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Abstract Cells move by run and tumble, a kind of dynamics in which the cell alternates runs over
straight lines and re-orientations. This erratic motion may be influenced by external factors, like
chemicals, nutrients, the extra-cellular matrix, in the sense that the cell measures the external field
and elaborates the signal eventually adapting its dynamics.
We propose a kinetic transport equation implementing a velocity-jump process in which the transition
probability takes into account a double bias, which acts, respectively, on the choice of the direction
of motion and of the speed. The double bias depends on two different non-local sensing cues coming
from the external environment. We analyze how the size of the cell and the way of sensing the
environment with respect to the variation of the external fields affect the cell population dynamics by
recovering an appropriate macroscopic limit and directly integrating the kinetic transport equation.
A comparison between the solutions of the transport equation and of the proper macroscopic limit
is also performed.

1 Introduction

It is well known that a classical migration mode of bacteria consists in alternating runs or swims over
straight lines and tumbles (Berg, 1983). Also eukaryotic cells alternate persistent crawlings along a
polarization axis with reorientation phases in which they re-polarize as a result of several external
stimuli. These can be represented by nutrients, chemical factors, or noxious substances (Block et al.,
1983), and also by environmental cues, such as density, stiffness, and structure of the extra-cellular
matrix (ECM). In addition, the presence of other cells along the way can act in a two-fold way, either
attractive due to the interaction of adhesion molecules (e.g, cadherin complexes) expressed on the
cellular membrane, or repulsive when the region is becoming too overcrowded.

Cells measure all these signals by transmembrane receptors located on their protrusions that
can extend up to several cell diameters. The captured chemical or physical signals activate in turn
transduction pathways downstream that lead to the cell response. This includes in particular the
polarization of the cell with the formation of a “head” and a “tail” and the activation of adhesion
molecules and traction forces leading to motion (Adler, 1966). In the framework of kinetic models,
in the present paper we will focus on how the environmental sensing over a finite radius can be
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translated in the choice of the direction of motion and of the speed of the cell. In fact, in order to
do that we develop a kinetic model in which the distribution function depends on cell speed and
orientation, respectively a scalar and a unit vector, in addition to the usual dependence on space and
time. In the tumbling phase, then, the new orientation and subsequent speed are chosen as a result
of a sensing over a finite neighbourhood of the cell, giving the kinetic model a non-local character.

Focusing on mesoscopic models of cell migration and referring to Hillen and Painter (2008) for
an extensive and more general review on PDE models of chemotaxis, we can observe that the run
and tumble dynamics can be modeled by a stochastic process called velocity-jump process that was
introduced by Stroock (1974). In this work, the author derived a linear transport equation from
the velocity-jump process. Such an equation describes the movement of a single-particle distribution
function like in the Boltzmann equation (Cercignani, 1987). The main elements of such a process are
the tumbling frequency, the mean speed, and the transition probability that describes the probability
of choosing a certain velocity after re-orientation. The mean speed, mean runtime (which is the
inverse of the frequency), and the tumbling probability may be measured from individual patterns of
members of the population. Another advantage of such models is that they admit finite propagation
speed. Alt (1980) and Othmer et al. (1988) introduced the bias induced by an external stimuli in
the linear transport equation. Dickinson (2000) generalized the model to a transport equation in an
anisotropic environment and applied to an environment with a gradient of a stimulus.

Hillen (2006) proposed a Boltzmann-like model taking into account of the interaction between
cells and ECM, also including the degradation of ECM fibers as a function of the angle between the
ECM fiber and the cell velocity. In particular, the author recovered macroscopic limits (diffusive or
hyperbolic) according to the structure of the matrix. Painter (2008) used a similar model to describe
ECM remodelling resulting from the migration of cells in a heterogeneous environment by integrating
numerically the kinetic equation.

An extension of this Boltzmann-like model taking also into account of the interaction between
cells and between cells and ECM is proposed by Chauviere et al. (2007a) and Chauviere et al. (2007b).
A further extension is suggested by Chauviere and Preziosi (2010) where the operators describing
interactions between cells and between cells and ECM include the bias due to an external cue.
Surulescu and coworkers (Engwer et al., 2017, 2015a,b, 2016; Stinner et al., 2015) instead discussed
in more details cell-ECM adhesion phenomena, and, focusing on tumour growth, mainly gliomas,
also included proliferation and therapies.

Many of the papers above determine for the proposed mesoscopic models the related macroscopic,
usually diffusive, limits and implement them numerically. The diffusive limit of transport equations is
deeply described by Hillen and Othmer (2000). More in detail, Othmer and Hillen (2002) investigated
various forms and orders of the bias which may be included in the transition probability. However, in
some regimes a hyperbolic limit is more suitable (for example in presence of formation of networks,
as studied by Chalub et al. (2004), Hwang et al. (2005), Filbet et al. (2005)).

Coming to the sensing strategies and then to the determination of cell re-orientation and speed,
they have been considered in several models. In position jump processes, the transition probabilities
model the strategy of sensing and may typically be (i) local, if the information at the present position
is considered, (ii) neighbour based, if the information at the target jump site is taken into account,
(iii) gradient based, if the local difference in information between the target and the local site is
considered, (iv) local average, if the average of the information between the present and target site
as done by Othmer and Stevens (2001) and by Painter and Sherratt (2003).
In general, a way of including cell sensing is to consider a non-local average of the external fields.
For what concerns bacteria and cells dynamics, Othmer and Hillen (2002) and Hillen et al. (2007)
introduced a finite sampling radius and they defined a non-local gradient as the average of the
external field on a surface which represents the membrane of the cell. In particular, the Authors
derived a macroscopic diffusive model with a non-local gradient both from a position jump process
and from a velocity jump process by postulating that the non-local sensing is a bias of higher order.

The notion of non-local sensing was also used for cell adhesion and haptotaxis by Armstrong
et al. (2006) yielding a macroscopic integro-differential equation. This model was recently derived
from a space jump process by Buttenschön et al. (2018). Similar equations were proposed in 2D
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set-ups by Colombi et al. (2017), Colombi et al. (2015), and applied also to model crowd dynamics
and traffic flow by Tosin and Frasca (2011).

Eftimie (2012) and Carrillo et al. (2015) proposed non-local kinetic models including repulsion,
alignment and attraction. They distinguish cells going along the two directions in the one-dimensional
set-up with the possibility of switching between the two directions with a constant speed. The one-
dimensional kinetic model takes then a discrete structure that is then integrated directly.

As already stated, in this paper we want to include the sensing strategy in a velocity-jump process
and to model the tactic and kinetic response of a cell as a consequence of the non-local sensing of the
environment. In particular, we focus on the fact that different fields can influence respectively cell
direction and speed. Because of these characteristics we name the model as a double-bias non-local
kinetic model. To be specific, a chemical factor may influence the orientation of a cell (taxis), while
the cell population density or the matrix density may influence the speed of the cell once the direction
is chosen. For instance, a volume filling effect can hamper the motion in a certain direction due to
cell overcrowding. Similarly, fiber networks with too narrow pores can hamper or even completely
inhibit migration, a phenomenon called physical limit of migration by te Boekhorst et al. (2016) and
Wolf et al. (2013).

Therefore, cell response is related to the choice of the transition probability evaluated in a non-
local way over the neighborhood of the cell. Several examples are given, some in order to show the
link with existing models (Buttenschön et al., 2018; Hillen et al., 2007; Painter et al., 2010, 2015;
Painter and Hillen, 2002), others to point out the novelties of the proposed model. In particular, from
the numerical point of view, we simulate directly the kinetic equation taking into account of different
phenomena, e.g ., chemotaxis, ECM steric hindrance, adhesion induced aggregation, durotaxis.

We also discuss how the choices made on the transition probability and on the size of the sam-
pling volume determine the type of macroscopic limit that can be performed. Then, we compare
the outcome of the numerical integration of the transport equation with the proper macroscopic
limits and the related analytical solution that can be obtained for the stationary case. This shows a
satisfactory agreement when the hypothesis necessary to perform the limits are satisfied.

The plan of the article is as follows. After a section introducing the general and preliminary
concepts, Section 3 introduces the general structure of the double-bias non-local kinetic model.
Then, in Section 4 the macroscopic limits are discussed, distinguishing when it is possible to perform
a parabolic scaling or a hyperbolic scaling according to the modelling assumptions. In Section 5 we
start with a simpler single-bias model in which there is no cue affecting the speed, that is determined
through a given distribution function. Several sensing strategies determining cell orientation are
discussed, starting from local responses to non-local averages and strategies comparing the level of
chemicals in different points of the neighbourhood, also including the possible dependence of the
encounter rate from taxis factors. In Section 6 the double-bias model is discussed. Again, for clarity
we first focus on the simpler case in which there is no cue influencing cell orientation, so that it is
randomly chosen. We finally give an example for the complete model, already presented in its general
form in Section 3.

2 Preliminaries

The statistical description of the cell population is performed through the distribution density p =
p(t,x,vp) which is parametrized by the time t > 0, the position x ∈ Ω ⊆ Rd and the velocity pair
vp = (v, v̂) ∈ Vp = [0, U ] × Sd−1, being Sd−1 the unit sphere boundary in Rd and U the maximal
cell speed, so that v̂ is the unit vector and v is the speed, i .e., the modulus of the velocity vector
v = vv̂. The choice of representing the distribution function p depending on the direction and on the
speed of the velocity, instead of the velocity vector v, lies in the need of separating the mechanisms
governing cell polarization and motility, for instance in response of chemotaxis and in presence of
other influencing factors (Alt, 1980). The mesoscopic model consists in the transport equation for
the cell distribution:

∂p

∂t
(t,x,vp) + v · ∇p(t,x,vp) = J [p](t,x,vp) (1)
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where the operator ∇ denotes the spatial gradient. The term J [p](t,x,vp), named turning operator,
is an integral operator that describes the change in velocity which is not due to the free-particle
transport. It may describe the classical run and tumble behaviors, contact guidance phenomena, or
cell-cell interactions. For the moment we will consider the classical run and tumble, e.g ., random
re-orientations, which, however, may be biased by external cues. Therefore, our turning operator will
be the implementation of a velocity-jump process in a kinetic transport equation as introduced by
Alt (1980).

A macroscopic description for the cell population can be classically recovered through the defi-
nition of moments of the distribution function p:

- the cell number density

ρ(t,x) =

∫
Vp

p(t,x,vp) dvp ; (2)

- the cell mean velocity

U(t,x) =
1

ρ(t,x)

∫
Vp

p(t,x,vp)v dvp ; (3)

- the cell variance-covariance matrix

P(t,x) =

∫
Vp

(v −U)⊗ (v −U)p(t,x,vp) dvp ; (4)

- the cell speed variance

E(t,x) =

∫
Vp

|v −U|2

2
p(t,x,vp) dvp . (5)

We remark that, because of the definition of Vp, the integrals over the velocity space are

∫
Vp

f(v, v̂) dvp =

∫ U

0

∫
Sd−1

f(v, v̂) dv̂ dv. (6)

In particular, if the dependence of f on v and v̂ can be factorized, i .e. f(v, v̂) = f1(v)f2(v̂), we
have that ∫

Vp

f(v, v̂) dvp =

∫ U

0

f1(v) dv

∫
Sd−1

f2(v̂) dv̂. (7)

The integral over Sd−1, which we remind to be the boundary of the unit sphere, is not a surface
integral. It has to be interpreted as

∫
Sd−1

f2(v̂) dv̂ =

∫ 2π

0

f2(cos(θ), sin(θ))dθ

in 2D and similarly in 3D.

Computing the moments of the transport equation (1) allows to obtain evolution equations for
the moments above. Macroscopic limits can then be achieved by classical procedures. In particular,
the diffusive limit of transport equations with velocity jump processes is deeply treated by Hillen and
Othmer (2000), Othmer and Hillen (2002), and Hillen (2006), where the hyperbolic scaling is treated
as well. The interest here is focused on when, according to the hypothesis done on the transition
probability and on the sensing radius, it is possible to perform either a parabolic or a hyperbolic
scaling, leading to the related diffusive and hyperbolic limits.
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3 The turning operator

In taxis processes cells are capable of detecting and measuring external signals through membrane
receptors located along cell protrusions that can extend over a finite radius. Information of both
mechanical and chemical origin are then transduced and act as control factors for the dynamics of
cells. Therefore, in the turning operator of the kinetic model we will include the evaluation of mean
fields in a neighborhood of the re-orientation position. In particular, we will consider two different
control factors S and S′ which are positive quantities defined on Ω. They respectively bias cell
polarization (and therefore orientation) and speed, once cell orientation is set. Hence, we will have
a transition probability and a frequency of tumbling which depend on both S and S′.

The general form of the turning operator which implements a velocity jump processes is

J [p](x,vp) = G[p](x,vp)− L[p](x,vp) , (8)

where the gain term is

G[p](x,vp) =

∫
Vp

µ(x,v′p)T [S,S′](x,vp|v′p)p(t,x,v′p) dv′p , (9)

the loss term is

L[p](x,vp) =

∫
Vp

µ(x,vp)T [S,S′](x,vp′′|vp)p(t,x,vp) dvp
′′ , (10)

and v′p is the pre-turning velocity of the gain term and vp
′′ is the post-turning velocity of the loss

term. The so-called turning kernel T [S,S′](x,vp|v′p) is the probability for a cell in x of choosing the
velocity vp after a re-orientation biased by the external fields S and S′ given the pre-turning velocity
v′p. It is, then, a conditional probability also called transition probability, and, therefore, it satisfies∫

Vp

T [S,S′](x,vp′′|vp)dvp
′′ = 1 , ∀x ∈ Ω, ∀vp ∈ Vp. (11)

Also the turning frequency µ may depend on the external signal and/or on its gradient, and on
the microscopic orientation, e.g . through its polarization, typically through v · ∇S (see for example
the work by Othmer and Hillen (2002)). In fact, it is proved that the speed and the turning rates
of individuals depend not only on the magnitude of an external signal S but also on its temporal
and spatial variations as highlighted by Berg (1983), Fisher et al. (1989), Koshland (1981), Soll and
Wessels (1998).

As done by Chauviere et al. (2007a) and Chauviere et al. (2007b), in the following, we will assume
that cells retain no memory of their velocity prior to the re-orientation, i .e., T = T [S,S′](x,vp). The
independence from the pre-tumbling velocity lies in the fact that the choice of the new velocity is
linked to the slow interaction process also related to cell ruffling and sensing which is responsible for
the biased re-orientation. However, the assumption might be restrictive in some cases, as it does not
include, for instance, the case in which the sensing region depends on the incoming velocity through
a polarization-dependent expression of transmembrane proteins. It also excludes persistence effects
in which the re-orientation direction depends on the pre-tumbling polarization of the cell. Under
such an assumption, the operator (8) simplifies to

J [p](x,vp) =

∫
Vp

µ(x,v′p)p(t,x,v′p) dv′p T [S,S′](x,vp)− µ(x,vp)p(t,x,vp) , (12)

where
∫
Vp
µ(x,v′p)p(t,x,v′p) dv′p represents the fraction of re-orientating cells per time unit in x. If

also the frequency µ(x) does not depend on the microscopic velocity, then we have that

J [p](t,x,vp) = µ(x)
(
ρ(t,x)T [S,S′](x,vp)− p(t,x,vp)

)
. (13)

However, in the following, we will also consider a ’weak’ dependence of the frequency on the incoming
velocity and in particular on cell polarization.
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We observe that the distribution function nullifying the operator in (13) is simply

p(t,x,vp) = ρ(t,x)T [S,S′](x,vp), (14)

which, in general, is time dependent, but it may also be a stationary equilibrium state.
As a consequence of (11), for any function T [S,S′] the operator J [p] satisfies the property∫

Vp

J [p](t,x,vp) dvp = 0 , (15)

that expresses mass conservation. On the other hand, the evaluation of the first moment of J [p] with
respect to the velocity variable yields∫

Vp

J [p](t,x,vp)v dvp = µ(x)ρ(t,x)
(
US,S′(x)−U(t,x)

)
(16)

that indicates no preservation of momentum in general. Similarly, also energy is not preserved. In
(16) the vector U is the mean velocity of the cells defined by (3), while US,S′ is a macroscopic velocity
due to the variations of S, S′, defined by

US,S′(x) =

∫
Vp

T [S,S′](x,vp)v dvp . (17)

It is the mean outgoing velocity after a re-orientation biased by S and S′. Another important quantity
is the variance-covariance matrix of T , which is defined as

DS,S′(t,x) =

∫
Vp

(v −US,S′)⊗ (v −US,S′)T [S,S′](x,vp) dvp . (18)

Bisi et al. (2008) and Pettersson (2004) deal with an operator which has a structure similar to
(13). They prove that, provided that the probability distribution has initially a finite mass and energy
and non-absorbing boundary conditions hold, the function (14), which makes (13) vanish, is a stable
asymptotic equilibrium state. It is stationary, which means that ρ is stationary. We shall consider
no-flux boundary conditions (i .e. (59)) which are non-absorbing boundary conditions. Moreover,
US,S′ and DS,S′ are the mean velocity and variance-covariance tensor of the cells at the equilibrium.

3.1 Structure of the turning probability T

From the physiological point of view, the decision process determining the new cell velocity can be
split in two parts. First the cell decides where to go and polarizes, forming the so-called cell “head”
and “tail”. Then, it starts to move in that direction with a certain speed. These two processes are
mainly independent and might be influenced by different chemical and mechanical cues. For instance,
environment microstructure, availability of intracellular space and of adhesion sites, expression of
integrins, activity of motor proteins, calcium influx, availability of ATP all influence cell speed, while
gradients of free and bound chemical factors, of ECM components and ECM stiffness all influence cell
polarization. A cell can even be polarized but unable to move. This, for instance, occurs if the cell is
treated with latrunculin as shown by Devreotes and Janetopoulos (2003), or because of overcrowding
due to the presence of too many cells in the direction where it would like to move, giving rise to
the so-called volume filling effect (see the work by Painter and Hillen (2002) and references therein),
or because of a too dense ECM, giving rise to the so-called physical limit of migration (Wolf et al.,
2013; Arduino and Preziosi, 2015; Giverso et al., 2017; Scianna and Preziosi, 2013, 2014; Scianna
et al., 2013).

As already stated, the choice of the new velocity is a result of a sensing activity of the cell in its
neighborhood performed to monitor the quantity of two generally different fields S and S′, respec-
tively determining cell polarization and speed. This information is then weighted by two functions

γS : R+ 7−→ R+ and γ′S′ : R+ 7−→ R+ ,
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both with compact support that is related to the finite size of the influencing neighborhood related
respectively to the fields S and S′ around the position x and weighting the information according
to the distance from the cell center. They may be

– Dirac deltas, e.g ., γS(λ) = δ(λ − RS), if the cells only measure the information perceived on a
surface of given radius RS ,

– Heaviside functions, e.g ., γS(λ) = H(RS − λ) if the cells explore the whole volume of the sphere
centered in x with radius RS and weight the information uniformly, or

– decreasing functions of the distance λ from the cell center x taking for instance into account that
the probability of making longer protrusion decreases with the distance, so the sensing of closer
regions is more accurate.

The distance RS is, therefore, a measure of the capability of sensing and detecting of the cell. It
may be the measure of cell protrusions, or it may be bounded by U

µ which is the mean linear tract

travelled between two consecutive re-orientations. Berg and Purcell (1977) have shown that the
sampling volume in which the signal is significantly detected depends on how rapidly the receptors
on the cell’s membrane process the signal. The same considerations are valid for γS′ with a radius
RS′ which in general, might be different from RS .
The above considerations justify the following splitting

T [S,S′](x,vp) = c(x)

∫
R+

γS(λ)T v̂
λ [S](x)dλ

∫
R+

γS′(λ
′)ψ(x, v|S′(x + λ′v̂)) dλ′. (19)

The quantity T v̂
λ [S](x) is a functional which acts on S and describes the way the cell measures the

quantity S around x along the direction v̂ and, therefore, the bias intensity in the direction v̂. In
some cases, we shall write for instance

T v̂
λ [S](x) = b

(
S(x + λv̂)

)
, (20)

where b is a quantity depending on the value of S in a point at a distance λ from x along the direction
v̂. So, if b is an increasing function of S and the signal is stronger in the direction v̂, then there will
be a higher probability for the cell to move along v̂ than along −v̂. We shall also consider other
forms for T v̂

λ [S](x) as well.
The quantity ψ(x, v|S′(x + λ′v̂)) is a conditional probability distribution function of the cell speed
given the value of S′ in a neighborhood of x in the direction v̂ that is then weighted by γS′ . Again,
we shall discuss this further in Section 6. Finally, the factor c(x) is a normalizing factor which is
given by

c(x) =
1

Γ ′0

∫
Sd−1

∫
R+

γS(λ)T v̂
λ [S](x)dλ dv̂

(21)

where Γ ′0 =

∫
R+

γS′(λ
′) dλ′, so that (11) is satisfied.

4 Macroscopic limits

In order to highlight the driving macroscopic phenomenon which may be diffusion or convection,
we will discuss the appropriate macroscopic limits of the kinetic equations. A way to do that is to
perform, respectively, a parabolic scaling and then a diffusive limit, or a hyperbolic scaling and then
a hydrodynamic limit. In these approaches it is assumed that there is a small parameter ε� 1 that
allows to suitably rescale the transport equation. The two scalings are, respectively,

τ = ε2t, ξ = εx,

τ = εt, ξ = εx.
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Following the work by Othmer and Hillen (2002), we also assume that T can be expanded as

T [S,S′](ξ,vp) = T [S,S′]0(ξ,vp) + εT [S,S′]1(ξ,vp) +O(ε2) (22)

This means that there are different orders of bias as will be better illustrated in the examples to
follow. If we assume that µ = O(1), we may denote J 0 and J 1 the related operators defined by T0

and T1 respectively, and we assume that∫
Vp

T [S,S′]0(ξ,vp) dvp = 1, (23a)

and ∫
Vp

T [S,S′]i(ξ,vp) dvp = 0 ∀i ≥ 1. (23b)

Coherently, the velocity and tensor of the second moments of the transition probability may be
written as

US,S′ = U0
S,S′ + εU1

S,S′ +O(ε2) (24)

and

DS,S′ = D0
S,S′ + εD1

S,S′ +O(ε2) (25)

where

Ui
S,S′ =

∫
Vp

T [S,S′]iv dvp

and

DiS,S′ =

∫
Vp

T [S,S′]i(v −Ui
S,S′)⊗ (v −Ui

S,S′) dvp

for i ≥ 1. In both limits we consider an expansion of the distribution function p in the form

p = p0 + εp1 +O(ε2) , (26)

where the function p0 is the equilibrium function given by the solution to the leading order part of
the turning operator

J 0[p0](vp) = 0 . (27)

As J 0[p0](vp) = µ(ρ0T [S,S′]0(vp)− p0(vp)), Eq.(27) is satisfied if and only if

p0(vp) = ρ0T [S,S′]0(vp). (28)

4.1 The diffusive limit

The diffusive limit of velocity jump processes is deeply treated by Hillen and Othmer (2000) and
Othmer and Hillen (2002). In particular, in (Othmer and Hillen, 2002) macroscopic models for
chemosensitive movement are systematically derived for different orders of ε of the turning probabil-
ity. In the same spirit as in the works above, because of the conservation of mass, we have that

– all the mass is in p0, i .e.,

ρ0 = ρ, ρi = 0 ∀i ≥ 1 , (29)

where ρi =

∫
Vp

pidv;

– ∫
Vp

pivdvp = 0 ∀i ≥ 2 (30)

.
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In the works by Hillen and Othmer (2000) and Othmer and Hillen (2002) the turning probability
depends on the pre-tumbling velocity, i .e., T = T (vp|v′p) and it is required that∫

Vp

T (vp|v′p)dv′p = 1. (31)

Thanks to this property and to other regularity assumptions on T Hillen and Othmer (2000) show
that the function identically equal to 1 is an eigenfunction of the turning operator with eigenvalue 0
that is a simple eigenvalue. In the present work there is no dependence on the pre-tumbling velocity
and (31) does not hold true. Furthermore, because of the structure of the turning operator, the
density p0 making the leading part of the turning operator vanish (28) is an eigenfunction of the
velocity jump operator and it depends on the velocity. Moreover, as all the functions nullifying the
turning operators are proportional to T up to a multiplicative constant, we have that the eigenvalue
0 is simple and the subspace of L2(Vp) defined by

〈T [S,S′]0(ξ,vp)〉

is the kernel of the turning operator and it has dimension equal to one. Therefore, the appropriate
scalar product allowing to determine uniquely the solvability condition is the one proposed by Hillen
(2006)

〈f, g〉 =

∫
Vp

fgT−1dvp. (32)

Whence the equilibrium function p0 belongs to the subspace generated by the eigenfunction of
J 0 with eigenvalue 0, i .e., 〈T [S,S′]0(ξ,vp)〉. This means that the equilibrium function has mean
and the variance-covariance tensor equal to U0

S,S′ and D0
S,S′ respectively. For i ≥ 1, the functions

pi ∈ 〈T [S,S′]0(ξ,vp)〉⊥ ⊆ L2(Vp) for a.e. ξ, where 〈T [S,S′]0(ξ,vp)〉⊥ is the orthogonal subspace
to the subspace generated by T [S,S′]0(ξ,vp). Thanks to the scalar product (32) we have that
g ∈ 〈T [S,S′]0(ξ,vp)〉⊥ if and only if

∫
Vp
g(vp)dvp = 0. This justifies the assumptions (29).

The dependence of p0 on vp has also consequences on the conditions for the isotropy of T and
of the diffusion tensor are not the same as the ones considered by Hillen and Othmer (2000) and
Othmer and Hillen (2002). The case in which T does not depend on the pre-tumbling velocity is
treated by Hillen (2006) where it is assumed that the turning probability T is of order zero in ε.
Therefore, we illustrate the diffusive limit procedure in the case in which the turning probability does
not depend on the pre-tumbling velocity and it can be expressed as in (22), and we also illustrate
the necessary conditions which are needed in order to perform it.
The discriminating factor is whether T is such that

U0
S,S′ =

∫
Vp

T [S,S′]0v dvp = 0 for a.e. ξ, (33)

i .e., the leading order macroscopic velocity vanishes, or not. In this case we are led to perform a
parabolic scaling, i .e., τ = ε2t, ξ = εx, ε� 1.
The rescaled equation is

ε2
∂p

∂τ
(τ, ξ,vp) + εv · ∇p(τ, ξ,vp) =J 0[p] + εJ 1[p] +O(ε2) . (34)

We suppose that µ ∼ O(1). From now on, to simplify the notation, we will drop the dependencies
on τ and ξ. Comparing terms of equal order in ε, we then obtain the following system of equations:

In ε0:
J 0[p0](vp) ≡ µ

(
ρ0T [S,S′]0(vp)− p0(vp)

)
= 0 (35)

In ε1:
∇ ·

(
p0(vp)v

)
= J 0[p1](vp) + J 1[p0](vp) =

= µ
(
ρ1T [S,S′]0(vp)− p1(vp)

)
+ µρ0T [S,S′]1(vp)

(36)
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In ε2:
∂

∂τ
p0(vp) +∇ ·

(
p1(vp)v

)
= J 0[p2](vp) + J 1[p1](vp) + J 2[p0](vp). (37)

As already discussed, Eq. (35) implies (28), that is the equilibrium state of order zero. From Eq.
(36), by inverting J 0, we get

p1(vp) = − 1

µ
∇ ·

(
vp0

)
+ ρ0T [S,S′]1(vp) . (38)

The solvability condition for inverting J 0 is that p1 ∈ 〈T [S,S′]0(vp)〉⊥. Because of (32) this means
that ∫

Vp

[
−∇ · 1

µ

(
vp0

)
+ ρ0T [S,S′]1(vp)

]
dvp = 0 for a.e. ξ. (39)

Equation (39) is satisfied because∫
Vp

vp0(vp)dvp = ρ0

∫
Vp

T [S,S′]0(vp)v dvp = 0 for a.e. ξ, (40)

that is (33), and ∫
Vp

T [S,S′]1(vp)dvp = 0 for a.e. ξ, (41)

because of (23b).
The evolution equation for ρ (= ρ0) is obtained from the solvability condition at O(ε2), i .e., the
integral on Vp of Eq. (37) which is given by

∂ρ

∂τ
+∇ ·

(
ρU1

S,S′

)
= ∇ ·

(
1

µ
∇ ·

(
D0
S,S′ρ

))
, (42)

where we used (30). The term U1
S,S′ is the chemotactic velocity, which is present if there is a bias of

order ε as in the work by Othmer and Hillen (2002). In the following sections, we will show that under
appropriate conditions of sensing of the cells, microscopic rules may allow to recover the chemotaxis
equation in which the chemotactic velocity is proportional to the gradient of S and the chemotactic
sensitivity depends on the sensitivity function, which captures the cell capability of sensing and
detecting the signal.

4.2 Diffusive limit for encounter rates weakly depeding on the incoming velocity

We now generalize the above procedure in the case it is possible to write µ(x,vp) = µ0(x) +
εµ1(x,vp) +O(ε2). In this case the rescaled transport equation reads

ε2
∂p

∂τ
(vp) + εv · ∇p(vp) = µ0

(
ρ
(
T [S,S′]0(vp) + εT [S,S′]1(vp)

)
− p(vp)

)
+

∫
Vp

εµ1(v′p)p(v′p)dv′p

(
T [S,S′]0(vp) + εT [S,S′]1(vp)

)
− εµ1(vp)p(vp)

+µ0 ε
2ρT [S,S′]2(vp) + ε2T [S,S′]0(vp)

∫
Vp

µ2(v′p)p(v′p) dv′p − ε2µ2(vp)p(vp) +O(ε3) ,

(43)

where also p has to be intended as expanded in terms of ε. Comparing terms of equal order in ε, we
obtain the same equation as before in ε0, while at the first order

∇ ·
(
p0(vp)v

)
= µ0

(
ρ1T [S,S′]0(vp)− p1(vp)

)
+ µ0ρ0T [S,S′]1(vp)

+

∫
Vp

µ1(v′p)p0(v′p) dv′pT [S,S′]0(vp)− µ1(vp)p0(vp),
(44)
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and at second order

∂

∂τ
p0(vp) +∇ ·

(
p1(vp)v

)
= µ0

(
ρ2T [S,S′]0(vp)− p2(vp)

)
+µ0ρ1T [S,S′]1(vp) +

∫
Vp

µ1(v′p)p1(v′p) dv′pT [S,S′]0(vp)

+

∫
Vp

µ1(v′p)p0(v′p) dv′pT [S,S′]1(vp)− µ1(vp)p1(vp) + µ0ρ0T [S,S′]2(vp)

+

∫
Vp

µ2(v′p)p0(v′p) dv′pT [S,S′]0(vp)− µ2(vp)p0(vp).

(45)

From equation (44), we get

p1(vp) = − 1

µ0
∇ ·

(
vp0(vp)

)
+ ρ0T [S,S′]1(vp) +

ρ0

µ0
T [S,S′]0(vp)

(
µ̄1 − µ1(vp)

)
, (46)

where

µ̄1 =

∫
Vp

µ1(v′p)T [S,S′]0(v′p) dv′p. (47)

In this case the solvability condition for inverting J 0 becomes∫
Vp

[
− 1

µ0
∇ ·

(
vp0

)
+ ρ0T [S,S′]1(vp) +

ρ0

µ0
T [S,S′]0(vp)

(
µ̄1 − µ1(vp)

)]
dvp = 0 , (48)

that is again satisfied because ∫
Vp

vp0(vp)dvp = 0 for a.e. ξ, (49)

∫
Vp

T [S,S′]1(vp)dvp = 0 for a.e. ξ (50)

and ∫
Vp

T [S,S′]0(vp)
(
µ̄1 − µ1(vp)

)
dvp = 0 for a.e. ξ. (51)

The first two equations vanish as proved in the preceding section, while recalling the definition (47)
and (23a), we have that (51) is trivially satisfied.
As in the previous section, the solvability condition at O(ε2), i .e., the integral on Vp of (45) gives
the evolution equation for ρ

∂ρ

∂τ
+∇ ·

(
ρ
(
U1
S,S′ + U1,µ1

S,S′

))
= ∇ ·

(
1

µ0
∇ ·

(
DS,S′ρ

))
(52)

where U1
S,S′ =

∫
Vp

T [S,S′]1v dvp and

U1,µ1

S,S′ =
1

µ0

∫
Vp

{
T [S,S′]0(vp)[µ̄1 − µ1(vp)]

}
vdvp

=− 1

µ0

∫
Vp

T [S,S′]0(vp)µ1(vp)vdvp,

(53)

where the first term vanished because of (33). So, the chemotactic velocity presents a correction to
the term U1

S,S′ given by U1,µ1

S,S′ . In the particular case in which µ1 is independent of vp we obviously

recover (42) as U1,µ1

S,S′ = 0.
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4.3 The hyperbolic limit

The discriminating factor on whether a diffusive or a hyperbolic limit can be performed lies in the
properties of the chosen turning probability T and specifically on the satisfaction of (33). So, at
variance with the previous section, we here assume that T does not satisfy (33). In this case, a
hyperbolic scaling, i .e. τ = ε, ξ = εx, ε� 1 can be performed. The rescaled transport equation is

ε
∂p

∂τ
(vp) + εv · ∇p(vp) =

µ
[
ρ
(
T [S,S′]0(vp) + εT [S,S′]1(vp)

)
− p(vp)

]
.

(54)

As the equilibrium state is the same as before, we consider a Chapman-Enskog expansion of p in the
form

p(vp) = ρ0T [S,S′]0(vp) + εg +O(ε2). (55)

where g ∈ 〈T [S,S′]0(vp)〉⊥ ⊆ L2(Vp) with the same scalar product as before. Substituting (55) in
(54) and integrating on Vp the equation at the order ε1, we obtain

∂ρ

∂τ
+∇ ·

(
ρU0

S,S′
)

= 0 , (56)

thanks to (29), where (with the dependencies)

U0
S,S′(ξ) =

∫
Vp

T [S,S′]0(ξ,vp)v dvp. (57)

In this case we have then a drift-driven phenomenon.
If we consider a frequency weakly depending on the velocity, the rescaled transport equation

modifies into

ε
∂p

∂τ
(vp) + εv · ∇p(vp) =

µ0

[
ρ
(
T [S,S′]0(vp) + εT [S,S′]1(vp)

)
− p(vp)

]
+εT [S,S′]0(vp)

∫
Vp

µ1(v′p)p(v′p)dv′p − µ1(vp)p(vp) +O(ε2),

(58)

and, thanks to (29) and (47), we recover, again, (56) with U0
S,S′ given by (57) .

Isotropy and anisotropy As we said at the beginning of the section, the necessary and sufficient
conditions for the isotropy of the diffusion tensor are not the same as the ones considered by Hillen
and Othmer (2000), as the transition probability does not depend on the incoming velocity. This
implies that the mean outgoing velocity for a given incoming velocity is always zero and, therefore,
the adjoint persistence is zero. In our case, we have that D0

S,S′ is isotropic if and only if T0[S,S′] is
isotropic as a function of v̂, i .e., if T0[S,S′] is invariant with respect to rotations of π2 as a function

of v̂. This also implies that U0
S,S′ is zero and that the directional persistence is zero. Vice versa, if

U0
S,S′ is not zero, D0

S,S′ is anisotropic.

4.4 Boundary conditions

We shall consider the following biological no-flux condition (Plaza, 2019)∫
Vp

p(τ, ξ,vp)v · n(ξ)dvp = 0, ∀ξ ∈ ∂Ω, τ > 0 (59)

being n(ξ) the outer normal to the boundary ∂Ω in the point ξ, and we remind that vp = (v, v̂).
This choice is motivated by the fact that in experiments in vitro there is no exchange of biological
material between the system and its environment. Equation (59) implies that there is no normal
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Biological aspect Section J Macro
limit

Application Figure

Orientation
Local sensing 5.2.1 (80) (83)
Encounter rate depending
on the incoming velocity

5.2.2 (85) (88)

Non-local sensing 5.2.3 (89) Chemotaxis 1, 2, 4
Cell adhesion 5

Durotaxis 7
(small sensing limit) (96) (98)–(99)
Comparative sensing 5.2.4 (107) Chemotaxis 3
(small sensing limit) (112) (98)–(113)
Speed
Random polarization 6.1.1 (130) (131) ECM steric hindrance 9
(Non-local speed sensing)
Orientation and Speed
Non-local orientation 6.1.3 (133) (134) Chemotaxis and 11
and speed sensing ECM steric hindrance

Table 1 Summary of models

mass flux across the boundary (Lemou and Mieussens, 2008). At the macroscopic level (59) gives
(Plaza, 2019) (

DS,S′∇ρ− ρU1
S,S′

)
· n(ξ) = 0, on ∂Ω.

for the diffusive limit, whilst for the hyperbolic limit the corresponding boundary condition is

U0(ξ) · n = 0, on ∂Ω.

Two important classes of kinetic boundary conditions which satisfy (59) are the regular reflection
boundary operators and the non-local (in velocity) boundary operators of diffusive types defined by
Palcewski (1992) (see also the work by Lods (2005)). Let us denote the boundary operator

R[p](τ, ξ, v, v̂) = p(τ, ξ, v′, v̂′).

Two main examples of the regular reflection boundary conditions are

– bounce back reflection condition

p(τ, ξ, v′, v̂′) = p(τ, ξ, v,−v̂) if v̂ · n ≥ 0 (60)

and p(τ, ξ, v′, v̂′) = p(τ, ξ, v, v̂) elsewhere.
– specular reflection boundary condition

p(τ, ξ, v′, v̂′) = p(τ, ξ, v, v̂ − 2(v̂ · n)n) if v̂ · n ≥ 0 (61)

and p(τ, ξ, v′, v̂′) = p(τ, ξ, v, v̂) elsewhere.

Diffusive boundary conditions are prescribed in the form

p(τ, ξ, v′, v̂′) =

∫
v̂∗·n≥0

h(ξ,vp,v
∗
p)p(τ, ξ, v∗, v̂∗)|v∗ · n|dv∗p

where h = h(ξ,vp,v
∗
p) is a non-negative measurable function called the Gaussian equilibrium func-

tion satisfying ∫
v̂∗·n≤0

h(ξ,vp,v
∗
p)|v∗ · n|dv∗p = 1.

A linear combination of a regular reflection with a diffusive boundary operator is called a Maxwell-
type boundary operator and reads

p(τ, ξ, v′, v̂′) = α(ξ)p(τ, ξ, v,V(v̂)) + (1− α(ξ))M(ξ, v, v̂)

∫
v̂∗·n≥0

p(τ, ξ, v∗, v̂∗)|v∗ · n|dv∗p, (62)

where M(ξ, v, v̂) is the Maxwellian of the wall and V(v̂) = −v̂ for the bounce back reflection
condition and V(v̂) = v̂ − 2(v̂ · n)n for the specular reflection. We shall consider regular reflection
boundary conditions for the one-dimensional simulations and Maxwell type boundary conditions for
the two-dimensional simulations (see section 5.3.1).
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5 Directional bias

In this section we will specialize the above kinetic models and macroscopic limits to several situations
of biological interest, that are listed in Table 1 in order to guide the reader through them. For sake
of clarity, for the moment we will forget about the S′ field, assuming that once the cell is polarized
its speed is determined through a distribution function over the speed ψ(x, v). The case in which
the distribution function depends on a signalling cue S′ will be denoted as double bias and will
be treated in Section 6. Therefore, ψ(x, v) describes the random unbiased probability for a cell at
position x of having modulus v after a random re-orientation. In this case we expect a factorized
turning probability, as the distributions for the (biased) direction and for the speed are independent.
We will apply the model to several non-local sensing dynamics, comparing the results with other
existing models.

5.1 Directional turning probability

Let us introduce the quantities

B[S](x, v̂) =

∫
R+

γS(λ)T v̂
λ [S](x) dλ , (63)

and

B̄[S](x, v̂) = c2(x)B[S](x, v̂) , (64)

where c2(x) =
1∫

Sd−1

∫
R+

γS(λ)T v̂
λ [S](x)dλ dv̂

is the normalization constant.

In this case, the turning probability can then be factorized as

T [S](x,vp) = ψ(x, v)B̄[S](x, v̂) . (65)

We also introduce

Ū(x) =

∫ U

0

ψ(x, v)v dv , (66)

that is the mean speed and

D(x) =

∫ U

0

ψ(x, v)(v − Ū)2 dv , (67)

that is the variance of the distribution function of the speed. The final expression of the operator
J [p] then becomes

J [p](t,x,vp) = µ(x)
(
ρ(t,x)ψ(x, v)B̄[S](x, v̂)− p(t,x,vp)

)
. (68)

The distribution which makes (68) vanish corresponds to a macroscopic velocity

US(x) = Ū(x)

∫
Sd−1

B̄[S](x, v̂)v̂ dv̂ (69)

and to a diffusion tensor

DS(x) =

∫
Vp

ψ(x, v)B̄[S](x, v̂)(v −US)⊗ (v −US) dvp. (70)

The expansion (22) of T reflects now on the expansion of B̄

B̄[S](ξ, v̂) = B̄[S]0(ξ, v̂) + εB̄[S]1(ξ, v̂) ,
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with

Ui
S(ξ) = Ū(ξ)

∫
Sd−1

B̄[S]i(ξ, v̂)v̂ dv̂ , (71)

and

DiS(ξ) =

∫
Vp

ψ(x, v)B̄[S]i(ξ, v̂)(v −Ui
S)⊗ (v −Ui

S) dvp . (72)

We remark that if (33) holds true (i .e., if U0
S vanishes)

D0
S(ξ) = D(ξ)

∫
Sd−1

B̄0[S](ξ, v̂)v̂ ⊗ v̂ dv̂. (73)

The diffusive limit in the case in which the turning frequency does not depend on the microscopic
velocity, i .e. Eq. (42), now reads

∂ρ

∂τ
+∇ ·

(
ρU1

S

)
= ∇ ·

( 1

µ
∇ ·

(
D0
Sρ
))
, (74)

while the diffusive limit in the case in which µ1 depends on the microscopic velocity, i .e. Eq. (52),
now reads

∂ρ

∂τ
+∇ ·

(
ρ
(
U1
S + U1,µ1

S

))
= ∇ ·

( 1

µ0
∇ ·

(
D0
Sρ
))
, (75)

where

U1,µ1
S =

1

µ0

∫
Vp

µ1(vp)ψ(v)B̄[S]0(v̂)vdvp, (76)

while the hyperbolic limit is

∂ρ

∂τ
+∇ ·

(
ρU0

S

)
= 0 . (77)

5.2 Examples

The function T λv̂ , introduced to account for a bias in the choice of the direction, has to be chosen
according to the specific taxis process to be considered. In particular, as the cell scouts and detects
the signal around itself, the functional T λv̂ will depend on S through the quantity S(x + λv̂) as
introduced by Othmer and Hillen (2002) and later treated by Hillen et al. (2007), with λ = RS . For
us, λ ∈ [0, RS ], where RS accounts for the size of the sensing neighborhood and the information is
weighted through γS(λ). This quantity will be considered in order to define for every x the probability
of going in direction v̂, which is B̄[S(x)](v̂). According to the characteristics of this probability, we
will recover a macroscopic model, depending on the value of

∫
Sd−1

B̄[S]0(ξ, v̂)v̂dv̂ (78)

which discriminates between a diffusion driven or a drift driven phenomena, according to whether
(33) is satisfied or not.
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5.2.1 Local sensing

In the first example we consider a transition rate that depends only on the information given by
the control factor at that site, i .e., γS(λ) = δ(λ − 0). In this case, the term B̄[S] in the transition
probability is simply

B̄[S](x, v̂) =
1

|Sd−1| , (79)

where | · | denotes the measure of the set. Then the turning operator reads

J [p](t,x,vp) = µ(x)
( 1

|Sd−1|ρ(t,x)ψ(x, v)− p(t,x,vp)
)
. (80)

This is what we expect, as the measure of S in x does not affect the choice of the direction. In this
model, S(x) may only affect the frequency of turning. As (33) is satisfied and B[S]1 = 0, we perform
a diffusive limit. In addition, since ∫

Sd−1

v̂ ⊗ v̂ dv̂ =
|Sd−1|
d

I, (81)

DS(ξ) is isotropic
DS(ξ) = D(ξ)I, (82)

and, if µ ∼ O(1), we have that

∂ρ

∂τ
(τ, ξ) = ∇ ·

( 1

µ(ξ)
∇
(
D(ξ)ρ(τ, ξ)

))
. (83)

Therefore, there is no directional bias which comes from the transition probability, coherently with
the fact that no non-local information is taken into account.

5.2.2 Encounter rate dependent taxis

In order to consider situations in which organisms are too small to perform a non-local measurement,
like E.Coli, following the ideas by Block et al. (1983) and Othmer and Hillen (2002), we allow here the
encounter rate to weakly depend on a signal S, still working with local models. For sake of simplicity,
we assume a time-independent signal, or however changes over a time scale much larger than the

free-fly time. In fact, E.Coli can measure a path wise gradient in time, i .e.,
DS
Dt

=
∂

∂t
S + v · ∇S.

Block et al. (1983) show that the movement of E.Coli may be modelled with a Poisson process with
turning frequency depending on the temporal gradient of S

µ(x,vp) = µr(x) exp

[
−f(S)

(
∂

∂t
S + v · ∇S

)]
(84)

being µr the turning rate in absence of the external signal. The turning operator reads

J [p](t,x,vp) = −µr exp

[
−f(S)

(
∂

∂t
S + v · ∇S

)]
p(t,x,vp)

+
1

|Sd−1|ψ(ξ, v)

∫
Vp

µr exp

[
−f(S)

(
∂

∂t
S + v′ · ∇S

)]
p(t,x,v′p)dv′p .

(85)

For instance, one can take the function proposed by Lapidus and Schiller (1976) i .e. f(S) =
C1KD

(KD + S)2
where KD is the dissociation constant for the attractant. Hence, in the spirit of the

work by Othmer and Hillen (2002) by a parabolic scaling, we can expand (84) as

µ(ξ) = µr(ξ)
(

1− εf(S)v · ∇S +O(ε2)
)
,
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and set
µ0(ξ) = µr(ξ) , (86)

and
µ1(ξ,vp) = −µr(ξ)f(S)v · ∇S. (87)

We then obtain U1
S = 0 because B[S]1 = 0 and, recalling (76),

U1,µ1

S = −−µr
µr

f(S)
1

|Sd−1|

∫ U

0

ψ(ξ, v)vdv

∫
Sd−1

v̂ ⊗ v̂dv̂∇S =
Ū(ξ)f(S)

d
∇S(ξ)

and the macroscopic equation reads

∂ρ

∂τ
(τ, ξ) +∇ ·

(
ρ(τ, ξ) Ū(ξ)f(S)

d ∇S(ξ)
)

= ∇ ·
( 1

µr(ξ)
∇
(
D(ξ)ρ(τ, ξ)

))
. (88)

that is a chemotaxis model also in the case of local sensing, when an organism is too small for
measuring a spatial gradient, but it is able to measure the temporal gradient of S along its path.

5.2.3 Non-local sensing average

We now consider the case in which the choice of the new velocity depends on a suitable average of
the value of the signal S perceived through transmembrane receptors by a cell that extending its
protrusions can sense its neighborhood.
We shall consider in this case

T v̂
λ [S](x) = b

(
S(x + λv̂)

)
that models the fact that in order to decide its new direction, the cell measures S in x + λv̂ and
evaluates an average of a quantity which is linked to this measure (b). Therefore, recalling (68) the
operator for biased random motion including taxis is

J [p](t,x,vp) =

µ(x)

(
ρ(t,x)ψ(x, v)c(x)

∫
R+

b(S(x + λv̂))γS(λ) dλ − p(t,x,vp)

)
,

(89)

if the turning frequency does not depend on the microscopic velocity. In order to understand what
to expect from the integration of (89) that will be performed in Section 5.3, we can look at the
asymptotic limit.
For a general b and RS , the macroscopic velocity of order zero is

U0
S(ξ) = Ū(ξ)

∫
Sd−1

(∫
R+

b(S(ξ + λv̂))γS(λ) dλ

)
v̂ dv̂∫

Sd−1

(∫
R+

b(S(ξ + λv̂))γS(λ) dλ

)
dv̂

. (90)

As, in this case, (33) is generally not satisfied, we have a non-zero drift term and a hyperbolic limit
needs be performed, leading to the integro-differential equation

∂ρ

∂τ
+∇ ·

(
ρU0
S
)

= 0 . (91)

In particular, if b(S) = S, this drift term measures the dominant direction in the extracellular factor
in the neighbourhood of the cell as

U0
S(ξ) = Ū(ξ)

∫
Sd−1

(∫
R+

S(ξ + λv̂))γS(λ) dλ

)
v̂ dv̂∫

Sd−1

(∫
R+

S(ξ + λv̂)γS(λ) dλ

)
dv̂

. (92)
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However, it is possible to simplify the turning operator (89), if RS is much smaller than the char-

acteristic length lS of variation of S, e.g ., lS = 1/max |∇S|S . In fact, we can expand b in a Taylor
series

b(S(x + λv̂)) = b(S(x)) + λb′(S(x))∇S(x) · v̂ +O(λ2). (93)

Therefore, if b(S(x)) does not vanish, the operator may be approximated by

B̄[S](x, v̂) =
1

|Sd−1|

[
1 + Λ

b′(S(x))

b(S(x))
∇S(x) · v̂

]
(94)

where

Λ =

∫
R+

γS(λ)λdλ∫
R+

γS(λ)dλ

. (95)

For instance, if only the signals at a membrane having a distance RS from x is taken into account, i .e.
γS(λ) = δ(λ−RS), then Λ = RS . If instead all the signals between the cell center and its membrane

are uniformly mediated, i .e. γS(λ) = H(RS − λ), then Λ =
RS
2

.

In this case, the turning operator is

J [p](t,x,vp) = µ(x)

[
ρ(t,x)

ψ(x, v)

|Sd−1|

(
1 + Λ

b′(S(x))

b(S(x))
∇S(x) · v̂

)
− p(t,x,vp)

]
. (96)

We remark that the smallness of RS and the approximation (93) localizes the non-local integral
model (89) into (96). Under these limit assumptions it is possible to perform a parabolic scaling that
gives

B̄[S](ξ, v̂) =
1

|Sd−1|

(
1 + εΛ

b′(S(ξ))

b(S(ξ))
∇S(ξ) · v̂

)
. (97)

Hence, B̄[S]0(ξ, v̂) =
1

|Sd−1| and B̄[S]1(ξ, v̂) =
1

|Sd−1|Λ
b′(S(ξ))

b(S(ξ))
∇S(ξ) · v̂. In this case recalling (74)

we obtain
∂ρ

∂τ
(τ, ξ) +∇ ·

(
ρ(τ, ξ)χ(S(ξ))∇S(ξ)

)
= ∇ ·

( 1

µ(ξ)
∇
(
D(ξ)ρ(τ, ξ)

))
, (98)

where

χ(S(ξ)) =
ΛŪ(ξ)

d

b′(S(ξ))

b(S(ξ))
. (99)

So, the chemotactic sensitivity χ takes into account of the kinetic response through Ū and of the
sensing capability through γS(λ) contained in Λ. More importantly, different signal-dependent sensi-
tivity models can be obtained according to the choice of b. Vice versa, any relation on the chemotactic
sensitivity can be obtained by a proper b given by

b(S) = exp

[
d

ΛŪ

∫
χ(S) dS

]
.

Trivially, if b is independent of S, one has no chemotaxis. If b is proportional to S (and S 6= 0,
always), then

χ(S(ξ)) = Λ
Ū(ξ)

dS(ξ)
. (100)

Let us now introduce the parameter

η =
RS
lS
. (101)

We have seen that if the sensing radius is smaller then the characteristic length of variation of the
chemotactic field, i .e. η � 1, then (89) can be simplified to (96), whereas this is not possible if
the sensing radius is larger then lS , i .e. η � 1. This leads to different macroscopic limits (98) and
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(91) respectively. This different macroscopic behavior and the proper choice of the scaling may be
justified thanks to a nondimensionalization argument. We shall rescale the variables as

ξ =
x

lS
, ṽ =

v

Uref
, τ =

t

σt
,

where we shall choose
Uref = RSµ̄

being µ̄ a reference frequency. The time scale σt can be chosen as a diffusion time TDiff scale or a
drift time scale TDrift. In general we may write (Hillen and Othmer, 2000)

TDiff =
l2S
D
, D =

U2
ref

µ̄
, TDrift =

lS
Uref

The regime is diffusive - and we will choose σt = TDiff - if the frequency µ̄ is very large with respect
to the reference time scale σt, i .e. if we can find a small parameter ε such that

µ̄ =
ε−2

σt
.

The latter is equivalent to

lS = O
(
Uref
ε

)
which implies the hierarchy

TDrift � TDiff . (102)

In the present case this is equivalent to

η =
RS
lS

< 1.

On the other hand, the macroscopic regime is hyperbolic, and we choose a faster time scale if

µ̄ =
ε−1

σ
.

In this case the appropriate choice will be

σt = TDrift =
lS
Uref

=
η

µ

as the hierarchy (5.2.3) does not hold any more. Hence, the following relation holds

η ∼ 1

ε
� 1.

With respect to (100), different chemotactic coefficients can be obtained by different choices of the
bias function b(S): for instance, if b(S) = k+ Sn with k > 0, then we have a saturating chemotactic
sensitivity

χ(S(ξ)) =
ΛŪ(ξ)

d

Sn−1(ξ)

k + Sn(ξ)
. (103)

Another example is the receptor binding process. In this case we may consider a saturating depen-
dence on the signal concentration

b
(
S(x + λv̂)

)
=

Sn(x + λv̂)

k + Sn(x + λv̂)
, (104)

yielding

χ(S(ξ)) =
ΛŪ(ξ)

d

kn

S(ξ)[k + Sn(ξ)]
. (105)
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We notice that in this case, if we choose n = 1 and γS(λ) = δ(λ−RS), i .e., a membrane sensing, we
recover the model proposed by Hillen et al. (2007).
Generally speaking, b increasing with S will give rise to chemoattraction, while b decreasing with S
will lead to a repulsive effect. For instance, if

b(S(x + λv̂)) =
1

k + Sn(x + λv̂)
,

we have (103) but with the opposite sign, i .e., alignment in the opposite direction with respect to
the gradient of S.

At this stage we did not specify whether S represents a diffusing or a matrix bound chemical.
Even more, one can deal with durotaxis in a completely analogous way. In this case the signal S is
the perceived stiffness of the ECM and the sensing of the mechanical properties of the ECM around
the cell will induce motion toward stiffer region of the ECM if b is an increasing function of S, as we
shall see as last application in Section 5.3.

5.2.4 Comparative sensing

In some cases the signals perceived by the cell in differently localized receptors on its membrane
is amplified by a polarization dynamics involving PTEN and the phosforillation of PIP2 into PIP3
(Ambrosi et al., 2005). This causes the formation of a “head” and a “tail” in the cell that chooses
the direction accordingly. In order to mimick this phenomenon, we assume here that the turning rate
depends on what is sensed in x + λv̂ and in x− λv̂, i .e.,

T λv̂ [S(x)] = α+ βb
(
S(x + λv̂),S(x− λv̂)

)
, α > β > 0 (106)

where b ∈ (−1, 1) is a quantity comparing the values S(x− λv̂) and S(x + λv̂) in a way that keeps
T λv̂ always positive. Hence,

J [p](t,x,vp) =

µ(x)

[
ρ(t,x)ψ(x, v)c(x)

(
αΛ0 + β

∫
R+

b
(
S(x + λv̂),S(x− λv̂)

)
γS(λ) dλ

)
− p(t,x,vp)

]
,

(107)

being Λ0 =

∫
R+

γS(λ)dλ. In the attractive case, the cell is most likely to go where there is a larger

concentration of chemical, and therefore we might take

b
(
S(x + λv̂),S(x− λv̂)

)
=

S(x + λv̂)− S(x− λv̂)

2k + S(x + λv̂) + S(x− λv̂)
. (108)

On the other hand, in the repulsive case, the cell tends to go where there is a smaller concentration
of chemical, and therefore we might take

b
(
S(x + λv̂),S(x− λv̂)

)
=

S(x− λv̂)− S(x + λv̂)

2k + S(x + λv̂) + S(x− λv̂)
. (109)

As done in the previous section, if we can assume that the size of the neighborhood providing
information through signaling is small, one can perform a Taylor expansion of the function T v̂

λ in
λ = 0 and write

T v̂
λ = α+ β

λ∇S(x) · v̂
k + S(x)

(110)

in the attractive case (the repulsive case is similar with a minus sign, or equivalently a negative β).
The biased transition probability becomes

B̄[S](ξ, v̂) =
1

|Sd−1|

(
1 +

β

α
Λ
∇S(x) · v̂
k + S(x)

)
, (111)
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that for a logarithmic dependence of b from S has the same structure as (97). In this limit the
operator for biased random motion including taxis becomes

J [p] = µ

(
ρ(t,x)ψ(x, v)

1

|Sd−1|

(
1 +

β

α
Λ
∇S(x) · v̂
k + S(x)

)
− p(t,x,v)

)
. (112)

Equation (111) satisfies (33) and, therefore, a diffusive limit can be performed. As, B̄[S]0(ξ, v̂) =

ψ(ξ; v)
1

|Sd−1| and B̄[S]1(ξ, v̂) =
β

α
Λ
∇S(x) · v̂
k + S(x)

, we get a drift-diffusion equation (98) with

χ(S) =
βŪΛ

dα

1

k + S . (113)

Even if in the limit of small sensing radii the comparative sensing is almost the same as the
non-local sensing introduced in the previous section (in the sense that the diffusive limit are similar),
it allows to add some details. In fact, the ratio of the coefficients β and α measures the different
weight of the diffusive and the advective (chemotactic) contributions. Further, we may include in β a
dependence on other substances like S itself or auto-inducers to model quorum sensing. For example
in the case of the cellular slime mold Dictyostelium discoideum, the response to the auto-inducer
Netrin-1 may be attractive in high concentrations of cAMP, whilst it may be decreasing in case of
low levels of cAMP (Deery and Gomer, 1999). Painter and Hillen (2002) consider a response in the
form β(w) = 1− w

w∗ , being w∗ a saturation level. In addition, when the sensing radius is not small
the kinetic models are different, reflecting the fact that the mechanisms are fundamentally different,
with the comparative sensing giving rise to a stronger response, especially when considering that
the reception of the signal can be amplified by feedback mechanisms arising from the activation of
proper protein cascades inside the cells, giving rise, for instance to the segregation of PIP2 and PIP3
in different parts of the cell.

5.3 Numerical simulations

We simulate the kinetic model with turning operator given by (89) with b(S) = S both in one and
two dimensions. In order to do that, we use the numerical scheme proposed by Filbet and Vauchelet
(2010) in which a kinetic model for chemotaxis is simulated in two-dimensions using a van Leer
scheme for the space transport.

5.3.1 Numerical resolution of the kinetic model

We consider a computational domain that will be in the form [xmin, xmax] × [0, U ] in the one
dimensional case and [xmin, xmax]×[ymin, ymax]×Vp in the two dimensional case. The computational
domain is discretized with a Cartesian mesh Xh ×Vph , where Xh and Vph are defined by (in two
dimensions)
Xh = {xi,j = (xi, yj) = (xmin + i∆x, ymin + j∆y), 0 ≤ i ≤ nx, 0 ≤ j ≤ ny}

Vph = {vl,k = vk(cos θl, sin θl), θl = (l + 1/2)∆θ, 0 ≤ l ≤ nang − 1, vk = v0 + k∆v, 0 ≤ k ≤ nv}

where ∆x =
xmax − xmin

ny
,∆y =

ymax − ymin
ny

,∆v =
U

nv
,∆θ =

2π

nang
. Denoting by pni,j,l,k an

approximation of the distribution function p(tn,xi,j ,vpl,k), where vpl,k = (vk, v̂l). We introduce the
first order splitting

p
n+1/2
i,j,l,k − p

n
i,j,l,k

∆t
+ v · ∇x,hp

n
i,j,l,k = 0 (transport step)

pn+1
i,j,l,k − p

n+1/2
i,j,l,k

∆t
= µ

(
ρn+1
i,j T [S,S′]i,j,l,k − pn+1

i,j,l,k

)
(relaxation step)
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where h = (∆t,∆x,∆y), v·∇x,hp
n
i,j,l,k is an approximation of the transport operator v·∇p computed

with a Van Leer scheme. It is a high resolution monotone, conservative scheme which is second order
if the solution is smooth and first order near the shocks. T [S,S′]i,j,l,k is the discretization of the
transition probability T . We observe that as the turning operator preserves mass and the turning
probability is known and does not depend on p, the relaxation step may be implicit and we may
consider the density at time n+ 1. In particular the density is computed by using a trapezoidal rule

ρni,j = ∆v∆θ

nv∑
k=0

nang−1∑
l=0

pni,j,l,k.

Concerning boundary conditions, in the one dimensional case we consider regular reflecting condi-
tions. In one dimension, in a domain [0, L], the bounce-back and the specular reflection boundary
conditions coincide, that is p(t, x = 0, v) = p(t, x = 0,−v) and p(t, x = L,−v) = p(t, x = L, v). We
do not consider Maxwell type conditions as only the outgoing speed would be affected. In the two
dimensional case, the regular reflection is biologically unrealistic, as cells do not bounce back nor
they collide with the wall as hard spheres. Therefore, Maxwell type boundary conditions are more
realistic, and we shall consider for the Maxwellian to the wall

M(x,vp) = T [S,S′](x,vp),

being T the asymptotic equilibrium of the system with this class (no-flux) of boundary conditions.

Chemotactic motion
In the first simulation we consider a fixed Gaussian distribution of chemoattractant

S(x) = 0.3 exp

[
(x− 2.5)2

0.3

]
,

and a constant initial condition for the cell population, as shown as in Figure 1 (a). From Figures
1(b), 2, we can observe that cells tend to assume a profile similar to that of the chemoattractant
(see also Figure 2). This is not surprising since for a turning rate µ and distribution function ψ(v)
independent of x (and therefore constant Ū and D) in one dimension the stationary solution of (98)
is given by

ρ(x) = C[b(S(x))]m with m =
ΛµŪ

D
, (114)

and the constant C given by the initial mass, i .e.,

ρ(x) =

∫
Ω

ρ0(x) dx
[b(S(x))]m∫

Ω

[b(S(x))]mdx

. (115)

The maximum of the cell stationary state in response to the chemoattractant depends, as shown in
Figure 2, both on the size of the sensing neighborhood and on the kind of sensing. A larger sensing
radius leads to a stronger motility of cells and, therefore, to a higher peak in the steady state. This
is because a bigger sensing radius allows to scout a bigger neighborhood. Furthermore, the sensing
of a volume (γS = H) leads to an average of S over a bigger region, with respect to γS = δ. This
trend is also confirmed by the diffusive limit. In fact, the maximum density depends on the power
m defined in (114). Having set µ = 50 and chosen a uniform distribution in [0, 2], so that Ū = 1 and

D =
1

3
, then m = 150Λ with Λ = 0.02 for γS = δ(λ−RS) and Λ = 0.01 for γS = H(λ−RS).

Referring to Table 2, when RS = 0.02 � lS , the collision operator (89) is well approximated by

(96) and we can compare the solution between the kinetic model and Equation (98) with χ(S) = Λ ŪS .
As shown in Figures 2(a),(b), the macroscopic density of the stationary solution of the kinetic model
with turning operator given by (89) is very close to the analytic solution (114) of the diffusive
limit. In addition, one can observe that a larger sensing radius gives rise to a stronger sensitivity
as reflected by a larger Λ and therefore a larger χ(S) in the advection-diffusive equation (98) and
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(a) (b)

(c)

Fig. 1 Evolution of a constant macroscopic cell density in presence of a Gaussian distribution of chemoattractant

((a) and (b)). The chemotactic sensitivity is b(S) = S, ψ(v) =
1

U
,U = 2, and µ = 50. The sensing radius is

RS = 0.2 and γS = δ(λ−RS). The stationary distribution function is given in (c), while the stationary density in
Fig. 2 (a).

lS RS γS Λ η relative L∞ error
17.964 0.02 δ 0.02 0.001 0.03
17.964 0.02 H 0.01 0.001 0.03
17.964 0.2 δ 0.2 0.01 0.03
17.964 0.2 H 0.1 0.01 0.05
17.964 2 δ 2 0.1 0.13
17.964 2 H 1 0.1 0.53

Table 2 Chemotactic motion.
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(a) (b)

(c)

Fig. 2 Comparison of the stationary density of the kinetic model with the stationary solution (115) of the diffusion
limit (98) for (a) γS = δ(λ − RS) and (b) γS = H(λ − RS). In (c) the solutions for RS = 2 are given showing
discrepancies between the density of the solution of the kinetic model and of the diffusive limit (98) obtained when
η � 1.

a larger m in (114). The comparison between the two solutions remains quite good for RS = 0.2,
which corresponds to η = 0.01. Instead, as shown in Figure 2 and Table 2, an RS = 2 is not much
smaller than lS , yielding to larger discrepancies. The trends obtained for γS = δ and γS = H are
similar. However, the transient time is larger if the sensing function is the Heaviside function.

In the second simulation reported in Figure 3, we use a comparative sensing kernel (112). Here
RS = 0.02 and we consider different values of α and β. We may observe that if α is much larger than
β, then the diffusive dynamics is dominant.

Finally, in the set of simulations shown in Figure 4, we start from a macroscopic Gaussian
distribution for cells, that moves due to the perception of the chemoattractant which is distributed
linearly. Cells gradually move to the right until they reach the right boundary where the specular
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Fig. 3 Stationary density of the kinetic model with a comparative sensing kernel for RS = 0.02 and γS = δ(λ−RS).

reflection boundary condition, corresponding to a no-flux condition for the macroscopic density, keeps
them in the domain.

Fig. 4 Evolution of a Gaussian macroscopic distribution of cell density for t = 0, 0.5, 5, 10 in presence of a linear
chemoattractant distribution S(x) = 0.3x shown in red. The sensing radius RS = 0.02 and other parameters are
the same as in Figure 1.

Cell-cell adhesion
Using the same framework, we may also consider cellular adhesion by considering S = ρ as a biasing
signal. In this case, taking for instance b(ρ) = ρ and γρ a Dirac delta, the turning operator reads

J [p](t,x,vp) = µ(x) [ρ(t,x)ψ(x, v)c(x)ρ(x +Rρv̂)− p(t,x,vp)] ,
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As initial condition we take p(0, x,vp) =
0.2

U
(1 + 0.09 sinx) moving both to the right and to the left,

that corresponds to a small perturbation of the constant initial condition with unitary mass that
would stay constant. However, cell-cell adhesion triggers an instability so that the small perturbation
amplifies, reaching a peaked distribution in the center of the domain as shown in Figure 5.

Fig. 5 Temporal evolution of the macroscopic density starting from a perturbed constant distribution under the
action of cell-cell adhesion. Here γρ = δ(λ−Rρ), with Rρ = 1.

In two dimensions we show cell-cell adhesion for a four peaks distribution. Boundary conditions
are of Maxwell-type, with α = 0.5 in (62). We may observe that at the beginning the distributions
peak up. Then the sensing radius leads to aggregation of the single peaks in a nearly circular crown
structure. Peaks get closer and eventually aggregate.

(a) t = 0 (b) t = 2.5 (c) t = 7.5 (d) t = 12.5

(e) t = 15 (f) t = 17.5 (g) t = 20 (h) t = 50

Fig. 6 Temporal evolution of the macroscopic density starting from the four peaks distribution in (a) under the
action of cell-cell adhesion. Here γρ = δ(λ−Rρ), with Rρ = 0.25.
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Durotaxis

We now consider the case in which cells are guided by the rigidity of the extracellular matrix moving
towards stiffer regions. We consider a stiffness profile as in Fig. 7 (red line) and b(S) = S. The
sensing function is again a Dirac delta and the sensing radius in the simulation shown in the top row
of Figure 7 (red line) is RS = 0.02. So, the cells within that radius start moving to the stiffer region.
Eventually, a stationary state is reached that depends on the sensing radius. In particular, Figure 7
(bottom row) clearly shows that for a small radius RS = 0.02 (which corresponds to η = 0.02) the
analytic solution of the advection-diffusion equation (115) is similar to the macroscopic density of
the solution to the kinetic model. If, instead, RS = 2.5 (which corresponds to η = 3), we have that
(115) fails in approximating the solution to the kinetic equation, while the solution to the hyperbolic
macroscopic equation well approximates the profile of the cell density.

(a) (b) (c)

(d) (e)

Fig. 7 Cell migration under the action of durotaxis. The red line refers to the stiffness of the extracellular matrix.
The initial condition is uniformly distributed in the velocity space and has a macroscopic density which is a Gaussian
centred in 1.5 (a). In the top row we show the evolution of the cell density for t = 0, 1, 10 and for RS = 0.02 and
in the bottom row the stationary states for RS = 0.02 (d) and RS = 2.5 (e) and the comparison with the solutions
of the two macroscopic models (respectively, diffusive and hyperbolic).

In Figure 8 we present the corresponding simulations in two dimensions. We may observe that the
qualitative behavior is the same. Here we show the results with Maxwell type boundary conditions
(α = 0 in (62)). We checked that the macroscopic stationary state is the same with regular reflection
boundary conditions (α = 1 in (62)).
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(a) (b) T = 0

(c) t = 0.6 (d) t = 6 (e) t = 22

(f) t = 0.6 (g) t = 3 (h) t = 22

Fig. 8 Evolution of an initial distribution given in (b) in presence of a heterogeneous environment with stiffness
given in (a). In (c)-(f) RS = 0.02, while in (f)-(h) RS = 2.5.

6 Double bias

In the previous section we have assumed that the external signal only affects the choice of the
turning direction keeping the distribution function ψ determining the speed always the same and
in particular unaffected by environmental cues or external chemical signals. Instead, in cell motility
one should distinguish polarization mechanisms from the ability to move as they can depend on
different factors. In fact, as stated in the introduction, a cell can even be polarized but unable to
move. For this reason, in this section we consider a double bias, due to a second factor S′ evaluated
in a non-local way that influences the speed, once the direction v̂ is chosen according to the bias
ruled by S. These can be represented not only by different external free and bound chemical factors,
or subcellular cues involved in cell motility, but also by cell and ECM density.
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In order to do that, we allow the distribution function ψ(x, v) to depend on the level of the signal
S′. In order to stress this dependence, we use the following notations ψ = ψ(x, v|S′(x+λ′v̂)) for the
distribution function, v̄(x|S′(x+λ′v̂)) for its mean, and D(x|S′(x+λ′v̂)) for its variance, where |S′
reads as ”given S′ in a point x+λ′v̂ in the neighborhood of the cell”. Then, the cell polarized along
v̂ determines its speed averaging the signal over the sensing radius RS′ through a weight function
γS′ .
In the same spirit as Eq. (63), introducing also

Ψ [S′](x, v|v̂) =

∫
R+

γS′(λ
′)ψ(x, v|S′(x + λ′v̂)) dλ′ , (116)

the turning probability in (12) or (13) reads

T [S,S′](x,vp) = c(x)B[S](x, v̂)Ψ [S′](x, v|v̂). (117)

The normalization term c can be factorized as

c(x) = c1(x)c2(x),

with

c1(x) =
1∫

R+

γS′(λ
′) dλ′

=
1

Γ ′0
,

and

c2(x) =
1∫

Sd−1

∫
R+

γS(λ)T v̂
λ [S](x)dλ dv̂

.

In this way,

B̄[S](x, v̂) = c2(x)

∫
R+

γS(λ)T v̂
λ [S](x)dλ (118)

and

Ψ̄ [S′](x, v|v̂) =
1

Γ ′0

∫
R+

γS′(λ
′)ψ(x, v|S′(x + λ′v̂)) dλ′ (119)

are both distribution functions and the turning probability reads T = B̄Ψ̄ .
Going back to the general case, the turning operator reduces to

J [p](x,vp) = µ(x)
(
ρ(t,x)c(x)B[S](x, v̂)Ψ [S′](x, v|v̂)− p(t,x,vp)

)
(120)

and the distribution function which nullifies the turning operator is

p = ρ(t,x)c(x)B[S](x, v̂)Ψ [S′](x, v|v̂).

Now, US,S′ in Eq. (17) reads

US,S′(x) =
c(x)

c1(x)

∫
Sd−1

B[S](v̂) ŪS′(x|v̂)v̂ dv̂ (121)

where

ŪS′(x|v̂) = c1(x)

∫
R+

v̄(x|S′(x + λ′v̂))γS′(λ
′) dλ′ (122)

and the diffusion tensor is

DS,S′(x) = c(x)

∫
Vp

B[S](v̂)Ψ [S′](v|v̂)(v −US,S′)⊗ (v −US,S′) dvp. (123)
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Let us now assume that, like B, Ψ [S′] may be written, up to re-scaling, as

Ψ [S′] = Ψ [S′]0 + εΨ [S′]1 +O(ε2).

The means and variances of Ψ [S′]0 and Ψ [S′]1 will be, respectively, denoted by Ū0
S′ , Ū

1
S′ , D̄

0
S′ , D̄

1
S′ .

Up to re-scaling, the re-scaled turning probability becomes T [S,S′](vp) = T [S,S′]0(vp)+εT [S,S′]1(vp),
where, now

T [S,S′]0(vp) = c(x)B[S]0(v̂)Ψ [S′]0(v|v̂) (124)

and

T [S,S′]1(vp) = c(x)B[S]0(v̂)Ψ [S′]1(v|v̂) + c(x)B[S]1(v̂)Ψ [S′]0(v|v̂) . (125)

In this case, Eqs.(23a) and (23b) are satisfied if∫ U

0

Ψ [S′]0dv =

∫ U

0

Ψ [S′]dv
∫ U

0

Ψ [S′]idv = 0 ∀i ≥ 1.

Therefore, the macroscopic velocity of order 0 is

U0
S,S′(ξ) =

c(ξ)

c1(ξ)

∫
Sd−1

B[S]0(v̂) Ū0
S′(ξ|v̂)v̂ dv̂ (126)

while the macroscopic velocity of order 1 is

U1
S,S′(ξ) = c(ξ)

∫
Sd−1

(
B[S]0(v̂)Ψ1(v|v̂) +B[S]1(v̂)Ψ0(v|v̂)

)
v̂ dv̂ (127)

and the equilibrium diffusion tensor

D0
S,S′(ξ) = c(ξ)

∫
Vp

B[S]0(v̂) D̄0
S′(ξ|v̂)(v −U0

S,S′)⊗ (v −U0
S,S′) dvp. (128)

The diffusion tensor is in general anisotropic, as D̄0 may be not isotropic in v̂.
If (33) is satisfied, the equilibrium tensor is

D0
S,S′(ξ) = c(ξ)

∫
Sd−1

B[S]0(v̂) D̄0
S′(ξ|v̂)v̂ ⊗ v̂ dv̂. (129)

where

D̄0
S′(ξ|v̂) =

∫
R+

D0(ξ|S′(x + λ′v̂))γS′(λ
′) dλ′.

In this case, we get as a diffusive limit Eq. (42), or (52) if the frequency depends weakly on the
polarization. Otherwise, if (33) is not satisfied, we get (56) as a hyperbolic limit.

6.1 Examples

First of all, we observe that if γS′(λ) = γS(λ) = δ(λ− 0) are Dirac deltas, then the local model with
T [S,S′] = 1

|Sd−1|ψ(x, v) is recovered. Hence US,S′ is zero and ŪS′(x|v̂) and D̄S′(x|v̂) are the mean

speed and variance of ψ(x, v) as defined in Section 5.1.
In this section we shall at first consider γS(λ) = δ(λ − 0), i .e., when there is no bias in the

decision of the direction of motion. We shall do this in order to analyze the influence of the signal
S′. In particular, we will see that if, for instance, S′ is the ECM density then in the limit we recover
a model describing the steric hindrance of motion. Finally, we will analyse models where both S and
S′ have a non-local influence in determining cell motion.
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6.1.1 Random polarization

In order to understand the meaning of the transport model we here focus on the particular case
in which there is no bias in the decision of the direction of motion. This does not mean that the
situation is isotropic, because the speed can have different distribution functions in the randomly
chosen direction of motion because the distribution of S′ sensed ahead may be different.

In this case the turning operator (117) simplifies to

T [S,S′](x,vp) = Ψ̄ [S′](x, v|v̂) , (130)

where Ψ̄ is defined in (119), the macroscopic velocity of the transition probability is

US′ =
1

|Sd−1|Γ ′0

∫
Sd−1

ŪS′ v̂ dv̂,

and the variance-covariance matrix is

DS′ =

∫
Vp

Ψ̄ [S′](x, v|v̂)(v −US′)⊗ (v −US′) dv̂.

Up to re-scaling, we obviously have that

Ψ̄ [S′] = Ψ̄ [S′]0 + εΨ̄ [S′]1 +O(ε2),

and we can consider the following cases:

• If Ψ̄ [S′]0(ξ, v|v̂) is even as a function of v̂, i .e. if Ū is even as a function of v̂, we have that
U0
S′(ξ) = 0. We can therefore perform a diffusive limit to get

∂ρ

∂τ
= ∇ ·

[
1

µ
∇ ·

(
D0
S′ρ
)]
,

if Ψ̄ [S′]1 is zero and
∂ρ

∂τ
+∇ ·

(
ρU1

S′

)
= ∇ ·

[
1

µ
∇ ·

(
D0
S′ρ
)]
, (131)

otherwise. The tensor D0
S′ may be anisotropic, as Ū and D̄ may be anisotropic as functions of v̂.

• If Ψ̄ [S′]0(ξ, v|v̂) is not even as a function of v̂, i .e. if Ū is not even as a function of v̂, we can
perform a hyperbolic limit to get

∂ρ

∂τ
+∇ ·

(
ρU0

S′
)

= 0 .

Therefore, we see that, even if there is no directional sensing, as the speed sensing is conditioned by
the direction, there may be a drift driven phenomenon or an anisotropic diffusive one.

6.1.2 ECM steric hindrance

We shall now focus on the effect of the density M(x) of extracellular matrix. Following the experi-
mental results by Palecek et al. (1997), Paul et al. (1993), Wolf et al. (2013), we take into account
that there is an optimal ECM density or pore cross section for cell migration. In fact, for lower
densities cell motion results hampered for the lack of adhesion sites that the cell can use to exert
traction. On the other hand, for higher densities cell motion is hampered as well by excessive ad-
hesion and lack of space among the fibers. Actually, it is known that there is a maximum value of
ECM density, or better a minimum value of pore area cross section, above which the fiber network is
too tight to be penetrated (the so-called physical limit of migration (Wolf et al., 2013; Scianna and
Preziosi, 2013; Giverso et al., 2017). It is more controversial whether there is a minimum value of
ECM density denoted in the following by M0 below which cells are unable to migrate because of the
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absence of ECM fibers on which to crawl. The existence of these physical limits of migration will be
examined in more detail in a future work.

One can then take such experimentally determined functions as an indication of the dependence
of the mean v̄ of the distribution function ψ from the density M of extracellular matrix. In the
following simulation, to mimic such a behaviour we assume that

v̄(M) = vmax
M

Mmax
exp

[
Mmax −M
Mmax

]
, (132)

and choose ψ to be

ψ(v) =
4v

v̄2
e−2v/v̄ .

We consider an initial condition which is uniformly distributed in the velocity space and with
macroscopic density a Gaussian centred in x = 1.5 and the heterogeneous distribution of ECM
density ranging in [M0,M1] = [0.1, 1] shown in Fig. 9 (a) and (b)(green line). We take here γM(λ′) =
HM (RM −λ′) as sensing function, meaning that the speed is determined by uniformly averaging the
density of ECM in the direction v̂ looking ahead up to a distance RM that in the simulations is 0.04.

If a matrix density distributed as in Fig. 9 (a) and (b) is present, cells change their speed accord-
ingly. In particular, if Mmax < M0 = 0.1 (as in the simulations reported in Fig. 9 (a)) cell mean speed
is on the decreasing branch of (132), i.e., always smaller than vmax

M0

Mmax
exp [−(M0 −Mmax)/Mmax].

Hence, they are strongly slowed down by the ECM. On the other hand, if Mmax > M1 = 1 (as in the
simulations reported in Fig. 9 (b)) cell mean speed is on the increasing branch of (132), i.e., always
larger than the value given above. So, they progressively invade the whole spatial domain and crawl
across of the ECM.

(a) (b)

(c) (d)

Fig. 9 Initial condition (cyan line) and density at t = 200 (full line) for Mmax = 1/10 (a) and Mmax = 1/0.3 (b)
in the presence of an heterogeneous distribution of ECM. In both cases RM = 0.04 and γS is a Heaviside function.
The corresponding final distribution functions at t = 200 are given in (c) and (d).
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In two dimensions, if a matrix density is distributed as in Fig. 10 (a), we observe that cells tend
to go where the value of the matrix density is 0.5 ∗Mmax, i .e. where the speed is the largest. Upon
reaching this zone with maximum mean speed (see Fig.10(e)) diffusion looks anisotropic because cells
tend to follow the region with optimal ECM density staying away from the regions where matrix
density gets closer to Mmax where motility is hampered.

(a) (b) t = 0 (c) t = 0.5

(d) t = 1 (e) t = 10 (f) t = 60

Fig. 10 Matrix density, with Mmax = 1 (a). The sensing radius is RM = 0.25 and γS is a Dirac delta. The time
evolution of the two dimensional macroscopic density is given in (b)-(f).

6.1.3 ECM steric hindrance and non-local chemotaxis

We shall now consider a real double bias, which means that there is a non-local sensing of the field
S for the directional bias, i .e., γS(λ) = δ(λ − RS) or γS(λ) = H(RS − λ). In addition we take
T v̂
λ [S](x) = b

(
S(x + λv̂)

)
. Then the turning operator reads

J [p](t,x,vp) =

µ(x)
(c(x)

Γ ′0
Ψ(x, v|S′, v̂)

∫
R+

b(S(x + λv̂))γS(λ)dλ− p(t,x,vp)
) (133)

As (33) is hardly satisfied, the macroscopic limit is advective

∂ρ

∂τ
+∇ ·

[
ρ

∫
Sd−1

(
Ū0
S′(ξ|v̂)

∫
R+

b(S(ξ + λv̂))γS(λ) dλ

)
v̂ dv̂

]
= 0 . (134)

On the other hand, if RS can be considered small, the turning operator reads

J [p](t,x,vp) = µ(x)

[
1

|Sd−1|Γ ′0
Ψ [S′](x, v|v̂)

(
1 + Λ

b′

b
∇S · v̂

)
− p(t,x,vp)

]
.
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In this case

T [S,S′]0 =
1

|Sd−1|Γ ′0
Ψ [S′]0

and

T [S,S′]1 =
1

|Sd−1|Γ ′0

(
Ψ [S′]0Λ

b′

b
∇S · v̂ + Ψ [S′]1

)
Condition (33) is satisfied if Ψ [S′]0 is even as a function of v̂ for all x and the diffusive limit is (42)
with advective velocity

U1
S,S′(x) =

1

|Sd−1|Γ ′0

(∫
Sd−1

Ū1
S′ v̂ dv̂ + Λ

b′

b
T∇S

)
,

being

T =

∫
Sd−1

Ū0
S′ v̂ ⊗ v̂ dv̂. (135)

It may be anisotropic as, in general, the mean speed is anisotropic.
If Ψ [S′]0 is not even as a function of v̂, we must perform a hyperbolic limit that gives

∂ρ

∂τ
+∇ ·

(
ρU0

S,S′
)

= 0 with U0
S,S′ =

∫
Sd−1

Ū0
S′(x|v̂)v̂ dv̂. (136)

This shows that even if the directional sensing gives rise to an even distribution function of order
zero in v̂ and, then, to a diffusive behavior, the speed sensing may change this tendency and we may
have a drift driven dynamics.

As an application we shall now consider the case of cell migration in the extra-cellular matrix
under the action of a chemoattractant. We then integrate the transport equation (1) with the operator
(133) with b(S) = S, the mean v̄ given by (132). We take here the same sensing function as before,
i .e., γM(λ′) = HM (RM − λ′). Also γS(λ) = H(RS − λ).

In Figure 11, the initial Gaussian distribution of cells, then, starts travelling to the right under the
action of the linearly distributed chemoattractant. However, at variance with what happend in Figure
4, when cells encounter the denser area of ECM they slow down. If Mmax is large (Mmax = 1/0.3),
the mean speed is large and the cells are driven by the chemoattractant, even if the radius of the
direction sensing is small (RS = 0.04). So, eventually the cells succeed in going through the ECM
as shown in the third row of Figure 8. The evolution of the distribution function is also given in the
bottom row. If Mmax is small (Mmax = 1/10), even if the influence of the chemoattractant is very
strong (RS = 1), cells are strongly hampered by the ECM as shown in the second row of Figure 8.
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(a) (b)

(c) t = 5 (d) t = 15 (e) t = 150

(f) t = 5 (g) t = 15 (h) t = 200

(i) (j) (k)

Fig. 11 Evolution of the macroscopic cell density in response to a chemoattractant and an heterogeneous distribu-
tion of extracellular matrix. (a): initial macroscopic density; (b): distribution function. (c,d,e): Mmax = 1/10, RS =
1. (f,g,h): Mmax = 1/0.3, RS = 0.04. (i,j,k): evolution of the distribution function corresponding respectively to
(f,g,h).
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7 Conclusion

The kinetic model developed in this paper is based on several observations, all related to a particular
feature of the model. Specifically,

1. in order to move cells react to external stimuli by polarizing and deciding their direction of
motion, forming a “head” and “tail”. Then they try to move in that direction forming adhesion
sites and polimerizing actin at the head and removing adhesion sites at the tail. It is therefore
convenient to write the kinetic model with the orientation and speed, separately, as independent
variables;

2. Both orientation and speed depend on cell sensing of their environment over a finite radius
related, for instance, to the length of their protrusion. This gives the kinetic model a spatially
non-local character;

3. Orientation and speed can be related to different chemical and mechanical cues, with the former
influencing mainly orientation and the latter mainly speed (though this is not always the case).
This induces the inclusion of different cues determining the changes of orientation and speed in
the turning operator;

4. While chemical cues are measured by the cells extending their protrusions, many mechanical cues
are related to the fact that the nucleus, which represents the stiffest organelle of the cell, has
difficulty in passing through narrow pores in the ECM or through densely packed cells. So, the
sensing radii involved in the identification of the orientation and of the speed might be different
with the former being larger than the latter.

Particular attention was devoted to the identification of the proper macroscopic limit according to
the properties of the turning operator. However, all simulations integrate the kinetic model. In some
cases, the solution is compared with the solution of the related macroscopic equations. The model was
in fact applied to several sensing strategies, including when the signal is perceived locally, averaged
over a region, or perceived at the cell “head” and “tail” and then compared. Several applications
were also considered as chemotaxis (or equivalently haptotaxis), durotaxis, cell-cell adhesion. The
effect of the presence of an heterogeneous ECM was also considered in absence of any cue affecting
cell orientation, then yielding a random polarization, and in presence of a chemical cue.

We have left to a coming paper the case in which the density of cell or of ECM is so large that
they represent physical limits for migration. This introduces a dependence of the sensing radius
determining the speed that depends on the density of cells or of ECM. In fact, for instance, if the
characteristic pore size of the ECM is very small, then cell can protrude its cytoskeleton across the
dense ECM and scout for chemical signals and polarize, but the cell cannot penetrate the ECM
because the nucleus is stuck. This holds true even in the case in which the layer of dense ECM is
very thin, like in basal membrane or in cell lining, e.g., endothelial or mesothelial lining. The cell
would have no difficulties in moving after passing through the membrane but cannot cross it. One
should then address the question of deducing a kinetic model capable of dealing with such situations
that are of great interest because of their relationship with the spread of metastasis.
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