurement unit of Brinell hardness will henceforth be indicated in this paper with 

the symbol HB. Three measures for each specimen were taken and the average value was 

examined. The coefficient of variation of the three hardness measurements ranges from a minimum 

of 1% to a maximum of 7% (see Appendix A).  

The surface roughness on top surface of the other 27 samples was measured according to 

industrial standards ISO 4287 and ISO 4288, using a contact stylus, Veeco Dektak 150 Surface 

Profiler, with a 2 μm radius stylus tip (ISO 4287:2009; ISO 4288:2000). The roughness parameter 

calculated from the filtered roughness profile was Ra, defined as the average value of the ordinates 

from centreline. For surfaces having a periodic profile, such as the top surfaces of the samples, the 

prescribed sampling length is based on the mean width of profile elements (RSm). When RSm is 

included between 0.13 mm and 0.4 mm, it is recommended to use a sampling length for filtering 

of 0.8 mm and to perform measurements over five consecutive sampling lengths, resulting in an 

evaluation length of 4 mm (ISO 4288:2000). Three measurements, each 1 mm apart, in the 

direction perpendicular to the scan path were performed on each sample, and the average value 

was examined. The coefficient of variation of the three roughness measurements ranges from a 

minimum of 1% to a maximum of 18%, except for a single sample which reaches 48% (see 

Appendix B). Such high value may be attributed to the peculiarities of the measurement activity. 

Indeed, due the discrete nature of the measurements obtained using the contact stylus, each 

roughness measurement may be sensitive to localised defects. However, considering the mean 

value of three measurements, the roughness value obtained can be considered representative of the 

up-skin. The use of a non-contact device, such as a Point Autofocus Instrument (PAI), as will be 

illustrated in Section 4.4, could help to reduce measurements’ uncertainty and the related 

inspection errors. 

The arrangement of the two 33 full factorial designs with the indication of the three 

measurements, the resulting mean value, standard deviation and coefficient of variation for the 

hardness and the up-skin roughness are reported in Appendix A and B, respectively.  

The Response Surface Methodology (RSM) was used to analyse the results and optimize the 

process for both the experimental designs (Montgomery 2017). The arrangement of the two full 

factorial design allowed the development of an appropriate empirical equation, a second order 

polynomial multiple regression equation. The standard stepwise regression was adopted to obtain 
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a model containing exclusively significant factors. This method both adds and removes predictors 

at each step, according to selected Alpha-to-Enter and Alpha–to-Remove values (Devore 2011). 

These two values were set at 10% to allow entering terms very close to the significance level of 

5%. The software Minitab®, which was used to perform the analysis, provided the coefficients of 

the significant regression terms with their relevant standard errors, reported in Table 2, and the 

regression equations showed in Eqs. (13) and (14). The analysis of residuals, i.e. the differences 

between the observed and the corresponding fitted value, for both hardness and roughness, showed 

a random pattern of residuals and the absence of systematic errors. Furthermore, the R2 value, a 

measure of goodness model fit, shows that the variation in the response explained by the model is 

92.32 % for HB and 72.50 % for Ra. Moreover, the S value, also known as the standard error of 

the regression or as the standard error of the estimate (Devore 2011), is 4.55 for HB and 4.13 for 

Ra. The 3D surface plots representing how the fitted responses are related to the process variables 

are reported in Fig. 4 and Fig. 5.  

0 1 2 3 4 5d dHB a a PI a vI a h I a vI vI a vI h I= +  +  +  +   +               (13) 

0 1 2 3 4 5d dRa b b vU b h U b PU PU b PU vU b PU h U= +  +  +   +   +                          (14) 

In order to find the best values of laser power, scan speed and hatching distance, two response 

optimizations were performed. The objective functions were the maximization of hardness and the 

minimization of surface roughness. Parameters setups and the respective value of energy density 

ψ are summarized in Table 3, together with the predicted value of responses.  

Table 2 Estimates of regression models’ parameters (see Eqs. (13) and (14)), with their standard 

errors (SE), separately for the hardness HB [HB] and roughness Ra [µm]. The standard error of 

the estimate is 4.55 for HB and 4.13 for Ra. 

Hardness HB [HB] Roughness Ra [µm] 

Variable Parameter 
Parameter 

estimate 

Parameter SE 

estimate 
 Variable Parameter 

Parameter 

estimate 

Parameter SE 

estimate 

constant a0 [HB] -5.12∙101 3.57∙101  constant b0 [µm] 8.71∙101 8.45∙101 

PI a1 [HB/W] -1.42∙10-1 7.16∙10-2  vU b1 [µm/(mm/s)] -2.99∙10-1 1.41∙10-1 

vI a2 [HB/(mm/s)] 2.19∙10-1 3.28∙10-2  hdU b2 [µm/mm] 9.85∙102 5.64∙102 

hdI a3 [HB/mm] 4.85∙102 1.10∙102  PU·PU b3 [µm/W2] -5.85∙10-4 6.68∙10-4 

vI·vI a4 [HB/(mm/s)2] -5.46∙10-5 1.16∙10-5  PU∙vU b4 [µm/(W·mm/s)] 8.76∙10-4 3.96∙10-4 

vI∙hdI a5 [HB/(mm2/s)] -2.69∙10-1 8.22∙10-2  PU∙hdU b5 [µm/(W·mm)] -2.58∙100 1.59∙100 
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Fig. 4. Surface plot of HB [HB] versus: (a) hdI [mm] and PI [W] (vI was set to 1300 mm/s); (b) 

vI [mm/s] and PI [W] (hdI was set to 0.15 mm); (c) hdI [mm] and vI [mm/s] (PI was set to 355 

W). 

Fig. 5. Surface plot of Ra [µm] versus: (a) hdU [mm] and PU [W] (vU was set to 1000 mm/s); b) 

vU [mm/s] and PU [W] (hdU was set to 0.16 mm); c) hdU [mm] and vU [mm/s] (PU was set to 

355 W). 

Table 3. Responses optimization (max. HB and min. Ra): process setups and predicted values. 

Control factors  HB predicted value  Control factors  Ra predicted value 

PI 

[W] 

vI 

[mm/s] 

hdI 

[mm] 

ψ 

[J/mm3] 

Mean value 

[HB] 

122.45 

 PU 

[W] 

vU 

[mm/s] 

hdU 

[mm] 

ψ 

[J/mm3] 

Mean value 

[µm] 

29.68 340 1538 0.19 38.78  340 1200 0.11 85.85 

4.3. Estimation of the probabilities of occurrence of defective-output variables 

Once the input parameters optimizing the responses were obtained, the variances of the output 

variables were derived, according to Eq. (1), by propagating the uncertainty of both the 

mathematical function parameters (see Table 2) and the input variables, evaluated as the resolution 

of the AM machine (see Table 4). The AM measuring device that displays the values of input 

variables is digital. In such case, the distribution of the resolution contribution is uniform, because 

a b c 

a b c 



E. Verna et al.    17 

the measurand can be assumed to have an equal probability of occurrence at any point in the range 

associated with the displayed value, i.e. the resolution interval (JCGM 100:2008 2008). 

Accordingly, the standard deviations of the input variables are calculated considering a uniform 

distribution and are reported in Table 4 (JCGM 100:2008 2008). The Pearson correlation 

coefficients between the parameters of the regression models used in the variance-covariance 

matrix (see Eq. (2)) were derived by the software Minitab®. The computations were performed 

using the software MATLAB® and the obtained variances of hardness and roughness are reported 

in Eqs. (15) and (16) respectively.  

Table 4. Variability range (i.e., resolution interval) and standard deviation of input variables, 

under the assumption of uniform distributions. It is reminded that the variance of a uniform 

distribution is σ2=a2/3, where a is half of the variability range. 

Up-skin and in-skin process 

variables 

Resolution of AM 

machine 

Process variable variability 

range 

Process variable standard 

deviation 

Laser power [W] 0.1 
(PI ± 0.05) 

(PU ± 0.05) 
√ . 52/3 =  .89 ∙ 1 −2 

Scan speed [mm/s] 0.1 
(vI ± 0.05) 

(vU ± 0.05) 
√ . 52/3 =  .89 ∙ 1 −2 

Hatching distance [mm] 0.01 
(hdI ± 0.005) 

(hdU ± 0.005) 
√ .  52/3 =  .89 ∙ 1 −3 

T

2(HB) cov( ) 4.62HBHB

HB HB

HB HB
VAR

    
   =   

    
K

K K
                                     (15) 

where 𝑲𝐻𝐵 = [𝑃𝐼, 𝑣𝐼, ℎ𝑑𝐼, 𝑣𝐼 · 𝑣𝐼, 𝑣𝐼 ∙ ℎ𝑑𝐼, 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5]
T. 

T

2(Ra) cov( ) 6.5 m5µRa

Ra Ra

Ra Ra
VAR

    
   =   

    
K

K K
                                     (16) 

where 𝑲𝑅𝑎 = [𝑃𝑈, 𝑣𝑈, ℎ𝑑𝑈, 𝑃𝑈 · 𝑃𝑈, 𝑃𝑈 ∙ 𝑣𝑈, 𝑃𝑈 ∙ ℎ𝑑𝑈, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5]
T. 

 

The distributions of the two responses (HB and Ra) were also obtained through a computer 

simulation. In both cases, the normality of the distributions cannot be rejected by the Anderson-

Darling test at a significance level of 5%. Thus, under the hypothesis of normal distribution, the 
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probabilities of occurrence of the defective-output variables may be obtained. Given the mean 

values, reported in Table 3, the variances of Eqs. (15) and (16), and the specification limits, the 

probabilities of occurrence of defects, pHB and pRa, were derived by applying Eq. (3). The 

specification limits were fixed according to technological requirements for the produced parts (for 

hardness a lower specification limit, LSL, was set to 114 HB and for roughness an upper 

specification limit, USL, was set to 36 µm). The two resulting probabilities are shown in Eqs. (17) 

and (18). 

( ) 0.55%HBp P HB LSL=  =   (17) 

( ) 0.67%Rap P Ra USL=  =   (18) 

4.4. Comparison of alternative inspection strategies 

The AM production of these components may be inspected through different offline inspections 

concerning macro-hardness and roughness evaluations. In this section, four alternative inspection 

strategies are examined and compared. With respect to hardness, the Brinell Hardness (HB) and 

Rockwell Hardness (HRB) tests are examined. HB test is a widely used method for characterizing 

specimens by SLM. The main advantage is the simplicity of implementation, while the main defect 

is represented by the difficulty (and ambiguity) of the measure (Herrmann 2011). HRB test is much 

faster and cheaper than the Brinell test, making this a widely used method of measuring metal 

hardness in industrial context. However, the considerable practical advantages are accompanied 

by a loss of the metrological characteristics (Herrmann 2011). As far as roughness measurement 

is concerned, two instruments belonging to two different classes of methods for surface texture 

measurements, the Line Profiling and the Areal Topography, are considered (Leach 2011). 

Specifically, the first instrument is a Contact Stylus (CS) and the second one is a Point Autofocus 

Instrument (PAI). In CS, the stylus is loaded on the surface to be measured and then moved across 

the surface at a constant velocity to obtain surface height variation (Leach 2011). A PAI is a non-

contact, optical measuring instrument that automatically focuses a laser beam to a single point on 

the surface and raster scans an area of interest (Maculotti et al. 2019). Each of the four different 
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methods is characterized by the three probabilities 𝑝𝑌𝑗, 𝛼𝑌𝑗  and 𝛽𝑌𝑗, which are reported in Table 

5.  

Table 5. Estimates of defects probabilities, inspection errors, cost parameters and inspection 

indicators related to each inspection method (HB, HRB, CS and PAI). 

Output 

variable 

Inspection 

method 

𝑝𝑌𝑗 

[%] 

𝛼𝑌𝑗 

[%] 

𝛽𝑌𝑗 

[%] 

CFj 

[€] 

cj 

[€] 

NRCj 

[€] 

URCj 

[€] 

NDCj 

[€] 

𝐷𝑌𝑗 

[-] 

𝐶𝑌𝑗 

[€] 

Hardness 
HB 0.55 2 1 15 12.5 50 50 100 5.53∙10-5 28.77 

HRB 0.55 3 2 15 4.2 50 50 100 11.05∙10-5 20.97 

Roughness 
CS 0.67 5 4 15 6.3 1.3 1.3 80 26.79∙10-5 21.39 

PAI 0.67 2 1 15 125 1.3 1.3 80 6.70∙10-5 140.04 

 

In Table 5, hardness defect probabilities (pHB and pHRB) were considered identical and equal to 

the probability pHB obtained in Eq. (17), as well as for roughness defect probabilities (pCS and 

pPAI), which were set equal to pRa derived in Eq. (18). In fact, as a preliminary approximation, the 

two different methods for inspecting both hardness and roughness are based on similar 

technologies with comparable performances in terms of detection of defects. In other words, 

although pHB and pRa are strongly dependent on the instrument used, they can be considered good 

estimates of the actual defectiveness in terms of order of magnitude. In order to refine the estimates 

of pHRB and pPAI, future research will be aimed at designing a specific planned experimentation. 

The inspection errors 𝛼𝑌𝑗  and 𝛽𝑌𝑗 were estimated by the inspectors, for each inspection method, 

basing on empirical values obtained from similar parts produced with the adopted SLM technique 

and other manufacturing process such as casting processes. Table 5 also reports the estimates of 

the cost parameters for each inspection method (HB, HRB, CS and PAI). CFj were estimated as 

the cost for calibrating the AM machine carried out by the supplier during the preventive 

maintenance. The estimates of cj were calculated considering the time required for the inspection 

and the labour cost of operators/inspectors. NRCj and URCj were estimated starting from the time 

required for identifying and repairing possible defects (necessary or unnecessary), and the 

respective labour cost. Finally, NDCj included external failure costs. According to Eqs. (8) and 

(10), the indicators 𝐷𝑌𝑗  and 𝐶𝑌𝑗  were calculated for each inspection method and were reported in 

Table 5.  
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By combining the four different inspection methods of Table 5, four inspection strategies may 

be performed (see Table 6). The first one, IS1, includes Brinell hardness test and roughness 

measurement with the contact stylus CS. The second, IS2, is performed with a Brinell hardness 

test and a roughness test using a PAI. IS3 requires hardness to be measured with a Rockwell test 

(HRB) and roughness with the contact stylus CS. Finally, IS4 involves measuring hardness with a 

Rockwell test (HRB) and roughness using a PAI. Table 6 shows the indicators Dtot and Ctot 

obtained for the inspection strategies IS1, IS2, IS3 and IS4, calculated using respectively Eqs. (9) 

and (11). The strategy with the lowest value of Dtot is IS2, but it is also the most expensive one. 

Conversely, IS3 has the lowest Ctot, but it is characterized by the highest mean total number of 

undetected defects. IS1 and IS4 are two intermediate strategies between IS2 and IS3. According 

to these results, the producer of SLM parts may easily select the best inspection strategy that 

adequately satisfies its needs. In fact, according to cost-benefit logic, if the producer is willing to 

accept a high mean number of undetected defective-output variables in order to have low total 

inspection costs, the best choice is IS3. On the contrary, if his objective is the minimization of 

defects, the producer will select IS2, while accepting a quadruple increase in costs with respect to 

IS3. The decision is strictly related to the producer requirements, which are in turn connected with 

the certification constraints imposed by the product application sectors. For instance, if the 

component is designed for medical or aerospace sectors, the producer may be more inclined to 

choose the strategy that minimizes Dtot, instead of choosing the most affordable one, because of 

the considerable consequences that residual defects could have. On the contrary, if the sector 

requirements are not so stringent, the producer is led to choose the most affordable strategy. 

However, it should be highlighted that the number of undetected defects in all the four strategies 

is very small, also considering that it refers to a low-volume production. Indeed, despite in IS3 the 

indicator Dtot is almost three times greater than in IS2, it means that given a production of 104 

components, there are nearly 4 defective-output variables which are erroneously not signalled. 

Since the production of these components can reach a hundred parts per year, the number of defects 

which are erroneously not signalled is actually very low.  
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Table 6. Indicators values calculated for IS1, IS2, IS3 and IS4. 

Indicator IS1 IS2 IS3 IS4 

Dtot [-] 3.23∙10-4 1.22∙10-4 3.78∙10-4 1.78∙10-4 

Ctot [€] 50.16 168.81 42.36 161.01 

5. Conclusion 

Designing effective and affordable inspection strategies plays an important and challenging role 

in manufacturing process. In literature, several techniques have been proposed to plan inspection 

strategies in massive productions. However, these techniques are often not suitable for low-volume 

productions. This paper proposes a powerful approach to assist inspection designers in the 

selection of the best compromise between effectiveness and affordability of alternative offline 

inspection strategies, when in-process controls are not adequate or impossible to be performed. A 

probabilistic model for defects prediction is formulated starting from some process parameters 

which influence product final quality and output variables inspected on the product. Two practical 

indicators to compare different inspection methods according to their effectiveness and cost are 

proposed. According to cost-benefit logic, the combined use of the inspection indicators allows 

the comparison of alternative inspection strategies, and the selection of the most appropriate 

according to the manufacturer requirements. This approach may represent a powerful approach to 

assist inspection designers in early design phases of inspection planning. In this work, a case study 

concerning the low-volume production of metal components by AM is discussed and the 

comparison of four different inspection strategies is presented. A first limitation of this study is 

that the probabilistic model and the two indicators do not consider possible correlations between 

parameters of different output variables. In addition, the estimation of various not-so-easily-

quantifiable parameters is required. Nevertheless, a deep knowledge of the process and expert 

opinion can help to overcome this limit. Future research will aim at introducing correlations 

between variables and at developing specific models for predicting inspection errors using an 

approach similar to that adopted for defect generation models. Moreover, specific studies will 

focus on the uncertainty assessment of the two indicators of effectiveness and affordability. 
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Appendices 

Appendix A: Arrangement of the 33 full factorial design to evaluate the hardness HB [HB], with 

indication of the three measurements, the resulting mean value, standard deviation and coefficient 

of variation. 

PI 

[W] 

vI 

[mm/s] 

hdI 

[mm] 

Measurement 

1 [HB] 

Measurement 

2 [HB] 

Measurement 

3 [HB] 

Mean 

value 

[HB] 

Standard 

deviation 

[HB] 

Coefficient of 

variation [%] 

340 900 0.11 87 84 86 85.7 1.5 2  

340 900 0.15 93 88 90 90.3 2.5 3  

340 900 0.19 104 102 105 103.7 1.5 1  

340 1300 0.11 101 89 100 96.7 6.7 7  

340 1300 0.15 112 115 118 115.0 3.0 3  

340 1300 0.19 119 120 124 121.0 2.6 2  

340 1700 0.11 116 121 124 120.3 4.0 3  

340 1700 0.15 118 120 118 118.7 1.2 1  

340 1700 0.19 113 122 124 119.7 5.9 5  

355 900 0.11 76 75 77 76.0 1.0 1  

355 900 0.15 84 90 89 87.7 3.2 4  

355 900 0.19 99 99 101 99.7 1.2 1  

355 1300 0.11 107 109 108 108.0 1.0 1  

355 1300 0.15 114 118 117 116.3 2.1 2  

355 1300 0.19 117 118 124 119.7 3.8 3  

355 1700 0.11 111 114 119 114.7 4.0 4  

355 1700 0.15 115 121 120 118.7 3.2 3  

355 1700 0.19 117 116 113 115.3 2.1 2  

370 900 0.11 80 80 76 78.7 2.3 3  

370 900 0.15 87 88 87 87.3 0.6 1  

370 900 0.19 88 78 88 84.7 5.8 7  

370 1300 0.11 103 100 98 100.3 2.5 3  

370 1300 0.15 107 111 113 110.3 3.1 3  

370 1300 0.19 119 116 120 118.3 2.1 2  

370 1700 0.11 119 120 122 120.3 1.5 1  

370 1700 0.15 114 117 118 116.3 2.1 2  

370 1700 0.19 112 116 121 116.3 4.5 4  

 

 

  



E. Verna et al.    29 

Appendix B: Arrangement of the 33 full factorial design to evaluate the up-skin roughness Ra 

[µm], with indication of the three measurements, the resulting mean value, standard deviation and 

coefficient of variation. 

PU 

[W] 

vU 

[mm/s] 

hdU 

[mm] 

Measurement 

1 [µm] 

Measurement 

2 [µm] 

Measurement 

3 [µm] 

Mean 

value 

[µm] 

Standard 

deviation 

[µm] 

Coefficient 

of 

variation 

[%] 

340 800 0.11 26.6 29.6 28.7 28.30 1.5 5  

340 800 0.16 36.4 31.1 32.8 33.43 2.7 8  

340 800 0.21 38.3 35.1 38.3 37.23 1.8 5  

340 1000 0.11 28.2 37.4 28.5 31.37 5.2 17  

340 1000 0.16 40.0 33.2 35.3 36.17 3.5 10  

340 1000 0.21 40.3 40.5 47.6 42.80 4.2 10  

340 1200 0.11 41.7 24.6 15.9 27.40 13.1 48  

340 1200 0.16 30.4 32.8 30.4 31.21 1.4 4  

340 1200 0.21 42.1 30.7 31.3 34.70 6.4 18  

355 800 0.11 28.0 30.6 25.6 28.07 2.5 9  

355 800 0.16 42.4 39.8 32.6 38.27 5.1 13  

355 800 0.21 46.4 37.4 34.7 39.50 6.1 16  

355 1000 0.11 33.0 33.2 31.9 32.70 0.7 2  

355 1000 0.16 47.3 36.7 43.5 42.50 5.4 13  

355 1000 0.21 44.3 39.3 44.9 42.83 3.1 7  

355 1200 0.11 36.4 38.5 41.4 38.77 2.5 6  

355 1200 0.16 46.3 42.2 42.9 43.80 2.2 5  

355 1200 0.21 44.8 54.4 46.5 48.57 5.1 11  

370 800 0.11 27.8 32.5 30.6 30.30 2.4 8  

370 800 0.16 30.9 30.2 41.3 34.13 6.2 18  

370 800 0.21 25.6 27.1 34.1 28.93 4.5 16  

370 1000 0.11 31.3 42.4 35.2 36.30 5.6 16  

370 1000 0.16 32.1 40.9 38.8 37.27 4.6 12  

370 1000 0.21 39.3 29.3 30.9 33.17 5.4 16  

370 1200 0.11 37.6 37.4 36.7 37.23 0.5 1  

370 1200 0.16 39.5 31.2 33.5 34.73 4.3 12  

370 1200 0.21 43.0 39.8 49.7 44.17 5.1 11  

 

 

 

 


