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Abstract—Unnamed aerial vehicles (UAVs) or drones have6
attracted growing interest in the last few years for multiple appli-7
cations; thanks to their advantages in terms of mobility, easy move-8
ment, and flexible positioning. In UAV-based communications,9
mobility and higher line-of-sight probability represent opportuni-10
ties for the flying UAVs while the limited battery capacity remains11
its major challenge. Thus, they can be employed for specific appli-12
cations where their permanent presence is not mandatory. Data13
gathering from wireless sensor networks is one of these applica-14
tions. This paper proposes an energy-efficient solution minimizing15
the UAV and/or sensors energy consumption while accomplishing a16
tour to collect data from the spatially distributed wireless sensors.17
The objective is to determine the positions of the UAV “stops” from18
which it can collect data from a subset of sensors located in the19
same neighborhood and find the path that the UAV should follow20
to complete its data gathering tour in an energy-efficient manner.21
A non-convex optimization problem is first formulated then, an22
efficient and low-complex technique is proposed to iteratively23
achieve a sub-optimal solution. The initial problem is decomposed24
into three sub-problems: The first sub-problem optimizes the25
positioning of the stops using linearization. The second one de-26
termines the sensors assignment to stops using clustering. Finally,27
the path among these stops is optimized using the travel salesman28
problem. Selected numerical results show the behavior of the UAV29
versus various system parameters and that the achieved energy is30
considerably reduced compared to the one of existing approaches.31

Index Terms—3D positioning, path planning, unmanned aerial32
vehicle-based communications, wireless sensors.33
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I. INTRODUCTION 34

W IRELESS sensor networks (WSNs) have attracted a lot 35

of interest due to the advantages they offer in terms of in- 36

frastructure installation cost and reconfiguration flexibility [1]. 37

While the development of wireless communication technolo- 38

gies was an important factor for the large-scale spread of these 39

sensors, new challenges in terms of networks capacity to accom- 40

modate their data traffic arise [2]. Taking into consideration the 41

characteristics of their traffic (low data rates, periodicity, etc.), 42

optimizing the information gathering has been the subject of ac- 43

tive research. Very efficient approaches [3]–[5] were proposed 44

based on clustering, multihop relaying, context awareness, etc. 45

With the emergence of Internet of Things (IoT), the deploy- 46

ment of smart sensors is exponentially increasing. The task of 47

information collection is then becoming much more challeng- 48

ing given that the network capacity is already saturated with 49

the increase and diversification of other wireless services [6]. 50

Therefore, the need for revolutionary solutions to reduce the 51

dependency on the network infrastructure arises. 52

Thanks to their mobility and flexibility, the use of remote con- 53

trolled and automated micro unmanned aerial vehicles (UAVs), 54

also known as drones1, has gained much popularity in different 55

domains. Their recent development allowed the considerable 56

reduction of their production cost which makes them affordable 57

for a variety of civil and public applications such as traffic moni- 58

toring, border surveillance, disaster management, public safety, 59

health and environmental services; to name a few [7]–[9]. 60

Since they can be equipped with communication interfaces 61

allowing them to interact with other ground and flying nodes, 62

lightweight drones can be employed to perform data gathering 63

from the wireless sensors. However, their finite battery storage 64

represents a major constraint that limits their energy supply and 65

thus, their service time. Hence, the drones can only be used for 66

specific applications that do not require permanent infrastructure 67

presence such as delay-tolerant and on-demand applications. 68

Collecting information of a sensor network belongs to these 69

types of applications. Examples of practical usages include the 70

periodic data collection from sensor networks located in remote 71

areas like mountains and farms or from road side units to reduce 72

the traffic load for vehicular ad-hoc networks (VANETs). 73

1Note that the terms “UAV” and “drone” are used interchangeably throughout
the paper.
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On the other hand, the drones’ mobility and flexibility in74

three-dimensional (3D) positioning represent major advantages75

that allow them to complete the task of data collection in a reli-76

able manner while profiting from reduced path losses [9], [10].77

Thus, an optimization of the path for efficient data collection78

is required. Specifically, this path should address the trade-off79

between the flight duration and the communication reliability80

to fulfill the required task with minimum energy consumption.81

Indeed, sending the drone to positions close to the sensors may82

reduce the communication time as higher data rates can be83

achieved but this might lead to additional energy consumption84

due to extra traveled distances. On the contrary, minimizing the85

navigation energy by collecting data from farther positions re-86

sults in a degradation of the communication channel and thus,87

higher transmission time is required which may lead to the de-88

pletion of the sensors’ energy. Thus, it is important to optimize89

the UAV path by efficiently planning the UAV collection tour.90

A. Related Work91

Data gathering in WSNs has attracted a lot of attention during92

the last decade. Several solutions have been proposed to collect93

messages from spatially distributed sensors to deliver them to a94

central node known as “sink”. In general, the existing solutions95

can be classified into two categories: routing-based solution and96

mobile sink-based solution.97

Recently, multiple routing protocols have been proposed to98

ensure fast, reliable, and/or energy efficient data collection99

[11]–[13]. In [11], the authors proposed a distributed routing100

algorithm aiming to ensure a balance between latency and en-101

ergy consumption. The objective is to determine the routing102

through which the data need to be forwarded such that a global103

network utility including the energy consumption and the end-104

to-end delay is optimized. Another protocol focusing on com-105

bining clustering and routing has been proposed in [12]. The106

idea consists of selecting multiple cluster-heads which are re-107

sponsible in collecting data from multiple groups of sensors. A108

routing path connecting these cluster-heads is then, established109

to forward the data to the sink. The clustering procedure is per-110

formed while taking into account the network life time and the111

limited range of the deployed sensors. Data aggregation is also112

investigated as a solution to reduce the signaling overhead when113

establishing routing paths in WSNs. In [13], three modes of data114

aggregation are studied. The first mode named full-aggregation115

where an intermediate node aggregates all the received data in116

addition to its own data in a single message and forwards it to117

the next hop. The second, non-aggregation mode, in which data118

is forwarded separately without any aggregation. Finally, the119

hybrid aggregation where data aggregation is subject to a cer-120

tain threshold. For each aggregation mode, a data-gathering tree121

is constructed such that the lifetime of sensors is maximized.122

The implementation of routing protocols requires the exis-123

tence of direct communication links between multiple nodes124

in WSNs which are not always available in practice especially125

for lightly-powered sensors and in remote areas. Hence, mo-126

bile sink-based solutions are proposed. In this case, a ground127

node will permeate all sensors and collect their data. The most128

challenging part in this method is to determine the path that 129

the mobile sink has to follow to complete the data gathering 130

mission [14]–[17]. 131

In [14], the authors proposed an algorithm based on travel 132

salesman problem (TSP) to determine the locations that the mo- 133

bile sink needs to visit in order to collect data from multiple 134

sensors sharing overlapping areas based on their communica- 135

tion ranges. Similarly, in [15], a tree-based approach is proposed 136

to collect data from different sensors. The WSN is divided into 137

multiple clusters where the cluster-head collects data from mul- 138

tiple sensors within the cluster to forward it to the moving sink. 139

Hence, routing and mobile sink-based solutions can be jointly 140

implemented together as studied in [16]. The authors proposed a 141

clue-based data collection routing where the mobile sink moves 142

randomly and informs sensors about its presence so it can col- 143

lect data from the neighborhood defined by a limited number 144

of hops. A tradeoff between mobile sink mobility and routing 145

protocol overhead has been reached in [17]. Starting from the 146

fact that the ground sink cannot move freely, the authors pro- 147

posed an energy-efficient data gathering protocol that uses the 148

moving mobile sink and coordinates to establish data reporting 149

routes in a proactive manner. Hence, according to the known 150

trajectory of the ground sink, the sensors can determine their 151

future locations and hence, decide where to forward their data 152

so it can be collected. 153

Thanks to the rapid development of the mirco-UAV technol- 154

ogy, their use becomes very practical for the data gathering 155

task. Indeed, as discussed earlier, unlike the ground mobile 156

sink, the UAVs are characterized by a free and fast mobility 157

unaffected by the ground topography. Moreover, they provide 158

a better channel quality thanks to their high altitude. Hence, 159

they can be exploited as flying data collectors that are able 160

to reach the sensors independently of the ground topology. 161

Some studies have investigated the use of drones with sensor 162

networks [18]–[21]. 163

For instance, the authors of [20] studied the case of randomly 164

deployed moving sensors along a pre-know UAV path. Data 165

collection protocols for this dynamic WSN topology are ana- 166

lyzed while taking into account the achieved data rate and the 167

contact duration time. Most of the studies tackling this prob- 168

lem are aiming to optimize the UAV path based on different 169

metrics. In [21], the chosen metric is the maximization of the 170

system throughput by eliminating redundant data transmissions 171

through a priority-based frame selection scheme that associates 172

a lower contention window range to the high-priority frame and 173

vice versa. In this way, the packet collision is reduced and the 174

throughput is enhanced. In [19], another priority-based scheme 175

is proposed by giving priority to sensors located close to the 176

UAV. It has been shown that the proposed method achieves a 177

certain energy saving gain and increases the lifetime of the sen- 178

sors. Data aggregation has also been employed with UAV [18] 179

with the objective to achieve energy-efficient communication 180

links between sensors and UAVs. 181

Most of the aforementioned studies focused on the perfor- 182

mance of the UAV-assisted WSNs but neglected the challenges 183

related to UAVs especially in terms of energy limitation. In this 184

work, we aim at optimizing the data collection procedure such 185
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TABLE I
TABLE OF NOTATIONS

that efficient data collection is ensured and the drone energy186

consumption is minimized.187

B. Contributions188

In this paper, we investigate the usage of a UAV for data189

collection in WSNs. The main contributions of the present work190

can be summarized as follows:191
� We design a framework for energy efficient data collection192

from a WSN using a flying UAV. Unlike existing studies,193

our approach takes into account the total energy consump-194

tion of the UAV tour both for travel as well as hovering195

for data collection by considering the communication data196

rate between the sensors and the UAV. Then, we formulate197

a joint optimization problem to determine the UAV stops198

positions, the sensors to send data at each stop, and the199

itinerary that the UAV should follow to ensure data collec-200

tion from all sensors with minimum energy consumption201

while respecting their energy availability requirements.202
� Due to the complexity and non-convexity of the problem,203

we derive a sub-optimal but deterministic solution based204

on decomposition of the problem and propose a procedure205

to solve each sub-problem separately. The optimization206

of the locations of the UAV stops as well as the selected207

sensors to transmit at each stop is formulated as a cluster-208

ing problem where the stops’ positions are determined209

using linear relaxation of the objective function while210

the itinerary between the stops is optimized using a TSP211

algorithm.212
� We present some selected numerical results that show the213

efficiency of the proposed approach. Specifically, we com-214

pare it with previously proposed solution based on a TSP215

with neighborhood (TSP-N) approach that optimizes the216

itinerary of the UAV such that it travels through the neigh-217

borhoods of the sensors.218

In our previous work, [22], we proposed an initial investiga-219

tion of the problem that does not take into account the sensors220

energy constraints and their weights in the objective function.221

In this paper, we have also enhanced the proposed solution by222

investigating the mutual dependence between the different UAV223

stop positions on the total consumption energy.224

C. Paper Outline225

The paper is organized as follows. Section II presents the sys-226

tem model and the problem formulation. The joint clustering-227

TSP solution is presented in Section III with discussion of each 228

sub-problem and details of the proposed algorithm. Selected 229

simulation results are provided in Section IV. Finally, conclu- 230

sions are drawn in Section V. Notations used throughout this 231

paper are summarized in Table I. 232

II. SYSTEM MODEL AND PROBLEM FORMULATION 233

We consider a set of K wireless sensors {S1, . . . ,SK } lo- 234

cated in a sub-region Ω ⊆ R3. We assume that each sensor’s 235

position Sk ∈ Ω2 is known and that each node is equipped with 236

a single omni-directional antenna. The assumption of pre-known 237

positions of the sensors is a typical assumption in the literature. 238

In practice, if the sensors are fixed, their positions can be ob- 239

tained. In particular, if the sensors belong to the same operator 240

who is also managing the drone, the fixed locations can be ob- 241

tained beforehand and can be saved in a data base. Moreover, 242

for more general scenarios, recent advances in localization tech- 243

niques allow accurate real-time knowledge of mobile sensors’ 244

locations in outdoor and indoor environments with high preci- 245

sion. We consider a delay-tolerant application scenario where 246

each sensor Sk has transfer a message of size Mk bits during 247

the period of interest. However, due to powering constraints, 248

each sensor has a limited energy Emax
k to complete its data 249

transmission. We consider that each sensor transmits its signal 250

with a constant transmit power equal to PT (in Watts) over the 251

bandwidth B. 252

We denote by D the UAV which is responsible of collecting 253

data from the sensors. Initially, the drone is assumed to be placed 254

at its docking station position X0 where X0 represents the 3D 255

geographical coordinates of the initial position to which it has to 256

return back after completing the data collection. The objective 257

is to find the set of N stop positions Xc , ∀c = 1, . . . , N, where 258

the drone should stop to collect data from the sensors as shown 259

in Fig. 1. At each stop, the drone collects data from a subset 260

of sensors using a time division multiple access scheme. We 261

denote by the cluster Cc the subset of sensors that their data 262

is collected by the drone at the stop Xc . We assume that the 263

drone moves with a fixed speed vD and receives data only when 264

hovering at one of the stops in order to allow efficient channel 265

estimation and avoid interference and Doppler effects. Since we 266

are considering delay tolerant applications, the collected data is 267

2We use Sk to denote both the k-th sensor and its 3D position.
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Fig. 1. UAV wireless data collection scheme for N = 3.

only forwarded to the sink when the drone returns to its docking268

station.269

A. Channel Model270

The objective is to efficiently optimize the drone’s path plan,271

the overall transmission time is relatively long compared to272

the channel coherence time. Hence, we focus on the system’s273

performance based on its average statistics rather than the in-274

stantaneous ones which is not possible for this framework due275

to the larger drones’ flying time compared to the channel co-276

herence time, usually measured in milliseconds. Therefore, we277

only consider the large-scale path loss effect in the channel278

gain’s expressions.279

The average data rate for the communication between a sen-280

sor S’s and the drone located at a position X is denoted by281

R (S,X) defined by:282

R (S,X) = B log2

(
1 +

PT

PLA-G (S,X) N0

)
(1)

where PLA-G (S,X) is the average channel pathloss We con-283

sider a probabilistic air-to-ground path loss model as in [23].284

The average path-loss between a sensor S and the UAV located285

at a position X is then expressed as:286

PLA-G (S,X) = pLoS (S,X) PLLoS (S,X)

+ [1 − pLoS (S,X)] PLNLoS (S,X) , (2)

where pLoS (S,X) represents the probability of LoS between287

the sensor S and the drone at position X . This probability288

depends on the environment and elevation angle. As shown289

in [10], it can be expressed as follows290

pLoS (S,X) =
1

1 + α exp(−β[θ(S,X) − α])
, (3)

where θ(S,X) is the elevation angle of the drone in the posi-291

tion X with regards to the sensor S as shown in Fig. 2 while292

α and β are parameters that depend on the urban environment,293

notably the percentage of build-up area to the total land area,294

the number of buildings and obstacles per unit area, and the295

Fig. 2. UAV radio propagation model.

statistical distribution of their heights. The authors in [10] de- 296

rived an empirical method to compute these parameters as 297

a function of the urban environment characteristics. Finally, 298

PLLoS (S,X) and PLNLoS (S,X) are the average path losses 299

for LoS and non line-of-sight (NLoS) environments, respec- 300

tively, expressed as: 301

PLLoS (S,X) = 10η log10

(
4πfc

c
||S − X||2

)
+ ξLoS, (4)

PLNLoS (S,X) = 10η log10

(
4πfc

c
||S − X||2

)
+ ξNLoS,

(5)

where the first component represents the free-space path loss 302

with η the path loss exponent, fc the carrier frequency, c the light 303

celerity, and ||V ||2 the norm-2 of the vector V (i.e., ||S − X||2 304

is the euclidian distance that separates the positions S and X). 305

On the other hand, the second component represents the mean 306

value of the excessive path loss (i.e., ξLoS is the mean value 307

of excessive path loss in LoS and ξNLoS is the mean value of 308

excessive path loss in NLoS). 309

B. Drone Power Consumption Model 310

The power consumption of the drone in the data collection 311

trip can be decomposed into two main cases, namely flight and 312

communication modes. The consumed power in the flight mode 313

contains two main parts: the first ensures hovering while the 314

other allows motion. 315

The hover power is written as a function of the drone’s mass 316

mtot as well as the radius and the number of propellers rp and 317

np , respectively, [24]: 318

Phov =

√
(mtotg)3

2πr2
pnpρ

, (6)

where g and ρ are respectively the earth gravity and air density. 319

The movement power for transition from a position to another 320

is assumed to be linear function of the drone speed vD (assumed 321

to be constant) and can be written as 322

Ptr =
Pfull − Ps

vmax
vD + Ps, (7)
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where vmax is the maximum speed of the drone. Pfull and Ps323

are the hardware power levels when the drone is moving at full324

speed and when the drone stops in a fixed position (i.e., vD = 0),325

respectively.326

On the other hand, in the communication mode, the drone327

is assumed to hover at a fixed position. Thus, the consumed328

power is composed of the hovering power and a communication329

and signal processing power. The first component is the same330

introduced in (6) while the second one is assumed to be constant331

and denoted by Pcom. In this paper, we are rather focusing on the332

access and operation parts of the drone. We are not investigating333

in details the signaling and overhead parts. This is because,334

in terms of energy consumption, the operation energy is more335

important than the overhead one as the signaling is happening336

for very short periods of the order of milliseconds while the337

network access operation occurs over long time slots of the338

order of minutes.339

C. Problem Formulation340

The drone’s tour consists of moving around a number of posi-341

tions called “collection stops” and denoted by {X1, . . . ,XN },342

where the drone hovers at each stop to receive data from a subset343

of the sensors as shown in Fig. 1. For that, we aim to optimize344

the positions of the collection stops, the subset of sensors that345

will transfer data at each stop, and the itinerary that the drone346

should follow to navigate between the stops.347

We denote by xc,k the variables indicating the subset of sen-348

sors that will transfer their data to the Drone at each collection349

stop (i.e., xc,k = 1 if the sensor’s data is collected at the stop350

Xc , and xc,k = 0 otherwise.). We also denote by yc,c ′ the in-351

dex variables for the UAV’s itinerary (i.e., yc,c ′ = 1 if the UAV352

moves from stop Xc towards stop Xc ′ , and yc,c ′ = 0 otherwise).353

The objective is written as the weighted sum of the energy354

consumed by the drone and the different sensors to complete355

the data collection.356

O = ED +
K∑

k=1

ρkESk
. (8)

ED is the energy consumed by the drone during the data collec-357

tion trip, written as:358

ED =
N∑

c=1

K∑
k=1

xc,kEstop
c,k +

N∑
c=0

N∑
c ′=0
c ′ �=c

yc,c ′E
f light
c,c ′ , (9)

where Ef light
c,c ′ is the drone’s energy consumption when flying359

from a location Xc to another Xc ′ , expressed as follows:360

Ef light
c,c ′ = (Phov + Ptr) × T f light

c,c ′

=
(Phov + Ptr) ||Xc − Xc ′ ||2

vD
, (10)

with T f light
c,c ′ = ||Xc ,Xc ′ ||2/vD representing the drone’s trip361

time from the position Xc to the position Xc ′ and vD is the362

drone’s speed supposed constant along the trip.363

On the other hand, Estop
c,k is the energy consumed by the drone364

when collecting data of the sensor Sk at the stop Xc , which is365

written as: 366

Estop
c,k = (Phov + Pcom) × T com

k,c

=
Mk (Phov + Pcom)

〈R (Sk ,Xc)〉R
m a x
k

Rm i n
k

, (11)

where T com
k,c = Mk/〈R (Sk ,Xc)〉R

m a x
k

Rm i n
k

corresponds to the time 367

needed to transfer the data of the sensor Sk to the drone at 368

position Xc . This communication time depends on the amount 369

of data Mk that the sensor Sk has to transfer and the average 370

data rate R (Sk ,Xc) for the sensor Sk ’s transmission to the 371

drone at position Xc which was defined in Eq. (1). Rmin
k and 372

Rmax
k are respectively the minimum and maximum decoding 373

and transmission rate for the k-th sensor.3 Finally, ρk is a weight 374

associated to the energy consumed by the k-th sensor in the 375

objective function4 and ESk
is the energy consumed by the k-th 376

sensor to complete its data transmission, written as: 377

ESk
= PT ×

N∑
c=1

xc,kT com
k,c

=
PT Mk∑N

c=1 xc,k 〈R (Sk ,Xc)〉R
m a x
k

Rm i n
k

, (12)

where PT is the sensor’s transmit power and T com
k,c = 378

Mk/〈R (Sk ,Xc)〉R
m a x
k

Rm i n
k

is the average time to send the Mk 379

amount of data to the drone at the collection stop Xc . 380

The optimization problem is then written as follows: 381

minimize
{Xc ∈ Ω}1≤c≤N

{xc,k ∈ {0, 1}}1≤c≤N
1≤k≤K

{yc,c ′ ∈ {0, 1}}0≤c≤N
0≤c ′≤N

{uc ∈ Z}0≤c≤N

ED +
K∑

k=1

ρkESk
(13a)

subject to
N∑

c=1

xc,k = 1, 1 ≤ k ≤ K; (13b)

N∑
c=0
c �=c ′

yc,c ′ = 1, 0 ≤ c′ ≤ N ; (13c)

N∑
c ′=0
c ′ �=c

yc,c ′ = 1, 0 ≤ c ≤ N ; (13d)

uc − uc ′ + (N + 1)yc,c ′ ≤ N,

1 ≤ c �= c′ ≤ N ; (13e)

ESk
≤ Emax

k , 1 ≤ k ≤ K, (13f)

3〈u〉u m a x
u m i n

is defined as

{
um in , if u < um in

u, if um in ≤ u ≤ um ax

um ax , if u > um ax .
4the weights can be set by the operator depending on its priorities, affinities,

and operation requirements.
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where uc are dummy variables added to guarantee that the drone382

travels through all stops only once in a closed loop. Equal-383

ity (13b) constrains the data of each sensor to be collected at384

one stop while the constraints (13c), (13d), and (13e) ensure385

a closed loop of the drone’s itinerary. Finally, (13f) guarantees386

that energies consumed by the sensors does not exceed their387

energy levels denoted as Emax
k for the k-th sensor.388

This is a a mixed integer non-linear programming problem389

(MINLP). Even for fixed integer variables (i.e., xc,k and yc,c ′),390

the problem remains non-convex as a function of the UAV stop391

positions (Xc), notably due to the expression of the communi-392

cation time given in Eq. (11). Hence, optimal solutions is very393

difficult to reach. Thus, we propose to devise a sub-optimal solu-394

tion that decomposes the problem into three sub-problems such395

that each variable is separately optimized. Then, an iterative396

approach is adopted to reach a global solution.397

III. OPTIMIZATION APPROACH398

In this section, we present the proposed problem decompo-399

sition approach to solve the non-convex optimization problem400

formulated in (13). We aim first to propose a procedure to de-401

termine the UAV stops locations then, determine the sensors as-402

sociated to each of the UAV stops, and finally the UAV itinerary403

between the stops to complete its data gathering tour. Follow-404

ing that, an iterative algorithm is developed to combine these405

procedures and jointly optimize the UAV tour.406

A. Collection Stops Optimization Sub-Problem407

Assuming known path (yc,c ′ , ∀c, c′) and the subset of sensors408

that will transfer data at each UAV stop (xc,k , ∀c, k), we aim409

to optimize the collection stops 3D positions. Hence, the sub-410

problem is written as:411

arg min
{Xc ∈Ω}1≤c ≤N

ED +
K∑

k=1

ρkESk
(14a)

subject to ESk
≤ Emax

k , 1 ≤ k ≤ K. (14b)

Since this sub-problem is non-convex, we propose to find an412

approximate solution through a linearization of the objective413

function with regards to the stop positions. The approximated414

problem is written as415

arg min
{Xc ∈Ω}1≤c ≤N

N∑
c=1

K∑
k=1

xc,k

(
ωcom

c,k

)t (Xc − Sk )

+
N∑

c=0

N∑
c ′=0
c ′ �=c

yc,c ′
(
ωf ly

c,c ′

)t

(Xc − Xc ′) (15a)

subject to xc,kPLA-G (Sk ,Xc) ≤ PT /N0

2(PT Mk )/(BE m a x
k ) − 1

,

1 ≤ k ≤ K, 1 ≤ c ≤ N ; (15b)

with 416

ωcom
c,k = (Phov + Pcom + ρkPT )∇Xc

(
T com

c,k

)
,

ωf ly
c,c ′ = (Phov + Ptr )∇Xc

(
T f light

c,k

)
.

(16)

In the remainder of the paper, we denote PLmax
k � 417

PT /N0

2
(P T M k ) / (B E m a x

k
)−1

. Note that the superscript (.)t indicates the 418

matrix transpose operator while ∇X(.) is the gradient operator 419

with regards to the vector X . 420

We remark that each collection stop corresponds to a known 421

problem in the literature called the constrained Weber problem 422

that searches the weighted median of a set of points within a lim- 423

ited area [25], [26]. In our case, the set of points are the sensors 424

from which the data is collected and the neighboring collec- 425

tion stops. Solving this problem involves an iterative update 426

of the searched position within the constrained neighborhood 427

until convergence is reached [27]. Ideally, each collection posi- 428

tion Xc coincides with the weighted median of the neighboring 429

stops and the sensors which can be written as follows: 430

Xc =

∑K
k=1 xc,kωcom

c,k Sk +
∑N

c ′=0
c ′ �=c

yc,c ′ω
f ly
c,c ′ Xc ′

∑K
k=1 xc,kωcom

c,k +
∑N

c ′=0
c ′ �=c

yc,c ′ω
f ly
c,c ′

, ∀c = 1, .., N,

(17)
From that we can deduce that the optimal set of positions is the 431

solution of a linear system: 432

Λ X̃ = Θ, (18)

where X̃ =
[
X1 X2 · · · Xc · · · XN

]t
is a 3N × 1 vector 433

composed by concatenation of the N collection stops’ 3D posi- 434

tions, while Λ is a 3N × 3N matrix defined as follows: 435

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 . . . −y1,cω
f ly
1,c . . . −y1,N ωf ly

1,N
...

. . .
... . . .

...
−yc,1ω

f ly
c,1 . . . Φc . . . −yc,N ωf ly

c,N
...

...
...

. . .
...

−yN,1ω
f ly
N ,1 . . . −yN,cω

f ly
N ,c . . . ΦN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

with Φc =
∑N

c ′= 0
c ′ �=c

yc,c ′ω
f ly
c,c ′ +

∑K
k=1 xc,kωcom

c,k . On the right 436

hand side of the equality (18), Θ is a 3N × 1 vector defined 437

as: 438

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,0ω
f ly
1,0 X0 +

K∑
k=1

x1,kωcom
1,k Sk

y2,0ω
f ly
2,0 X0 +

K∑
k=1

x2,kωcom
2,k Sk

...

yc,0ω
f ly
c,0 X0 +

K∑
k=1

xc,kωcom
c,k Sk

...

yN,0ω
f ly
N ,0X0 +

K∑
k=1

xN,kωcom
N,k Sk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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Algorithm 1: UAV Stops Optimization Algorithm.
Choose a random initial set of stop positions of the UAV
that satisfies the constraints (15b).
while ||X(t+1)

c − X(t)
c || > ε, ∀c do

• Update the weights ωcom
c,k and ωf ly

c,k using (16).
• Compute the positions of the UAV stops using (18).
• For each collection stop position, check that the
constraints (15b) are satisfied or choose the closest
solution that satisfies them using (21).
• t := t + 1.

end while

Thus, the positioning of the collection stops can be found439

through Algorithm 1 where the locations of the UAV stops are440

iteratively updated until convergence is reached. We note that441

since the obtained positions must satisfy the sensors energy442

constraints as in (15b), we check at every iteration whether each443

stop satisfies them with regards to its relative sensors. Otherwise,444

we choose the closest position at which these constraints are445

satisfied. This can be done through a local neighborhood search446

algorithm that determines the new position Xc as follows:447

Xc = arg min
X∈ ⋂

k |x c , k = 1
Fr (Sk )

||X − Xc ||2, (21)

where Fr (Sk ) = {X ∈ Ω|PLA-G (Sk ,X) ≤ PLmax
k } is the448

“feasibility” region of the sensor Sk in which the drone can449

receive the total sensor’s data while not violating its energy and450

rate constraints.451

On the other hand, for a better approximation of the origi-452

nal objective function, we update the weights ωcom and ωf ly453

by recomputing the gradients at each iteration using the new454

positions to seek close-optimality of the solution.455

B. Clusters Assignment Sub-Problem456

In this step, we propose to determine for each stop, the subset457

of sensors for which data is collected. This is mathematically458

equivalent to determining the index variables {xc,k , ∀c, k}. By459

fixing the other variables, we obtain the following sub-problem:460

arg min
{xc , k ∈{0,1}}1≤c≤N

1≤k≤K

N∑
c=1

K∑
k=1

xc,kEstop
c,k + ρkESk

(22a)

subject to
N∑

c=1

xc,k = 1, 1 ≤ k ≤ K; (22b)

ESk
≤ Emax

k , 1 ≤ k ≤ K. (22c)

This sub-problem can be independently solved and a direct461

solution is derived for each sensor. Each sensor is assigned to462

the collection stop that requires the lowest stop energy to collect463

its data. Given the expression of Estop
c,k in (11), this is also464

equivalent to the stop with highest average communication data465

Algorithm 2: Joint Clustering-TSP Path Planning for Wire-
less Data Gathering.

Initialize collection stops X(0)
c , ∀c.

while ||X(t+1)
c − X(t)

c || > ε, ∀c do
• Determine sensors assignment to collection stops
using (23).
• Determine the path between the collection stops using
TSP.
• Update the weights ωcom

c,k and ωf ly
c,f .

• Compute the locations of the UAV stops using (18).
• For each stop location, check that the constraints (15b)
are satisfied or choose a close solution using (21).
• t := t + 1.

end while

rate: 466

xc,k =

{
1, if c = arg min

i=1..N
R (Sk ,X i)

0, otherwise.
(23)

C. Path Planing Sub-Problem 467

In this step, we focus on optimizing the path between 468

the collection stops assuming that their positions (Xc , ∀c ∈ 469

{1, . . . , N}) are fixed. The sub-problem then is simplified as 470

follows: 471

arg min
{yc,c ′ ∈ {0, 1}}0≤c≤N

0≤c ′≤N

{uc ∈ Z}0≤c≤N

N∑
c=0

N∑
c ′=0
c ′ �=c

yc,c ′E
f light
c,c ′ (24a)

subject to
N∑

c=0
c �=c ′

yc,c ′ = 1, 1 ≤ c′ ≤ N ; (24b)

N∑
c ′=0
c ′ �=c

yc,c ′ = 1, 1 ≤ c ≤ N ; (24c)

uc − uc ′ + (N + 1)yc,c ′ ≤ N,

1 ≤ c �= c′ ≤ N. (24d)

Due to the expression of the flight energy in (10), the sub- 472

problem can be simplified to a classic symmetric TSP. Since it 473

is a linear problem, classic linear programming algorithms or an 474

efficient heuristic such as the Christofides Algorithm [28] can 475

be used to find a close-optimal itinerary efficiently. 476

D. Joint Optimization Algorithm 477

Now that we presented convenient procedures to solve each 478

variable efficiently. We develop a global algorithm that jointly 479

solves the problem and determines the stops positions, the sen- 480

sors assignment, and the path using an iterative approach as 481

presented in the joint Clustering-TSP Algorithm 2. The ap- 482

proach extends the previously presented UAV stops positioning 483
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TABLE II
SYSTEM PARAMETERS

Algorithm 1 to also update the assignment of sensors so clus-484

ters are re-constructed at each iteration depending on the new485

stops locations. Moreover, the itinerary is also updated at each486

iteration as per the variation of these stops since these variables487

are inter-dependent.488

E. Effect of the Number of Stops/Clusters489

We note that Algorithm 2 considers a fixed number of col-490

lection stops N . On one hand, we should note that this number491

is lower bounded by the minimum needed stops to cover all the492

sensors. This lower bound can be computed through the inter-493

section of all the regions that satisfy the energy constraints of494

all sensors. This can be written as:495

Nmin = min
Ki ∈PK

|Ki |∏
K∈Ki

1Ir (K) �= ∅
, (25)

where PK is the set of all partitions of elements in {1, ...,K},496

|.| denotes the cardinality of a set, and the operator 1e is the497

identity function (i.e., it takes 1 when e is true and 0 otherwise).498

Moreover Ir (K) =
⋂

k∈K Fr (Sk ) is the intersection of all fea-499

sibility regions of the sensors in the set K. On the other hand,500

the maximum number of stops is equal to the number of sensors.501

In this extreme situation, the drone would stop at a very close502

location to every sensor to collect its data separately. This would503

minimize the energy consumed at each stop but would cost much504

higher flight energy to travel between all these stops. Thus, we505

propose to start from the maximum number of stops and iter-506

atively decrease the number of stops by removing one of the507

stops if it results in reduction of the total energy consumption.508

IV. RESULTS AND DISCUSSION509

In this section, we investigate the impact of some parame-510

ters on the system performance. We consider a bounded area of511

size 1 × 1 km2 where K = 100 ground sensors are randomly512

placed in the area following a uniform distribution. A quad-513

copter drone is initially placed at the center of the area targeting514

to collect data from the K sensors. We assume that the locations515

and size of data to transmit for each sensor are a-priori known.516

The channel and energy consumption models’ parameters are517

given in Table II [24], [29] unless mentioned otherwise. For the518

objective function, without loss of generality, we consider equal519

weights for all sensors’ energy ρk = ρ = 1
K ,∀k. We compare520

Fig. 3. Comparison between the proposed approach “J-TSP-CL” and the
“TSP-N” algorithm energy consumption as a function of the number of
sensors.

the performance of our algorithm that we denote by “J-TSP-CL” 521

to the performance obtained using a TSP with neighborhood 522

(TSP-N) based approach that determines the minimum path to 523

travel across the neighborhood of the sensors using the algo- 524

rithm introduced in [30]. In this algorithm, for each sensor, a 525

neighborhood area is defined. This region characterizes the area 526

where a UAV can receive the sensor’s data reliably. The objec- 527

tive of the algorithm is then to optimize the path of the UAV 528

such that it flies over all neighborhood regions of the transmit- 529

ting sensors. However, this solution does not account for the 530

effect of the UAV’s positions on the data rate, and thus on the 531

time needed to complete the transmissions. Additionally, it re- 532

quires a discretization of the environment to obtain the global 533

solution. 534

In Fig. 3, we plot the obtained energy consumption using 535

our algorithm compared to the one of the TSP-N algorithm as 536

a function of the number of active sensors (K). We observe 537

a net energy saving achieved via the proposed algorithm that 538

can reach 50% with only 100 sensors. Furthermore, the TSP- 539

N based algorithm energy consumption increases exponentially 540

with the increase of the number of sensors while our algorithm 541

ensures a linear increase through the control of the trade-off 542

between the flight and communication energies. In fact, when 543

the number of sensors is low, our algorithm sets the UAV to travel 544

very close to the sensors to collect the data rapidly (i.e., with 545

minimal energy at stops) while also keeping low travel energy. 546

However, when the number of sensors increases, the UAV starts 547

gathering data from larger distances; it consumes higher energy 548

when communicating but ensures higher saving in terms of flight 549

energy. In contrast, the TSP-N based algorithm fails to do this 550

trade-off between communication and flight times’ effects on 551

energy consumption. Since it does not account for the energy 552

consumption due to communication, the energy consumed at 553

the stops increases proportionally to the number of sensors. But, 554

more importantly, the flight energy continuously increase due to 555

the complication of finding a path that travels the neighborhoods. 556



IEE
E P

ro
of

GHORBEL et al.: JOINT POSITION AND TRAVEL PATH OPTIMIZATION FOR ENERGY EFFICIENT WIRELESS DATA GATHERING USING UAVs 9

Fig. 4. Energy consumption as a function of the number of stops.

Fig. 5. Energy consumption as a function of the sensors available energy.

In order to further explain the effect of the trade-off between557

communication and flight times on the energy consumption,558

in Fig. 4 we fix the number of stops N in our algorithm559

‘J-TSP-CL’ and plot the consumed energy as a function of560

N . Since the number of sensors per cluster decreases with561

the number of stops, the communication time decreases with562

the increase of the number of stops and thus the energy con-563

sumed at stops continuously decreases. On the other hand, with564

the increase of the number of stops, more energy is needed565

to travel across them. Thus, Ef light is continuously increas-566

ing with the number of stops. This trade-off results in an op-567

timal number of stops N ∗ that minimizes the global energy.568

For our set-up parameters, this optimal number is shown to be569

4 clusters.570

In Fig. 5, we focus on the effect of the sensors’ available571

energy. We vary the average available energy per sensor and572

show the result in terms of energy consumption. Increasing this573

energy relaxes the constraints for UAV stops and gives it more574

flexibility to ensure its data collection from larger distances.575

Fig. 6. UAV altitude as a function of the LoS/NLoS pathloss difference.

This results in an increase of the communication time (i.e., 576

increase of the stop energy) but at the same time, it ensures 577

higher savings in flight distance/time which reduces the total 578

energy consumption. 579

In Fig. 6, we observe the behavior of the UAV in different 580

simulation environments. We the plot the average UAV height 581

while varying the difference between NLoS and LoS excessive 582

path losses (ξN LoS − ξLoS ). For wild environments, LoS and 583

NLoS are almost equal, the UAV flies only at low altitudes to 584

reduce its flight energy consumption. Higher altitudes does not 585

provide any benefit. As the difference between the path losses 586

increases, we tend towards urban environments due to the higher 587

shadowing and obstructions which increase the NLoS pathloss. 588

Thus, the UAV is forced to fly at higher altitudes to take profit 589

of the better channels using LoS in order to reduce its energy 590

consumption. 591

V. CONCLUSION 592

In this paper, we designed a framework for energy efficient 593

data collection from WSNs using a mobile UAV. The proposed 594

approach optimizes the UAV stops for data collection from 595

neighboring sensors as well as the itinerary followed by the 596

UAV in order to ensure efficient collection of all data with 597

minimum energy consumption. The proposed algorithm iter- 598

ates between clustering based approach to optimize the UAV 599

stops positioning and the sensors collected per stop and a TSP 600

procedure to determine the UAV path. The simulation results 601

show the efficiency of the proposed approaches in provid- 602

ing better results compared to existing approaches due to the 603

joint optimization of the communication and flight energies 604

consumption. 605
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