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Augmenting Vehicle Localization by Cooperative
Sensing of the Driving Environment: Insight on

Data Association in Urban Traffic Scenarios
Mattia Brambilla, Student Member, IEEE, Monica Nicoli, Member, IEEE, Gloria Soatti, Francesco Deflorio

Abstract—Precise vehicle positioning is a key element for the
development of Cooperative Intelligent Transport Systems (C-
ITS). In this context, we present a distributed processing tech-
nique to augment the performance of conventional Global Nav-
igation Satellite Systems (GNSS) exploiting Vehicle-to-anything
(V2X) communication systems. We propose a method, referred to
as Implicit Cooperative Positioning with Data Association (ICP-
DA), where the connected vehicles detect a set of passive features
in the driving environment, solve the association task by pairing
them with on-board sensor measurements and cooperatively
localize the features to enhance the GNSS accuracy. We adopt
a belief propagation algorithm to distribute the processing over
the network, and solve both the data association and localization
problems locally at vehicles. Numerical results on realistic traffic
networks show that the ICP-DA method is able to significantly
outperform the conventional GNSS. In particular, the analysis
on a real urban road infrastructure highlights the robustness
of the proposed method in real-life cases where the interactions
among vehicles evolve over space and time according to traffic
regulation mechanisms. Performances are investigated both in
conventional traffic-light regulated scenarios and self-regulated
environments (as representative of future automated driving
scenarios) where vehicles autonomously cross the intersections
taking gap-availability decisions for avoiding collisions. The anal-
ysis shows how the mutual coordination in platoons of vehicles
eases the cooperation process and increases the positioning
performance.

Index Terms—Cooperative localization, V2X communications,
cooperative ITS, distributed Bayesian tracking, data association,
traffic simulation, controlled arterials.

I. INTRODUCTION

COOPERATIVE Intelligent Transportation Systems (C-
ITS) rely on Vehicle-to-anything (V2X) communications

to enable fast diffusion of sensor data and prompt reaction
to any anomalous event detected in the driving environment.
Existing V2X standards for driver assistance are based on a
WiFi mode (i.e., IEEE 802.11p WAVE [1] and ETSI ITS-G5
[2], for US and EU respectively) or on cellular communica-
tions (i.e., the recently released 3GPP LTE C-V2X standard
[3]), while new millimeter-wave technologies are emerging in
the context of the fifth-generation (5G) mobile networks to
cover higher levels of automation [4], [5]. These technologies
enable cooperative perception and maneuvering functionalities
by direct vehicle-to-vehicle (V2V) exchange of sensor data
and mobility patterns between vehicles, paving the way for
a new cooperative, connected and automated mobility [6]–
[10]. By fast V2V interactions, vehicles are able to fuse local
and remote maps of the driving environment, extending the
perception range much beyond the immediate field of view,

with huge benefits in safety [11]. They can also exchange
the intended trajectories to synchronize to a common mobility
pattern, forming high-density platoons and enhancing traffic
efficiency [12].

In many C-ITS applications, such as cooperative maneuver-
ing or vulnerable road-user discovery [13]–[16], a fundamental
requirement is precise vehicle positioning. Global Navigation
Satellite Systems (GNSSs), even when augmented by iner-
tial sensors, differential corrections or multi-constellation re-
ceivers, cannot guarantee the required navigation performance
in terms of availability and accuracy, especially in highly built-
up areas, where the satellite signal is severely attenuated or
even denied [17], [18]. To improve GNSS performance, both
non-cooperative and cooperative localization techniques have
been explored. Among the first ones, a relevant approach is
Simultaneous Localization And Mapping (SLAM) [19], [20]
where an ego vehicle builds a detailed map of the surroundings
and integrates the GNSS information in the mapping process
to enhance the localization accuracy [21], [22]. With this
method, vehicles rely only on their own sensors, without
any data fusion with other vehicles. On the other hand,
Cooperative Positioning (CP) techniques [23]–[31] perform
data sharing over V2X links to enrich the set of location
information. Overviews on CP technologies, protocols and
algorithms can be found in [32]–[34]. Most of the proposed
methods rely on explicit inter-vehicle measurements (distance,
velocity or angle) extracted from the received V2X radio
signals, such as time-of-flight [35], received signal strength
[36], angle of arrival [37] or Doppler shift of the carrier
frequency [38]. These approaches, however, either require
high-complexity processing, dedicated hardware or external
infrastructure. Moreover, they need vehicles to extract explicit
range measurements (e.g., time of flight or round trip time
by unicast communications) from the V2V radio signals,
whilst current V2X standards [1], [2] cannot provide such
information as they rely on broadcast transmissions.

Recently, the Implicit Cooperative Positioning (ICP) tech-
nique has been proposed where vehicles use on-board sensing
equipment to detect a common set of passive objects in the
driving environment. They then share the data over the V2V
links to cooperatively localize these features with high preci-
sion [39], [40]. The geo-localized objects serve as additional
reference points for GNSS augmentation. ICP belongs to
the class of multi-sensor multi-target tracking methods [41],
[42], where non-cooperative objects (targets) are sensed by
a network of cooperative mobile agents (sensors) and used
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for localization. With respect to other CP methods for vehicle
localization, the advantage is that ICP relies on conventional
sensing and V2V communication devices, without requiring
any explicit inter-vehicle ranging procedure or complex infras-
tructure. Only the location statistics based on post-processing
of standard automotive sensor measurements are exchanged
between vehicles.

The ICP method developed in [39], [40] assumed perfect as-
sociation between measurements and sensed objects. However,
in real C-ITS scenarios, data association (DA) is a mandatory
step to enable a consistent fusion of measurements provided
by multiple sensors at different vehicles. The DA issue, in
fact, consists of solving the uncertainty on the origin of mea-
surements. A solution to the DA problem has been proposed
in [43] for centralized tracking of passive targets in sensor
networks with known sensor locations, using an efficient asso-
ciation algorithm [44]. A similar centralized approach has been
developed in [45] for vehicular environments. These methods
employ Particle Filtering (PF) to sample the location statistics,
which are non-Gaussian due to the association uncertainty.
Unfortunately, in highly dynamic C-ITS scenarios where both
vehicles and features have to be tracked, a large number of
particles is required to sample the vehicle/feature densities
with enough accuracy and the computational burden becomes
easily unfeasible. Moreover, these DA-enabled methods rely
on a central unit for data gathering and processing, whereas
low-complexity decentralized techniques are preferred in C-
ITS scenarios. To the best of our knowledge, fully distributed
DA-enabled CP solutions have not been proposed in the
literature. Furthermore, an in-depth performance analysis in
realistic environments with large numbers of vehicles/features
and varying traffic conditions is crucial to highlight how the
localization accuracy scales with the traffic demand and to
validate the method robustness.

This paper aims to fill the above gap by providing a twofold
contribution that can be summarized as: (i) extension of the
ICP method such that DA issue is integrated and resolved;
(ii) validation in realistic urban traffic scenario. The two
contributions are detailed in the following.

The first contribution is the extension of the ICP method
[40] to integrate the DA task into the distributed framework
for localization of features and vehicles. Differently from
previous works, which rely either on centralized processing
[45] or known sensor locations [43], the proposed method
jointly solves the DA issue and the feature-vehicle local-
ization by distributed processing at vehicles. The proposed
ICP method with Data Association (ICP-DA) relies on two
Belief Propagation Algorithms (BPA) [46]: one for data asso-
ciation (BPA-DA), and the other for localization of features
and vehicles (BPA-L). At first, vehicles use their on-board
sensing equipment (e.g., radar, lidar or camera) to detect
a number of nearby features and individually run BPA-DA
to solve the association problem. Then, they use BPA-L
to combine the Vehicle-To-Feature (V2F) information with
the local GNSS measurement, sharing the information with
neighbors by V2V communications. For the implementation
of the ICP-DA method, we design a PF algorithm which
relies on a particle-based representation of the non-Gaussian

vehicle/feature location beliefs, combined with a consensus
algorithm [47] for distributed computation of feature-related
information at vehicles. We also propose a low-complexity
(LC) suboptimal method, referred to as ICP-DA-LC, based
on a hard Maximum-A-Posteriori (MAP) Bayesian detection
for feature-measurement pairing and Kalman Filtering (KF)
with Gaussian message passing for cooperative localization.
The proposed MAP-based solution applies a feature selection
criterion to exclude ambiguous V2F measurements and reduce
the impact of detection errors. A preliminary version of the
proposed method has been presented in [48], focusing on low-
complexity ICP-DA implementation and static features. Here
the work is extended with the derivation of the optimal PF-
based algorithm and the introduction of feature mobility to
handle realistic C-ITS scenarios.

The second main contribution of this paper is the validation
of the proposed technique in a realistic urban traffic scenario.
The localization performance is investigated by simulating
traffic flow along an urban arterial of the road network in
Turin, Italy, including primary roads and several secondary
junctions. With respect to other studies where the positioning
precision is randomly and exogenously generated, as in [49],
in this work the vehicle localization accuracy is considered
as dependent on the traffic conditions over the roads and the
related traffic control systems, that rule the spatial distribution
of the vehicles and their mutual interactions. A key element is
the control strategy implemented at road intersections which
affects the traffic flow in terms of delays, queues and capacity
at the nodes, as well as the density of vehicles along the arte-
rials. Two different traffic scenarios are analyzed: a standard
one, where traffic lights regulate the vehicles dynamics at inter-
sections, and a vehicle self-regulated scenario (representative
of higher levels of automation) where vehicles individually and
autonomously decide if they can safely cross an intersection
avoiding conflicts. The simulation of real-life traffic conditions
is instrumental for the assessment of the potential benefits of
the proposed cooperative methods in typical urban conditions.
An important goal is to show the strengths and drawbacks
of one method with respect to the other, with main focus on
the localization performance in terms of accuracy and com-
putational complexity, which are key points to be addressed
in vehicular applications. Furthermore, we aim to demonstrate
that a sub-meter accuracy can be reached by the proposed
cooperative localization approach which thus enables new C-
ITS services, such as turn-by-turn route guidance, including
lane selection, or queue length monitoring for optimal tuning
of traffic light control [50].

The paper is organized as follows. Sec. II introduces the C-
ITS model. Sec. III explains the Bayesian ICP-DA approach
for the joint association and localization problem, while Sec.
IV presents the distributed implementations by the PF (ICP-
DA-PF) and low-complexity KF (ICP-DA-LC) approaches.
The performance analysis is in Sec. V and VI for, respectively,
simplified and realistic road networks. Finally, Sec. VII draws
the concluding remarks.

Notation. Bold upper- and lower-case letters describe ma-
trices and column vectors. Matrix transposition is indicated as
(·)T, Im denotes the identity matrix of size m, while 0m×n is
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Fig. 1: Example of C-ITS scenario with Nv = 12 connected vehicles and Nf = 10
passive features. The red links indicate all the V2V connections, while the black ones
represent the V2F connections of vehicle i = 1. The communication and sensing ranges,
Rc and Rs, respectively, are referred to vehicle i = 1.

a null matrix of size m×n. R is the symbol of the set of real
numbers. Lastly, operator || · || denotes the Euclidean norm.

II. C-ITS MODEL

We consider a C-ITS scenario where a set V = {1, ..., Nv}
of Nv interconnected vehicles is deployed over a two dimen-
sional space as illustrated in Fig. 1. At time instant t, vehicle
i ∈ V is characterized by the position p

(V)
i,t =

[
p

(V)
xi,tp

(V)
yi,t

]T ∈
R2×1 and velocity v

(V)
i,t =

[
v

(V)
xi,tv

(V)
yi,t

]T ∈ R2×1, and it
is able to exchange data with neighboring vehicles through
V2V communications. The set of neighbors that directly
communicate with vehicle i ∈ V is denoted as Ji,t = {j ∈ V :

||p(V)
i,t −p

(V)
j,t || ≤ Rc}, where Rc is the communication range.

The scenario also involves a set F = {1, ..., Nf} of Nf non-
cooperative features (e.g., pedestrians, traffic lights or inactive
cars) described by their position p

(F)
k,t =

[
p

(F)
xk,tp

(F)
yk,t

]T ∈ R2×1

and velocity v
(F)
k,t =

[
v

(F)
xk,tv

(F)
yk,t

]T ∈ R2×1 as well. The
features are detected by passive ranging equipment available at
vehicles. Thus, each vehicle has a measurement of the relative
position-velocity of all the surrounding features that fall within
the sensing range Rs. The subset of features detected by
vehicle i is defined as Fi,t = {k ∈ F : ||p(F)

k,t −p
(V)
i,t || ≤ Rs}.

The kinematics parameters of vehicle i ∈ V are collected
into the state vector x(V)

i,t that is assumed to evolve over time
t according to the inertial sensor model1 [52]:

x
(V)
i,t =

[
p

(V)
i,t

v
(V)
i,t

]
= Ax

(V)
i,t−1 + Ba

(V)
i,t−1 + w

(V)
i,t−1, (1)

1Higher order models could be used to slightly increase the localization
performance [51], but they are not expected to significantly impact the analysis
of the V2V cooperation gain.
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(V2F)

𝐱𝐱1,𝑡𝑡
(V)

V2F 
sensing 

Fig. 2: Focus on ego vehicle sensors: GNSS and V2F sensing.

with

A =

[
I2 TsI2

02×2 I2

]
and B =

[
0.5T 2

s I2

TsI2

]
.

The matrix A describes the state transition while B relates the
vehicle state to the acceleration information a

(V)
i,t−1 ∈ R2×1,

provided by an on-board inertial sensor. Ts is the sampling
interval and w

(V)
i,t−1 is the Gaussian driving noise (modeling

sensor measurement error and non-deterministic behaviors
not accounted for by matrices A and B) with probability
density function (pdf) p(w

(V)
i,t−1) = N

(
w

(V)
i,t−1;0,Q

(V)
i,t−1

)
,

where Q
(V)
k,t−1 ∈ R4×4.

Similarly, the state x
(F)
k,t of each feature k ∈ F evolves over

time t according to the first order Markov model:

x
(F)
k,t =

[
p

(F)
k,t

v
(F)
k,t

]
= Ax

(F)
k,t−1 + w

(F)
k,t−1, (2)

where w
(F)
k,t−1 is the Gaussian driving noise with pdf

p(w
(F)
k,t−1) = N

(
w

(F)
k,t−1;0,Q

(F)
k,t−1

)
and Q

(F)
k,t−1 ∈ R4×4.

As highlighted in Fig. 2, each vehicle is assumed to gather
two different types location measurements. The first one is the
measurement provided by a GNSS receiver of the vehicle state
(indicated with the red dotted line) which is modeled as:

z
(V)
i,t = x

(V)
i,t + n

(V)
i,t , (3)

where the GNSS measurement noise n
(V)
i,t has pdf p(n(V)

i,t ) =

N
(
n

(V)
i,t ;0,R

(V)
i,t

)
, with covariance R

(V)
i,t ∈ R4×4. Moreover,

each vehicle uses on board ranging sensors to collect a set
of V2F observation Oi,t = {1, ..., Oi,t} of the surrounding
features k ∈ Fi,t. Note that these are relative location/velocity
measurements referred to vehicle i and their association to the
features is unknown. Assuming that at vehicle i each feature
k ∈ Fi,t can generate at most one V2F measurement ` ∈ Oi,t,
the relative V2F observation is

z
(V2F)
i,`,t = x

(F)
k,t − x

(V)
i,t + n

(V2F)
i,`,t , (4)

where k is the (unknown) feature associated to measurement
` and the V2F uncertainty n

(V2F)
i,`,t has pdf p(n

(V2F)
i,`,t ) =

N (n
(V2F)
i,`,t ;0,R

(V2F)
i,`,t ), with covariance R

(V2F)
i,`,t ∈ R4×4.

The V2F measurements available at each vehicle are shared
with neighbors in order to enable a cooperative sensing of
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Fig. 3: a) Joint sensing of features x(F)
k,t, k ∈ {1, 2}, by vehicles x(V)

i,t , i ∈ {1, 2}, with
unknown measurement-feature association. b) Consistent combination of measurements
after the association, for feature localization (filled ellipses) and enhancement of GNSS
accuracy (contours).

the surrounding environment with enhanced localization per-
formance. This process is a part of the ICP method which is
described in the following sections.

III. DA PROBLEM: THE ICP-DA APPROACH

The ICP method is a cooperative technique where the GNSS
positioning of the ego vehicle is augmented by combining
local GNSS data with high-resolution information on the
detected features shared with connected vehicles. The vehicle
initial location estimate z(V)

i,t provided by the GNSS is refined
by a cooperative iterative procedure that allows to fuse the V2F
measurements z(V2F)

j,`,t of multiple vehicles j ∈ V through the
V2V links. The availability of multiple observations of a same
feature at different vehicles enables in fact to localize these
objects with an enhanced accuracy and, in turn, to improve
positioning of the vehicles themselves. However, as features
are passively detected, they do not provide any identification;
when multiple observations have to be fused together, a main
issue is the association between features and the relative V2F
measurements.

The ICP-DA working principle is illustrated in Fig. 3,
where two vehicles jointly sense two features. As shown in
Fig. 3-(a), in order to consistently fuse the measurements
collected by the two vehicles, each vehicles i ∈ {1, 2} needs
at first to pair each observation z

(V2F)
i,`,t , ` ∈ {1, 2}, with

the corresponding feature k ∈ {1, 2} that generated that
measurement. In the specific example, the observation ` = 2

at vehicle i = 1, z(V2F)
1,2,t , originated from feature k = 1, must

be fused with the observation generated by the same feature
at the second vehicle, i.e. the measurement z(V2F)

2,1,t indexed
as ` = 1 at vehicle i = 2, and not with z(V2F)

2,2,t . Once the
feature-observation association is solved at each vehicle, the
two measurements of each feature can be combined to get a
more accurate information on each feature location as shown
in Fig. 3-(b) and, as a consequence, an enhanced localization
of both vehicles observing the features.

For the design of the ICP-DA method, we propose to
solve the association problem jointly with localization using

TABLE I: Definitions of main variables at time t.

Symbol Dimension Meaning

x
(V)
i,t 4× 1 position-velocity of veh. i

x
(V)
t 4Nv × 1 aggregated states of all vehicles

x
(F)
k,t 4× 1 position-velocity of fea. k

x
(F)
t 4Nf × 1 aggregated states of all features
θt 4(Nv +Nf )× 1 global vehicle and feature states
z
(V)
i,t 4× 1 GNSS measurement at veh. i

z
(V)
t 4Nv × 1 aggregated GNSS measurements
z
(V2F)
i,`,t 4× 1 V2F measurement ` at veh. i

z
(V2F)
i,t 4Oi,t × 1 overall V2F measurements at veh. i

z
(V2F)
t 4O × 1 aggregated V2F measurements
zt 4(Nv +O)× 1 global GNSS and V2F measurements
αi,k,t 1× 1 F→O association for fea. k at veh. i
αi,t Nf × 1 overall F→O associations at veh. i
αt NvNf × 1 global F→O associations
βi,`,t 1× 1 O→F association for meas. ` at veh. i
βi,t Oi,t × 1 overall O→F associations at veh. i
βt O × 1 global O→F associations

a Bayesian approach. Let x
(V)
t = [x

(V)
i,t ]i∈V ∈ R4Nv×1 and

x
(F)
t = [x

(F)
k ,t ]k∈F ∈ R4Nf×1 be the vehicles’ and features’

states at time t, and θt =
[
x

(V)T

t x
(F)T

t

]T
∈ R(4Nv+4Nf )×1 the

combined state vector for the overall set of connected vehicles
and sensed features. A complete recap of variables, with their
dimensions and meanings is presented in Table I.

Considering the ideal case where a central processing unit,
e.g., a road side unit (RSU), can aggregate all the GNSS
measurements z(V)

t = [z
(V)
i,t ]i∈V ∈ R4Nv×1 and the V2F

measurements z(V2F)
i,t = [z

(V2F)
i,`,t ]`∈Oi,t ∈ R4Oi,t×1 into a

vector z(V2F)
t = [z

(V2F)
i,t ]i∈V ∈ R4O×1, with O =

∑Nv
i=1Oi,t

denoting the total number of V2F observations, the Minimum
Mean Square Error (MMSE) estimate of the vehicle-feature
states based on the aggregated data zt = [z

(V)T

t z
(V2F)T

t ]T

can be calculated as:

θ̂t|t =

[
x̂

(V)
t|t

x̂
(F)
t|t

]
=

∫
θtp(θt|z1:t)dθt, (5)

where z1:t = [zτ ]τ=1,...,t collects all measurements up to time
t and p(θt|z1:t) is the pdf of the vehicle-feature state.

The evaluation of p(θt|z1:t) requires a preliminary pairing
of the measurements z(V2F)

t with the features states in θt, in
order to compute the related observation likelihoods. To this
aim, we model the association problem according to [44] by
introducing the feature-oriented (F→O) association variable
αi,k,t, ∀i ∈ V ∧ k ∈ F , defined as:

αi,k,t=


`∈Oi,t if at time t feature k generates

measurement ` at vehicle i
0 if at time t feature k does not generate any

measurement at vehicle i (i.e., k /∈ Fi,t).
(6)

which relates each observation ` ∈ Oi,t of vehicle i to the
corresponding feature k ∈ Fi,t. Defining the Nf × 1 stacked
association vector of all the features sensed by vehicle i as
αi,t = [αi,k,t]k∈F and the overall NvNf × 1 association
vector at time t as αt = [αi,t]i∈V , we model αt as a random
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process and we evaluate the posterior pdf of the vehicle-feature
dynamic states as:

p(θt|z1:t)=
∑
αt∈A

p(θt,αt|z1:t) =
∑
αt∈A

p(θt|αt, z1:t)p(αt|z1:t)

(7)
where the summation is over the set A of all the admissible
association values αt, i.e. such that each feature can generate
at most one measurement at vehicle i and each measurement
at vehicle i can be generated by at most one feature.

Since a centralized solution is unfeasible in vehicular sce-
narios, in the following section, we propose a distributed
method for the evaluation of the marginal pdf of (7) at
each vehicle. The method extends the former ICP method for
known association [40], by the integration of an algorithm that
solves the association problem through the computation of the
distribution p(αt|z1:t). Note that, differently from [40], here
the pdf (7) is not Gaussian due to the association ambiguity.
Thereby, we design the ICP-DA method leveraging on a PF-
based approach for joint feature-observation association and
tracking of the vehicle-feature dynamics.

IV. DISTRIBUTED ICP-DA METHOD

To enable a decentralized fusion of the location information
collected by multiple vehicles on the surrounding features, in
this section we present a distributed method for implementing
the ICP-DA method in Sec. III based on belief propagation.
The computation of p(θt,αt|z1:t) in (7) is distributed over
the vehicles by factorizing p(θ1:t,α1:t|z1:t) and performing
a sequential approximate marginalization of this joint pdf by
BPA over a factor graph (FG) representing the factorization
[53]. In the following, we first derive the factorization (Sec.
IV-A) and then the distributed ICP-DA method based on BPA
and consensus algorithms (Sec. IV-B). Finally, a PF-based
implementation of the ICP-DA method is discussed (Sec.
IV-C) together with a hard-decision low-complexity algorithm
(Sec. IV-D).

A. Factorization of the Joint Posterior Pdf
Following the approach in [44], in addition to the feature-

oriented (F→O) association variable αi,k,t, to model the
association we introduce the observation-oriented (O→F)
association variable βi,`,t defined as: βi,`,t = k, if at time
t the measurement ` at vehicle i is generated by feature
k ∈ Fi,t, βi,`,t = 0, if the measurement ` is not related to
any feature.2 Though this formulation is redundant - as βi,`,t
can be derived from αi,k,t and vice-versa - the use of αi,k,t
alongside with βi,`,t allows to efficiently enforce the constraint
that at any time t each feature k can generate at most one
measurement ` at vehicle i and vice-versa (i.e., a one-to-one
F-O mapping). This is enabled by introducing the exclusion-
enforcing function

Ψ(αi,k,t, βi,`,t) =

0, if (αi,k,t = ` ∧ βi,`,t 6= k) ∨
(αi,k,t 6= ` ∧ βi,`,t = k),

1, otherwise,
(8)

2Despite the fact that clutter measurements are not present in the considered
scenario, the case βi,`,t = 0 is introduced to exclude ambiguous measure-
ments and reduce errors during the detection process as it will be detailed in
the performance analysis.

which is null for any inconsistent F-O pairing.
Let the Oi,t × 1 vector βi,t = [βi,`,t]`∈Oi,t and the O × 1

vector βt = [βi,t]i∈V collect all the O→F associations for, re-
spectively, vehicle i and all vehicles, the joint posterior pdf of
the association and the vehicle-feature states p(θ1:t,α1:t|z1:t)
can be reformulated as p(θ1:t,α1:t,β1:t|z1:t) and factorized
as follows (see proof in appendix A):

p(θ1:t,α1:t,β1:t|z1:t) ∝( Nv∏
i=1

p(x
(V)
i,0 )

t∏
t′=1

p(x
(V)
i,t′ |x

(V)
i,t′−1)p(z

(V)
i,t′ |x

(V)
i,t′)×

Nf∏
k=1

p(z(V2F)
i,t′ |x

(V)
i,t′ ,x

(F)
k,t′ , αi,k,t′)

Oi,t′∏
`=1

Ψ(αi,k,t′ , βi,`,t′)

)
×

( Nf∏
k=1

p(x
(F)
k,0)

t∏
t′′=1

p(x
(F)
k,t′′ |x

(F)
k,t′′−1)

)
,

(9)

where the V2F likelihood p(z(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , αi,k,t) is:

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , αi,k,t) ={

p(z
(V2F)
i,`,t |x

(V)
i,t ,x

(F)
k,t ), if αi,k,t = ` ∈ Oi,t ,

1 if αi,k,t = 0 .

(10)

p(z(V2F)
i,`,t |x

(V)
i,t ,x

(F)
k,t) is Gaussian with mean x(F)

k,t − x(V)
i,t and

covariance R(V2F)
i,`,t , while p(z

(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , αi,k,t = 0) is

set to 1 to guarantee the coherency of factorization in the
case of undefined V2F measurement z(V2F)

i,`=0,t. Furthermore,
p(x

(V)
i,0 ) and p(x(F)

k,0) denote the prior pdfs at time t = 0, while
p(z

(V)
i,t′ |x

(V)
i,t′) stands for the GNSS likelihood.

This factorization enables the joint association and localiza-
tion problem to be solved locally at vehicles in a distributed
manner, by the exchange of messages through the V2V links,
as discussed in the following section.

B. BPA for Data Association and Localization

The ICP-DA problem is solved by running a loopy BP
Algorithm (BPA) [44], [46] on the factor graph (FG) in Fig.
4 describing the factorization of (9) for one time instant.
For visualization purposes, the FG related to the association
variables is represented by a green box in Fig. 4 and it is
expanded in details in Fig. 5. According to [54], in the FG
the vehicle/feature states and the association variables are
depicted as circles, while the factors are shown as squares.
Since the FG has cycles, the BPA is iterative and consists
of the cascade of two BPAs. The first one, referring to the
subgraph in Fig. 5, is a BPA for data association (BPA-
DA) that approximates through the iterations p = 1, ..., P
the marginal posterior pdf of the association variable by the
belief b(p)i,k,t(αi,k,t) ≈ p(p)(αi,k,t|zi,t). This iterative algorithm
is implemented following the approach in [44]. The second
BPA, for vehicle/feature localization (BPA-L), uses the BPA-
DA output to perform the ICP localization and computes
over the iterations n = 1, ..., N the beliefs of all the vehi-
cles’ and features’ states: b(n)

i,t (x
(V)
i,t ) ≈ p(n)(x

(V)
i,t |z1:t) and



6

𝑡𝑡

ℎ𝑖𝑖

𝐱𝐱𝑖𝑖
(V)

𝑔𝑔𝑖𝑖𝑚𝑚

…

𝑠𝑠𝑖𝑖

ℎ𝑗𝑗
𝑔𝑔𝑗𝑗𝑚𝑚

…𝑠𝑠𝑗𝑗

𝑔𝑔𝑗𝑗𝑗𝑗

Cooperative Objects
Vehicle 𝒊𝒊

…
…

…

…

Non-cooperative Objects

𝑔𝑔𝑖𝑖𝑗𝑗

… …

Ti
m

e

𝑡𝑡 − 1

…

𝑡𝑡 + 1

Vehicle 𝒋𝒋 Feature 𝒌𝒌 Feature 𝒎𝒎

𝑓𝑓𝑚𝑚𝑓𝑓𝑘𝑘

𝐱𝐱𝑗𝑗
(V)

𝐱𝐱𝑘𝑘
(F)

𝐱𝐱𝑚𝑚
(F)

𝑏𝑏𝑖𝑖,𝑡𝑡
N (𝐱𝐱𝑖𝑖,𝑡𝑡

(V)) 𝑏𝑏𝑗𝑗,𝑡𝑡
N (𝐱𝐱𝑗𝑗,𝑡𝑡

(V)) 𝑏𝑏𝑘𝑘,𝑡𝑡
N (𝐱𝐱𝑘𝑘,𝑡𝑡

(F)) 𝑏𝑏𝑚𝑚,𝑡𝑡
N (𝐱𝐱𝑚𝑚,𝑡𝑡

(F) )

𝑏𝑏𝑖𝑖,𝑚𝑚,𝑡𝑡
P (𝛼𝛼𝑖𝑖,𝑚𝑚,𝑡𝑡)

BPA − DA

𝑏𝑏𝑖𝑖,𝑘𝑘,𝑡𝑡
P (𝛼𝛼𝑖𝑖,𝑘𝑘,𝑡𝑡)

𝛽𝛽(𝛼𝛼𝑖𝑖,𝑚𝑚,𝑡𝑡)

𝛽𝛽(𝛼𝛼𝑖𝑖,𝑘𝑘,𝑡𝑡)

Fig. 4: Factorization of p(θt,αt,βt|z1:t) for a fixed time interval. To simplify the notation, we set hi = p(x
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i,t−1), si = p(z

(V)
i,t |x

(V)
i,t ), fk = p(x

(F)
k,t |x

(F)
k,t−1),

gik = p(z
(V2F)
i,k,t |x
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Fig. 5: Factor graph of the BPA-DA. The following notation is used: ν`→k =

ν
(p)
`→k(αi,k,t), ζk→` = ζ

(p)
k→`(βi,`,t), Ψk,` = Ψ(αi,k,t, βi,`,t).

b
(n)
k,t (x

(F)
k,t ) ≈ p(n)(x

(F)
k,t |z1:t). A new solution is proposed for

the BPA-L implementation based on a combination of PF, for
importance sampling representation of the non-Gaussian vehi-
cle/feature beliefs, and a log-likelihood consensus algorithm,
for distributed evaluation by the vehicles of the beliefs of the
states of the non-cooperative objects.

The ICP-DA algorithm consists in the following steps:
1) Prediction: The beliefs of all vehicles’ and features’

states at iteration n = 0 are initialized using the beliefs
of previous step, the motion prediction and the current
GNSS data, as follows:

b
(0)
i,t (x

(V)
i,t ) =

p(z
(V)
i,t |x

(V)
i,t )

∫
p(x

(V)
i,t |x

(V)
i,t−1)b

(N)
i,t−1(x

(V)
i,t−1)dx

(V)
i,t−1,

(11)

b
(0)
k,t(x

(F)
k,t ) =

∫
p(x

(F)
k,t |x

(F)
k,t−1)b

(N)
k,t−1(x

(F)
k,t−1)dx

(F)
k,t−1,

(12)

where b
(N)
i,t−1(x

(V)
i,t−1) and b

(N)
k,t−1(x

(F)
k,t−1) are respec-

tively the vehicle and feature beliefs at time t − 1,
p(x

(V)
i,t |x

(V)
i,t−1) = N (x

(V)
i,t ;x

(V)
i,t−1 + Ba

(V)
i,t−1,Q

(V)
i,t−1)

and p(x
(F)
k,t |x

(F)
k,t−1) = N (x

(F)
k,t ;x

(F)
k,t−1,Q

(F)
k,t−1) are the

transition pdfs from (1) and (2), and p(z
(V)
i,t |x

(V)
i,t ) =

N (z
(V)
i,t ;x

(V)
i,t ,R

(V)
i,t ) is the likelihood of the GNSS mea-

surement at vehicle i from (3).
2) V2F measurement evaluation for association: Vehicle

i evaluates each O→F association by integrating the
V2F measurement likelihood over all possible feature
locations, and weighting with the prior beliefs (11)-(12):

η(αi,k,t) = p(z
(V2F)
i,t |αi,k,t) =∫∫

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t ,αi,k,t)b

(0)
i,t (x

(V)
i,t )b

(0)
k,t(x

(F)
k,t)dx

(V)
i,t dx

(F)
k,t .

(13)

where p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , αi,k,t) =

N (z
(V2F)
i,αi,k,t,t

;x
(F)
k,t−x

(V)
i,t ,R

(V2F)
i,αi,k,t,t

), see (10).
3) BPA-DA for measurement-feature association: Following

[44], here each vehicle i computes the association beliefs
b
(p)
i,k,t(αi,k,t) by a repeated exchange of messages from the

F→O association variable αi,k,t to the O→F association
variable βi,`,t and vice-versa, so as to exclude inconsis-
tent pairings (e.g., the same measurement associated to
two different features) and restrict the belief evaluation
to one-to-one associations. The message from αi,k,t to
βi,`,t is initialized at BPA-DA iteration p = 0 as:

m
(0)
k→`(βi,`,t) =

Oi,t∑
αi,k,t=0

η(αi,k,t)Ψ(αi,k,t, βi,`,t), (14)

while at subsequent iterations, p = 1, 2, . . ., the messages
are updated as follows:

m
(p)
`→k(αi,k,t) =

|Fi,t|∑
βi,`,t=1

Ψ(αi,k,t, βi,`,t)
∏

k′∈F\{k}

m
(p−1)
k′→` (βi,`,t),

(15)

m
(p)
k→`(βi,`,t) =

Oi,t∑
αi,k,t=0

η(αi,k,t)Ψ(αi,k,t, βi,`,t)×∏
`′∈Oi,t\{`}

m
(p)
`′→k(αi,k,t).

(16)
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At the last iteration, p = P , the belief of the association
variable αi,k,t is obtained as:

b
(P)
i,k,t(αi,k,t) =

∏
`∈Oi,t

m
(P )
`→k(αi,k,t). (17)

An efficient implementation of the above BPA-DA steps
can be found in [44].

4) V2F measurement evaluation for localization: The asso-
ciation beliefs (17) given by BPA-DA are here used by
each vehicle to compute the V2F location likelihood as:

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t ) =

Oi,t∑
αi,k,t=0

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , αi,k,t)b

(P)
i,k,t(αi,k,t),

(18)

for the ICP-based localization in the next step.
5) BPA-L for localization: The BPA algorithm for vehi-

cle/feature localization approximates the posterior pdf of
the vehicles’ and features’ states over the iterations n
by the beliefs b

(n)
i,t (x

(V)
i,t ) ,∀i, and b

(n)
k,t (x

(F)
k,t ) ,∀k. The

procedure starts from the vehicle/feature beliefs obtained
at step n − 1. In order to evaluate a belief for the
kth feature state, x

(F)
k,t , vehicle i combines the belief

of its own state x
(V)
i,t from step n − 1 with the V2F

likelihood p(z(V2F)
i,t |x(V)

i,t ,x
(F)
k,t ) based on (18), providing

the following message from vehicle i to feature k:

m
(n)
i→k(x

(F)
k,t )∝

∫
b
(n−1)
i,t (x

(V)
i,t )

m
(n−1)
k→i (x

(V)
i,t )

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t )dx

(V)
i,t .

(19)
All the messages received by feature k are then gathered
to compute the refined belief as follows:

b
(n)
k,t (x

(F)
k,t ) ∝ b(0)

k,t(x
(F)
k,t )

∏
i∈Vk,t

m
(n)
i→k(x

(F)
k,t ), (20)

where Vk,t is the set of vehicles that sense feature k. Note
that if a feature x

(F)
k,t is not observed by any vehicle i ∈ V ,

the related belief (20) is reset to a uniform distribution.
Based on the updated feature’s belief (20) and the V2F
likelihood, vehicle i receives the following message from
feature k:

m
(n)
k→i(x

(V)
i,t ) ∝

∫
b
(n)
k,t (x

(F)
k,t )

m
(n)
i→k(x

(F)
k,t )

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t )dx

(F)
k,t .

(21)
Finally, vehicle i refines its own belief by combining
the local information with all messages coming from the
sensed features k ∈ Fi,t:

b
(n)
i,t (x

(V)
i,t ) ∝ b(0)

i,t (x
(V)
i,t )

∏
k∈Fi,t

m
(n)
k→i(x

(V)
i,t ). (22)

The BPA-L steps (19)-(22) are repeated until convergence is
reached.

In the above algorithm we treated the features as cooperative
entities that are actively involved in the message passing
procedure. However, being passive objects, features cannot

compute their own belief in (20) nor communicate with
vehicles. Following [40], this problem can be solved by using
a consensus algorithm which enables vehicles to compute the
feature belief in (20) in a distributed way by exchanging data
through V2V links. More details are given in the following
section where a PF-based implementation is discussed.

C. ICP-DA PF-based Implementation

The introduction of the non-Gaussian variables, αi,k,t and
βi,`,t, makes the use of Kalman filtering, as originally pro-
posed in [40], suboptimal for the extension of ICP with data
association. To deal with non-Gaussian statistics, we propose a
PF-based ICP-DA algorithm (ICP-DA-PF) where each vehicle
belief b

(n)
i,t (x

(V)
i,t ) is described by the set of Jv particles

and related weights,
{
s

(v)
i,t , w

(υ)
i,t

}Jv
υ=1

, ∀i ∈ V , and similarly
each feature belief b(n)

k,t (x
(F)
k,t ) is represented by the set of Jf

particles with associated weights
{
s

(f)
k,t , w

(f)
k,t

}Jf
f=1

, ∀k ∈ F .
The iteration index n is dropped to simplify the notation. The
computation of particles and weights is performed as described
below.

Following the BPA steps in previous section, the vehicle
and feature beliefs (20)-(22) are initialized for step 1 as:

b
(0)
i,t (x

(V)
i,t ) ≈ 1

Jv

Jv∑
υ=1

p(z
(V)
i,t |s

(υ)
i,t )δ

(
x

(V)
i,t − s

(υ)
i,t

)
, (23)

b
(0)
k,t(x

(F)
k,t ) ≈ 1

Jf

Jf∑
f=1

δ

(
x

(F)
k,t − s

(f)
k,t

)
, (24)

with equal weights and particles obtained from the prop-
agation of the particles associated with the previous time-
instant beliefs according to the dynamic models (1)-(2). The
GNSS likelihood function is evaluated for each particle as
p(z

(V)
i,t |s

(υ)
i,t ) = N (z

(V)
i,t ;s

(υ)
i,t ,R

(V)
i,t ) according to (3), while

δ(·) denotes the multidimensional Dirac delta function.
In step 2, the likelihood function for association can be

computed by inserting (23)-(24) in (13) as follows:

η(αi,k,t) ≈

1

JvJf

Jv∑
υ=1

Jf∑
f=1

p(z
(V)
i,t |s

(υ)
i,t )p(z

(V2F)
i,t |s(υ)

i,t , s
(f)
k,t , αi,k,t),

(25)

where p(z
(V2F)
i,t |s(υ)

i,t , s
(f)
k,t , αi,k,t) = N (z

(V2F)
i,αi,k,t ,t

;s
(f)
k,t −

s
(υ)
i,t ,R

(V2F)
i,αi,k,t ,t

), ∀αi,k,t ∈ Oi,t, according to (4) and (10). The
BPA-DA procedure in step 3 does not involve particles and can
thus be implemented by simply using (25) in the association
equations (14)-(16).

The likelihood function for localization can now be com-
puted (as step 4) using (18) for each pair of feature-vehicle
particles. The BPA-L procedure follows in step 5, where the
message mi→k,t(x

(F)
k,t ) as defined in (19) is represented by the

set of particles and weights
{
s

(f)
k,t , w

(f)
i→k,t

}Jf
f=1

, with

w
(f)
i→k,t∝

1

Jv

Jv∑
υ=1

p(z
(V)
i,t |s

(υ)
i,t )
∏

h∈Fi,t
h6=k

w
(υ)
h→i,tp(z

(V2F)
i,t |s(υ)

i,t , s
(f)
h,t ).
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TABLE II: BPA-DA computational complexity at each vehicle per time step.

ICP (known DA) ICP-DA-PF ICP-DA-LC

BPA-DA − O(JvJfN2
f ) O(N2

f )

BPA-L O(NBPA−LNconsNvNf ) O(NBPA−LNconsNvJvJfNf ) O(NBPA−LNconsNvNf )

The PF representation of the kth feature belief in (20) is:

b
(n)
k,t (x

(F)
k,t ) ∝

Jf∑
f=1

1

Jf

∏
i∈Vk,t

w
(f)
i→k,t︸ ︷︷ ︸

w̃
(f)
k,t

δ

(
x

(F)
k,t − s

(f)
k,t

)
, (26)

with w̃
(f)
k,t denoting the weight related to feature particle f ,

that has to be normalized as w(f)
k,t =

w̃
(f)
k,t∑Jf

f=1 w̃
(f)
k,t

. Similarly, the

message from feature k to vehicle i, m(n)
k→i(x

(V)
i,t ), is repre-

sented by the set
{
s

(υ)
i,t , w

(υ)
k→i,t

}Jv
υ=1

, with weights computed
according to (21) as

w
(υ)
k→i,t ∝

1

Jf

Jf∑
f=1

∏
j∈Vk,t
j 6=i

w
(f)
j→k,tp(z

(V2F)
i,t |s(υ)

j,t , s
(f)
k,t ).

The PF representation of the ith vehicle belief is then given
by:

b
(n)
i,t (x

(V)
i,t )∝

Jv∑
υ=1

1

Jv
p(z

(V)
i,t |s

(υ)
i,t )

∏
k∈Fi,t

w
(υ)
k→i,t︸ ︷︷ ︸

w̃
(υ)
i,t

δ

(
x

(V)
i,t − s

(υ)
i,t

)
,

(27)
where w̃(υ)

i,t is the non-normalized weight, related to vehicle

particle s
(v)
i,t , to be normalized as w(υ)

i,t =
w̃

(υ)
i,t∑Jv

υ=1 w̃
(υ)
i,t

. All vehi-

cle and feature particles finally undergo importance resampling
so as to avoid the particle degeneracy [55]. Note that identical
sets of particles are assumed to be sampled at all vehicles for
feature k and at all features for vehicle i to enable message
fusion as in in (26)-(27), i.e. the set

{
s

(f)
k,t

}Jf
f=1

is the same for

all vehicles i ∈ V and
{
s

(υ)
i,t

}Jv
υ=1

is the same for all features
k ∈ F . This requires local random number generators to be
synchronized at all vehicles. At convergence, the estimates
of the feature/vehicle states are obtained according to the
MMSE criterion, respectively as x̂

(F)
k,t =

∑Jf
f=1 w

(f)
k,t s

(f)
k,t , ∀k,

and x̂
(V)
i,t =

∑Jv
υ=1 w

(υ)
i,t s

(υ)
i,t , ∀i.

The ICP-DA-PF method requires the computation of the
belief (26) at each feature k, which is however unfeasible since
features are not actively involved in the localization process.
We thus propose this belief to be evaluated cooperatively by
the vehicles by a consensus-based algorithm that enables the
distributed computation of the features’ weights w(f)

k,t , ∀f ∈
Jf ,∀k ∈ F . In particular, defining the product of messages
over the vehicles sensing the same feature k in (22) as

q
(f)
k,t =

∏
i∈Vk,t

w
(f)
i→k,t ∀f = 1, ..., Jf (28)

and taking the logarithm L(q
(f)
k,t ) = log(q

(f)
k,t ), we get:

L(q
(f)
k,t ) =

∑
i∈Vk,t

log
(
w

(f)
i→k,t

)
=

1

|Vk,t|

|Vk,t|∑
i=1

log
(
w

(f)
i→k,t

)
, (29)

which is an arithmetic average that can be evaluated in a
distributed manner by vehicles through average consensus
[47]. We thus propose the distributed computation of the
feature weights by successive refinements of local weights
at vehicles based on information exchange with neighbors.
Once a consensus is reached by all vehicles on the L(q

(f)
k,t), the

weight (26) is obtained as q(f)
k,t = exp

(
L(q

(f)
k,t)
)

and is used for
the evaluation of the feature belief (26). Since for finite number
of iterations the consensus provides an approximation of (29)
at each vehicle, a max-consensus algorithm is performed after
the average consensus to obtain the same feature weights at
each vehicle.

D. ICP-DA Low-complexity Implementation

The PF-based method presented in the previous section pro-
vides an optimal approach for solving the non-Gaussian ICP-
DA estimation problem. However, as the BPA-DA quadrat-
ically scales with the number of features [43], the com-
putational complexity at single vehicle i for each BPA-DA
iteration scales as O(JvJfN

2
f ). Note that the evaluation of

the complexity is done considering all-to-all V2V and V2F
connectivity (i.e., |Oi,t| = Nf , |Ji,t| = Nv) and assuming
Jv � Nv and Jf � Nf .

To reduce the computational burden, in this section we
propose a suboptimal low-complexity (LC) implementation of
the ICP-DA method (ICP-DA-LC), in which a hard decision
is made on the association variable at the end of BPA-DA,
so as to approximate the features’ beliefs with Gaussian pdfs
and implement the BPA-L by a distributed Kalman filter
[40] where only the first two moments of the vehicle/feature
beliefs are computed. In the proposed method, each vehicle
performs a Bayesian detection to decide if the feature k ∈ Fi,t
has been sensed by its sensors, by comparing the belief of
the association variable to any of its measurements with a
threshold ηTH. If b(P)

i,k,t(αi,k,t = 0) < ηTH, the feature k is
detected and paired with the most probable measurement:

α̂i,k,t = argmax
`∈Oi,t

b
(P)
i,k,t(αi,k,t). (30)

With the above Maximum-A-Posteriori (MAP) decision the
V2F likelihood in (18) becomes:

p(z
(V2F)
i,t |x(V)

i,t ,x
(F)
k,t ) = p

(
z

(V2F)
i,t |x(V)

i,t ,x
(F)
k,t , α̂i,k,t). (31)

The ICP-DA-LC solution still has a computational com-
plexity that quadratically scales with the number of features,
but it avoids the intensive computations of the huge number
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of particles that is required in dynamic vehicular scenarios
to sample both feature and vehicle beliefs. A comparison
of computational complexity of all the considered methods,
namely ICP with perfect DA, ICP-DA-PF and ICP-DA-LC,
evaluated at single vehicle is summarized in Table II, with
Ncons denoting the number of consensus iterations. As it can
be deduced from Table II, the dominant term in the ICP-
DA-PF complexity is represented by the number of particles
used to sample the vehicle/feature beliefs. To provide high
localization accuracy, Jv and Jf have to be large enough.
Note also that, while in the ICP-DA-PF implementation both
the average consensus and the max-consensus algorithms are
computed for each particle of the feature belief, by considering
the ICP-DA-LC solution only the average consensus on the
first two moments of b(n)

k,t (x
(F)
k,t ) is required [40]. Based on

this, the ICP-DA-LC can provide high benefits in term of
computational complexity and communication overhead.

V. PERFORMANCE ASSESSMENT IN SIMPLIFIED ROAD
SCENARIOS

In this section, we analyze the performance of the proposed
cooperative positioning method in simulated road scenarios,
to highlight the benefits provided by the ICP-DA approach
compared to GNSS tracking solutions. We consider two sce-
narios, first over a single road (Sec. V-A) and then in a
crossroad (Sec. V-B). The first scenario is used to compare
the two different implementations of the ICP-DA method, i.e.
PF and LC, in a controlled environment with two features,
to highlight the impact of feature spacing on the association
process. In the second scenario, we extend the analysis to a
more complex environment with more vehicle interactions, for
varying number of features and degree of feature mobility.
The analysis aims at showing the improvement on vehicle
localization with respect to a conventional GNSS solution.
The GNSS benchmark is implemented as a non-cooperative
tracking filter that uses model (1) for integrating the position-
velocity estimate provided by the GNSS receiver with the in-
ertial sensor measurement at the single vehicle, without fusion
of data from nearby vehicles. The performance assessment is
also targeted to evaluate the impact of DA uncertainty and the
feature mobility on the vehicle localization accuracy.

A. Single-Road Scenario with Static Features

We consider the single-road scenario in Fig. 6 with two
interconnected vehicles traveling in the same direction at
an average speed of 25 km/h, with space headway 5 m.
The vehicle motion is simulated according to the inertial
sensor model in (1) with zero mean acceleration a

(V)
i,t−1 and

sampling time Ts = 1 s. The covariance of the Gaussian
driving noise in (1) is Q

(V)
i,t−1 = B diag

(
σ

(V)2

ai,x , σ
(V)2

ai,y

)
BT,

where σ(V)
ai,x and σ

(V)
ai,y represent the acceleration fluctuations

along the vehicle longitudinal and transversal directions. They
are set to σ

(V)
ai,x = 0.2 m/s2 σ

(V)
ai,y = 0.001 m/s2, respec-

tively. The GNSS accuracy on the whole area is set to
R

(V)
i,t = blockdiag(σ

(V)2

p I2, σ
(V)2

v I2) with standard deviations
of σ(V)

p = 8 m and σ(V)
v = 0.1 m/s, respectively. The vehicles

V2F V2V𝐱𝐱1,𝑡𝑡
(F)

𝐱𝐱2,𝑡𝑡
(V)𝐱𝐱1,𝑡𝑡

(V)

𝐱𝐱2,𝑡𝑡
(F)𝑑𝑑𝑓𝑓

V2V

Fig. 6: Simulated single road scenario.
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Fig. 7: Vehicle and feature location accuracy versus time for the single-road scenario
in Fig. 6 with feature spacing df = 0.5 m (a) and df = 3 m (b). The ICP-DA-
PF (orange line) and ICP-DA-LC (green line) methods are compared to the reference
GNSS approach (blue dotted line) and the lower bound represented by ICP with known
association (black line).

simultaneously sense Nf = 2 static features placed along
the sidewalk at a relative distance df with V2F measure-
ment accuracies of σ

(V2F)
p = 0.2 m for the position and

σ
(V2F)
v = 0.1 m/s for the velocity. The choice of these values

is in accordance with the specifications of typical automotive
sensors [56].

The performance of the ICP-DA method is assessed using
both the PF and LC implementations. Conventional (non-
cooperative) GNSS and ICP with known data association are
simulated as well as benchmarks. For the ICP implementation,
the stopping criterion of the iterative BPA-L procedure is
obtained by comparing the MMSE location/velocity estimates
(for both features and vehicles) with those obtained in the
previous iteration. When the difference between the two con-
secutive estimates is below 10 cm for the position and below
0.1 m/s for the velocity, the iterations are stopped. For the
ICP-DA-PF method, the belief of each vehicle and feature
is approximated by using Jv = Jf = 5 · 103 particles. For
ICP-DA-LC, the threshold on the association belief is set to
ηTH = 1, meaning that all the V2F measurements are paired to
the originating features. The performance is evaluated in terms
of position/velocity accuracy computed according the Root
Mean Square Error (RMSE) of the position/velocity estimate,
by averaging over Monte Carlo simulations.

The performance of the localization methods are shown in
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Fig. 7 for feature spacing df = 0.5 m (a) and df = 3 m (b).
For the ICP-DA-LC method, we measured a probability of
correct measurement-feature association of, respectively, 54%
and of 92% in the two cases. The results in Fig. 7-(a) show that
for df = 0.5 m the ICP-DA-PF and ICP-DA-LC accuracies
on vehicles reach the lower bound for known data association,
as the errors due to wrong associations are compensated by
the proximity of features. The worse performance of the ICP-
DA-PF method in the first two seconds of V2F sensing is due
to the limited number of particles which affects the tracking
capability in the transitory. For higher feature inter-distance as
in Fig. 7-(b) for df = 3 m, the association errors decrease the
positioning accuracy for both the ICP-DA-PF and ICP-DA-LC
methods, with slightly better results for the PF implementation.
The performance loss due to the wrong association is more
evident on features than on vehicles, as inaccuracies on feature
localization have minor impact when they are propagated back
to vehicles. We also tested the performance for feature spacing
up to df = 6 m and we found that above this threshold the
association is not critical anymore, as the ICP-DA methods
reach the same performance of the ideal ICP with known
association, with similar results as in Fig. 7-(a).

From the above results, we can conclude that DA is a
crucial issue for cooperative positioning but, if features are
close enough (i.e., with spacing comparable with the vehicle
localization accuracy) the effect on positioning is negligi-
ble. The same is observed for well separated features (i.e.,
df = 6 m in the considered setting) as data association
can be easily solved in this case. For intermediate feature
spacing (for df from 3 m to 6 m), a moderate performance
loss is observed due to DA errors and PF slightly outperforms
LC. Considering the computational complexity, that for ICP-
DA-PF scales quadratically with the number of particles, the
preferred solution is ICP-DA-LC which guarantees both high
accuracy and efficiency.

B. Crossroad Scenario with Dynamic Features

We consider the crossroad scenario of Fig. 1, in which
Nv = 12 interconnected vehicles (Rc = 250 m), grouped in
four clusters of three vehicles each, are driving straight ahead
along their respective lanes approaching a cross-junction.
Spatial coordinates are referred to the center of the junction
located in (0, 0). The edges of the considered area are placed
at 250 m in any direction from the center, thus each lane is
500 m long. The vehicle motion is simulated as in (1), with
sampling time Ts = 1 s and average velocity of 50 km/h
along the motion direction. The driving process standard
deviations for the longitudinal and lateral directions are set
to σ

(V)
ai,‖ = 0.35 m/s2 and σ

(V)
ai,⊥ = 0.001 m/s2, respectively.

Then, the uncertainties along the axes x and y (σ(V)
ai,x and

σ
(V)
ai,y) are defined according to the vehicle motion direction.

The GNSS is supposed to provide measurements with the same
accuracy over the whole area. Specifically, the GNSS standard
deviations are set to σ(V)

p = 9 m and σ(V)
v = 0.25 m/s as to

simulate a mid-urban environment.
The scenario includes also a set of Nf features that are

randomly deployed on the sidewalks and sensed by vehi-
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Fig. 8: Vehicle position accuracy versus the distance to the center of the junction for
the crossroad scenario in Fig. 1 with static features, for different number of features
Nf . The ICP-DA-LC method (green marked line) is compared to the ICP with known
association (red line) and to GNSS-based tracking (blue dotted line).
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Fig. 9: Percentages of association errors (blue line) and of discarded measurements
(orange line) versus the number of features Nf .

cles in close proximity (Rs = 75 m). The feature initial
location is uniformly distributed within a circle of radius
150 m centered in (0, 0). Feature motion is simulated as in
(2), with initial velocity vf and driving process covariance
G

(F)
k,t = G diag(σ

(F)2

vx , σ
(F)2

vy ) GT, with G = [TsI2 I2]T. As
for vehicles, a higher mobility is assumed along the road
direction, i.e., the velocity standard deviation in the direction
of sidewalk is σ(F)

v,‖ =
vf
100 m/s, while the one in the orthogonal

direction is σ(F)
v,⊥ =

σ
(F)

v,‖
2 m/s. Thus, depending on the driving

direction of the feature, the velocity uncertainties along the
axes x and y, σ(F)

v,x and σ(F)
v,y respectively, are defined accord-

ingly. The V2F covariance matrix is structured as R
(V2F)
i,`,t =

blockdiag(σ
(V2F)2

p I2, σ
(V2F)2

v I2), with σ
(V2F)
p = 0.1 m and

σ
(V2F)
v = 0.1 m/s for each vehicle.
We evaluate the RMSE positioning performance by aver-

aging over 5000 Monte Carlo simulations. Fig. 8 shows the
vehicle location accuracy in the proximity of the junction for
Nf = {3, 10, 20, 60} static features. The GNSS positioning
accuracy (blue dotted line) is plotted as a reference, while the
ICP method with perfect association (continuous line) is the
lower bound for the cooperative positioning technique. The
proposed ICP-DA-LC method is implemented in two different
versions, using for feature detection in (30) the threshold
ηTH = 0.5 (i.e., discarding ambiguous V2F measurements)
and ηTH = 1 (i.e., using all V2F measurements). The results
in Fig. 8 show a negligible performance loss of the proposed
ICP-DA-LC method with respect to the ICP with perfect as-
sociation. However, it can be noticed that, while for moderate
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Fig. 11: Percentages of correct association (blue line) and of discarded measurements
(orange line) versus the number of feature’s velocity vf .

feature densities (Nf ≤ 20) the ICP-DA-LC method without
measurement selection does not have significant drawbacks,
when features increase and get closer, a selection is required.
In fact, for Nf = 60, the vehicle location accuracy of the
ICP-DA-LC with ηTH = 1 is even worse than the reference
GNSS one, unless in close proximity of the junction, where
all vehicles are connected each other and can sense a higher
number of features thanks to the road geometry. For Nf = 60,
the reduced spacing between features generates ambiguity
problems in the association, as proved by the performance loss
of ICP-DA-LC with ηTH = 1 compared to ICP with perfect
association. Increasing the number of features from Nf = 20
to Nf = 60 does not provide any benefit, as the performance
is limited by the association errors.

The probability of correct association for the different values
of Nf , together with the percentage of discarded measure-
ments, is presented in Fig. 9. The figure shows a reduction
on the probability of correct association as the number of
features increases. This reduction is far more evident for
the implementation which uses all measurements (ηTH = 1)
rather than for the ICP-DA-LC with association selection
(ηTH = 0.5). In this latter case, in fact, the number of
discarded measurements increases with Nf and contributes
to a significant improvement of the probability of correct
association as unreliable measurements (which are likely to
be wrongly associated) are discarded.

The results in Fig. 8 and 9 indicate that a moderate
number of features, i.e. Nf = 20 corresponding approximately
to an average of 4 features simultaneously sensed by each

vehicle (this value is obtained considering the selected sensing
radius), is enough for the ICP-DA-LC method to signif-
icantly outperform the GNSS-based localization. A higher
number of features, on the other hand, does not provide
any meaningful benefit, as it increases both the probability
of erroneous association and the computational complexity.
Moreover, the comparable performance obtained by ICP-DA-
LC with measurement selection and ICP with known data as-
sociation demonstrates that a low-complexity solution avoiding
the computational overhead of PF is an efficient approach for
vehicular environments.

Fig. 10 illustrates the impact of feature mobility on the ICP-
DA performance in a scenario with Nf = 20 features moving
at an average velocity vf = {1, 2, 5} m/s. The analysis shows
that in case of highly dynamic scenarios (i.e., with feature
mobility above the typical pedestrian velocity of 1.5 m/s)
the positioning performance degrades but the ICP-DA-LC
method with measurement selection is still able to significantly
improve the conventional GNSS solution. This conclusion is
also confirmed by the analysis of the probability of correct
association and measurement discarding in Fig. 11.

VI. PERFORMANCE ASSESSMENT IN A REALISTIC URBAN
ARTERIAL SCENARIO

In this section, we assess by simulation the performance
of the ICP-DA method in realistic traffic conditions along
an urban arterial in Turin, Italy. We focus on the ICP-
DA-LC implementation with association selection (i.e., with
ηTH = 0.5), as this solution was shown to provide the best
trade-off between performance and computational complexity
in Sec. V. This validation is carried out to analyze the impact
on the proposed ICP-DA method of traffic control systems
which affect the vehicle distributions over the selected area.
In fact, the degree of V2V connectivity (and the impact of
cooperative sensing) is highly dependent on control strategies
which determines the traffic flows and queues at nodes. For
this reason, two different traffic conditions are analyzed.
Moreover, this analysis in a real urban environment is intended
to show that ICP-DA can provide a sub-meter accuracy on
vehicle positioning and, thus, it can enable advanced C-ITS
services for high levels of automated driving.

A. Traffic Modeling

We consider the road network in Fig. 12, which includes
an urban arterial in Turin crossed by three primary roads
and several secondary junctions along approximately 2 km.
The area is divided into three zones with different GNSS
performance, ranging from open sky to built-up scenarios,
namely: two external regions (zone A) characterized by high
GNSS accuracy σ

(V)
p = 3 m and σ

(V)
v = 0.1 m/s, an

intermediate zone B with σ
(V)
p = 8 m and σ

(V)
v = 0.17 m/s

and an extreme urban area (zone C) with very poor GNSS
accuracy σ

(V)
p = 15 m and σ

(V)
v = 0.45 m/s. Vehicles

randomly enter the road network according to observed traffic
demands, and are localized by simulating a GNSS receiver in
fast start condition, with prior location belief centered around
the true vehicle state, with standard deviations σ(V)

p = 2 m
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Fig. 12: Urban arterial scenario in Turin, Italy. The area has been divided in three different zones (A, B and C) associated to different GNSS accuracies. Features (red triangles)
have been placed along the road infrastructure. Map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org [57].

and σ
(V)
v = 0.1 m/s. Since the analysis on feature mobility

in Sec. V proved that static features are more beneficial
for localization enhancement, Nf = 64 static features are
considered in correspondence of bus stops, traffic lights, road
signs and car parks. The accuracy of feature sensing is set to
σ

(V2F)
p = 0.1 m and σ(V2F)

v = 0.1 m/s, with a sensing range
of Rs = 50 m.

Traffic is simulated by using the micro-simulator AIMSUM
(Advanced Interactive Microscopic Simulator for Urban and
Non-Urban Networks) [58], which updates the vehicles’ dy-
namics every time step of duration Ts = 0.75 s. The simu-
lations replicates realistic conditions, including the observed
road geometry and traffic control systems at junctions, traffic
flows and public transport lines affected by vehicles behaviors
and their interactions. To this purpose, the model has been
calibrated using real data and describes a common urban
scenario with traffic lights affecting the vehicular patterns. The
time slot 20:30-21:30 is chosen as reference scenario for traffic
demands, which are computed based on real observations
of the number of trips performed by the considered vehicle
types from origins to destinations. Five traffic control systems
regulate the main nodes along the arterial, which is divided
in road sections. Each section is composed by one or more
lanes according to the vehicle maneuvers detected during the
observation phase, as described in [59]. Vehicular traffic along
the road sections is simulated by modeling the following
components:

1) lane changing for the lateral behavior along the sections,
2) car following for the longitudinal behavior along the

sections,
3) traffic control and gap acceptance model for the crossing

behavior at nodes.
Traffic control is expected to have a significant impact on

the cooperative positioning accuracy. In fact, control strategies
tend to form platoons of vehicles to improve the road capacity,
thereby they contribute to increase the V2V connectivity and
ease the cooperation between vehicles. To investigate the
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Fig. 13: Traffic flow over time for the two considered traffic conditions: traffic light
regulated (TLR) and vehicle self regulated (VSR). Data are aggregated over 5 minutes.

impact of traffic control on the ICP localization techniques, we
consider two different scenarios of traffic regulation. The first
is a traffic-light regulated (TLR) scenario where intersections
are regulated by traffic lights. The second one is a vehicle self-
regulated (VSR) scenario, without traffic lights, with vehicles
applying gap acceptance models to decide whether they can
safely cross the intersection, avoiding conflicts with other vehi-
cles [60]. This second scenario emulates at first approximation
an automated driving use-case, as in each time step vehicles
autonomously detect other vehicles potentially within the
conflicting area, perform computations of the required distance
and time parameters, and act during the crossing maneuvers on
the base of the gap availability decisions.3 The VSR scenario
can be considered as representative of a vehicle automated
driving system of level 4 (according to the definition in [61]),
which can also evolve to a cooperative scenario where safety
issues can be improved by V2X applications [62]. In both
settings, the flow level is decreasing from the peak-hour to
off-peak. Therefore, it is possible to observe over the same
simulation a variable saturation rate of the arterial and its
impact on the positioning accuracy. The simulated traffic

3Although automated vehicles have lower reaction times with respect to
human drivers, in our experiments we used the same reaction time to compare
the two scenarios in the same conditions and focus on the effects of traffic
light control.
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Fig. 14: Number of vehicles inside the scenario for the traffic light regulated (TLR) and
vehicle self regulated (VSR) scenarios. Data are aggregated over 5 minutes.
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Fig. 15: Mean queue and stop time for the TLR (a) and VSR (b) scenarios. Data are
aggregated over 5 minutes.

conditions are shown in Fig. 13 which plots the total flow
exiting from the network in the VSR and TLR scenarios,
ranging from about 2800 [veh/h] at the beginning of the
considered period to 1800 [veh/h] at the end. This similarity
on the output flow trend in the two scenarios is not maintained
inside the road network, as expected. As shown in Fig. 14, the
number of vehicles inside the network for the TLR scenario
is higher with respect to the VSR one. In fact, in the second
setting vehicles are more distributed over the arterial and no
platooning action is applied. This is confirmed by the results
in Figures 15a and 15b which show the mean queue and stop
time for, respectively, the TLR and VSR scenarios. In Fig.
15a, the mean queue decreases from almost 40 to 20 vehicles
during simulation and the stopped time decreases from 40 s
to 35 s per km, while in Fig. 15b the values are considerably
lower. A mean queue less than 1 vehicle and a stop time
of approximately 1 s prove the reduction on the number of
vehicles inside the arterial.

These two different traffic conditions create two completely
independent vehicular network scenarios with different V2V
and V2F connections. This diversity is compared in the next
section to assess the performance of the proposed cooperative
positioning method.
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Fig. 16: Averaged accuracy of position (a) and velocity (b) over time for the two
considered scenarios: TLR (continuous line) and VSR (dashed line). The GNSS-based
accuracy on vehicles (blue line) is taken as reference for the ICP-DA-LC estimate on
vehicle position (red line). The green line in (a) indicates the accuracy on features.

B. Performance Analysis

In the following, we compare the performance of the ICP-
DA-LC method with the conventional GNSS-based tracking
in both the TLR and VSR traffic scenarios. In Fig. 16, the
aggregate RMSE (with aggregation interval of 5 minutes)
of the vehicle/feature state estimates, is plotted versus time
for the two different traffic conditions, i.e. the TLR scenario
(continuous line) and the VSR one (dashed line). The RMSE
has been obtained by averaging over vehicles and features.
The top figure (Fig. 16a) is referred to vehicle position, while
the bottom one (Fig. 16b) is dedicated to the vehicle velocity.
Blue and red lines denote the accuracy of vehicle tracking for,
respectively, the GNSS and ICP-DA-LC methods, while the
green line indicates the ICP-DA-LC accuracy on features.

The results in Fig. 16a prove that the ICP-DA-LC method
outperforms the conventional GNSS system over the whole
simulation time, thanks to the dense V2V connectivity that
eases the cooperation in the urban area. The improvement is
far more relevant in the TLR scenario (continuous line) than
in the VSR one (dashed line), due to the higher number of
vehicles and the continuous refinement of the feature estimates
performed by vehicles during the stop periods. On the other
hand, the average GNSS tracking accuracy is better in VSR
than TLR, as vehicles do not stop at the numerous intersections
of the built-up zone C and thus spend less time in this
area with highly degraded GNSS signals. For the cooperative
approach, Fig. 16a shows similar accuracy results for vehi-
cles and features, confirming that the precise localization of
features obtained by the V2V cooperation directly reflects on
the vehicle location accuracy. In the ideal case of perfectly
localized features, the ICP method behaves as an augmented
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Fig. 17: (a) Map of the Turin road network divided into six areas, characterized by different densities of features and GNSS conditions, with highlighted locations of vehicles (blue
dots) and features (red triangles). (b) CDF of vehicle position accuracy observed in the in TLR scenario over the different areas.

positioning system with many fixed anchors (i.e., the features)
along the road infrastructure.

The analysis on the location estimate accuracy is extended
to the velocity in Fig. 16b. Again, the performance of the
ICP-DA-LC method is better in the regulated scenario than
in the self-regulated one. This now holds also for the GNSS
method, as the length of time the vehicle remains stationary
at junctions allows the average of the observations to be taken
which improves the accuracy of the velocity estimate.

A deeper analysis of the location accuracy over the space
domain is carried out in Fig. 17a for the TLR traffic scenario.
The road network is divided into six areas characterized by
different GNSS accuracies and feature densities, as indicated
in Fig. 17a. The Cumulative Distribution Function (CDF)
of the vehicle position accuracy averaged over the whole
simulation time is computed for each area in Fig. 17b. The per-
formance augmentation provided by the ICP-DA-LC method is
significantly different from one area to the other. In particular,
a meaningful gain is obtained in the critical built-up areas
4 and 5, while minor improvements are observed in areas 1
and 6 where the GNSS tracking is already highly reliable.
Specifically, the highest improvement in localization is in Area
5, where the CDF at 95% of confidence for the GNSS solution
indicates a vehicle position error of 5 m, while the ICP-DA
is able to improve this value to 1 m.

The performance analysis over the time domain is in Fig. 18,
which presents the vehicle location accuracy versus time, for
the along-track and the cross-track directions in areas 2 (Fig.
18a) and 5 (Fig. 18b). Numerical results show that the ICP-
DA-LC method is able to provide a sub-meter level accuracy in
both along-track and cross-track directions, compensating the
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Fig. 18: Vehicle location accuracy over time for both the along-track and cross-track
directions in areas 2 (a) and 5 (b) for the TLR scenario.

degradation introduced by multipath and non-line-of-sight of
the GNSS signals. The large number of sensed features along
with a road configuration that facilitates, with its numerous
intersections, the formation of platoons of cooperative vehi-
cles continuously refining their estimates on the surrounding
features, has an extremely positive impact on the localization
performance. Furthermore, the figure highlights a marked peri-
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directions in area 2 for the VSR scenario.

odicity of the GNSS accuracy pattern over time in Area 2, due
to the cyclic regulation of the traffic flows by the sequence of
traffic lights along the arterial. In fact, during stop phases ve-
hicles can refine their positioning accuracy by time averaging.
The ICP-DA-LC method, on the other hand, provides a more
stable performance over time, as the accuracy benefits from
space averaging thanks to the cooperation between spatially
distributed vehicles. This equalization effect is more evident in
the cross-track direction, as expected. This important remark,
along with the high precision provided by ICP-DA-LC (below
1 m), makes the proposed method a reliable solution for lane
detection in urban contexts. Referring, for example, to the
basic set of applications enabling the advanced ITS services
defined by ETSI [63], the ICP approach could be used to meet
the challenging performance requirements in terms of location
accuracy.

Finally, Fig. 19 presents a similar analysis for the VSR
scenario in area 2. In this case, the GNSS estimate is no
more affected by traffic lights and the localization accuracy
pattern is non periodic. The overall average accuracy is worse
than in the TLR scenario for both GNSS and ICP-DA-LC, but
the performance gain of the proposed cooperative method is
remarkable especially in the cross-track direction.

The above analysis confirms that the diffusion of smart ve-
hicles with advanced driver assistance systems, combining on-
board ranging sensors with V2X communication technologies,
can significantly improve vehicle positioning in urban areas
thanks to cooperative strategies for perception and localization.
This enhanced positioning is expected to enable new innova-
tive C-ITS services especially in emerging automated driving
scenarios, where the formation of tight convoys or platoons
of vehicles facilitate the cooperation process. Examples of
services include high-precision traffic monitoring, lane-change
assistance, infractions detection, inter-vehicle communication
efficiency and so forth.

VII. CONCLUSIONS

In this paper, we developed a new distributed Bayesian
framework for cooperative data association and vehicle local-
ization in urban traffic scenarios. The analysis has been carried
out considering smart vehicles equipped with on-board ranging
sensors and V2X communication devices, as envisioned in the
C-ITS context. We proposed two new ICP techniques, namely
the ICP-DA-PF method based on a distributed PF solution

to handle the non-Gaussian location statistics and the ICP-
DA-LC method that simplifies the problem to a Gaussian
setting and employs a distributed KF approach to reduce the
communication/processing overhead at vehicles. The ICP-DA-
LC method was shown to provide the best trade-off between
complexity and accuracy, closely attaining the performance of
the ICP method with known association.

Performance results in realistic traffic scenarios confirmed
that the proposed ICP-DA methods can significantly improve
the GNSS performance reaching a sub-metric accuracy. The
investigation on the DA performance highlighted the impor-
tance of feature selection mechanisms, to avoid association
errors that could degrade the cooperative positioning perfor-
mance. Quasi-stationary features have to be preferred as they
can be localized with higher accuracy acting as virtual anchors
for the positioning process.

Traffic flow micro-simulation over a real urban network
showed how traffic control systems affect the distribution of
vehicles over the roads and impact on the graph connectivity
for inter-vehicle cooperation. In particular, a high density of
vehicles and features, as well as the formation of vehicle
platoons as induced by traffic-light systems (or, in perspective,
by cooperative maneuvering strategies) guarantees a high
degree of V2V connectivity and increases the accuracy of
the cooperative sensing method. The analysis also showed
that in urban scenarios the vehicle dynamics and the severe
degradation of satellite signals induce high fluctuations of the
GNSS tracking over space and time, while the ICP-DA method
is capable to mitigate this non-stationary behavior, reducing
the impact of external factors on the localization performance.

The proposed technique thus emerges as a promising so-
lution to enhance both the accuracy and the robustness of
positioning in urban scenarios. This enhancement is expected
to enable new innovative C-ITS services especially in emerg-
ing automated driving scenarios, where the formation of tight
convoys or platoons of vehicles facilitate the cooperation
process.

APPENDIX A
According to the Bayesian rule [64], the joint posterior pdf

of the association and the vehicle-feature states is:

p(θ1:t,α1:t,β1:t|z1:t)∝p(z1:t|θ1:t,α1:t,β1:t)p(θ1:t,α1:t,β1:t),
(32)

where the likelihood function is p(z1:t|θ1:t,α1:t,β1:t) =

p(z
(V)
1:t |x

(V)
1:t )p(z

(V2F)
1:t |θ1:t,α1:t) as the measurements (3)-(4)

are conditionally independent. Assuming also the measure-
ments as independent over time and vehicles, and the V2F
observations as independent over features, the likelihood can
be factorized as:

p(z1:t|θ1:t,α1:t) =

t∏
t′=1

Nv∏
i=1

p(z
(V)
i,t′ |x

(V)
i,t′ )×

Nf∏
k=1

p(z
(V2F)
i,t′ |x

(V)
i,t′ ,x

(F)
k,t′ ,αi,k,t′).

(33)

Moreover, assuming the observation-feature association
as independent over time and from vehicle/feature states,
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the prior pdf in (32) simplifies to p(θ1:t,α1:t,β1:t) =
p(α1:t,β1:t)p(θ1:t) with, according to (8),

p(α1:t,β1:t) ∝
t∏

t′=1

Nv∏
i=1

Nf∏
k=1

Oi,t′∏
`=1

Ψ(αi,k,t, βi,`,t). (34)

Recalling that vehicle and feature states evolve independently
according to Markovian dynamic models (1) and (2), the prior
pdf of the overall vehicle/feature states factorizes as:

p(θ1:t) =

(
Nv∏
i=1

p(x
(V)
i,0 )

t∏
t′=1

p(x
(V)
i,t′ |x

(V)
i,t′−1)

)
×Nf∏

k=1

p(x
(F)
k,0)

t∏
t′′=1

p(x
(F)
k,t′′ |x

(F)
k,t′′−1)

 ,

(35)

where p(x(V)
i,0 ) and p(x(F)

k,0) denote the prior pdfs at time t = 0.
Considering (33), (34) and (35), the factorization of (32) is

given by (9).
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