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Equilibrium Propagation for
Memristor-Based Recurrent Neural
Networks
Gianluca Zoppo*, Francesco Marrone and Fernando Corinto

Department of Electronics, Politecnico di Torino, Turin, Italy

Among the recent innovative technologies, memristor (memory-resistor) has attracted

researchers attention as a fundamental computation element. It has been experimentally

shown that memristive elements can emulate synaptic dynamics and are even capable

of supporting spike timing dependent plasticity (STDP), an important adaptation rule

that is gaining particular interest because of its simplicity and biological plausibility. The

overall goal of this work is to provide a novel (theoretical) analog computing platform

based on memristor devices and recurrent neural networks that exploits the memristor

device physics to implement two variations of the backpropagation algorithm: recurrent

backpropagation and equilibrium propagation. In the first learning technique, the use

of memristor–based synaptic weights permits to propagate the error signals in the

network by means of the nonlinear dynamics via an analog side network. This makes the

processing non-digital and different from the current procedures. However, the necessity

of a side analog network for the propagation of error derivatives makes this technique

still highly biologically implausible. In order to solve this limitation, it is therefore proposed

an alternative solution to the use of a side network by introducing a learning technique

used for energy-based models: equilibrium propagation. Experimental results show that

both approaches significantly outperform conventional architectures used for pattern

reconstruction. Furthermore, due to the high suitability for VLSI implementation of the

equilibrium propagation learning rule, additional results on the classification of the MNIST

dataset are here reported.

Keywords: artificial neural network, biologically plausible learning rule, neuromorphic computing, recurrent neural

network, associative memory, memristor

INTRODUCTION

In the last few decades, the search of innovative computing platforms that could offer new,
ultra-low power processing methods and architectures has intensified. Neuromorphic computing
approaches aim to go beyond the state-of-the-art in conventional digital processing by exploiting
complex dynamics and nonlinear phenomena emerging from the physics of nonvolatile memory
devices (e.g., memristors) (Chua, 1971; Strukov et al., 2008). The hallmark of this kind of
devices is the peculiar analog signal storing capability that allows them to mimic the behavior
of neural synapses. The processing is not only analog and different from current digital
processors, but also enhances computing speed and power efficiency for large sets of sensor
data. This has been achieved by combining memristor technology with advanced deep learning
algorithms used to train neural networks. In supervised learning, one of the most popular
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method used for training feedforward neural networks is the
backpropagation algorithm. Although it is considered a powerful
technique, it is computationally expensive and is commonly
labeled as biologically implausible. The generalization of this rule
to continuous-time recurrent networks was first introduced by
Almeida (1987) and Pineda (1988) who independently obtained
the same results. Recurrent backpropagation aims to iteratively
adjust the weight matrix of the network in order to let the system
converge, for fixed input and initial state, to a desired attractor. As
for feedforward neural networks, this is achieved by minimizing
a particular loss function associated to the system parameters
with the difference that the error signal is now backpropagated
by introducing an associated differential equation. This allowed
to avoid the direct gradient’s computations and reduced the large
number of required multiplications. However, the necessity of a
side network for the propagation of error derivatives makes this
technique still highly different from emulating the brain complex
computation. This hypothesis is further supported by the fact that
there is no known mechanism that could explain how an error
message is propagated backwards through the same pathway
of the incoming signal. Recently, Scellier and Bengio (2017)
proposed an alternative solution to the use of a side network
by introducing Equilibrium Propagation, a learning technique
used for energy-based models. The advantage of this approach
is indeed the requirement of just one kind of neural computation
for the training phase of the network. Firstly, inputs are clamped
and the network relaxes to a fixed point which corresponds
to a local minimum of the energy function. Secondly, after
introducing a small external error signal, the network relaxes
to a new but close-by fixed point which now corresponds to
a rather lower cost value. Even though the two methods seem
quite different, it is easy to observe that both share the same
goal, finding low-energy configurations that have low cost values.
The aim of this work is to propose a novel (theoretical) analog
computing platform based on memristor devices and recurrent
neural networks that exploits the memristor device physics to
implement two variations of the backpropagation algorithm.
In the first section, it is provided a brief introduction on
memristors and their peculiar properties useful for the physical
implementation. In the second section, a general introduction on
biological algorithms is presented with particular attention on
recurrent backpropagation and equilibrium propagation. In the
last section, the two techniques are compared with the existing
algorithms used in pattern reconstruction providing results of
their compelling efficiency. Lastly, it is shown the application
of a memristor-based recurrent neural network trained with
equilibrium propagation used for the classification of a small
subset of the MNIST dataset. The choice of using only this
learning rule was mainly dictated by the fact that using a side
network, as in the recurrent backpropagation approach, would
at least double the required IC area.

MEMRISTOR–BASED RECURRENT
NEURAL NETWORK

Massive progress has already been made with neuromorphic
systems based on traditional analog and digital integrated

circuits. Among all the recent alternatives which aim to
emulate neurobiological components and functions, memristive
devices have drawn particular attention (Jo et al., 2010).
Memristors, often termed as Resistive Switching devices, are
single-port electrical dynamical systems whose conduction
properties depend on the history of applied input at the port
(Chua and Sung Mo, 1976). The typical memristor physical
implementation consists of two metal electrodes sandwiching
a switching material. An intuitive connection links these two
electrodes to the corresponding role of axons and dendrites
and the switching layer to the variable interconnection weight
of synapses. The crossbar architecture is probably the most
commonly used computing structure exploiting the memristive
behavior for mapping neural networks in hardware. Its basic
working principle is the application of Kirchhoff’s Current Law
to compute the input to the i-th neuron as the algebraic sum
of the weighted inputs Ii =

∑

j Gijvj. Here, Ii is the i-th input

current, Gij is the connecting memductance between the i-th and
j-th neurons and vj is the output voltage generated by the j-th
neuron. This produces the vector-matrix multiplication in situ
by a single read operation which eliminates the need for constant
bidirectional data transfer from the memory to the computing
unit (Sun et al., 2019).

The most peculiar characteristic of this kind of devices is
the synaptic plasticity effect which is also observed in biological
neural systems. Since conductances can be tuned by controlling
the coordinated activity of pre- and post-synaptic neurons,
memristor-based neural networks can consequently emulate
neurobiological phenomena while mimicking the underlying
learning process. From neurological studies, it turned out that
the neural coding is highly dynamic, therefore recurrent neural
networks seem well suited to model similar behavior and have
been used to investigate the mechanisms adopted by neurons
populations in solving various complex tasks.
For this reason, consider a recurrent neural network and let
each synaptic weight be described by a generic memristor
(see also Corinto et al., 2015; Leon, 2015) that satisfies the
following equations:

{

i = G(x)v
dx
dt

= f (x, v)
(1)

where i is the current, v is the voltage, G(·) is the memductance
and x is the internal state vector. Let the memristor–based
synaptic weight be G(x) = w, with the purpose of giving a formal
description of the network’s learning process, the state vector can
be defined by the two following dynamics:











i = wv
dw
dt

= f1(w, v, y)
dy
dt

= f2(w, v, y)

{

i = wv
dw
dt

= g(w, v) (2)

In the next sections, the derivation of the previously mentioned
variants of the backpropagation algorithm for recurrent neural
network is given in order to clarify the use of the different
choice of the state vector x. Further work is still needed to
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find physical devices that approximate the proposed memristive
synapse dynamics in (2).Manymodels of memristor devices (e.g.,
Phase Change Memory, Resistive NonVolatile Memory, etc.)
have been presented during the last decade but unfortunately the
existing mathematical representations are not suitable for this
kind of investigation. The current approach available in literature
is to embed memristor device in suitable synaptic circuit so that
the dynamics of internal (state) variables can be controlled by
appropriate pulses. Thus, the learning rules can be implemented
by a series of discrete programming pulses that perform the
weights update according to the learning rules defined by the
recurrent backpropagation and the equilibrium propagation
algorithms. This can be obtained bymeans of amplitude/duration
modulation of a voltage (or current) pulse applied on a physical
device via the 1T–1R (one transistor–onememristor) architecture
(see Liu et al., 2015; Merced-Grafals et al., 2016). An alternative
approach is based on the use of emulator of generic memristors
(Ascoli et al., 2016; Assaf et al., 2019) such that the dynamics
in (2) can be obtained. Although the physical realization of
memristor synapses is a challenging problem, its investigation
is out of the scope of the present work that aims to show
howmemristor–based recurrent neural networks withmemristor
synapses support equilibrium propagation algorithms. A further
study will be devoted to tackle the implementation of proposed
memristor synapses.

BIOLOGICALLY-PLAUSIBLE LEARNING
ALGORITHMS

The rules that govern the learning process in the brain are
poorly understood. Despite the great success of deep learning
in a wide variety of complex tasks (LeCun et al., 2015),
learning rules in the brain are most likely local and strictly
feedforward. Theoretical analysis of biological neural networks
showed indeed that connections between neurons are mostly
strengthened depending on the coordinated activity of pre-
synaptic and post-synaptic cells rather than computations of
all downstream neurons (Hebb, 1949; Gerstner et al., 2014).
Therefore nowadays, there is an increasing interest in machine
learning and computational neuroscience in the study of neuron-
like architecture with local learning rules that aim to approximate
the surprising efficiency of the backpropagation training process.
Many bio-plausible approaches include feedback allignment
(Lillicrap et al., 2016), target propagation algorithms (Lee et al.,
2015), membrane potential based backpropagation algorithm
(Lee et al., 2016), equilibrium propagation (Scellier and Bengio,
2017), etc. See for example Whittington and Bogacz (2019)
for an extensive review. Since neurological research suggests
that the neural representation is highly dynamic, models based
on recurrent neural networks seem well suited to capture
similar behavior and therefore have been used to investigate
the mechanisms by which neural populations solve various
computational problems. In order to take advantage of the
intrinsic nonlinear dynamics of the system, two learning
techniques for continuous time recurrent neural networks were
mainly considered: recurrent backpropagation and equilibrium

propagation. Even though the latter shows a more suitable
affinity for VLSI implementations (Scellier and Bengio, 2017), the
former represents the first attempt in approaching energy-based
models from a supervised point of view and therefore is worth
being mentioned and compared. In the next subsections, it is
provided a brief introduction to the construction and derivation
of both algorithms.

Recurrent Backpropagation
Consider a Recurrent Neural Network (RNN) whose state vector
v evolves according to:

dvi

dt
= −vi + gi





N
∑

j=1

wijvj + Ii



 , i = 1, . . . ,N (3)

where N is the number of neurons of the network and Ii is
an external input to the i-th neuron. There is no restriction
on the choice of the activation function gi as long as it is
monotone and differentiable (Pineda, 1988). In the most general
case, neurons can be considered either as input, output or hidden
units depending on the application. The goal of the algorithm
is to adjust the weights wij so that, for a given initial condition
v0 = v(t0) and a given vector of input I, the RNN (3) converges to
a desired fixed point v∞ = v(t∞). This is obtained byminimizing
a loss function E which measures the euclidean distance between
the desired fixed point and the actual fixed point:

E =
1

2

N
∑

i=1

J2i =
1

2

N
∑

i=1

(Ti − v∞i )2 (4)

where Ti is the i-th desired output state component and Ji is the
i-th component of the difference between the current fixed point
v∞i and the target point Ti. Observe that E depends on the weight
matrix W through the fixed point v∞(W, I). Therefore, one way
to drive the system to converge to a desired attractor is to let
it evolve in the weight parameter space along trajectories which
have opposite direction of the gradient of E:

dwij

dt
= −η

∂E

∂wij
= η

N
∑

k=1

Jk
∂v∞

k

∂wij
, η > 0 (5)

where η is the learning rate. The derivative of v∞
k

with respect to
wij is derived by observing that the fixed points of (3) must satisfy
the nonlinear equation:

v∞k = gk

(

N
∑

s=1

wksv
∞
s + Ik

)

. (6)

Differentiating (6) with respect to wij one obtains (for more
details see the Appendix):

∂v∞
k

∂wij
= (δki − g′k(Î

∞
k )wki)

−1g′i (Î
∞
i )v∞j (7)

where δki is the kronecker delta. Unfortunately, (7) requires
the computation of a reciprocal for computing the weights’
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update and therefore Pineda (1988) bypassed this problem
by considering

yi = g′i (Î
∞
i )

N
∑

k=1

Jk(δki − g′k(Î
∞
k )wki)

−1 (8)

which can be seen as the steady state of the following
side network:

dyk

dt
= −yk + g′k(Î

∞
k )

(

N
∑

i=1

wikyi + Jk

)

. (9)

In conclusion, the weights’ update rule is defined by:

dwij

dt
= ηy∞i v∞j (10)

which is therefore dependent on the corresponding fixed points
of the dynamical systems (3) and (9). Here is the summary of the
whole learning process:

1) Firstly, (3) evolves starting from a random initial condition
and converges to the corresponding fixed point v∞;

2) Secondly, (9) evolves starting again from a random initial
condition and converges to the corresponding fixed point y∞;

3) Lastly, the weights of the matrixW are updated according to

1wij = ηy∞i v∞j , η > 0. (11)

Equilibrium Propagation
Consider now the following energy function E:

E(v) =

N
∑

i=1

v2i
2

−
1

2

N
∑

i,j=1

wijgi(vi)gj(vj)−

N
∑

i=1

Iigi(ui) (12)

where N is the number of neurons of the network and Ii is an
external input to the i-th neuron. Again, there is no restriction
on the choice of the activation functions gi(·) ∀i = 1, . . . ,N
as long as they are differentiable and monotone. Assume that
the time evolution of the state variable v is governed by the
gradient dynamics:

dvi

dt
= −

∂E

∂vi
= −vi+g

′

i (vi)





N
∑

j=1

wijgi(vj)+ Ii



 , i = 1, . . . ,N

(13)
Observe that, the network is recurrently connected with
symmetric connections (i.e., wij = wji). Typically in the
supervised learning framework, the output units aim to recreate
their targets T. The deviation of the fixed points v∞, output
values of the network, from the targets T is measured by the
quadratic loss function:

C =
1

2

N
∑

i=1

(Ti − vi)
2 (14)

Observe that this function is defined for any state of v. The central
idea of Equilibrium Propagation is to introduce the augmented
energy function:

F(v,W,T) = E(v,W)+ βC(v,W,T)

v,T ∈ R
N ,W ∈ R

N×N ,β ≥ 0 (15)

and replace the free dynamics with the augmented dynamics:

dvi

dt
= −

∂F

∂vi
(16)

Here, the second term −β ∂C
∂vi

gradually pushes v toward
configurations that have lower cost values. This is done, as in
the previous model, by simply adjusting W so as to minimize
the cost value of the fixed point. Now, in order to derive
the corresponding learning rule, let us introduce the following
objective function

J(W) = C(v∞,W,T) v,T ∈ R
N ,W ∈ R

N×N (17)

Observe that J(W) is the cost at the fixed point. The equilibrium
propagation algorithm estimates the gradient ∂J

∂W based on
measures at the fixed points of the free and the augmented
dynamics that we will set as v∞ and v∞β . Scellier and Bengio
(2017), indeed, proved the following statement:

∂J

∂W
= lim

β→0

∂F
∂W (v∞β )− ∂F

∂W (v∞)

β
(18)

offering an alternative way to estimate the gradient of the
objective function. Therefore, the network follows the following
dynamics for the training phase:

1) Firstly, T is clamped and the network follows the free
dynamics (13) relaxing to the free fixed point v∞ where
∂F
∂W (v∞) is measured (free phase);

2) Secondly, the influence parameter is introduced and the
network relaxes to a new but nearby fixed point v∞β where
∂F
∂W (v∞β ) is measured (weakly clamped phase).

3) Lastly, the weights of the matrixW are changed according to
(18) and updated as follows:

1wij ∝ + η[gi(v
β ,∞
i )gj(v

β ,∞
j )− gi(v

∞
i )gj(v

∞
j )], η > 0.

(19)

IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, it is first provided an experimental evidence
of the two models’ efficiency in a pattern reconstruction task.
Afterwards, an example on the classification of a subset of
MNIST dataset is here reported using equilibrium propagation
as learning rule.
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FIGURE 1 | In the left panel, the dataset of all the 16 patterns to be learnt. In the right panel, a graphical representation of the corresponding patterns’ correlation

matrix computed with the Pearson correlation coefficient.

FIGURE 2 | Accuracy for different radius of connectivity. On the left, the results obtained by using Recurrent Backpropagation and on the right, the results obtained by

using Equilibrium Propagation. p is the probability of flipping each pixel of the image from white to black and viceversa.

Pattern Reconstruction
In this section, a comparison between the two aforementioned
training algorithms for pattern’s reconstruction task is presented.
For this kind of application, input units are chosen to be
simultaneously output units and no hidden units are considered.
Moreover, due to the construction of the gradient dynamics
(13), symmetric weights were chosen for both methods. This
condition also guarantees the convergence of the model (3).
During the training phase, each image shown in Figure 1 is
repeatedly proposed to the network by means of a constant
input I until it is memorized. In the case of multiple patterns
to be learnt, the previous steps are performed for each single
image of the dataset for different epochs. Here patterns were
shown to the network in the same order for each epoch
but this choice was not restrictive since similar performances
were obtained even in the case the images were proposed
in a random fashion. In order to train the network, the
following hyperparameters and initial conditions were set for the
training phase:

- Random initialization of the state variable v;

- In the recurrent backpropagation case, each single time the

first state variable converges, the second variable is reset to

y(0) = (0.5, . . . , 0.5)T ∈ R
N ;

- The matrix W is symmetric and initialized with uniform
random values between [−0.1; 0.1];

- The activation functions gi ∀i = 1, . . . ,N are hyperbolic
tangent functions;

- The learning parameter η = 0.01;

- The number of epoch is 300.
- Time spans for the simulation of the dynamics systems are

chosen in order to guarantee the convergence of the state

variables.

With the aim of assessing the applicability of this method in VLSI
implementation, a short analysis on the importance of local-
global connections of the network’s neurons was performed.
For further details on the relation of the topology and the
computational performance of attractor neural networks refer
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to McGraw and Menzinger (2003), Hasler and Marr (2013) or
Stauffer et al. (2003), Tanaka et al. (2019) for additional results
on current approaches for enhancing the energy efficiency of
hardware-level neural networks bymeans of sparse and less costly
number of connections. Here, for sake of simplicity, a simpler
investigation was carried out by increasingly disconnecting
global connections arising from a full matrix by simply setting to
zero all the elements that were located outside a band about the
main diagonal. In order to test the network, corrupted patterns
were created by flipping, with probability p, each pixel of the
image from white to black and viceversa. The cut of K outer
diagonals from the matrix reduces the number of synapses from
N2 to N2 − K(K + 1). In this analysis, a corrupted pattern is
recognized as reconstructed if the least square error with respect
to the original images is equal to 0. The validation was carried
out by testing the recovery capabilities of the network against
5000 corrupted patterns for each class shown in Figure 1. The
results obtained by both methods are shown in Figure 2 with
different levels of test images’ corruption (e.g., p = 0.10, p = 0.15,
p = 0.20, and p = 0.25). It is easy to see that both methods seem
to reach promising and equally meaningful results in the case of
fully connected networks. However, Equilibrium Propagation is
able to get better results even with a small amount of connections.
This fact, together with the absence of a side network really
motivates us to investigate this method as a solution worth to be
considered for a VLSI implementation. This improvement might

FIGURE 3 | Mean accuracy over 1000 reconstructed patterns for different

number of epochs using Equilibrium Propagation (in blue) and Recurrent

Backpropagation (in orange).

be induced by the noisy estimator of the gradient given by (19)
that helps the network to efficiently explore the parameter space
by avoiding to get stuck in local minima. This might be further
seen in Figure 3 where good values of accuracy are already
obtained by Equilibrium Propagation in the first 50 epochs
whereas Recurrent Backpropagation needs at least 300 epochs.
In last analysis, in order to assess the efficiency of the two novel
methods, it is additionally performed a comparison with two of
the most used learning rules for training networks in associative
memory’s tasks. It is well known that a standard Hopfield model
trained on uncorrelated patterns with the Hebbian rule has an
approximate capacity of 0.14N (N is the number of units in
the network) (McEliece et al., 1987). Unfortunately, this capacity
decreases significantly if patterns are correlated. To overcome
this problem, a novel learning method has been introduced by
Storkey (1997). The Storkey learning rule presents indeed a
significantly improved performance over the standard Hopfield
model, both with correlated and uncorrelated data.
However, as shown in Table 1 and in the examples of Figure 4,
the results provide evidence that both recurrent backpropagation
and the equilibrium propagation algorithms are perfectly able to
reconstruct even in the presence of correlated patterns.

Pattern Classification
As a second experimental result, it is now provided an application
of the model introduced by Scellier and Bengio (2017) in a
pattern classification task of a subset of the MNIST dataset: 5
classes and 600 patterns for each class. The model used here is
still a recurrent neural network with symmetric connections, 1
hidden layer, no skip-layer and no lateral connections. Following
Scellier and Bengio (2017), a hard sigmoid was chosen as
activation function and the training process was performed by
iterating the successive steps:

1) Fix the pattern as a constant input;
2) Run the free phase until convergence of the hidden and the

outputs units may be reached and collect g(v∞i )g(v∞j );

3) Run the weakly clamped phase until convergence and collect

g(v
β ,∞
i )g(v

β ,∞
j );

4) Update the synaptic weights according to (19).

In order to perform the training process, (16) was first discretized
into short time lapses of duration ǫ as follows:

vt+1 = vt − ǫ
∂F

∂vi
(20)

However, as suggested by Scellier and Bengio (2017), the state
variable should be bounded between 0 and 1 and therefore a

TABLE 1 | Accuracy for each single learning rule over 1,000 corrupted images, with probability 0.1, for each of the 16 classes.

Hebbian rule Storkey rule Recurrent BackProp rule Equilibrium Propagation rule

Accuracy 0.1792 0.2663 0.9968 0.9971
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FIGURE 4 | From the top row: six corrupted patterns with probability p = 0.1, reconstructed pattern with hebbian rule, Storkey rule, recurrent backpropagation rule,

Equilibrium Propagation rule and in the last row the target patterns.

slightly different update rule was used:

vt+1 = g

(

vt − ǫ
∂F

∂vi

)

(21)

where g(·) is the hard sigmoid function. The predicted value
corresponds to the index of the output units which reached the
maximum value among all the others. All the hyperparameters
chosen were in accordance with the suggestions proposed in
Scellier and Bengio (2017): the learning rate ǫ = 0.5 is used for
the iterative inference, β = 1 is the value of the clamping factor
in the second phase, α1 = 0.1,α2 = 0.05 are the two different
learning rates for updating the parameters in the first and second
layer. Observe that the authors were not considering a single
learning rate η as in (19). However, instead of choosing a random
sign for β for the second phase, the two learning parameters
α1,α2 were decreased by half after each epoch. The results are
shown in Figure 5 and are consistent with the findings described
in Scellier and Bengio (2017).

CONCLUSIONS

In this paper, the dynamics of memristor–based recurrent
neural networks has been analyzed. The network is trained
by using two different generalizations of the backpropagation
algorithm adapted to the continuous domain and energy-based
models. Such in situ training learning rules permit to the
memristor–based neural network to continuously adapt and
adjust the synaptic weights without the direct computation
of the loss function’s gradient. Although, further work is

FIGURE 5 | Error rates of the trained neural network over 100 random

patterns chosen among the training set (in orange) and 100 patterns from the

test set (in blue) using Equilibrium Propagation learning rule.

still necessary to find physical memristor devices/emulators
approximating the proposed memristive synapse dynamics,
this manuscript provides two learning rules for the weights’
update that can be implemented by a series of discrete
programming pulses. Simulated results make clear that both
methods significantly outperform conventional approach used
for pattern reconstruction. In addition, promising results are
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also obtained by using equilibrium propagation in performing
classification tasks.
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