

P4.233

Benchmark of in-vessel Loss-Of-Coolant Accident models for an EU DEMO helium-cooled Breeding Blanket: GETTHEM vs. RELAP5-mod3.3

Antonio Froio^a, Ivo Moscato^b, Luciana Barucca^c, Andrea Bertinetti^a, Sergio Ciattaglia^d, Fabio Cismondi^d, Laura Savoldi^a and Roberto Zanino^a

^aNEMO group, Dipartimento Energia, Politecnico di Torino, Torino, Italy ^bDipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici, Università degli Studi di Palermo, Palermo, Italy ^cAnsaldo Nucleare, Genova, Italy

dPPPT Department, EUROfusion Consortium, Garching bei München, Germany

BACKGROUND

GETTHEM aims to become the first system-level thermal-hydraulic model for tokamak fusion reactors. It enables fast parametric studies through suitable modelling assumptions. As a new tool, it needs verification and validation, which have been partially performed in the past.

AIM OF THE WORK

Perform a verification of the GETTHEM in-VV LOCA model (PHTS, VV and VVPSS) for the case of a helium-cooled Breeding Blanket (BB) through a code-to-code comparison against the certified RELAP5-mod3.3 code.

GETTHEM VVPSS model

- 0D mass and energy conservation in all components
 - Additionally, momentum conservation in break, BD, BV and RL
- Helium modelled as ideal gas
- Isentropic gas transformations in PHTS, VV and EV
- Simple choked flow model + discharge coefficient from literature in break, BV and BD

Computational times [s] (single-core)

GETTHEM

GETTHEM is 4× to 140× faster!

0.09

Minimum

Average

 $\epsilon p_{,MAX} = 10 \%$

RELAP

	Scenarios			
	Case	FW break size [m²]	Involved inventory [m³]	# channels involved
	1	0.01	290	3
	2	0.1		21
	3	1		210
	4	2		418

- ✓ First verification of the GETTHEM code against LOCA from a He-cooled BB in the EU DEMO
- ✓ Currently the two codes presents differences:
 - rate \rightarrow timing
 - temperature \rightarrow steady-state pressure
- ✓ However, differences in peak pressure and timing
- → Improvements in GETTHEM VVPSS modelling:

Case 1 Case 2 (FPa) 150 Small breaks **CONCLUSIONS and PERSPECTIVE** Pressure 100 50 50 -2 RLs the certified RELAP code carried out for an in-VV GETTHEM --3 RLs RELAP 4 RLs 30 40 10 30 50 50 10 Time [s] Time [s] **Excellent agreement in** Choked flow model -> differences in mass flow worst-case scenario Case 4 Case 3 |KPa | | 500 300 Gas transformation model \rightarrow differences in Pressure 200 00 always below ~10 % 100 Use of 1D components for VV, PHTS and EV 30 50 30 40 50 10 Introduction of natural convection in EV **Discrepancy at steady-state** Time [s] Time [s] [1] A. Froio et al., Dynamic thermal-hydraulic modelling of the EU DEMO HCPB breeding blanket cooling loops, *Prog Nuc Ene* 2016 induced by different expansion [2] A. Froio et al., Dynamic thermal-hydraulic modelling of the EU DEMO WCLL breeding blanket cooling loops, Fus Eng Des 2017 [3] A. Froio et al., Benchmark of the GETTHEM vacuum vessel pressure suppression system (VVPSS) model for a helium-cooled EU DEMO blanket, Safety and Reliability 2017 models → different temperatures [4] A. Froio et al., Modelling an in-vessel loss of coolant accident in the EU DEMO WCLL breeding blanket with the GETTHEM code, *Fus Eng Des*, in press [5] A. Froio et al., Thermal-hydraulic analysis of the EU DEMO helium-cooled pebble bed breeding blanket using the GETTHEM code, *IEEE TPS* 2018

RESULTS

Effect of different

choked flow models →

different mass flow rate

