
20 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine learning framework for predictive maintenance in milling / Traini, Emiliano; Bruno, Giulia; D’Antonio, Gianluca;
Lombardi, Franco. - STAMPA. - 52:(2019), pp. 177-182. (Intervento presentato al  convegno 9th IFAC Conference on
Manufacturing Modelling, Management and Control MIM 2019 tenutosi a Berlino (D) nel 28–30 August 2019)
[10.1016/j.ifacol.2019.11.172].

Original

Machine learning framework for predictive maintenance in milling

Publisher:

Published
DOI:10.1016/j.ifacol.2019.11.172

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2807952 since: 2020-04-01T12:24:25Z

Elsevier



IFAC PapersOnLine 52-13 (2019) 177–182

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.11.172

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.11.172 2405-8963

Machine Learning Framework for
Predictive Maintenance in Milling

Emiliano Traini ∗ Giulia Bruno ∗ Gianluca D’Antonio ∗

Franco Lombardi ∗

∗ Politecnico di Torino, Torino, Italy (email: {emiliano.traini,
giulia.bruno, gianluca.dantonio, franco.lombardi}@polito.it)

Abstract: In the Industry 4.0 era, artificial intelligence is transforming the manufacturing
industry. With the advent of Internet of Things (IoT) and machine learning methods, manufac-
turing systems are able to monitor physical processes and make smart decisions through real-
time communication and cooperation with humans, machines, sensors, and so forth. Artificial
intelligence enables manufacturers to reduce equipment downtime, spot production defects,
improve the supply chain, and shorten design times by using machine learning technologies which
learn from experiences. One of the last application of these technologies is the development of
Predictive Maintenance systems. Predictive maintenance combines Industrial IoT technologies
with machine learning to forecast the exact time in which manufacturing equipment will need
maintenance, allowing problems to be solved and adaptive decisions to be made in a timely
fashion. This study will discuss the implementation of a milling Cutting-tool Predictive Main-
tenance solution (including Wear Monitoring), applied to a real milling data set as validation
of the framework. More generally, this work provides a basic framework for creating a tool to
monitor the wear level, preventing the breakdown, of a generic manufacturing tool, in order to
improve human-machine interaction and optimize the production process. Copyright c© 2019
IFAC
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1. INTRODUCTION

Predictive Maintenance (PM) is a method to monitor the
status of machinery in order to prevent expensive failures
from occurring and to perform maintenance when it is re-
ally required. It has a long history. From visual inspection,
which is the oldest method, PM has evolved to automated
methods that use advanced signal processing techniques.
Traditionally maintenance creates a trade-off situation in
which one must choose between maximizing the useful
life of a part at the risk of machine downtime (run-to-
failure) and maximizing up-time through early replace-
ment of potentially good parts (time-based PM), which has
been demonstrated to be ineffective for most equipment
components, considered as flawed and unreliable in recent
years, in (Mobley, 2002). PM aims to break these trade
offs by empowering companies to minimize maintenance
by forecasting it ahead of time. Adoption of PM allows to
maximize useful life of assets by reducing the frequency
of maintenance activities, avoiding unplanned breakdowns
and eliminating unnecessary preventive maintenance. This
results in substantial time and cost savings and higher
system reliability.

To implement a PM approach, a Condition Monitoring
(CM) system is necessary. Using the words of Hassan
et al. (2018), CM is “the process of monitoring one or
more parameters of machine to predict its potential faults
early”. Examples of measures useful for this purpose are
temperature and acoustic emission in (Ravindra et al.,

1997), or vibration. A specific CM is the Tool Condition
Monitoring (TCM) that investigates how these parameters
affect tool wear. A TCM could prevent these problems,
allow optimum utilization of the tool life and improve the
efficiency of the machine. TCM has a foremost importance
in metal cutting owning to its direct impact on the quality
of the machined surface, its dimensional accuracy and,
consequently, the economics of machining. In fact even if
the tool is not broken yet, its degradation reduces the work
surface quality and leads to a significant loss of dimen-
sional accuracy. On the other hand, an excessive preventive
replacement of tools involves higher costs and production
time: it will require additional tools to be purchased, which
are generally expensive, as well as considerable time to
change the tool. The IoT enabled presence of abundant
sensors that real time collect big data, composed of time
domain features. The current technologies are so developed
that the scientific community is no longer studying how
to detect manufacturing data, but which method is the
most economical one. So in this scenario PM is performed
with Machine Learning (ML) methods that are much more
accurate and can take into account all the factors provided
by the sensors. The goal of this study is to create a ML
model to predict when the cutting tool used in milling
operations must be replaced in order to minimize the
effects of disastrous failures and manage the planning of
activities.

The rest of the paper is organized as follows. Section 2
describes the main factors that play a fundamental role
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in the topic. Section 3 describes the proposed framework,
from data management to the improvement of ML algo-
rithms. Section 4 presents the application of the framework
in the use case of a milling data set and the relative results.
Finally, Section 5 draws conclusions and states future work
perspectives.

2. WEAR MONITORING FOR MILLING

Generally, the TCM is based on factors that can be
grouped in two categories: a-priori and a-posteriori. The
first ones are factors known at the beginning of the
milling activity, such as machine parameters. Conversely,
the second type of factors are the output of monitoring
activities of the machine and in particular of the tool,
through the use of sensors. For the ML tool the a-
priori variables are all associated with the factor variable,
as they identify a specific case due to the choice of
certain conditions. The a-posteriori factors are time series
analyzed by ML algorithms to capture the trend of the
wear level over time.

2.1 A-priori factors: cutting parameters and materials

Milling consists in using a rotating tool with multiple
cutting edges, called cutter, to remove material from
the surface of a work-piece. To do this, it requires the
definition of several cutting parameters, which influence
job duration, quality and accuracy of the finished surface,
the life of the tool and the cost of production. These
parameters are chosen during the manufacturing activity
and for example they could be the cutting speed, related
to the speed of rotation of the tool, the spindle speed, i.e.
the rotational frequency of the spindle, the feed rate, that
refers to the velocity at which the cutting tool is advanced
through the work-piece to remove material, and, as the
last example, the depth of cut, that is the penetration
of the cutting in the work-piece.

Another factor that influences the wear trend is the use
of cutting tools of different materials. A cutting tool must
present three important characteristics: the hardness, i.e.
the ability of the material to maintain its strength at
elevated temperatures, the toughness, i.e. the capacity
of the material to absorb energy without failing, usually
deriving from a combination of strength and ductility, and
the wear resistance, i.e. the attainment of acceptable
tool life before cutting tool need to be replaced. Hardness
is the most important property needed to resist abrasive
wear.

2.2 A-posteriori factors: cutting forces and emissions

The interaction of milling cutter and work-piece is a
complex process and generates different physical effects.
During the engagement of the tool in the work part, energy
is released which results in cutting forces, vibration and
acoustic emission. Cutting forces appear in shear zones
where plastic deformation takes place. The predominant
cutting action in milling involves deformation of the work-
piece to form a chip in the primary shear zone. Vibra-
tion emission is a low frequency oscillation due to the
acceleration of the object because of the dynamic changes
of cutting forces resulting from periodical changes in tool

geometry, chip formation, and built up edges. Acoustic
emission is a high frequency oscillation which occurs
spontaneously within metals when they are deformed or
fractured. It is caused by the release of strain energy as
the micro structure of the material is rearranged. Acoustic
emission is generated in the shear zones, the primary as
well as the secondary along the chip-tool interface through
bulk deformation and sliding, respectively, and, lastly, at
the tool flank work-piece interface due to friction, (R.,
1999).

2.3 Wear measurement and life criteria for the tool

As milling proceeds, the various deterioration mechanisms
result in increasing levels of wear on the cutting tool.
Generally, wear of cutters in milling processes depends on
tool material and geometry, work-piece materials, cutting
parameters (cutting speed, feed rate and depth of cut),
cutting fields and machine-tool characteristics. As expli-
cated by Sunday Abolarin et al. (2015), speed of cutting is
the most influential parameter for the rate of wear; depth
of cut and feed rate also affect the tool life.

There are two basics zones of wear in cutting tools: flank
wear and crater wear. Crater wear consists of a cavity
in the rake face of the tool that forms and grows from
the action of the chip sliding against the surface. This
is somewhat normal for tool wear and does not seriously
degrade the use of a tool until it becomes serious enough to
cause a cutting edge failure. Conversely, flank wear occurs
on the flank, or relief face, of the tool. It results from
rubbing between the newly generated work surface and
the flank face adjacent to the cutting edge. Flank wear is
measured by the width of the wear band, V B.

In milling, operating the tool until final catastrophic fail-
ure is one way of defining tool life. However, in production,
it is often a disadvantage to use the tool until this failure
occurs because of difficulties in re-sharpening the tool and
problems with work surface quality. As an alternative, a
level of tool wear can be selected as a criterion of tool
life, and the tool is replaced when wear reaches that level.
A conventional tool life criterion is to define a threshold
width of the flank wear, because of its influence on work-
piece surface roughness and accuracy. A critical V Bmax in
milling is always recommended by the tool manufacturers
guided by industrial applicability and ISO standards: Tool
life testing in milling part 1, face milling, and part 2, end
milling. The level depends on several parameters, such as
the type of milling, the cutting speed and the material
of the cutter. For instance, the standard ISO 8688-1:1989
defines a maximal flank wear V Bmax = 0.6mm as effective
tool life for cemented carbides, high-speed steels (HSS) and
ceramics tools applied in face milling operations.

3. FRAMEWORK

The proposed framework is a particular application of
a most general one described for example in the book
(P. N. Tan and Kumar, 2005). This approach can be used
when ML algorithms are used to predict the wear level of
production tool, based on data coming from (analogical)
sensors. Like for all application, after the collection of data,
the framework contains a first part of pre-processing, in
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of cutting forces resulting from periodical changes in tool

geometry, chip formation, and built up edges. Acoustic
emission is a high frequency oscillation which occurs
spontaneously within metals when they are deformed or
fractured. It is caused by the release of strain energy as
the micro structure of the material is rearranged. Acoustic
emission is generated in the shear zones, the primary as
well as the secondary along the chip-tool interface through
bulk deformation and sliding, respectively, and, lastly, at
the tool flank work-piece interface due to friction, (R.,
1999).

2.3 Wear measurement and life criteria for the tool

As milling proceeds, the various deterioration mechanisms
result in increasing levels of wear on the cutting tool.
Generally, wear of cutters in milling processes depends on
tool material and geometry, work-piece materials, cutting
parameters (cutting speed, feed rate and depth of cut),
cutting fields and machine-tool characteristics. As expli-
cated by Sunday Abolarin et al. (2015), speed of cutting is
the most influential parameter for the rate of wear; depth
of cut and feed rate also affect the tool life.

There are two basics zones of wear in cutting tools: flank
wear and crater wear. Crater wear consists of a cavity
in the rake face of the tool that forms and grows from
the action of the chip sliding against the surface. This
is somewhat normal for tool wear and does not seriously
degrade the use of a tool until it becomes serious enough to
cause a cutting edge failure. Conversely, flank wear occurs
on the flank, or relief face, of the tool. It results from
rubbing between the newly generated work surface and
the flank face adjacent to the cutting edge. Flank wear is
measured by the width of the wear band, V B.

In milling, operating the tool until final catastrophic fail-
ure is one way of defining tool life. However, in production,
it is often a disadvantage to use the tool until this failure
occurs because of difficulties in re-sharpening the tool and
problems with work surface quality. As an alternative, a
level of tool wear can be selected as a criterion of tool
life, and the tool is replaced when wear reaches that level.
A conventional tool life criterion is to define a threshold
width of the flank wear, because of its influence on work-
piece surface roughness and accuracy. A critical V Bmax in
milling is always recommended by the tool manufacturers
guided by industrial applicability and ISO standards: Tool
life testing in milling part 1, face milling, and part 2, end
milling. The level depends on several parameters, such as
the type of milling, the cutting speed and the material
of the cutter. For instance, the standard ISO 8688-1:1989
defines a maximal flank wear V Bmax = 0.6mm as effective
tool life for cemented carbides, high-speed steels (HSS) and
ceramics tools applied in face milling operations.

3. FRAMEWORK

The proposed framework is a particular application of
a most general one described for example in the book
(P. N. Tan and Kumar, 2005). This approach can be used
when ML algorithms are used to predict the wear level of
production tool, based on data coming from (analogical)
sensors. Like for all application, after the collection of data,
the framework contains a first part of pre-processing, in
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Fig. 1. Structure of the framework. This figure shows a
possible application of the ML results.

which data are analyzed and manipulated to prepare them
for the application of ML algorithms.

Fig. 1 is a scheme that resumes this framework. At
the beginning there is the management of physical data:
it is necessary transforming a single multi-dimensional
observation in a set of mono-dimensional ones. A second
general data management is done to optimize the training
of algorithms. Further there are the feature selection and
the preparation of data for classification and regression
technique. The last part is about the training, valuation
and choice of the model.

The first regression model and the classification one have
the issue of determining if in the actual moment the
cutting tool should be replaced. To be able to exactly
specify the Remaining Useful Life, RUL (expected time
period during which the tool is likely to operate before
it requires repair or replacement), of the tool, another
regression method must be implemented. The RUL is the
remaining runs that can be performed with the same cutter
before it wears. The criteria used for the wear is the critical
flank wear V Bmax: since the wear was measured after the
relative run, it is assumed to last practicable run for each
case is the first one corresponding to a V B equal or greater
than V Bmax. Therefore, the estimation of the remaining
runs for each observation is the difference between this
maximum number of feasible runs, different for each case,
and the current run. In this way, only those cases where
the maximum V B is greater than V Bmax are considered
and the RUL feature is created as previous explicated. The
algorithm chosen are the same of the regression regarding
V B but the response variable is RUL.

3.1 Feature generation

Feature generation is the process of transforming raw data
into meaningful features more suitable for a machine data
mining task, which act as input for ML algorithms and
help in improving the overall predictive model perfor-
mance. Generally, feature generation starts from an initial
set of measured data and lead to derived values (features)
intended to be explanatory and essential, simplifying the
subsequent learning and modeling phases. According to
the works of Zhang et al. (2016) and Caesarendra and
Tjahjowidodo (2017), the time domain features to be con-
sidered are maximum, mean, root mean square, standard
deviation, Skewness, Kurtois, peak-to-peak (maximum less
minimum) and crest factor. A frequency-domain analysis is
a representation of how much of the signal lies within each
given frequency band over a range of frequencies. It is an
important tool in signal processing and is also referred to
as power spectrum analysis. The power spectrum describes
the signal’s power distribution over a range of frequencies.
Spectral analysis considers the problem of determining the
spectral content (i.e., the distribution of power over fre-
quency) of a time series from a finite set of measurements.
By looking at the spectrum, one can find how much power
is contained in the frequency components of the signal. A
signal can be converted between the time and frequency
domains by using the Fourier transform, which converts
a time function into a sum or integral of sine waves of
different frequencies, each of which represents a frequency
component. The features considered are maximum, sum,
mean, standard deviation, Skewness, Kurtosis and peak-
to-peak of band power spectrum.

3.2 Feature cleaning and normalization

Data cleaning is the process of identifying and correcting
(or removing) incomplete, improper and inaccurate data.
The aim is to address what are referred to as data quality
issues, which negatively affect the quality of the model
and compromise the analysis process and results. There
are several types of data quality issues, including missing
values, duplicate data, outliers, inconsistent or invalid
data. Some techniques to clean data involve removing data
records with missing values, merging duplicate records,
generating a best, or at most reasonable, estimate for
invalid values. In the case in which the response variable is
missing, it is necessary to remove the entire row. Another
important check is about the presence of outliers: it is
necessary remove some rows considered outliers to improve
the quality of the ML training.

Data normalization, also known as feature scaling or data
standardization, is an important step in the data pre-
processing phase. It is a technique used to standardize
the range of features in the data set, which means to
adjust values of numeric columns measured on different
scales to a notionally common scale, without altering
differences in the values’ ranges or losing information. The
goal of normalization is to improve the overall quality of
a data set by re-scaling the dimension of the data and
avoiding situations in which some values over-weighting
others. A general choice for the normalization is a Min-
Max normalization, according to the work of Al Shalabi
et al. (2006).
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3.3 Feature selection

The feature generation allows to transform data into syn-
tetic information. However, some of these features could
be either irrelevant or redundant and could negatively
influence the performance of the trading activity. For this
purpose, the feature selection is adopted by this protocol
and it is done with the application of two cutting criteria:
correlation coefficient and multicollinearity, as in the work
of Senawi et al. (2017). The cutting activity is performed
by evaluating a correlative matrix: all the features with
a correlation factor higher than 0.9 are cut, as they are
not adding information to the model. The issue of this
approach is that it depends on the order of the features.
To solve it, before applying the method, the features are
ordered using as rank the correlation between each single
feature and the response variable V B: in this way the more
a feature is related to the response variable, the more likely
it remains in the data set.

3.4 Data transformation

The resulting data set contains only numeric values,
though some of them do not represent numbers but cate-
gories. So, it is important to specify that some variables,
such as material, are categorical variables rather than
numerical.

3.5 Regression

Regression analysis is a technique used to analyze a
series of data consisting of a dependent variable, V B and
RUL, and one or more independent variables, that are
the founded features. The aim is to estimate a possible
functional relationship existing between the dependent
variable and the independent variables. The dependent
variable in the regression equation is a real number with
a particular domain.

As first step, the instances are randomly split into training
and testing set. The proportion chosen are 70% for training
and 30% for testing. All ML algorithms are trained and
tested with the same subsets.

For the regression task, the following ML algorithms are
trained, tested and evaluated:

• Linear Regression (LR);
• Decision Forest regression (DF);
• Bayesian Linear Regression (BLR);
• Boosted Decision Tree regression (BDT);
• Neural Network regression (NN);

where the first ones are used for their simplicity, while
the last one, NN regression, because it is the most used
acording to J. V. Abellan-Nebot (2010).

The evaluation metrics used for regression models are
Mean Root Mean Squared Error (RMSE), Relative Squared
Error (RelSE) and R2. The error metrics measure the
quality, i.e. predictive performance, of a regression model
in terms of the mean deviation of its estimates from the
real values. The lower the error values, the more the model
is considered accurate in making predictions.

3.6 Classification

A way to predict when the cutting-tool must be replaced
is to implement a binary classification where instances are
classified according the value of flank wear: two classes
are created using the critical value V Bmax as partition
between the classes safe, less than V Bmax, and worn. This
method is implemented to have a ML method focused only
on alerting the operator who is operating in non-safety
conditions (the margins of the tablet in Figure 1 began
red). Another important step of the data manipulation
is the control about the balancing of the classes: an
imbalanced dataset can cause problems with how the
model will classify instances since ML algorithms tend
to produce unsatisfactory results faced when the class
of primary interest is under-represented. The Synthetic
Minority Oversampling Technique (SMOTE), presented in
(Chawla et al., 2010) is used to treat imbalanced data: it
increases the number of cases in the data set in a balanced
way, by generating new instances of the minority class.
As for regression, the data set is randomly divided into
training and testing set, with the proportion of 70% and
30%: this choice, the simplest one, ensures the maintaining
of class balancing even for training and testing sets. For the
classification task, five ML algorithms are trained, tested
and compared against each other. Since the classes of the
label are two, binary classification algorithms are chosen
to train the model. The choices fall for:

• Logistic Regression (LogR);
• Decision Forest (DF);
• Decision Jungle (DJ);
• Boosted Decision Tree (BDT);
• Neural Network (NN).

The parameter of evaluation for classification is based on
the confusion matrix values, which are information about
the actual and the predicted class. The metrics to eval-
uate the performance of the model are the percentage of
correct safe classifications, the percentage of correct worn
classifications and the accuracy (correct classifications on
the total): this metrics are respectively indicated with WP,
SP and ACC.

3.7 Models improvement

Model improvement has the objective of boosting the
performance of ML algorithms. This is made by Hyper-
parameter Tuning method and K-Fold Cross Validation
(KF-CV) technique. The first one, the Hyperparameter
Tuning method, according to the work (Bergstra and Ben-
gio, 2012), is used to find the optimal parameters value
for each ML algorithm, both for the regression and for
the classification. Usually, one does not know in advance
which is the optimal configuration for a given model and
therefore should evaluate all different combinations. When
a ML algorithm is tuned for a given problem, the goal is to
figure out the parameters resulting in the most accurate
predictions.

Another technique to improve the models is the KF-CV.
The main goal of any ML model is to learn from samples
in such a way that the model can generalize the learning to
unseen (real) data, that is to accurately perform in practice
when making predictions on new data from a real problem.
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3.3 Feature selection

The feature generation allows to transform data into syn-
tetic information. However, some of these features could
be either irrelevant or redundant and could negatively
influence the performance of the trading activity. For this
purpose, the feature selection is adopted by this protocol
and it is done with the application of two cutting criteria:
correlation coefficient and multicollinearity, as in the work
of Senawi et al. (2017). The cutting activity is performed
by evaluating a correlative matrix: all the features with
a correlation factor higher than 0.9 are cut, as they are
not adding information to the model. The issue of this
approach is that it depends on the order of the features.
To solve it, before applying the method, the features are
ordered using as rank the correlation between each single
feature and the response variable V B: in this way the more
a feature is related to the response variable, the more likely
it remains in the data set.

3.4 Data transformation

The resulting data set contains only numeric values,
though some of them do not represent numbers but cate-
gories. So, it is important to specify that some variables,
such as material, are categorical variables rather than
numerical.

3.5 Regression

Regression analysis is a technique used to analyze a
series of data consisting of a dependent variable, V B and
RUL, and one or more independent variables, that are
the founded features. The aim is to estimate a possible
functional relationship existing between the dependent
variable and the independent variables. The dependent
variable in the regression equation is a real number with
a particular domain.

As first step, the instances are randomly split into training
and testing set. The proportion chosen are 70% for training
and 30% for testing. All ML algorithms are trained and
tested with the same subsets.

For the regression task, the following ML algorithms are
trained, tested and evaluated:

• Linear Regression (LR);
• Decision Forest regression (DF);
• Bayesian Linear Regression (BLR);
• Boosted Decision Tree regression (BDT);
• Neural Network regression (NN);

where the first ones are used for their simplicity, while
the last one, NN regression, because it is the most used
acording to J. V. Abellan-Nebot (2010).

The evaluation metrics used for regression models are
Mean Root Mean Squared Error (RMSE), Relative Squared
Error (RelSE) and R2. The error metrics measure the
quality, i.e. predictive performance, of a regression model
in terms of the mean deviation of its estimates from the
real values. The lower the error values, the more the model
is considered accurate in making predictions.

3.6 Classification

A way to predict when the cutting-tool must be replaced
is to implement a binary classification where instances are
classified according the value of flank wear: two classes
are created using the critical value V Bmax as partition
between the classes safe, less than V Bmax, and worn. This
method is implemented to have a ML method focused only
on alerting the operator who is operating in non-safety
conditions (the margins of the tablet in Figure 1 began
red). Another important step of the data manipulation
is the control about the balancing of the classes: an
imbalanced dataset can cause problems with how the
model will classify instances since ML algorithms tend
to produce unsatisfactory results faced when the class
of primary interest is under-represented. The Synthetic
Minority Oversampling Technique (SMOTE), presented in
(Chawla et al., 2010) is used to treat imbalanced data: it
increases the number of cases in the data set in a balanced
way, by generating new instances of the minority class.
As for regression, the data set is randomly divided into
training and testing set, with the proportion of 70% and
30%: this choice, the simplest one, ensures the maintaining
of class balancing even for training and testing sets. For the
classification task, five ML algorithms are trained, tested
and compared against each other. Since the classes of the
label are two, binary classification algorithms are chosen
to train the model. The choices fall for:

• Logistic Regression (LogR);
• Decision Forest (DF);
• Decision Jungle (DJ);
• Boosted Decision Tree (BDT);
• Neural Network (NN).

The parameter of evaluation for classification is based on
the confusion matrix values, which are information about
the actual and the predicted class. The metrics to eval-
uate the performance of the model are the percentage of
correct safe classifications, the percentage of correct worn
classifications and the accuracy (correct classifications on
the total): this metrics are respectively indicated with WP,
SP and ACC.

3.7 Models improvement

Model improvement has the objective of boosting the
performance of ML algorithms. This is made by Hyper-
parameter Tuning method and K-Fold Cross Validation
(KF-CV) technique. The first one, the Hyperparameter
Tuning method, according to the work (Bergstra and Ben-
gio, 2012), is used to find the optimal parameters value
for each ML algorithm, both for the regression and for
the classification. Usually, one does not know in advance
which is the optimal configuration for a given model and
therefore should evaluate all different combinations. When
a ML algorithm is tuned for a given problem, the goal is to
figure out the parameters resulting in the most accurate
predictions.

Another technique to improve the models is the KF-CV.
The main goal of any ML model is to learn from samples
in such a way that the model can generalize the learning to
unseen (real) data, that is to accurately perform in practice
when making predictions on new data from a real problem.
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When evaluating the performance of a model, it is always
necessary to assess how well the learner will generalize to
an unseen data set, this is called validation. KF-CV is an
important technique often used in ML to assess both the
variability of a data set and the reliability of any model
trained using that data. In KF-CV, the entire data set
is randomly partitioned into k groups of approximately
equal size. One at a time, a single partition is treated
as validation set for testing the model and the remaining
k − 1 sub-samples are put together and used as training
data. For instance, considering 5 folds, the module would
generate five models during CV, each model trained using
45 of the data, and tested on the remaining 15. Hence,
the process is repeated k times and the evaluation results
are computed for each validation. The k results can be
averaged to obtain a single performance metric of the total
effectiveness of the model. As a general rule and empirical
evidence, 5 or 10 as value of k is generally preferred, as
these values have been shown empirically to yield test error
rate estimates that suffer neither from excessively high bias
nor from very high variance, but nothing’s fixed and it can
take any value.

4. USE CASE AND RESULTS

The chosen use case is the Milling data set collected by
Agogino and Goebel (2007) in the Prognostic Center of
Excellence (NASA – PCoE) which provides a collection of
prognostic data sets from universities, agencies and compa-
nies representing experiments from runs on a milling ma-
chine under various operating conditions, such as different
feeds, depth of cut and work-piece material. In particular,
tool wear was investigated in a regular cut as well as entry
cut and exit cut and the flank wear of milling insert was
recorded.

The data set includes information about 16 cases with
varying number of runs. The experiment has been carried
out by employing the Matsuura machining center MC-
510V, a CNC vertical milling machine equipped with a face
milling cutter with six inserts. The cutting parameters for
the different cases were guided by industrial applicability
and recommended manufacturer’s settings. Therefore, the
cutting speed was set to 200mmin. Two different depths of
cut were chosen, 1.5mm and 0.75mm. Also, two feeds were
taken, 0.5mms and 0.25mms two types of material, cast
iron and stainless steel J45 were used for the work-pieces,
which size was 0.483m × 0.178m × 0.51m. The milling
inserts were of type KC710, a carbide with a PVD TiN
coating over a general-purpose alloyed substrate. These
choices equal 8 different settings. All experiments were
done a second time with the same parameters with a
second set of inserts, for a total of 16 different cases.
The number of runs for each case was dependent on the
degree of flank wear (V B) that was measured between runs
at irregular intervals up to a wear limit (and sometimes
beyond). Flank wear was not always measured and at
times when no measurements were taken, no entry was
made. The acquired data is organized in a 167 × 13
structure with fields divided as shown in table 1. It shows
the values of first rows of the features (and the response
variable). The case column is related to the choice of the
fixed parameters for the runs in the same case (DOC,
material and feed), the run is the unit of measurement

Fig. 2. Experimental setup (from Agogino and Goebel
(2007)).

Fig. 3. Classes distribution across the dataset.

used (a run is equivalent to a single working) and each
run takes place in a particular time. The values of the
last six features are not shown because in each cell there
is a multidimensional array corresponding to the analog
measurement of the sensors: it is necessary apply a feature
generation to transform these multidimensional arrays in a
set of mono-dimensional data. The setup of the experiment
is as depicted in Fig. 2. The basic setup encompasses the
spindle and the table of the Matsuura maching center
MC-510V. An acoustic emission sensor and a vibration
sensor are each mounted to the table and the spindle
of the machining center. The signals from all sensors
are amplified and filtered, the fed through two RMS
before they enter the computer for data acquisition. The
signal from a spindle motor current sensor is fed into the
computer without further processing. So, in this way, the
experiment design provides 5 sensors output.

The data set presents some empty values in the V B
measurement, so it is necessary to remove the entire row.
The outliers’ management is done by looking the data
and the result is that only one is removed because it has
signal features whose values greatly differ from the ones
of all other observations. As shown by Fig. 3, after the
creation of them, the classes result not balanced since the
number of observation belonging the class worn (20) is
significantly lower than that of the safe class (125): this
is an expected behavior as stopping the measurements
according to critical values of V B.

The results of the application of the proposal framework
are summarized in Table 2 for the first regression task and
the one about the RUL variable. The algorithm for the
regression on V B with the best performance is the NN
regression. This model returns the minimum error values,
as well as the greatest R2, meaning that it can explain a
high percentage of the variance of V B. In the same way,
also for the second one regression the best algorithm is the
NN regression with a high value for R2.

Table 3 shows the results for the classification task. In this
case the best algorithm is the Two-Class Boosted Decision
Tree. It shows the highest evaluation metrics, with an
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Table 1. First 4 rows related to the features (and response variable) of milling dataset. The
symbol [· · ·] means that in the cell there is a muldimensional array.

case run VB time DOC feed material smcAC smcDC vib tab vib sp AE tab AE sp

1 1 0 2 1.5 0.5 1 [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·]
1 2 - 4 1.5 0.5 1 [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·]
1 3 - 6 1.5 0.5 1 [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·]
1 4 0.11 7 1.5 0.5 1 [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·]

accuracy of almost 96% (the precision is not shown but
it is of 92%).

Another important result in this use case is the list of the
selected features, that includes 23 out of the 78 (obviously
adding the untouchable features such as material and
depth of cut). For each type of signal from the sensors,
4 features have been selected amoung the generated ones,
except for the smcDC from which 3 features have been
selected. The situation is practically complete balance
between the types of analog signals and therefore presup-
poses the use of all types of signals.

5. CONCLUSIONS AND FUTURE WORKS

The main aim of this work is to give a general framework
that is applicable to cases of predictive maintenance of
generic manufacturing tools. Particularly, this method is
applicable, as a support to PM, to all tools which activity
is managed by parameters provided by the operators and
monitored through the application of analog sensors. Using
sensors of this type and applying the algorithms and
methodologies shown, it is possible creating a prototype
to improve the man-machine collaboration in production.

Two activities will follow this work. The first consists in
considering more types of sensors, such as thermal ones,
and finding the optimal set-up as a compromise between
prediction performance and technology costs (find the
minimum set of sensors needed and for each of them the
minimum sensitivity. The second activity will provide an
analysis of the consequences that the use of this technology
brings to warehouse management, and consequently to the
economy of a company.
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BDT 0.960 0.950 0.957
NN 0.936 0.900 0.924
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