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Abstract In the framework of underground flow simulations in fractured me-
dia, fractures may act as preferential paths, and may have a strong impact on
the flow. The discrete fracture network (DFN) model allows for an explicit rep-
resentation of the interconnected fractures. Flux on each fracture is assumed to
be driven by Darcy Law, and suitable matching conditions are imposed along
fracture intersections, ensuring flux balance and head continuity. The exact
displacement of fractures in the network is usually not known, and networks
are typically generated sampling geometrical and hydro-geological properties
from probabilistic distributions; this stochastic generation is likely to generate
geometrical configurations very challenging for the meshing process, which is a
major issue in the framework of DFN simulations. Stochasticity in geometrical
parameters may also result in a nonsmooth behavior of the quantity of interest
with respect to the stochastic parameters. In order to quantify the influence
of these stochastic parameters on the output of DFN models, we propose an
approach based on the geometric Multi Level Monte Carlo (MLMC) method,
applied in conjunction with a well assessed underlying solver for performing
DFN flow simulations. Key properties of the solver are its capability of circum-
venting the need of conforming meshes, and its consequent extreme robustness
with respect to geometrical complexities in the network. These features make
the solver quite suitable to be used in conjunction with MLMC for the effec-
tive application of uncertainty quantification strategies, as they allow to tackle
complex geometrical configurations, also with very coarse meshes.
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1 Introduction

Underground flow simulations in fractured media come into play in several
applications concerning underground exploitation (e.g., aquifer monitoring,
geothermal applications, enhanced oil & gas production, geological storage
of nuclear waste or CO2). Within this framework, fractures may either act
as preferential paths or may represent flow obstructions, according to their
features; hence, they may have a strong impact on the flow intensity and
directionality.

We consider herein the Discrete Fracture Network (DFN) model (Adler
1999, Cammarata et al. 2007, Fidelibus et al. 2009), a well assessed framework
in which each fracture is represented in the medium, and endowed with its
own geometrical and hydro-geological features. The model is used when the
permeability of the fractures is much higher than the one of the surrounding
rock matrix, that for this reason can be neglected. Within the DFN model,
the fractured medium is represented as an impervious 3D block crossed by a
net of planar polygons representing the fractures. Flux exchange only occurs
between fractures through their intersections, called traces. Flow on each frac-
ture is assumed here to be driven by the Darcy Law, and suitable matching
conditions are imposed along traces, ensuring flux balance and head conti-
nuity. Performing accurate and reliable flow simulations in DFNs is still a
challenging task; the major issues are related to the geometrical complexity of
the computational domain, and to its size, at least in realistic networks mod-
eling large basins. As far as the geometrical complexity is concerned, a major
concern is related to the possible presence of very small traces, and/or traces
intersecting with very small angles, and/or very close traces on the same frac-
ture. These situations pose severe constraints to the mesh generation process,
whenever conforming meshes are needed (namely, meshes whose element edges
match both the traces and the element edges on the intersecting fracture); the
meshing process may become a quite hard and costly process, yielding overly
fine meshes with respect to the level of accuracy actually required, and may
become an infeasible task.

Several contributions have been proposed, mainly in the past decade, in
order to overcome complexity problems. Reformulations as lower-dimensional
problems were proposed by Dershowitz and Fidelibus (1999), Nœtinger (2015),
Nœtinger and Jarrige (2012). Other contributions leverage the use of partially
conforming meshes (namely, meshes whose element edges match the traces but
not necessarily match the element edges on intersecting fractures) and mortar
methods, possibly in conjunction with modifications of the geometry, see, e.g.,
de Dreuzy et al. (2013), Pichot et al. (2010; 2012; 2014), Vohraĺık et al. (2007).
For other approaches, see also Formaggia et al. (2014a;b), Fumagalli and Scotti
(2013), Jaffré and Roberts (2012), Karimi-Fard and Durlofsky (2014).
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Recently, the problem has been tackled in Berrone et al. (2013b) by means
of a PDE-constrained optimization reformulation, which allows to avoid the
need for any kind of mesh conformity. The method does not rely on a specific
space discretization method, and it can be used in conjunction with several
space discretizations, such as standard FEM, XFEM (Berrone et al. 2016b)
and VEM (Benedetto et al. 2014). As a matter of fact, the method allows the
use of computational meshes independently drawn on each fracture, without
the need of tailoring the elements to traces and intersecting fractures. The
method has been further developed in Berrone et al. (2013a; 2014; 2016a),
and extended to account for Discrete Fracture-Matrix models in Berrone et al.
(2018a); its intrinsic parallel nature has been exploited in a quite effective
parallel implementation (Berrone et al. 2015; 2019).

Within the framework of DFN flow simulations, a crucial point is related to
the lack of full deterministic description of both hydro-geological and geometri-
cal fracture features: indeed, the exact displacement of fractures in the network
is usually not known, and for this reason networks for simulations are typi-
cally generated sampling the hydro-geological (transmissivity) and geometrical
(position, orientation, size, etc.) properties from probabilistic distributions. In
order to quantify the influence of these stochastic parameters on the output of
DFN models, for example computing statistics of a suitable quantity of inter-
est (QoI), the use of effective uncertainty quantification techniques plays a key
role. However, this stochastic generation is likely to generate very challenging
geometrical configurations. Robustness of the underlying solver with respect
to these configurations is of paramount importance.

In particular, quite challenging is the case in which the geometry is de-
scribed by stochastic parameters. Stochasticity in geometrical parameters can
indeed largely impact on connectivity properties of the network, thus result-
ing in a possible nonsmooth behavior of the QoI with respect to the stochas-
tic parameters, see Berrone et al. (2018b). A nonsmooth QoI is known to
possibly prevent the successful application of well-assessed techniques such as
stochastic collocation methods for computing its statistics (Xiu 2010); stochas-
tic collocation may also suffer from the so-called curse of dimensionality phe-
nomenon, unless suitable adaptive sparse grids are considered, see e.g. Chkifa
et al. (2014), Ernst et al. (2018).

All these considerations make stochastic collocation not a suitable tech-
nique for tackling these kind of problems. In Berrone et al. (2018b) an ap-
proach based on the geometric Multi Level Monte Carlo (MLMC) method
was proposed, applied in conjunction with an underlying solver for performing
DFN flow simulations based on the reformulation proposed in Berrone et al.
(2013b). A key point for the successful application of MLMC in this frame-
work is indeed the capability of the underlying solver to circumvent the need
of conforming meshes, and its consequent extreme robustness with respect to
geometrical complexities in the network; both these features allow to tackle
complex geometrical configurations, also with very coarse meshes.

In the present contribution, the behavior of the approach proposed in
Berrone et al. (2018b) is further investigated, in order to shed more light
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on the robustness and the effectiveness of the approach in practical situations
related to large scale DFNs characterized by a high level of uncertainty. A
comprehensive numerical case study, based on realistic networks, is proposed,
focusing on the robustness of the approach with respect to the dimension of
the stochastic parameter space, and with respect to the number of stochastic
features on each fracture.

The paper is organized as follows. In Section 2 the model equations and
the PDE-constrained reformulation are briefly recalled. In Section 3 the Multi
Level Monte Carlo method is sketched, and extensive analysis about its appli-
cation to a realistic problem is thoroughly documented in Section 4.

2 The Problem

In this section, for the reader convenience, we briefly sketch the model problem
on the network and the numerical method used for computing the solution.
We refer the interested reader to Berrone et al. (2013b; 2014) for a detailed
description.

2.1 The Model Equations

Within the DFN model, each fracture Fi, i ∈ I, of the network is modelled as
a two-dimensional polygon immersed in the three-dimensional space R3, with
arbitrary size and orientation. The union of all fractures forms the DFN F :

F = ∪i∈IFi.

Fractures mutually intersect along segments called traces. Let Sm, m ∈ M,
denote the traces, and let S denote the set of all traces. For the ease of de-
scription, we assume that each trace is generated by exactly two fractures. For
a given trace Sm, let Fi and Fj be the fractures such that Sm = Fi ∩Fj , with
i < j. Then we set Im := (i, j).

We divide each fracture boundary ∂Fi in a Dirichlet part ΓDi and in a
Neumann part ΓNi . We assume that ΓD = ∪i∈IΓDi is a non-zero measure set,
whereas some of the sets ΓDi are allowed to be empty. Let HD

i and HN
i be the

boundary data imposed on ΓDi and ΓNi , respectively, ∀i ∈ I.
Let us introduce ∀i ∈ I the spaces H1(Fi) =

{
v ∈ L2(Fi)|∇v ∈ L2(Fi)

}
,

Vi = H1
0(Fi) =

{
v ∈ H1(Fi) : v|

ΓD
i

= 0
}

with dual space V ′i , and, if |ΓDi | > 0,

V Di = H1
D(Fi) =

{
v ∈ H1(Fi) : v|

ΓD
i

= HD
i

}
.

Let Ki(xi) be, for all i ∈ I, a symmetric and uniformly positive definite
tensor representing the fracture transmissivity, being xi the vector of coor-
dinates on a local system on Fi. The hydraulic head Hi on each fracture is
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obtained as the solution of the following problem: find Hi ∈ V Di such that
∀v ∈ Vi∫
Fi

Ki∇Hi∇vdF =

∫
Fi

qivdF +

∫
ΓNi

HN
i v|ΓNi

dΓ +
∑
S∈Si

∫
S

[[
∂Hi

∂νiS

]]
S

v|SdΓ,

(1)

where qi ∈ L2(Fi) is a source term on Fi; H
N
i ∈ H−

1
2 (ΓNi ); the quantity

∂Hi
∂νiS

:= (niS)T Ki∇Hi is the outward co-normal derivative of the hydraulic

head along the (fixed) unit vector niS normal to trace S, and
[[
∂Hi
∂νiS

]]
S

is its

jump along niS ; the set Si ⊂ S is the set of all traces belonging to fracture Fi,
for i ∈ I. The last contribution in the right-hand side of (1) represents indeed
the net flow entering/exiting the fracture through its traces.

Equations (1), defined on each fracture, are coupled by the following match-
ing conditions, imposed at the traces, which guarantee hydraulic head conti-
nuity and flux balance over the whole network: ∀m ∈M

Hi|Sm −Hj |Sm = 0, (2)[[
∂Hi

∂νiSm

]]
Sm

+

[[
∂Hj

∂νjSm

]]
Sm

= 0, (3)

with i, j such that Im = (i, j).

2.2 A PDE-constrained optimization reformulation

In recent papers (Berrone et al. 2013a;b) an approach to the solution of prob-
lem (1)-(3) based on a reformulation as a PDE-constrained optimization prob-
lem has been proposed. The major outcome of the reformulation is that the
resulting method does not require any kind of mesh conformity at traces, thus
making the mesh generation phase a straightforward and easy process, with
independent computational meshes drawn on each fracture, and independently
of possible critical geometrical configurations.

Let us introduce the following function spaces:

Ui :=
∏
S∈Si

H−
1
2 (S), U :=

∏
i∈I
Ui,

and let us introduce the quantities

USmi :=

[[
∂Hi

∂νiSm

]]
Sm

+αHi|Sm , USmj :=

[[
∂Hj

∂νjSm

]]
Sm

+αHj |Sm , (4)

for each m ∈ M, with Im = (i, j), being α > 0 a fixed parameter. Grouping
together functions USmi in the following tuples

Ui = Π
S∈Si

USi ∈ Ui, U = Π
i∈I

Ui ∈ U ,
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we may introduce the functional

J(H,U) =
∑
m∈M

( ∥∥Hi|Sm −Hj|Sm

∥∥2
H

1
2 (Sm)

+ (5)

∥∥∥USmi + USmj − α
(
Hi|Sm +Hj|Sm

)∥∥∥2
H− 1

2 (Sm)

)
,

with i, j such that Im = (i, j). Furthermore, taking into account (4), we may
rewrite equations (1) as∫

Fi

Ki∇Hi∇vdF + α
∑
m∈M

∫
Sm

Hi|Sm v|SmdΓ =

∫
Fi

qivdF + (6)∫
ΓNi

HN
i v|ΓNi

dΓ +
∑
m∈M

∫
Sm

USmi v|Sm
dΓ

∀v ∈ Vi, ∀i ∈ I. Then, equations (1), (2) and (3) are equivalent to the problem

min J(H,U) (7)

subject to (6),

see again Berrone et al. (2013b; 2014).
Problem (7) can be tackled using a “first discretize, then optimize” ap-

proach, introducing a suitable space discretization based on (possibly non-
conforming) meshes on the fractures, and a suitable discretization on the
traces. A finite dimensional counterpart of (7) is then obtained, which can be
solved via the preconditioned conjugate gradient method (see Berrone et al.
(2015)). This approach can be used in conjunction with different space dis-
cretization methods: Berrone et al. (2013a;b; 2014) propose the use of the
Extended Finite Element method (Belytschko and Black 1999, Fries and Be-
lytschko 2010); in Benedetto et al. (2014) the Virtual Element Method (Ah-
mad et al. 2013, Beirão da Veiga et al. 2013) has been applied. In this work
we consider standard finite element space discretization.

3 Multi Level Monte Carlo method

We recall here the general setting of Multi Level Monte Carlo method. Let
(Ω,A,P) be a probability space, with Ω the set of outcomes, A the σ-algebra
of events, and P : Ω 7→ [0, 1] a probability measure. Assume we are given
a mathematical model which depends on a random variable defined on the
given probability space. The random variable may describe, e.g., a stochastic
parameter the model equation depends upon, or a geometric feature of the
domain. For each outcome ω ∈ Ω, we denote by u(ω) the exact solution of the
model, and we let Q(ω) denote the random variable representing the quantity
of interest (QoI), which is typically a known function of u(ω), namely, Q(ω) =
g(u(ω)). Furthermore, we denote by uh(ω) a numerical approximation of u(ω)
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and by Qh(ω) the corresponding QoI, Qh(ω) = gh(uh(ω)). We consider the
issue of evaluating the first order statistical moment of Q, namely in computing
the mean value of the quantity of interest:

E[Q] =

∫
Ω

Q(ω)dP(ω).

It is well documented that stochasticity in the geometrical features of the frac-
tures may yield a nonsmooth output (see Berrone et al. (2018b) and Canuto
et al. (2019)). Furthermore, it is well known that well-assessed techniques such
as stochastic collocation (Xiu 2010) may be not effective in presence of nons-
mooth quantities of interest, and they are likely to suffer the curse of dimen-
sionality phenomenon, in case of large dimensions of the stochastic parameter
space. As an alternative approach, suitable effective variants of Monte Carlo
(MC) method can be used, as they are proved not to suffer from the curse of
dimensionality and not to be affected by the possible presence of nonsmooth-
ness in the stochastic parameter space (see Berrone et al. (2018b)). One of
such variants, recently developed, is the Multi Level Monte Carlo method, see
Giles (2015) and references therein.

The standard MC method is based on the construction of the sample mean

Q̄ =

∑N
i=1Q(ωi)

N

being ωi, i = 1, ..., N , a set of samples drawn according to the probability
measure P. When the computation of the QoI involves the numerical solution
of a model problem, a numerical bias is introduced. Indeed, the sample mean
is built as

Q̄h =

∑N
i=1Qh(ωi)

N

The corresponding mean square error (MSE) is

MSEMC := E[(Q̄h − E[Q])2].

From standard computations it follows

MSEMC = (E[Qh]− E[Q])2 + σ2[Q̄h]. (8)

Hence, the MSE is formed by the square of a numerical bias BMC = E[Qh]−
E[Q], plus a statistical error SEMC given by the variance of the estimator Q̄h.
We remark that the numerical bias only depends on the accuracy used for
computing Qh, whereas the statistical error is σ2[Q̄h] = σ2[Qh]/N and can
therefore be made small by increasing the number of samples.

Within our framework, the numerical solution is obtained upon the intro-
duction of a numerical discretization. We consider now several different levels
of mesh refinement ` = 1, . . . , L, with ` = 1 corresponding to the coarsest
mesh and ` = L to the finest mesh. Let Q` denote the QoI computed on mesh
level `.
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The rationale behind MLMC is to use a (possibly large) number of samples
on the coarsest mesh to roughly catch the stochastic behavior of the QoI, and
then to progressively update the statistics with fewer and fewer samples at the
highest levels.

The multi level estimator for the mean value of Q is defined as (see Giles
(2015))

µ̄ML := Q̄1
N1

+

L∑
`=2

Y` (9)

having set, for all `,

Q̄`N` = N−1`

N∑̀
i=1

Q`(ωi
`)

and for ` = 2, . . . , L,

Y` = N−1`

N∑̀
i=1

(Q`(ωi
`)−Q`−1(ωi

`)),

where we have introduced the superscript ` to label ω`i in order to highlight
that independent samples are drawn at each level `.

Since the sample average is an unbiased estimator of the mean value, one
has from (9)

E[µ̄ML] = E[Q1] +

L∑
`=2

E[Y `] = E[Q1] +

L∑
`=2

(E[Q`]− E[Q`−1]) = E[QL]

and, with the convention Q0 = 0,

σ2[µ̄ML] =

L∑
`=1

N−1` σ2[Q` −Q`−1].

From these relations, it straightforwardly follows

MSEML = E[(µ̄ML − E[Q])2] = (E[QL]− E[Q])2 + σ2[µ̄ML]

= (E[QL]− E[Q])2 +

L∑
`=1

N−1` σ2[Q` −Q`−1]. (10)

Similarly to (8), the MSE is again formed by a (squared) numerical bias BL =
E[QL] − E[Q], which only depends on the largest accuracy that is attained,

and by a statistical error SEL =
∑L
`=1N

−1
` σ2[Q` −Q`−1], which corresponds

to the variance of the multilevel estimator.
Introducing the quantity

V` := σ2[Q` −Q`−1],
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which does not depend on N`, we rewrite the statistical error as

SEL =

L∑
`=0

V`
N`

. (11)

The target of getting a MSE smaller than a fixed accuracy ε2 is attained
by guaranteeing

(BL)2 ≤ (1− θ)ε2, SEL ≤ θε2 (12)

for a given θ ∈ (0, 1).
Note that, since the numerical bias BL only depends on L, fullfillment of

the first inequality in (12), for a fixed ε, is guaranteed for L large enough, see
later for details. As far as the second inequality in (12) is concerned, this can
be satisfied by suitable choices of N`, ` = 1, . . . , L. The approach suggested
in Giles (2015) consists in computing optimal values of N` by minimizing
(an approximation of) SEL, subject to the constraint of having a fixed total
computational cost. Namely, let C` denote the computational cost for a single
realization at level `. Then, the total cost is C =

∑L
`=1N`C`. Interpreting N`

as continuos variables, the optimal N` are computed by solving the problem

min
(N1,...,NL)

L∑
`=1

V`
N`

s.t.

L∑
`=1

N`C` = cost.

This yields, with the additional request SEL ≤ θε2,

N` =

⌈
1

θε2

√
V`
C`

L∑
l=1

√
VlCl

⌉
. (13)

The key convergence result for MLMC is the following (see (Giles 2015,
Theorem 1)). Let M` denote the number of degrees of freedom (dofs) used at
level `, and assume that M` ' 2`; a more general situation can be considered,
see e.g. (Cliffe et al. 2011, Theorem 1), where it is assumed that M` is an
increasing sequence, with M`+1 = sM` for a given s ∈ N, s > 1.

Proposition 1 Suppose that there exist positive constants α, β, γ, cα, cβ, cγ
such that 2α ≥ min(β, γ) and

1. |E[Q` −Q]| ≤ cα2−α`

2. V` ≤ cβ2−β`

3. C` ≤ cγ2γ`.

Then, for any 0 < ε < e−1, there exist L and values {N`}L`=1 such that the
MLMC estimator µ̄ML satisfies MSEML ≤ ε2 at a computational cost C that
is bounded by

C ≤ c


ε−2 if β > γ

ε−2(log ε)2 if β = γ

ε−(2+ γ−β
α ) if β < γ

for a constant c independent of ε.
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Note that due to assumption 1 of Proposition 1, the leftmost condition in
(12) is satisfied if

L ≥ 1

α
log2

(
cα√

1− θε

)
. (14)

An immediate consequence of this condition is a tight connection between the
target accuracy ε and the levels of mesh refinement to be introduced. Indeed,
from (14) it is straightforward that, once the target accuracy ε is fixed, a min-
imum number L of mesh refinements satisfying (14) has to be performed; on
the other hand, if the maximum number of refinements L is a priori fixed (for
example, because a further refinement could be computationally too demand-
ing), condition (14) bounds from below the target accuracy ε which can be
sought.

MLMC has been applied, in the framework of uncertainty quantification
analysis in fracture networks, for the first time in Berrone et al. (2018b).
The application of MLMC in the DFN framework leverages the ability of
the method proposed in Berrone et al. (2013b) to use totally non-conforming
meshes. Indeed, within such approach MLMC takes advantage of the possi-
bility to solve the problem on very coarse meshes, independently of the possi-
ble presence of critical geometrical configurations, which would oblige to use
overly fine meshes, if some kind of mesh conformity is needed. In Berrone et al.
(2018b) the method was applied to some preliminary test problems, mainly
with a moderate number of fractures with fixed aspect ratio and exibiting a
random size. In the next section, we thoroughly report on the application of
the method to more realistic test problems, with a large number of fractures
and considering different stochastic features of the fractures.

4 Numerical results

In this section we analyse effectiveness and robustness of the approach on a
realistic network. We will consider the effects of having either just one stochas-
tic feature, or several stochastic features on a number of fractures, combining
geometrical and hydro-geological parameters. Also, we will analyse the behav-
ior of the method with respect to the number of fractures which display a
stochastic behavior.

All test problems are based on an initial network consisting of 702 ran-
domly generated fractures (network DFN702, see Figure 4.1). The network
is immersed in a cubic domain with a 500 m long edge. The geometrical fea-
tures of the fractures forming DFN702 are sampled from the following realistic
distributions, loosely based on data characterizing a site in Sweden (Svensk
Kärnbränslehantering AB 2010):

– mass centers are uniformly distributed in the cube;
– fractures are considered as discs (modeled as octagons) whose radii are

distributed according to a power law with cut-off rL = 30 m and rU = 560
m, and with power γ = 2.38;
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Fig. 4.1 Geometry of network DFN702 (left) and empirical distribution of fracture radii
in DFN702 (right)

Fig. 4.2 Examples of non-conforming computational meshes. Left: coarsest mesh; right:
mesh at ` = 3.

– orientations are distributed according to the Fisher distribution:

f(x;µ, κ) =
κ exp(κµTx)

4πsinh(κ)

being µ the mean direction and κ > 0 a concentration parameter; we have
used here

µ = (0.0065,−0.0162, 0.9998), κ = 17.8.

We remark that other stochastic features could be considered, with suitable
distributions. For example, the fracture transmissivity could be correlated to
the fracture aperture by a cubic law, and fracture aperture could be modeled
as a random variable with a truncated Gaussian law (de Dreuzy et al. 2012).

Standard linear finite elements have been used on computational meshes
with six different levels of refinement; each refinement is obtained doubling
the number of elements of the previous level. The corresponding overall num-
ber of dofs ranges from approximately 104 on the coarsest mesh to approx-
imately 4 · 105 on the finest mesh. In Figure 4.2 we depict some examples
of non-conforming computational meshes used. In particular, the left picture
correponds to the coarsest mesh considered, whereas the right picture to an
intermediate mesh (` = 3). The figure highlights some possibly critical geo-
metrical configurations, such as very small traces, and couples of traces on the
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same fracture very close to each other. Despite the presence of such configura-
tions, a non-conforming mesh is straightforwardly drawn, and a coarse mesh
can indeed be used at ` = 1. If a conforming mesh was used instead, very small
elements were to be introduced, even at this “coarse” level, in order to match
the other meshes and/or traces.

Concerning the model equations (6), we will consider here a homogeneous
transmissivity on each fracture, so that a scalar value Ki can be used to repre-
sent the transmissivity on Fi. We set boundary conditions in such a way that
one face of the cubic domain acts as an inlet face, and the opposite one as
an outlet face. With reference to Figure 4.1, left, the inlet face is the leftmost
one, where the hydraulic head is set to H = 10, whereas on the rightmost face
H = 0 is set. As a quantity of interest, we consider the flux exiting the net-
work from a selected outlet fracture, namely, the largest blue colored fracture
in Figure 4.1, which could correspond, for example, to an outcrop.

Within such framework, we consider the following test cases:

Test A. We consider a fixed number s of fractures, randomly picked among the
702 fractures in DFN702, having each one an orientation described by two
random variables with Fisher distribution, with the same mean direction
and concentration parameter used for the generation of the initial DFN.
The other geometrical features (namely, radius and position of mass center)
are as in DFN702. Transmissivity is fixed on all fractures toK = 10−9 m2/s.
We used s = 100, s = 300, s = 500.

Test B. In addition to what described in Test A, we consider on each stochastic
fracture Fi a stochastic transmissivity; namely, Ki is a random variable
with log-normal distribution, with mean value K̄ = 10−9 m2/s and σ = 1.2
(which roughly corresponds to Ki spanning 4 orders of magnitude around

K̄).
Test C. On s out of 702 fractures, we consider the radius described by a random

variable with power law distribution with cut-off, with the same parameters
used to generate DFN702. The same values of s as in Test A are used.
Transmissivity is fixed on all fractures to K = 10−9 m2/s.

Test D. Similarly to what done in Test B, transmissivity is a random variable on
each one of the stochastic fractures of Test C, with the same log-normal
distribution as in Test B.

Test E. On s out of 702 fractures, we consider both a stochastic orientation, a
stochastic radius, and a stochastic distribution, with the already mentioned
probability distributions.

Remark 1 The quantity of interest Q considered in this framework, namely the
flux exiting the network from a given outlet fracture, has finite second order
moment. Indeed, among all possible networks with N fractures with given
transmissivity values Ki, i = 1, ..., N , connecting an inlet and an oulet face,
the configurations which yield the largest overall exit flow are those in which
each fracture directly connects the inlet and outlet faces of the domain. Within
these configurations, the flux exiting each fracture Fi is Qi := ∆HKi, for i =
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1, . . . , N , being ∆H the difference between the inlet and outlet hydraulic head
imposed at the boundaries. Thus we have the bound 0 ≤ Q ≤

∑N
i=1∆HKi.

Note that this upper bound on Q is independent of the orientation and the
size of the fractures. The transmissivity Ki is either a constant fixed value
(Test A, C), yielding a constant Qi for all i, or a random variable with log-
normal distribution. In this latter case, since log-normally distributed random
variables are known to have finite second order moments, Qi has finite second
order moment as well. Since Q2 ≤ N

∑
Q2
i , we conclude that Q has finite

second order moment.

In all the test cases, any sample network is obtained resampling the corre-
sponding stochastic features from the mentioned distrbutions. The numerical
bias B` = |E[Q` − Q]| in Proposition 1 is approximated as B` ' |Q̄` − Q̄L|.
Using 100 samples at each level, an estimate for α, β and γ is obtained for all
the cases. As a representative behavior of all cases, we report in Figure 4.3 the
decay exhibited by B` and V ` in Test A, s = 100 for ` = 2, . . . , 5; the starting
level ` = 1 and the final level ` = L, needed to approximate B`, are not used
to estimate the parameters. Values of α, β are approximated fitting the data
with the regression curves

B` ' cα2−α` V ` ' cβ2−β`.

Values of α, β obtained in the other cases have a similar behaviour. The value
obtained for γ is approximately 2.4. As a whole, in all cases the conditions in
Proposition 1 are satisfied.

Once an approximation of α, cα is made available, from (14) one can devise
the minimum value of L needed for achieving a fixed accuracy ε. In the fol-
lowing we consider relative εr values such that the accuracy sought is given by
ε = εrQ̄, where Q̄ is a rough estimate of the mean value (obtained with stan-
dard MC method). In our simulations we have fixed L = 6; correspondingly,
the highest relative accuracy attainable is approximately εr = 0.03; values
used herein are henceforth εr = 0.1, εr = 0.05, εr = 0.03.
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Fig. 4.4 Test A. Empirical probability density functions of number of connected fractures
(left) and of number of traces (right).

We start our analysis with a glance at the empirical distributions of the
number of fractures and traces in the various test cases.

In Figure 4.1, right, we report the empirical distribution of the fracture
radii of the network DFN702. It can be seen that most radii are between 10 m
and 30 m, namely, most fractures in DFN702 are rather small. We recall that
in Test A we consider stochastic orientations only. In this situation, since most
fractures in DFN702 are small, it is likely that several fracture intersections
disappear, when sampling new orientations; disconnected fractures are then
obviously removed from the resulting network. This explains the behavior
depicted in Figure 4.4, in which we report, for all the samples considered for
simulations in Test A, the empirical distributions of the number of connected
fractures and of the number of traces. Indeed, it can be noted that the number
of fractures is much smaller than the initial number (702), and it gets smaller
and smaller as the number s of stochastic fractures increases. On the other
hand, when we resample the fracture radii, it is likely that several fractures of
DFN702, initially exhibiting a very small radius, when resampled do display
a larger size. The empirical distributions of the number of connected fractures
and of the number of traces for Test C are reported in Figure 4.5. In this
case, the behaviour of the number of connected fractures is the opposite, with
respect to s, than for Test A: while increasing s, the number of traces in the
network tends to be larger. For Test E, which cumulates the two effects, the
empirical probability density functions are reported in Figure 4.6.

The number of samples needed at each level is given by equation (13);
values obtained from an estimate of V` and from the available data for C` are
reported Figure 4.7. We focus in such figure on test A and E, and on s = 100
and s = 500. The clear behavior which can be identified is that, for Test A, a
higher number of stochastic fractures yields a higher number of samples needed
at each level, whereas, in Test E, s seems to have a minor impact on N`. This
is due to the fact that by increasing the number of stochastic fractures, more
(relative) variability is introduced in Test A, and larger relative values are
attained by V`. In order to quantify this phenomenon, we report in Table 1
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Fig. 4.5 Test C. Empirical probability density functions of number of connected fractures
(left) and of number of traces (right).
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Fig. 4.6 Test E. Empirical probability density functions of number of connected fractures
(left) and of number of traces (right).

Test A Test E
s = 100 s = 500 s = 100 s = 500

V 1/(µ̄ML)2 1.2e-01 7.2e-01 1.2e+00 1.8e+00

V L/(µ̄ML)2 3.9e-06 1.5e-04 7.0e-03 2.5e-03

σ2[QL]/(µ̄ML)2 4.2e-03 3.2e-02 3.0e-01 9.0e-02

Table 1 Test A and E. Relative values of V` (` = 1 and ` = L) and σ2[QL]

the relative values (with respect to the mean QoI) of both σ2[QL] and V `.
These values, in Test A, increase with s of at least one order of magnitude.
On the other hand, in Test E the amount of variation introduced is much
higher than in Test A, and it very mildly depends on s. Consequently, not
much difference is seen in the distribution of N` in test E for the two s values,
whereas definitely larger values are needed for Test E than for Test A, as the
larger V` values have to be compensated by larger values of N` in order to
keep the statistical error SEL below the required accuracy (see (11)).
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Fig. 4.7 Number of samples needed at each level. Top: Test A; bottom: Test E. Left:
s = 100; right: s = 500

The results obtained for approximating the mean value are summarized
in Figures 4.8-4.12. In Figure 4.8 we compare the behaviour of MLMC and
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Fig. 4.8 Test A. Approximation of mean value, εr = 0.05. Left: s = 100; right: s = 500.

standard MC for approximating the mean value in Test A, for a given value
of εr. In particular, denoting by µ̄` the partial sums in (9), namely setting
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µ̄` := Q̄1
N1

+
∑`
k=2 Yk, we report in Figure 4.8 the values µ̄`, for ` = 2, . . . , 6,

versus the corresponding computational cost C`, normalized with respect to
the cost of a single simulation at the coarsest level. The values of µ̄` reported
are averaged over 100 runs, and are accompained by vertical error bars which
report the square root of the corresponding MSE. The approximation with
standard MC is obtained using the finest grid which comes into play for MLMC
(the one corresponding to L = 6), and a number of samples which allow to
obtain the same εr accuracy. Also for MC, the value is averaged over 100 runs
and the vertical error reporting the square root of the MSE is reported.

From Figure 4.8 it is clearly noted that, while for s = 100 the two methods
provide essentially the same estimate at the same computational cost, this
is no more true for larger s values. This is again due to the fact that by
increasing the number of stochastic fractures, more variability is introduced
and larger relative values of both σ2[QL] and V ` are obtained, for larger s
(see again Table 1); these values affect the statistical errors of standard MC
and MLMC, respectively, and consequently have an impact on the number of
samples taken; however, the increments highlighted in Table 1 do impact on
SEL to a less extent than on the statistical error for standard MC, as can be
noted by the fact that in Figure 4.8 the final computational cost is not much
different for MLMC for the two s values, whereas it significantly increases for
standard MC.
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Fig. 4.9 Test B. Approximation of mean value, εr = 0.05. Left: s = 100; right: s = 500.

This behavior is confirmed by the comparison with Figure 4.9, in which we
report, for Test B, the same results as Figure 4.8. In this test case, even more
variability is introduced by considering the transmissivity as a random variable
on s fractures. This has a very moderate impact on the computational cost of
MLMC, as it is approximately the same as in Test A; on the other hand, the
impact on the standard MC cost is much higher: this is evident both comparing
Test A and Test B for a fixed s, and considering, in Test B, increasing s values.
Note that the rightmost plot in Figure 4.9 does not report a comparison with
standard MC. This is due to the fact that the number of simulations needed
on the finest grid for reaching the target accuracy is so high that it would
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have required a too high computational cost to perform all the simulations.
We decided to perform no more than 100 simulations on the finest grid, for
these test problems.
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Fig. 4.10 Test C. Errors in the approximation of mean value, εr = 0.03. Top: s = 100;
bottom: s = 500.

A more in-depth analysis on the behavior of the errors can be done looking
at Figure 4.10, which reports, for Test C, s = 100 and s = 500, εr = 0.03,
the mean square errors versus the computational cost, both for MLMC (left)
and for standard MC (right), along with the squared numerical bias and the
statistical error. The plots report data obtained with 5 independent runs. The
behavior is similar for the other s and εr values. The horizontal continuous
line corresponds to 1

2ε
2 (we have used θ = 1

2 in (12)). It can be seen that,
as expected, the numerical bias for standard MC essentially does not change,
independently of the computational cost (dotted lines), and it is always below
the threshold 1

2ε
2; this is in agreement with the choice made for L and ε, which

satisfy (14). On the contrary, for MLMC the numerical bias is quite large on
the coarsest mesh, but it rapidly decreases when increasing `. Concerning the
statistical errors, for standard MC it decreases proportionally to 1

N , whereas

SEML is a slightly increasing sequence with ` (see (11)). The difference in the
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Fig. 4.11 Test D. Approximation of mean value. Top: εr = 0.05; bottom: εr = 0.03. Left:
s = 100; right: s = 500.

computational costs needed by the two methods to reach the target accuracy
is of almost two orders of magnitude for s = 100 and slightly lower for s = 500.

The sensitivity of the two methods to the target accuracy is highlighted in
Figure 4.11, in which we compare, on Test D, two mildly different εr values.
Whilst MLMC is only moderately affected by the different target accuracy,
standard MC suffers the difference to a larger extent. Indeed, note that in all
cases with εr = 0.03 the standard MC approximation is not available, as more
than 100 samples were needed to reach the target accuracy.

All previous considerations may be summarized in a plot with the predicted
computational costs for MLMC and standard MC on Test E, see Figure 4.12.
The plots report, for all the s values considered, the predicted computational
costs for several values of ε. The computational grid used for standard MC
is here related to ε, taking the lowest level which guarantee fullfilment of
condition (14). For the sake of comparison, in the case s = 500 we also report
the reference slope corresponding to the rate predicted by Proposition 1, upon
estimation of α, β, γ; for this example we obtained α = 1.02, β = 1.58, γ = 2.33
and the corresponding reference slope is σ = −2.74. Note that the agreement is
quite good, especially for high accuracies. Note also that, while the difference
in the computational cost of MLMC and standard MC is negligible for low
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accuracies, the computational gain is quite evident for high accuracies, and
MC cost increses at a significantly higher rate.

5 Conclusions

We have presented a comprehensive numerical case study in order to show the
behavior of MLMC applied to the computation of mean value of a quantity
of interest in a discrete fracture network with several fractures characterized
by some stochastic features. We have shown robustness of the approach with
respect to the dimension of the stochastic parameter space, and with respect to
the number of stochastic features. The gain in computational cost with respect
to standard MC is more evident for more complex problems, exhibiting a large
variability of the fracture features.
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Berrone S, Pieraccini S, Scialò S (2016b) Towards effective flow simulations
in realistic discrete fracture networks. J Comput Phys 310:181–201, DOI
http://dx.doi.org/10.1016/j.jcp.2016.01.009

Berrone S, Borio A, Fidelibus C, Pieraccini S, Scialò S, Vicini F (2018a) Ad-
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de Dreuzy JR, Méheust Y, Pichot G (2012) Influence of fracture scale het-
erogeneity on the flow properties of three-dimensional discrete fracture net-
works (dfn). Journal of Geophysical Research: Solid Earth 117(B11)

Ernst OG, Sprungk B, Tamellini L (2018) Convergence of sparse collocation
for functions of countably many gaussian random variables (with application
to elliptic PDEs). SIAM Journal on Numerical Analysis 56:877–905

Fidelibus C, Cammarata G, Cravero M (2009) Hydraulic characterization of
fractured rocks. In: Abbie M, Bedford JS (eds) Rock mechanics: new re-
search. Nova Science Publishers Inc., New York

Formaggia L, Antonietti P, Panfili P, Scotti A, Turconi L, Verani M, Cominelli
A (2014a) Optimal techniques to simulate flow in fractured reservoir. In:
ECMOR XIV-14th European conference on the mathematics of oil recovery

Formaggia L, Fumagalli A, Scotti A, Ruffo P (2014b) A reduced
model for Darcy’s problem in networks of fractures. ESAIM: Math-
ematical Modelling and Numerical Analysis 48:1089–1116, DOI
http://dx.doi.org/0.1051/m2an/2013132

Fries TP, Belytschko T (2010) The extended/generalized finite element
method: an overview of the method and its applications. Internat J Numer
Methods Engrg 84(3):253–304, DOI http://dx.doi.org/10.1002/nme.2914

Fumagalli A, Scotti A (2013) A numerical method for two-phase flow in frac-
tured porous media with non-matching grids. Advances in Water Resources
62:454 – 464, DOI http://dx.doi.org/10.1016/j.advwatres.2013.04.001

Giles MB (2015) Multilevel Monte Carlo methods. Acta Numerica 24:259–328
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