
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage / Pierdicca, Roberto;
Paolanti, Marina; Matrone, Francesca; Martini, Massimo; Morbidoni, Christian; Malinverni, Eva Savina; Frontoni,
Emanuele; Lingua, Andrea Maria. - In: REMOTE SENSING. - ISSN 2072-4292. - ELETTRONICO. - 12:6(2020), p. 1005.
[10.3390/rs12061005]

Original

Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage

Publisher:

Published
DOI:10.3390/rs12061005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2805072 since: 2020-03-22T11:26:40Z

MDPI



remote sensing  

Article

Point Cloud Semantic Segmentation Using a Deep
Learning Framework for Cultural Heritage

Roberto Pierdicca 1 , Marina Paolanti 2,* , Francesca Matrone 3 , Massimo Martini 2 ,
Christian Morbidoni 2 , Eva Savina Malinverni 1 , Emanuele Frontoni 2

and Andrea Maria Lingua 3

1 Dipartimento di Ingegneria Civile, Edile e dell’Architettura, Università Politecnica delle Marche,
60100 Ancona, Italy; r.pierdicca@univpm.it (R.P.); e.s.malinverni@univpm.it (E.S.M.)

2 Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60100 Ancona, Italy;
m.martini@pm.univpm.it (M.M.); c.morbidoni@univpm.it (C.M.); e.frontoni@univpm.it (E.F.)

3 Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino,
10129 Torino, Italy; francesca.matrone@polito.it (F.M.); andrea.lingua@polito.it (A.M.L.)

* Correspondence: m.paolanti@pm.univpm.it

Received: 27 February 2020; Accepted: 16 March 2020; Published: 20 March 2020
����������
�������

Abstract: In the Digital Cultural Heritage (DCH) domain, the semantic segmentation of 3D Point
Clouds with Deep Learning (DL) techniques can help to recognize historical architectural elements,
at an adequate level of detail, and thus speed up the process of modeling of historical buildings for
developing BIM models from survey data, referred to as HBIM (Historical Building Information
Modeling). In this paper, we propose a DL framework for Point Cloud segmentation, which employs
an improved DGCNN (Dynamic Graph Convolutional Neural Network) by adding meaningful
features such as normal and colour. The approach has been applied to a newly collected DCH Dataset
which is publicy available: ArCH (Architectural Cultural Heritage) Dataset. This dataset comprises
11 labeled points clouds, derived from the union of several single scans or from the integration
of the latter with photogrammetric surveys. The involved scenes are both indoor and outdoor,
with churches, chapels, cloisters, porticoes and loggias covered by a variety of vaults and beared
by many different types of columns. They belong to different historical periods and different styles,
in order to make the dataset the least possible uniform and homogeneous (in the repetition of the
architectural elements) and the results as general as possible. The experiments yield high accuracy,
demonstrating the effectiveness and suitability of the proposed approach.

Keywords: classification; semantic segmentation; Digital Cultural Heritage; Point Clouds;
Deep Learning

1. Introduction

In the Digital Cultural Heritage (DCH) domain, the generation of 3D Point Clouds is, nowadays,
the more efficient way to manage CH assets. Being a well-established methodology, the representation
of CH artifacts through 3D data is a state of art technology to perform several tasks: morphological
analysis, map degradation or data enrichment are just some examples of possible ways to exploit
such rich informative virtual representation. Management of DCH information is fundamental
for better understanding heritage data and for the development of appropriate conservation
strategies. An efficient information management strategy should take into consideration three main
concepts: segmentation, organization of the hierarchical relationships and semantic enrichment [1].
Terrestrial Laser Scanning (TLS) and digital photogrammetry allow to generate large amounts of
detailed 3D scenes, with geometric information attributes depending on the method used. As well,
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the development in the last years of technologies such as Mobile Mapping System (MMS) is
contributing the massive 3D metric documentation of the built heritage [2,3]. Therefore, Point Clouds
management, processing and interpretation is gaining importance in the field of geomatics and
digital representation. These geometrical structures are becoming progressively mandatory not only
for creating multimedia experiences [4,5], but also (and mainly) for supporting the 3D modeling
process [6–9], where even neural networks are lately starting to be employed [10,11].

Simultaneously, the recent research trends in HBIM (Historical Building Information Modeling)
are aimed at managing multiple and various architectural heritage data [12–14], facing the issue
of transforming 3D models from a geometrical representation to an enriched and informative data
collector [15]. Achieving such result is not trivial, since HBIM is generally based on scan-to-BIM
processes that allow to generate a parametric 3D model from Point Cloud [16]; these processes,
although very reliable since they are made manually by domain experts, have two drawbacks that
are noteworthy: first, it is very time consuming and, secondly, it wastes an uncountable amount of
data, given that a 3D scanning (both TLS or Close Range Photogrammetry based), contains much more
information than the ones required for describing a parametric object. The literature demonstrates
that, up to now, traditional methods applied to DCH field still make extensive use of manual
operations to capture the real estate from Point Clouds [17–20]. Lately, towards this end, a very
promising research field is the development of Deep Learning (DL) frameworks for Point Cloud such
as Point- Net/Pointnet++ [21,22] open up more powerful and efficient ways to handle 3D data [23].
These methods are designed to recognize Point Clouds. The tasks performed by these frameworks
are: Point Cloud classification and segmentation. The Point Cloud classification takes the whole Point
Cloud as input and output the category of the input Point Cloud. The segmentation aims at classifying
each point to a specific part of the Point Cloud [24]. Albeit the literature for 3D instance segmentation
is limited, if compared to its 2D counterpart (mainly due to the high memory and computational cost
required by Convolutional Neural Network (CNN) for scene understanding [25–27]), these frameworks
may facilitate the recognition of historical architectural elements, at an appropriate level of detail,
and thus speeding up the process of reconstruction of geometries in the HBIM environment or in
object-oriented software [28–31]. To the best of our knowledge, these methods are not applied for the
automatic recognition of DCH elements yet. In fact, even if they revealed to be suitable for handling
Point Cloud of regular shapes, DCH goods are characterised by complex geometries, highly variable
between them and defined only with a high level of detail. In [19], the authors study the potential
offered by DL approaches for the supervised classification of 3D heritage obtaining promising results.
However, the work does not cope with the irregular nature of CH data.

To address these drawbacks, we propose a DL framework for Point Cloud segmentation, inspired
by the work presented in [32]. Instead of employing individual points like PointNet [21], the approach
proposed in [32] exploits local geometric structures by constructing a local neighborhood graph
and applying convolution-like operations on the edges connecting neighboring pairs of points.
This network has been improved by adding relevant features such as normal and HSV encoded
color. The experiments has been performed to a completely new DCH dataset. This dataset comprises
11 labeled points clouds, derived from the union of several single scans or from the integration of the
latter with photogrammetric surveys. The involved scenes are both indoor and outdoor, with churches,
chapels, cloisters, porticoes and archades covered by a variety of vaults and beared by many different
types of columns. They belong to different historical periods and different styles, in order to make the
dataset the least possible uniform and homogeneous (in the repetition of the architectural elements)
and the results as general as possible. In contrast to many existing datasets, it has been manually
labelled by domain experts, thus providing a more precise dataset. We show that the resulting network
achieves promising performance in recognizing elements. A comprehensive overall picture of the
developed framework is reported in Figure 1. Moreover, the research community dealing with Point
Cloud segmentation can benefit from this work, as it makes available a labelled dataset of DCH
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elements. As well, the pipeline of work might represent a baseline for further experiments from other
researchers dealing with Semantic Segmentation of Point Clouds with DL approaches.

Figure 1. DL Framework for Point Cloud Semantic Segmentation.

The main contributions of this paper with respect to the state-of-the-art approaches are: (i) a DL
framework for DCH semantic segmentation of Point Cloud, useful for the 3D documentation of
monuments and sites; (ii) an improved DL approach based on DGCNN with additional Point Cloud
features; (iii) a new DCH dataset that is publicly available to the scientific community for testing
and comparing different approaches and iv) the definition of a consistent set of architectural element
classes, based on the analysis of existing standard classifications.

The paper is organized as follows. Section 2 provides a description of the approaches that were
adopted for Point Clouds semantic segmentation . Section 3 describes our approach to present a
novel DL network operation for learning from Point Clouds, to better capture local geometric features
of Point Clouds and a new challenging dataset for the DCH domain. Section 4 offers an extensive
comparative evaluation and a detailed analysis of our approach. Finally, Section 6 draws conclusions
and discuss future directions for this field of research.

2. State of the Art

In this section we review the relevant literature concerning the classification and semantic
segmentation for digital representation of cultural heritage. We then focus on the semantic segmentation
of Point Cloud data, discussing different existing approaches.

2.1. Classification and Semantic Segmentation in the Field of Dch

In the field of CH, the classification and semantic segmentation associated with DL techniques,
can help to recognize historical architectural elements, at an adequate level of detail, and thus speed
up the process of reconstructing geometries in the BIM environment. To date, there are many studies
in which Point Clouds are used for the recognition and reconstruction of geometries related to BIM
models [29–31], however these methods have not been applied to DCH yet and do not fully exploit DL
strategies. Cultural assets are in fact characterized by more complex geometries, very variable even
within the same class and describable only with a high level of detail, making therefore much more
complicated to apply DL strategies to this domain.

Despite some works that attempt at classifying DCH images by employing different kinds of
techniques [33–36] already exist, there are still few researches who seek to directly exploit the Point
Clouds of CH for semantic classification or segmentation through ML [37] or DL techniques. One of
them is [38], where a segmentation of 3D models of historical buildings is proposed for FEA analysis,
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starting from Point Clouds and meshes. Barsanti et al. tested some algorithms such as the region
growing, directly on the Point Clouds, proving its effectiveness for the segmentation of flat and
well-defined structures, nevertheless more complex geometries such as curves or gaps have not been
correctly segmented and the computational times increased considerably. Some software were then
tested for the direct segmentation of the meshes, but in this case the results show that the process is still
completely manual and, in the only case in which the segmentation is semi-automatic, the software is
not able to manage large models, thus it is necessary to split the file and proceed to the analysis of
single portions. Finally, it should be emphasized that the case study used for mesh segmentation (The
Neptune Temple in Paestum) is a rather regular and symmetrical architecture, hence relatively easy to
segment on the basis of some horizontal planes.

As Point Clouds are geometric structures of irregular nature, characterized by the lack of a grid,
with a high variability of density, unordered and invariant to transformation and permutation [39],
their exploitation with DL approaches is still not straightforward and it is even more challenging when
dealing with DCH oriented dataset.

At the best of our knowledge, the only recent attempt to use DL for the semantic classification
of Point Clouds of DCH is [19]. The method described consists of a workflow composed of feature
extraction, feature selection and classification, as proposed in [40], for the subdivision into a high
level of detailed architectural elements, using and comparing both ML and DL strategies. For the ML,
among all the classifiers, the authors use the Random Forest (RF) and One-vs.-One, optimizing the
parameters for the RF by choosing those with the value of the higher F1-score in Scikit-learn. In this way,
they achieve excellent performances in most of the classes identified, however no feature correlation
has been carried out and, most of all, the different geometric features are selected depending on the
peculiarities of the case study to be analyzed. On the other side, for the DL approaches, they use a 1D
and a 2D CNN, in addition to Bi-LSTM RNN which is usually used for the prediction of sequences or
texts. The choice of this type of neural networks is due to the interpretation of the Point Cloud as a
sequence of points, nevertheless the results of the ML outperfom those of DL. This could be due to
the choice of not using any of the recent networks designed specifically for taking into account the
third dimension of the Point Cloud data. Furthermore, the test phase of the DL is carried out on the
remaining part of the Point Cloud, very similar to the data presented in the training phase, so this
setting does not generalize adequately the methodology proposed.

Based on the above considerations, in this work some of the latest state-of-art NNs for 3D data
have been selected and compared. Moreover, we intend to set up a method that generalizes as much
as possible, with case studies one different from the other and with a parameter setting equal for all
the scenes, so as to diminish human involvement.

2.2. Semantic Segmentation of Point Clouds

As well stated in the literature, thanks to their third dimension, Point Clouds can be exploited not
only for the 3D reconstruction and modeling of buildings or architectural elements, but also for object
detection in many other areas such as, for example, robotics [41], indoor navigation or autonomous
navigation [42,43], urban environments [44–46], and it is just in these fields that the exploitation of
Point Clouds has been mainly developed. Currently, Point Cloud semantic segmentation approaches
in the DL framework can be divided in three categories [47]:

• Multiview-based: creation of a set of images from Point Clouds, on which ConvNets can be applied,
having shown to achieve very high accuracy both in terms of classification and segmentation;

• Voxel-based: rasterization of Point Clouds in voxels, which allow to have an ordered grid of Point
Clouds, while maintaining the continous properties and the third dimension, thus permitting the
application of CNNs;

• Point-based: the classification and semantic segmentation are performed by applying
features-based approaches; the DL has shown good results in numerous fields, but has not
been applied to DCH oriented dataset yet.
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A natural choice for the 3D reconstruction in the BIM software is to explore Point Cloud
segmentation methods directly on the raw data. Over recent years, several DL approaches are emerging.
In contrast to multiview-based [48–52] and voxel-based approaches [41,43,53,54], such approaches do
not need specific pre-processing steps, and have been proved to provide state-of-the-art performances
in semantic segmentation and classification task on standard benchmarks. Since the main objective of
this work is to directly exploit the three-dimensionality of Point Clouds, a comprehensive overview of
the multiview and voxel based methods is out of the scope, therefore only the point-based methods
will be detailed.

One of the pioneer and best known DL architectures that works directly on Point Clouds is
PointNet [21], an end-to-end deep neural network able to learn itself the features for classification,
part segmentation and semantic segmentation. It is composed by a sequence of MLPs that first explore
the point features and then identify the global features, through the approximation of a symmetric
function, the max pooling layer, that also allows to obtain the input permutation invariance. Finally,
fully connected layers aggregate the values for labels prediction and classification. However, as stated
by the authors, since PointNet does not capture the local geometries, a development has been proposed,
PointNet++ [22]. In this research, a hierarchical grouping is introduced to learn local features thanks to
the exploitation of the metric space distances, a good robustness and detail capture has been ensured
by the consideration of local neighbourhoods and improved results if compared with their state-of-art
have been obtained. Inspiring from PointNet and PointNet++, the works on 3D DL aim at putting
attention on feature augmentation, principally to local features and relationships among points. This is
done by utilising knowledge from other fields to improve the performance of the basic PointNet and
PointNet++ algorithms.

Several researchers have preferred a substitute to PointNet, applying the convolution as an
essential and compelling component, with their deeper understanding on point-based learning.
PointCNN adopted a X- transformation instead of symmetric functions to canonicalize the order,
which is a generalization of CNNs to feature learning from unorderd and unstructured Point
Clouds [55]. SParse LATtice Networks (SPLATNet) has been proposed as a Point Cloud segmentation
framework that could join 2D images with 3D Point Clouds [56].

As regards to convolution kernels as nonlinear functions of the local coordinates of 3D points
comprised of weight and density functions, in [57], it has been presented PointConv, an extension to
the Monte Carlo approximation of the 3D continuous convolution operator.

Alternative development of PointNet and PointNet++ are [58–60] where the features are learnt
in a hierarchical manner, in particular [58], uses the Kd-trees to subdivide the space and try to take
local info into account by also applying a hierarchical grouping. As stated in [61], in the Klokov’s
work the Kd-trees are used as underlying graphs to simulate CNNs and the idea to use graphs for
neural networks has been carried out by various researches as [24,32,62,63]. Their use, in recent years,
has grown above all thanks to the fact that they have many elements in common with CNNs [43],
in fact the main elements of the latter such as local connections, the presence of weights and the use
of multi-layers, are also characteristic of graphs. Wang et al. [64] have introduced a Graph Attention
Convolution (GAC), in which kernels could be dynamically adapted to the structure of an object.
GAC can capture the structural features of Point Clouds while avoiding feature contamination between
objects. In [62], Landrieu and Simonovsk have proposed SuperPoint Graph (SPG) for achieving richer
edge features, offering a representation of the relationships among object parts rather than points.
In the partition of the superpoint there is a kind of nonsemantic presegmentation and a downsampling
step. After SPG construction, each superpoint is embedded in a basic PointNet network and then
refined in Gated Recurrent Units (GRUs) for Point Cloud seantic segmentation. In the DGCNN [32] the
authors reason on the neighborhood, rather than on the single points, building a neighborhood graph
that allows to exploit the local geometric structures. With the use of an edge convolutional operator,
eventually interleaved with pooling, the process relies on the identification of edge features able to
define the relationship between the center point chosen and the edge vector connecting its neighbors
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to itself. The application of a further K-nn of a point, changing from layer to layer, renders the graph
dynamic and allows to calculate the proximity both in the feature space and in the Euclidean one.
The advantage of using Dynamic graphs is that they allow to dynamically vary the input signals and,
in the case of the DGCNN, they have shown excellent results for classification, part segmentation and
indoor scene segmentation respectively tested on the ModelNet40, ShapeNet and S3DIS datasets.

Another example is [24], a recent development of [32], in which the authors try to reshape
the dimensions of the DGCNN by eliminating the transformation network, used to solve the
transformation invariance problem, using MLP to extract the transformation invariant features. It has
been noticed that the DGCNN is able to work properly even with very different Point Clouds of
considerable size (> 10 M points), see Table 1, while PointNet++ is less generalizable, it seems to have
good performances mainly with small datasets and simple classes as the case of ScanNet.
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Table 1. Number of points per class and overall for the whole scene. The point cloud of the Trompone church has been split into right (r) and left (l) part according to
the tests conducted in Section 4.

Scene/class Arc Column Decoration Floor Door Wall Window Stairs Vault Roof TOTAL

0 1 2 3 4 5 6 7 8 9

TR_cloister 900,403 955,791 765,864 1,948,029 779,019 10,962,235 863,792 2806 2,759,284 1,223,300 21,160,523

TR_church_r 466,472 658,100 1,967,398 1,221,331 85,001 3,387,149 145,177 84,118 2,366,115 0 10,380,861

TR_church_l 439,269 554,673 1,999,991 1,329,265 44,241 3,148,777 128,433 38,141 2,339,801 0 10,022,591

VAL 300,923 409,123 204,355 1,011,034 69,830 920,418 406,895 0 869,535 0 4,192,113

CA 17,299 172,044 0 0 30,208 3,068,802 33,780 11,181 0 1,559,138 4,892,452

SMG 309,496 1,131,090 915,282 1,609,202 18,736 7,187,003 137,954 478,627 2,085,185 7,671,775 21,544,350

SMV_1 46,632 314,723 409,441 457,462 0 1,598,516 2011 274,163 122,522 620,550 3,846,020

SMV_naz 472,004 80,471 847,281 1,401,120 42,362 2,846,324 16,559 232,748 4,378,069 527,490 10,844,428

SMV_24 146,104 406,065 154,634 20,085 469 366,2361 6742 131,137 305,086 159,480 4,992,163

SMV_28 36,991 495,794 18,826 192,331 1,965,782 4481 13,734 184,261 197,679 3,109,879

SMV_pil 584,981 595,117 1,025,534 1,146,079 26,081 7,358,536 313,925 811,724 2,081,080 3,059,959 17,003,016

SMV_10 0 16,621 0 125,731 0 1,360,738 106,186 113,287 0 499,159 2,221,722

TOTAL 3,720,574 5,789,612 8,308,606 10,461,669 1,095,947 47,466,641 2,165,935 2,191,666 17,490,938 15,518,530 114,210,118
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3. Materials and Methods

In this section, we introduce the DL framework as well as the dataset used for evaluation.
The framework, as said in the introduction section, is depicted in Figure 1. We use a novel modified
DGCNN for Point Cloud semantic segmentation. Further details are given in the following subsections.
The framework is comprehensively evaluated on the ArCH Dataset, a publicly available dataset
collected for this work.

3.1. ArCH Dataset for Point Cloud Semantic Segmentation

In the state of the art, the most used datasets to train neural networks are: ModelNet 40 [53] with
more than 100k CAD models of objects, mainly furnitures, from 40 different categories; KITTI [65] that
includes camera images and laser scans for autonomous navigation; Sydney Urban Objects [66] dataset
acquired with Velodyne HDL-64E LiDAR in urban environments with 26 classes and 631 individual
scans; Semantic3D [67] with urban scenes as churches, streets, railroad tracks, squares and so on;
S3DIS [68] that includes mainly office areas and it has been collected with the Matterport scanner
with 3D structured light sensors and the Oakland 3-D Point Cloud dataset [69] consisting of labeled
laser scanner 3D Point Clouds, collected from a moving platform in a urban environment. Most of
the current datasets collect data from urban environments, with scans composed of around 100 K
points, and to date there are still no published datasets focusing on immovable cultural assets with an
adequate level of detail.

Our proposed dataset, named ArCH (Architectural Cultural Heritage) is composed of 11 labeled
scenes (Figure 2), derived from the union of several single scans or from the integration of the latter
with photogrammetric surveys. There are also as many Point Clouds which, however, have not been
labeled yet, so they have not been used for the tests presented in this work.

The involved scenes are both indoor and outdoor, with churches, chapels, cloisters, porticoes and
archades covered by a variety of vaults and beared by many different types of columns. They belong to
different historical periods and different styles, in order to make the dataset the least possible uniform
and homogeneous (in the repetition of the architectural elements) and the results as general as possible.

Different case studies are taken into exam and are described as follows: The Sacri Monti (Sacred
Mounts) of Ghiffa (SMG) and Varallo (SMV); The Sanctuary of Trompone (TR); The Church of Santo
Stefano (CA); The indoor scene of the Castello del Valentino (VA). The ArCH Dataset is publicly
available(http://vrai.dii.univpm.it/content/arch-dataset-point-cloud-semantic-segmentation) for
research purposes.

• The Sacri Monti (Sacred Mounts) of Ghiffa and Varallo. These two devotional complexes in northern
Italy have been included in the UNESCO World Heritage List (WHL) in 2003. In the case of
the Sacro Monte di Ghiffa, a 30 m loggia with tuscanic stone columns and half pilasters has
been chosen; while for the Sacro Monte of Varallo 6 buildings have been included in the dataset,
containing a total of 16 chapels, some of which very complex from an architectural point of view:
barrel vaults, sometimes with lunettes, cross vaults, arcades, balustrades and so on.

• The Sanctuary of Trompone (TR). This is a wide complex dating back to the 16th century and it
consists of a church (about 40 × 10 m) and a cloister (about 25 × 25 m), both included in the
dataset. The internal structure of the church is composed of 3 naves covered by cross vaults
supported in turn by stone columns. There is also a wide dome at the apse and a series of
half-pilasters covering the sidewalls .

• The Church of Santo Stefano (CA) has a completely different compositional structure if compared
with the previous one, being a small rural church from the 11th century. There is a stone masonry,
not plastered, brick arches above the small windows and a series of Lombard band defining a
decorated moulding under the tiled roof.

• The indoor scene of the Castello del Valentino (VA) is a courtly room part of an historical building
recast from the 17th century. This hall is covered by cross vaults leaning on six sturdy breccia

http://vrai.dii.univpm.it/content/arch-dataset-point-cloud-semantic-segmentation


Remote Sens. 2020, 12, 1005 9 of 23

columns. Wide French windows illuminate the room and oval niches surrounded by decorative
stuccoes are placed on the sidewalls. This case study is part of a serial site inserted in the WHL.
of UNESCO in 1997.

Figure 2. ArCH dataset. On the left column the RGB point clouds and on the right the annotated
scenes. 10 classes have been identified: Arc, Column, Door, Floor, Roof, Stairs, Vault, Wall, Window and
Decoration. The Decoration class includes all the points unassigned to the previous classes, as benches,
balaustrades, paintings, altars and so on.

In the majority of cases, the final scene was obtained through the integration of different
Point Clouds, those acquired with the terrestrial laser scanner (TLS), and those deriving from
photogrammetry (mainly aerial for surveying the roofs), after appropriate evaluation of the accuracy.
This integration results in a complete Point Cloud, with different density according to the sensors used,
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however leading to increasing the overall Point Cloud size and requiring a pre-processing phase for
the NN.

The common structure of the Point Clouds is therefore based on the sequence of the coordinates x,
y, z and the R, G, B values.

In the future, other point clouds will be added to the ArCH dataset, to improve the representation
of complex CH objects with the potential contribution of all the other researchers involved in this field.

3.2. Data Pre-Processing

To prepare the dataset for the network, pre-processing operations have been carried out in order
to make the cloud structures more homogeneous. The pre-processing methods, for this dataset,
have followed 3 steps: translation, subsampling and choice of features.

The spatial translation of the Point Clouds is necessary because of the georeferencing of the scenes,
the coordinate values are in fact too large to be processed by the deep network, so the coordinates are
truncated and each single scene is spatially moved close to the point cardinal (0,0,0). This operation on
the one hand has led to the loss of georeferencing, on the other hand, however, it has made possible to
reduce the size of the files and the space to be analyzed, thus also leading to a decrease in the required
computational power.

The subsampling operation, which became necessary due to the high number of points (mostly
redundant) present in each scene (> 20 M points), was instead more complex. It was in fact necessary
to establish which of the three different subsampling options was the most adequate to provide the
best typology of input data to the neural network. The option of random subsampling was discarded
because it would limit the test repeatability, then both the other two methods have been tested:
octree and space. The first is efficient for nearest neighbor extraction, while the second provides, in the
output Point Cloud, points not closer than the distance specified. As far as space is concerned, it has
been set a minimum space between points of 0.01 m, in this way a high level of detail is ensured,
but at the same time it is possible to considerably reduce the number of points and the size of the file,
in addition to regularize the geometric structure of the Point Cloud

As for the octree, applied only in the first tests on half of the Trompone Church scene, level 20
was set, so that the number of final points was more or less similar to that of the scene subsampled
with the space method. The software used for this operation is CloudCompare. An analysis of the
number of points for each scene is detailed in Table 1, where it is possible to see the lack of points for
some classes and the highest total value for the ’Wall’ class.

The extraction of features directly from the Point Clouds is instead an open and constantly evolving
field of research. Most of the features are handcrafted for specific tasks and can be subdivided and
classified into intrinsic and extrinsic, or also used for local and global descriptors [40,70]. The local
features define statistical properties of the local neighborhood geometric information, while the global
features describe the whole geometry of the Point Cloud. Those mostly used are the local ones,
such as eigenvalues based descriptors, 3D Shape context and so on, however in our case, since the last
networks developed [22,32] tend to let the network itself learn the features and since our main goal is
to generalize as much as possible, in addition to reduce the human involvement in the pre-proccessing
phases, the only features calculated are the normals and the curvature. The normals are calculated
on Cloud Compare and have been computed and orientated with different settings depending on
the surface model and 3D data acquisition. Specifically a plane or quadric ‘local surface model’ as
surface approximation for the normals computation has been used and a ‘minimum spanning tree’
with Knn = 10 has been set for their orientation. The latter has been further checked on MATLAB®.

3.3. Deep Learning for Point Cloud Semantic Segmentation

State-of-the-art deep neural networks are specifically designed to deal with the irregularity of
Point Clouds, directly managing raw Point Cloud data rather than using an intermediate regular
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representation. In this contribution, the performances obtained with the ArCH dataset of some
state-of-art architectures are therefore compared and then evaluated with regards to the DGCNN we
have modified. The NNs selected are:

• PointNet [21], as it was the pioneer of this approach, obtaining permutation invariance of points by
operating on each point independently and applying a symmetric function to accumulate features.

• its extensions PointNet++ [22] that analyzes neighborhoods of points in preference of acting on each
separately, allowing the exploitation of local features even if with still some important limitations.

• PCNN [71], a DL framework for applying CNN to Point Clouds generalizing image CNNs.
The extension and restriction operators are involved, permitting the use of volumetric functions
associated to the Point Cloud.

• DGCNN [32] that addresses these shortcomings by adding the EdgeConv operation. EdgeConv is a
module that creates edge features describing the relationships between a point and its neighbors
rather than generating point features directly from their embeddings. This module is permutation
invariant and it is able to group points thanks to local graph, learning from the edges that link points.

3.4. DGCNN for DCH Point Cloud Dataset

In our experiments, we build upon the DGCNN implementation provided by [32]. Such an
implementation of DGCNN uses k-nearest neighbors (kNN) to individuate the k points closest to
the point to be classified, thus defining the neighboring region of the point. The edge features are
then calculated from such a neighboring region and provided as input to the following layer of the
network. Such a edge convolution operation is performed on the output of each layer of the network.
In the original implementation, at the input layer kNN is fed with normalized points coordinates only,
while in our implementation we use all the available features. Specifically, we added color features,
expressed as RGB or HSV, and normal vectors.

Figure 3 shows the overall structure of the network. We give in input a scene block, composed
of 12 features for each point: XYZ coords, X’Y’Z’ normalized coords, color features (HSV channels),
normals features. These blocks pass through 4 EdgeConv layers and a max-pooling layer to extract
global features of the block. The original XYZ coordinates are kept to take into account the positioning
of the points in the whole scene, while the normalized coordinates represent the positioning within each
block. The KNN module is fed with normalized coordinates only and both original and normalized
coordinates are used as input features for the neural network. RGB channels have been converted
to HSV channels in two steps: first they are normalized to values between 0 and 1, then they are
converted to HSV channels using the rgb2hsv() function of the scikit-image library implemented in
python. This conversion is useful because the individual channels H, S and V are independent one
from the other, each of them has a different typology information, making them independent features.
Channels R, G and B are conversely somehow related to each other, they share a part of the same data
type, so they should not be used separately.

The choice of using normals and HSV is based on different reasons. On one side the RGB
component, based on the sensors used in data acquisition, is most of the time present as a property of
the point cloud and therefore it has been decided to fully exploit this kind of data; on the other the
RGB components define the radiometric properties of the point cloud, while the normals define some
geometric properties. In this way we are using as input for the NN different kinds of information.
Moreover, the decision to convert the RGB into HSV is borrowed from other research works [72] that,
even if developed for different tasks, show the effectiveness of this operation.

We have therefore tried to support the NN, in order to increase the accuracy, with few common
features that could be easily obtained by any user.

These features are then concatenated with the local features of each EdgeConv. We have modified
the first EdgeConv layer so that the kNN could also use color and normal features to be able to select k
neighbors for each point. Finally, through 3 convolutional layers and a dropout layer, we will output
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the same block of points but with segmentation scores (one for each class to be recognized). The output
of the segmentation will be given by the class with the largest score.

Figure 3. Illustration of our modified DGCNN architecture.

4. Results

In this section, the results of the experiments conducted on “ArCH Dataset” are reported. In addition
to the performance of our modified DGCNN, we also present the performance of PointNet [21],
PointNet++ [22], PCNN [71] and DGCNN [32] which form the basis of the improvement of our network.

Our experiments are separated in two phases. In the first one, we attempt at tuning the networks,
choosing the best parameters for the task of semantically segmenting our ArCH dataset. To this
end we have considered a single scene and used an annotated portion of it for training the network,
evaluating the performances on the remaining portion of the scene. We have chosen to perform such
first experiments on the TR_church (Trompone) as it presents a relatively high symmetry, allowing us
to subdivide it in parts with similar characteristics, and it includes almost all the considered classes
(9 out of the 10). Such an experimental setting addresses the problem of automatically annotating a
scene that has been only partially annotated manually. While this has in fact practical applications,
and could speed up the process of annotating an entire scene, our goal is to evaluate the automatic
annotation of an scene that was never seen before. We address this more challenging problem, in the
second experimental phase, where we train the networks with 10 different scenes and then attempt at
automatically segmenting the remaining one. Segmentation of the entire Point Cloud into sub-parts
(blocks) is a needed pre-processing step for all the analysed neural architectures. For each block a fixed
number of points have to be sampled. This is due to the fact that neural networks need a constant
number of points as input and that it would be computationally unfeasible to provide all the points at
once to the networks.

4.1. Segmentation of Partially Annotated Scene

Two different settings have been evaluated in this phase: a k-fold cross-validation and a single
splitting of the labeled dataset into a training set and a test set. In the first case the overall number of
test samples is small and the network is trained on more samples. In the second case, an equal number
of samples is used to train and to evaluate the network, possibly leading to very different results. This,
for completeness, we experimented with both settings.
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In the first setting, the TR_church scene was divided into 6 parts and we have performed
a cross-validation with 6 Fold, as shown in Figure 4. We have tested different combinations of
hyperparameters of the various networks to be able to verify which was the best, as we can see in Table 2,
where the mean accuracy is derived from calculating the accuracy of each test (fold), then averaging them.

Figure 4. 6-Fold Cross Validation on the TR_church scene. The white fold in every experiment is the
scene part used for the test.

Table 2. 6-Fold Cross-Validation on the Trompone scene. We can see different combinations of
hyperparameters for the various state-of-the-art networks.

Network Features Mean Acc.

DGCNN XYZ + RGB 0.897
PointNet++ XYZ 0.543

PointNet XYZ 0.459
PCNN XYZ 0.742

DGCNN-Mod XYZ + Norm 0.781

Ours XYZ + HSV + Norm 0.918

Regarding the pointcloud preprocessing steps, which consists in segmenting the whole scene
into blocks and, for each block, sampling a number of points, we used, for each evaluated model,
the settings used in the corresponding original paper. PointNet and PointNet++ use blocks are of
size 2 × 2 meters and 4096 points for cloud sampling. In the case of the DGCNN, we have used
blocks of size 1 × 1 and 4096 points per block. Finally, the PCNN network was tested using the same
sampling as the DGCNN (1 × 1), but using 2048 points, as this is the default setting used in the PCNN
paper. We also tested PCNN providing 4096 points per block, but results were slightly worse. We also
notice that the performances improve slightly using the color features represented as HSV color-map.
The HSV (hue, saturation, value) representation is known for more closely aligning with the human
perception of colors and, by representing colors as three independent variables, allows, for example,
to take into account variations, e.g., due to shadows and different light conditions.

In the second setting, we have split the TR-cloister scene in half, choosing the left side for the
training and the right side for the test. Furthermore, we split the left side into a training set (80%) and a
validation set (20%). We used the validation set to test overall accuracy at the end of each training epoch
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and we performed evaluation on the test set (right side). In Table 3, the performance of state-of-the-art
networks are reported. We report results obtained with the hyperparameters combinations that best
performed in the cross-validation experiment.

Table 3. The scene was divided into 3 parts: Train, Validation, Test. In this table, we can see the average
of the metrics calculated on the different parts: accuracy for Train, Validation and Test; precision, recall,
F1-score and support for the Test.

Network Train Acc. Valid Acc. Test Acc. Prec. Rec. F1-Score Supp.

DGCNN 0.993 0.799 0.733 0.721 0.733 0.707 1,437,696
PointNet++ 0.887 0.387 0.441 0.480 0.487 0.448 1,384,448

PointNet 0.890 0.320 0.307 0.405 0.306 0.287 1,335,622
PCNN 0.961 0.687 0.623 0.642 0.608 0.636 1,254,631

Ours 0.992 0.745 0.743 0.748 0.742 0.722 1,437,696

Table 4 shows the metrics in the test phase for each class of the Trompone’s right side. In this
table we report, for each class, precision, recall, F-1 score and Intersection over Union (IoU). This table
allows us to understand which are the classes that are best discriminated by the various approaches,
to understand which are their weak points and their strengths (as broadly discussed in Section 5).

Table 4. The scene was divided into 3 parts: Train, Validation, Test. In this table we can see the metrics
for every class, calculated on the Test set.

Network Metrics Arc Col Dec Floor Door Wall Wind Stair Vault

DGCNN

Precision 0.484 0.258 0.635 0.983 0.000 0.531 0.222 0.988 0.819
Recall 0.389 0.564 0.920 0.943 0.000 0.262 0.013 0.211 0.918

F1-Score 0.431 0.354 0.751 0.963 0.000 0.351 0.024 0.348 0.865
Support 69,611 36,802 240,806 287,064 8562 285,128 20,619 14,703 474,401

IoU 0.275 0.215 0.602 0.929 0.000 0.213 0.012 0.210 0.764

PointNet++

Precision 0.000 0.000 0.301 0.717 0.000 0.531 0.000 0.000 0.654
Recall 0.000 0.000 0.792 0.430 0.000 0.284 0.000 0.000 0.765

F1-Score 0.000 0.000 0.437 0.538 0.000 0.370 0.000 0.000 0.705
Support 74,427 59,611 235,615 230,033 12,327 334,080 40,475 13,743 384,137

IoU 0.000 0.000 0.311 0.409 0.000 0.215 0.000 0.000 0.681

PointNet

Precision 0.000 0.000 0.155 0.588 0.000 0.424 0.175 0.000 0.600
Recall 0.000 0.000 0.916 0.422 0.000 0.078 0.004 0.000 0.387

F1-Score 0.000 0.000 0.265 0.492 0.000 0.132 0.008 0.000 0.470
Support 30,646 11,020 29,962 43,947 1851 69,174 3212 1057 87,659

IoU 0.000 0.000 0.213 0.406 0.000 0.051 0.003 0.000 0.311

PCNN

Precision 0.426 0.214 0.546 0.816 0.000 0.478 0.193 0.178 0.704
Recall 0.338 0.474 0.782 0.754 0.000 0.231 0.012 0.188 0.744

F1-Score 0.349 0.294 0.608 0.809 0.000 0.281 0.021 0.306 0.779
Support 65,231 32,138 220,776 212,554 8276 253,122 18,688 12,670 431,176

IoU 0.298 0.273 0.592 0.722 0.000 0.210 0.010 0.172 0.703

Ours

Precision 0.574 0.317 0.621 0.991 0.952 0.571 0.722 0.872 0.825
Recall 0.424 0.606 0.932 0.920 0.002 0.324 0.006 0.284 0.907

F1-Score 0.488 0.417 0.746 0.954 0.005 0.413 0.011 0.428 0.865
Support 69,460 36,766 240,331 286,456 8420 285,485 20,542 14,790 475,446

IoU 0.322 0.263 0.594 0.913 0.002 0.260 0.005 0.272 0.761

Finally, Figure 5 depicts the manually annotated test scene (ground truth) and the automatic
segmentation results obtained with our approach.
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Figure 5. Ground Truth and Predicted Point Cloud, by using our Approach on Trompone’s Test side.

4.2. Segmentation of an Unseen Scene

In the second experimental phase, we used all the scenes of ArCH Dataset: 9 scenes were used
for the Training, 1 scene as Validation (Ghiffa scene), 1 scene for the Final Test (SMV). State-of-the-art
networks were evaluated, comparing the results with our DGCNN-based approach. In Table 5, the overall
performances are reported for each tested model, while in Table 6 reports detailed results on the individual
classes of the test scene. Figures 6 and 7 depict the confusion matrix and the segmentation results of the
last experiment: 9 scenes for Training, 1 scene for validation and 1 scene for test.

The performance gain provided by our approach is more evident than in previous experiments,
leading to an improvement of around 0.8 in overall accuracy as well as in F1-score. The IoU also
increases. In Table 6, one can see that our approach outperforms the others in the segmentation of
almost all classes. For some classes values of Precision and Recall are lower than the original DGCNN.
However, our modified DGCNN generally improves performance in terms of F1-score. This metric is
a combination of Precision and Recall, thus it allows to better understand how the network is learning.

Table 5. Results of the tests performed on an unknown scene, training the network on the others.

Network Valid Acc. Test Acc. Prec. Rec. F1-Score Supp.

DGCNN 0.756 0.740 0.768 0.740 0.738 2,613,248
PointNet++ 0.669 0.528 0.532 0.528 0.479 2,433,024

PointNet 0.453 0.351 0.536 0.351 0.269 2,318,440
PCNN 0.635 0.629 0.653 0.622 0.635 2,482,581

Ours 0.831 0.825 0.809 0.825 0.814 2,613,248
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Table 6. Tests performed on all scenes of the dataset in terms of Precision, Recall, F1-Score and Support
of each class for the Test scene.

Network Metrics Arc Col Dec Floor Door Wall Wind Stair Vault Roof

DGCNN

Precision 0.135 0.206 0.179 0.496 0.000 0.745 0.046 0.727 0.667 0.954
Recall 0.098 0.086 0.407 0.900 0.000 0.760 0.007 0.205 0.703 0.880
F1-Score 0.114 0.121 0.249 0.640 0.000 0.752 0.012 0.319 0.684 0.916
Support 54,746 37,460 71,184 182,912 2642 642,188 18,280 172,270 288,389 1,143,177
IoU 0.060 0.064 0.142 0.470 0.000 0.603 0.006 0.190 0.520 0.845

PointNet++

Precision 0.000 0.000 0.124 0.635 0.000 0.387 0.000 0.000 0.110 0.738
Recall 0.000 0.000 0.002 0.012 0.000 0.842 0.000 0.000 0.091 0.639
F1-Score 0.000 0.000 0.004 0.023 0.000 0.530 0.000 0.000 0.099 0.685
Support 52,866 49,826 88,578 161,741 3032 756,905 26,682 165,169 245,929 882,296
IoU 0.000 0.000 0.002 0.009 0.000 0.514 0.000 0.000 0.074 0.608

PointNet

Precision 0.000 0.000 0.240 0.763 0.000 0.299 0.000 0.000 0.298 0.738
Recall 0.000 0.000 0.001 0.354 0.000 0.984 0.000 0.000 0.566 0.106
F1-Score 0.000 0.000 0.001 0.484 0.000 0.458 0.000 0.000 0.391 0.186
Support 51,280 46,836 85,920 155,271 2880 726,628 25,614 158,562 236,091 829,358
IoU 0.000 0.000 0.001 0.294 0.000 0.411 0.000 0.000 0.337 0.094

PCNN

Precision 0.119 0.181 0.143 0.441 0.000 0.633 0.041 0.582 0.580 0.801
Recall 0.086 0.070 0.330 0.783 0.000 0.608 0.006 0.164 0.605 0.783
F1-Score 0.103 0.108 0.217 0.544 0.000 0.654 0.010 0.268 0.616 0.824
Support 52,008 35,587 67,624 173,766 2509 610,078 17,366 163,656 273,969 1,086,018
IoU 0.072 0.062 0.198 0.482 0.000 0.581 0.004 0.082 0.468 0.658

Ours

Precision 0.288 0.391 0.270 0.798 0.000 0.729 0.035 0.707 0.806 0.959
Recall 0.107 0.157 0.173 0.806 0.000 0.868 0.010 0.692 0.810 0.940
F1-Score 0.156 0.224 0.211 0.802 0.000 0.791 0.015 0.699 0.808 0.950
Support 54,746 37,460 71,184 182,912 2642 642,188 18,280 172,270 288,389 1,143,177
IoU 0.085 0.126 0.118 0.669 0.000 0.655 0.008 0.538 0.678 0.905

Figure 6. Confusion matrix for the last experiment: 9 scenes for Training, 1 scene for Validation
and 1 scene for Test. The darkness of cells is proportional to the number of points labeled with the
corresponding class.
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Figure 7. Ground truth (a) and predicted Point Cloud (b), by using our approach on the last experiment:
9 scenes for Training, 1 scene for Validation and 1 scene for Test.

5. Discussion

This research rises remarkable research directions (and challenges) that is worth to deepen. First of
all, looking at the first experimental setting, performances are worse than those obtained in the K-fold
experiment (referring to Table 3). This is probably do to the fact that the network has less points to
learn on. As in the previous experiment, the results on the test set is obtained with our approach,
confirming that HSV and Normals does in fact help the network to learn higher level features of the
different classes. Besides, as reported in Table 4 and confirmed in Figure 5, we can notice that using
our setting helps in detecting vaults, increasing precision, recall and IoU, as well as columns and stairs,
by sensibly increasing recall and IoU.

Dealing with the second experimental setting (see Section 4.2), it is worth to notice that all
evaluated approaches fail in recognizing classes with low support, as doors, windows and arcs. Beside,
for these classes we observe a high variability in shapes across the dataset, this probably contributes to
the bad accuracy obtained by the networks.

More insights can be drawn from the confusion matrix, shown in Figure 6. It reveals, for example,
that arcs are often confused with vaults, as they clearly share geometrical features, while columns are
often confused with walls. The latter behaviour can be possibly due to the presence of half-pilasters,
which are labeled as columns but have a shape similar to walls. The unbalanced nature of the number
of points per class is clearly highlighted in Figure 8.

Furthermore, if we consider the classes individually, we can see that the lowest values are in Arc,
Dec, Door and Window. More in detail:

• Arc: the geometry of the elements of this class is very similar to that of the vaults and, although the
dimensions of the arcs are not similar to the latter, most of the time they are really close to the
vaults, almost a continuation of these elements. For these reasons the result is partly justifiable
and could lead to the merging of these two classes.

• Dec: in this class, which can also be defined as “Others” or “Unassigned”, all the elements that are
not part of the other classes (such as benches, paintings, confessionals . . . ) are included. Therefore
it is not fully considered among the results.

• Door: the null result is almost certainly due to the very low number of points present in this class
(Figure 8). This is due to the fact that, in the proposed case studies of CH, it is more common
to find large arches that mark the passage from one space to another and the doors are barely
present. In addition, many times, the doors were open or with occlusions, generating a partial
view and acquisition of these elements.

• Window: in this case the result is not due to the low number of windows present in the case study,
but to the high heterogeneity between them. In fact, although the number of points in this class is
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greater, the shapes of the openings are very different from each other (three-foiled, circular, elliptical,
square and rectangular) (Figure 9). Moreover, being mostly composed of glazed surfaces, these
surfaces are not detected by the sensors involved such as the TLS, therefore, unlike the use of images,
in this case the number of points useful to describe these elements is reduced.

Figure 8. Number of points per class.

Figure 9. Different typologies of windows and doors. For the latter, their opening has sometimes
affected the points acquisition.

6. Conclusions

The semantic segmentation of Point Clouds is a relevant task in DCH as it allows to automatically
recognise different types of historical architectural elements, thus possibly saving time and speeding
up the process of analysing Point Clouds acquired on-site and building parametric 3D representations.
In the context of historical buildings, Point Cloud semantic segmentation is made particularly
challenging by the complexity and high variability of the objects to be detected. In this paper,
we provide a first assessment of state-of-the-art DL based Point Cloud segmentation techniques
in the Historical Building context. Beside comparing the performances of existing approaches on
ArCH (Architectural Cultural Heritage), created on purpose and released to the research community,
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we propose an improvement which increase the segmentation accuracy, demonstrating the effectiveness
and suitability of our approach. Our DL framweork is based on a modified version of DGCNN and it
has been applied to a newly puclic collected dataset: ArCH (Architectural Cultural Heritage). Results
prove that the proposed methodology is suitable for Point Cloud semantic segmentation with relevant
applications. The proposed research starts from the idea of collecting relevant DCH dataset which is
shared together with the framework source codes to ensure comparisons with the proposed method
and future improvements and collaborations over this challenging problems. The paper describes one
of the more extensive test based on DCH data, and it has huge potential in the field of HBIM, in order
to make the scan-to-BIM process affordable.

However, the developed framework highlighted some shortcomings and open challenges that
is fair to mention. First of all, the framework is not able to assess the accuracy performances with
respect to the acquisition techniques. In other words, we seek to uncover, in future experiments, if the
adoption of Point Clouds acquired with other methods changes the DL framework performances.
Moreover, as stated in the results section, the dimensions of points per classes is unbalanced and not
homogeneous, with the consequent biases in the confusion matrix. This bottleneck could be solved by
labelling a more detailed dataset or creating synthetic Point Clouds. The research group is focusing
his efforts even in this direction [73]. In future works, we plan to improve and better integrate the
framework with more effective architectures, in order to improve performances and test also different
kind of input features [19,74].
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