
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RoPE: An Architecture for Adaptive Data-Driven Routing Prediction at the Edge / Sacco, Alessio; Esposito, Flavio;
Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. -
ELETTRONICO. - 17:2(2020), pp. 986-999. [10.1109/TNSM.2020.2980899]

Original

RoPE: An Architecture for Adaptive Data-Driven Routing Prediction at the Edge

Publisher:

Published
DOI:10.1109/TNSM.2020.2980899

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2802297 since: 2021-08-06T10:55:23Z

IEEE

1

RoPE: An Architecture for Adaptive Data-Driven
Routing Prediction at the Edge

Alessio Sacco Flavio Esposito Guido Marchetto

Abstract—The demand of low latency applications has fostered
interest in edge computing, a recent paradigm in which data is
processed locally, at the edge of the network. The challenge of
delivering services with low-latency and high bandwidth require-
ments has seen the flourishing of Software-Defined Networking
(SDN) solutions that utilize ad-hoc data-driven statistical learning
solutions to dynamically steer edge computing resources.

In this paper, we propose RoPE, an architecture that adapts
the routing strategy of the underlying edge network based on
future available bandwidth. The bandwidth prediction method is
a policy that we adjust dynamically based on the required time-
to-solution and on the available data. An SDN controller keeps
track of past link loads and takes a new route if the current path
is predicted to be congested.

We tested RoPE on different use case applications comparing
different well-known prediction policies. Our evaluation results
demonstrate that our adaptive solution outperforms other ad-hoc
routing solutions and edge-based applications, in turn, benefit
from adaptive routing, as long as the prediction is accurate and
easy to obtain.

Index Terms—SDN, Edge computing, Adaptive routing, Ma-
chine Learning.

I. INTRODUCTION

Edge computing, combined with network softwarization has
been a petri dish for new business models and applications,
promising simultaneously low-latency and high-bandwidth re-
liable telecommunications. This paradigm has moved compu-
tation closer to the network traffic source, reducing delays with
respect to standard cloud computing applications [1]–[4].

Delivering such promises is, however, a challenge, es-
pecially when the underlying infrastructure is unstable and
applications impose tight constraints. Solutions for real-time
communications have been proposed when the application is
bound to video streaming [5]–[9]. Many of them are based
on sound design and target bit rate adaptation. Aside from
ignoring other end-to-end performance improvement tech-
niques such as traffic compression, these solutions perform
poorly within edge computing use cases, where the underlying
network needs also to be optimized, in response to offloading
requests [10]–[12].

Other solutions, e.g., [13] seek help from network traces
to forecast future demands. Most of these solutions, however,
train their learning system on specific datasets, without the
ability to adapt. While complicated machine learning tech-
niques such as transfer learning exist [14], such techniques
could be applied to overcome the dataset-tailored limitation.
In this paper, we take a more humble approach and we show its
effectiveness. In particular, we introduce RoPE1, a Software-
Defined Networking (SDN)-based architecture whose goal is

1RoPE stands for Routing Prediction at the Edge.

to select the best (physical or virtual) route by applying
the most appropriate bandwidth prediction algorithm, chosen
adaptively, on the basis of the amount of data collected and
the response time deadline. RoPE leverages the availability of
multiple paths and relies on the idea that the bottleneck for
delay-sensitive applications is at the edge [15], [16].

Our design is based on the observation that, in recent
years, the field of prediction has achieved excellent results
when enough data are available. When insufficient data are
available instead, other classes of prediction algorithms may
be a better fit. In this context, many forecast-based or data-
driven solutions have been proposed [14]. The question we
propose to answer instead in this paper is: which bandwidth
prediction algorithm works best, based on the variance of our
network measurements and on application constraints?

To address this question, we prototype and evaluate RoPE
with both numerical, event-driven simulations, and with scal-
ability tests over the large-scale GENI testbed. In particular,
we make the following contributions.

Our contribution. We design and implement a novel ar-
chitecture that integrates QoE estimation and bandwidth pre-
diction directly into an edge-based application. The prediction
phase is used for selecting the best routes on the basis of global
traffic condition information gathered from an SDN controller.
Hence, we defined a new strategy for the route selection
while the prediction continues during system operation, with
consequent possible traffic re-routing.

To adapt to different edge-based applications and evaluate
its performance, we define a new cost function that embraces
the most common evaluation parameters.The collection of our
results evaluating three separate uses cases are a mixture of
expected and surprising results.

The structure of the paper is as follows. Section II summa-
rizes the related work. Section III introduces in which use
cases the solution can be used, while Section IV presents
the system in which the routing algorithm is applied, as well
as the framework and the overall procedure. In Section V a
brief explanation about prediction algorithms is provided and
Section VI shows the quality and the differences among these
algorithms. Finally, Section VII demonstrates the benefits of
this new approach and Session VIII concludes the paper.

II. RELATED WORK

Our approach is based on the prediction of traffic conditions
to modify routing for edge-based applications. In this section,
we analyze the literature related to the main components of the
solution: (i) the recent prediction algorithms for networking,

2

and (ii) the existing routing solutions that rely on machine
learning methods to improve traditional strategies.

A. Network Traffic Prediction

The prediction of traffic conditions is crucial in network
operations and management for today’s increasingly complex
and diverse networks. It entails forecasting future traffic and
traditionally it has been addressed via Time Series (TS)
algorithms. The main goal in TS is to construct a regression
model capable of drawing an accurate correlation between
future traffic volume and previously observed traffic volumes.
Existing TS models can be broadly decomposed into statis-
tical analysis models and supervised ML models. Statistical
analysis models are typically built upon the generalized Au-
toregressive Integrated Moving Average (ARIMA) method,
while the majority of learning for traffic prediction is achieved
via supervised Neural Networks (NNs). However, with the
rapid growth of networks and the increasing complexity of
network traffic, traditional statistical models are seemingly
compromised, giving rise to more advanced ML models [14].
More recently, efforts have been made to reduce overhead or
improve accuracy in traffic prediction by employing features
from flows, other than traffic volume. Prior work focused on
NNs and showed how this approach outperforms TS [17].
However, the use of NNs implies an offline training phase
and a huge quantity of training data, that is unfeasible for
some applications [18]. In our scenario we don’t have such a
quantity, therefore we focus on lighter approaches, that enable
an online training phase. These models are then compared
against Machine Learning methods where the training is
performed offline. Furthermore, for edge-based applications,
there are no databases available online as for traffic traces
provided by ISPs or inter and intra DCs [19].

For this reason, in our work we focus on other ML algo-
rithms that also do not necessitate a long training phase. Many
techniques have been developed to measure path properties
as summarized by CAIDA [20]. In particular, several stud-
ies [21]–[23] focused on the measurement of the available
bandwidth, needed for data collection in our predictor. By
available bandwidth, we mean the minimum unused capacity
on a given end-to-end path. These measurements are usually
collected with probe packets. In this work, we do not actively
probe but we rely on packets sent from switches to the con-
troller. In this way packets used for the collection of network
statistics do not affect the user data, since the communication
with the controller is separated from the data plane [24], [25].

Finally, machine learning techniques have been widely
applied to network measurement. For example, there are
applications in the network intrusion detection field (e.g., [26])
and for round-trip time prediction [27]. In contrast to NNs-
based algorithms, Support Vector Machine (SVM) has low
computational overhead and is more robust to parameter
variations, e.g., time scale, number of samples. However,
this approach is usually applied to classification rather than
regression. Bermolen et al. [28] applied SVR (the regression
variant of SVM) for link load forecasting. Furthermore, He
et al. [29] extensively studied history-based predictors using
three different time series forecasts. Other approaches for TCP

throughput prediction employ “bandwidth probes”, small TCP
file transfers, e.g., 64kB, to collect the measures [30], [31].

B. Adaptive Routing and Traffic Engineering

Even though much work has been conducted to improve
the quality of prediction over network traffic, only a few
solutions exploited these results to develop new routing
strategies [32], [33].

Instead, other prediction-driven routing approaches have
been based on Reinforcement Learning (RL), with the aim of
coping and scaling to complex and dynamic network topolo-
gies [34], [35]. Even though RL would be a viable solution,
we used a time-series approach as it offers the possibility of
predicting a specific parameter. Such a parameter can then in
turn be used to assess if a given traffic flow fits a physical
path. If the flow does not fit the path, a better route is chosen
looking at other available paths.

The same problem can be clearly addressed by means of
traffic engineering solutions, e.g., [36]–[38]. In particular,
COYOTE [38] aims to minimize link over-utilization by
engineering the traffic generated with optimal traffic splitting
ratios. Given the limited knowledge of traffic demands, this
method strategically advertises fake links and nodes to ad-
just the splitting ratios resulting from the traditional ECMP
mechanism. We share with this solution the idea of adapting
the routing to address a link utilization problem; however, our
focus is to better support for edge-based applications without
reserving resources for tasks that could be rarely executed.

III. MOTIVATING APPLICATIONS

Edge-based applications have evolved in the last decade
because of a considerable demand [39]. Many applications
have strict requirements to satisfy, e.g., very low latency and
high throughput. In the following subsections, we analyze
three applications that we consider as use cases for our study.

A. Very Latency-sensitive Applications: Tactile Internet

The Tactile Internet is the evolution of the mobile Internet
and enables real-time control of the Internet of Things (IoT).
It adds a new dimension to human-to-machine interaction
by enabling tactile and sensations, and at the same time
revolutionizes the interaction of machines. The Tactile In-
ternet enables haptic interaction with visual feedback. The
term haptic relates to the sense of touch, in particular, the
perception and manipulation of objects using touch. The visual
feedback will encompass not just audiovisual interaction, but
also robotic systems that can be controlled in real-time as well
as actuating robots, i.e., those that can activate a motion.

Nowadays, data rates increased in the orders of magnitude,
as well as the data capacity [40], but there is another frontier
to be considered: the reduction in the end-to-end latency
of interaction has not dropped below the requirement for
telephony. Long-term evolution (LTE) achieves a typical end-
to-end latency close to 100ms [41], exceeding the order of
1-ms requirement needed to enable Tactile Internet applica-
tions [40]. At the same time, fifth generation (5G) mobile
communications systems underpin this emerging Internet at
the wireless edge [42]. A recent trend is the use of Mobile

3

Edge Computing (MEC) as a solution to reduce the delay
and provide a way for offloading computation from the cel-
lular network [43]. However, the latency reduction is still
an open problem due to an intrinsic lack of the available
infrastructures. The SDN paradigm is shown to be helpful
for these applications [44], but real support for very low
latency communications is an urgent need to enable the still
unexpressed haptic applications.

B. Telepathology at the Edge.

The field of medical pathology is concerned with the
causal study of disease, whether caused by pathogens or non-
infectious physiological disorders. A significant part of the
job of pathologists is characterized by visualizing histological
images via a multi-lens microscope. Often they analyze histo-
logical images on a glass slide when the patient is still under a
tumor removal surgery. In such situations, a quick and correct
pathology assessment is crucial as it defines vital next steps
for the surgeon team and the right follow-up treatment for the
patient. In the vast majority of non-trivial pathology cases,
to minimize the time to response to the surgeon team and
the probability of incorrect assessments, pathologists ask for
second opinions to nearby experts (if available) by physically
carrying privacy protected glass specimens. When not enough
local experts are available, a telepathology system can be used
to transmit high-resolution images of specimens to remote
doctors.

Telepathology solutions can be used not only to connect
rare experts with patients, but also for the rapid diagnosis of
standard cases in locations that have patients without having
schools of medicine. Telepathology is often enclosed in the
telemedicine field, but it differs both in the subject and the aim
of such practice. This difference leads to different requirements
that the underlying network has to guarantee [45].

In particular, current telepathology solutions are limited by
the technology, the scale, and the (best-effort) performance of
the underlying telecommunication media on which they rely
on, i.e., the Internet or, at best, a virtual private network for
in-hospital offline, i.e., non-real-time, consultations.

A Telepathology or more generally, a Telemedicine session
transmits delay and bandwidth sensitive data to be processed
and shared with a remote medical doctor. For this reason, a
proper edge computing system can be implemented to partially
or fully offload processes at the edge of the network [2].

C. Disaster-response

Providing technologies in response to a natural or man-made
disaster is challenging, as the assumptions typically made for
traditional infrastructure may fail given the damage made by
the disaster. Additionally, mobile applications that serve the
needs of disaster incident response generate large datasets
and demand large computational resources. These datasets
are usually collected in real-time at the disaster scene using
different IoT devices. Examples of such devices are wearable
heads-up devices, Unmanned Aerial Vehicles equipped with
sensors, cameras, or smartphones [46], [47]. For example, such
devices might be used for real-time video conferencing with
the incident commander featuring face recognition of disaster

Applications

Data

collector

RoPE Agent

Routing Logic

RoPE

Topology

discovery

Models saved

Past values

User requirements

Adaptivity Logic

Edge Network

SDN Controller

Prediction

Switches

Programmability

Fig. 1: Architecture and main RoPE’s functionalities.

victims [48], or to detect children in an attempt to reunite
them with their guardians [49], whereas virtual beacons can
be mainly used to track their location.

To enable immediate feedback to first responders, crucial
for survivors’ rescue, IoT devices today could benefit from
the mobile edge computing paradigm [50]. In particular, one
of the most important mechanisms in edge computing is cyber
foraging: processes from mobile resources delegate computa-
tions or code to execute to servers within the edge computing
infrastructure [51]. A particular case of cyber foraging is also
known as offloading, where the cyber foraging mechanism is
orchestrated by mobile devices.

To cope with the potential loss of infrastructure in a
disaster scene, an edge network needs to be operational for
transferring media-rich visual information from the disaster
scene as quickly as possible to the edge cloud gateway. Such
(visual) data can be used, e.g., within a medical application
context to transfer high-definition video streams generated
by paramedics’ wearable heads-up display devices from the
disaster triage scene to a dashboard located at the edge cloud,
or by a first responder for a live remote medical consultation.
The incident response and resource allocation decision making
e.g., ambulance routing to the scene or medical supply replen-
ishment tracking requires significant computational resources
that can be augmented on demand by a core cloud cluster.

For such scenarios to be operational, traffic needs to be
handled dynamically and with low-latency constraints. Hence
routing is a crucial infrastructure management orchestration
mechanism. Although geographic routing-based approaches
are generally suitable for these applications; there is a lack
of providing sustainable high-speed data delivery to the edge
cloud gateway [52].

IV. ROPE ARCHITECTURE AND SYSTEM DESIGN

In this section, we describe the design of our ROuting
Prediction at the Edge architecture, or RoPE. We begin with
an overview of the principles, and we detail each component
of the architecture in the subsequent subsections.

A. RoPE Overview

Our proposal is to use bandwidth prediction on links to drive
routing operations so that the best available path is selected.
Given a large number of available prediction algorithms and
the differences in requirements to satisfy each application,

4

we also introduce a cost function that captures the policy
programmability of the proper algorithm for each specific
context. The design goal of such policy knobs is to extract
the invariances in the routing prediction mechanism. Network
management application programmers then may tune this
utility based on their needs and constraints.

Our architecture implementation includes a Ryu SDN con-
troller that collects data from the switches and communicates
them to the RoPE agent (Figure 1) running on it. This com-
ponent allows the necessary information sharing between the
controller and RoPE. In RoPE, the most important component
is responsible for predicting on the basis of the data received
and prior information. The data-driven engine selects the best
path combining user requirements and the future available
bandwidth on a link. To select the best path, knowledge
about the topology of the network is necessary, and this
information is obtained and transmitted by the controller. The
routing process combines the output of the prediction with
the topology information and changes the flow rules of the
switches to select the path consistently among all the devices.

RoPE saves the collected data as recent history, which is
in turn used by the prediction algorithms. Notice that not
all the algorithms need online training (see Section V). For
some algorithms, the training phase must be performed offline
because it requires a long time, as illustrated in Section VII-A.
For these algorithms, the SDN Controller can make use of the
saved model to predict the next bandwidth value. In essence,
the prediction might be based on models saved and past values,
as shown in Figure 1. The selection of all the parameters is
based on the data analysis performed beforehand and described
in the following sections.

B. Measurements Collection

Each managed switch is connected to the Ryu controller,
which periodically collects information on their state. In par-
ticular, we collect network state statistics of ports (incoming
or outgoing packets), flows, and the switch connectivity status.

Since paths do not change very frequently, it is unnecessary
to acquire statistics from switches with very high granularity.
In our implementation, we use a collection period of 5-
seconds, as in [5]. In Section VII-D we motivate in details this
parameter choice with our analysis. In the rest of the paper,
we refer to such interval as an epoch.

Data acquired are grouped per switch ID and in chronolog-
ical order. This is implemented on the controller by logging
the received information in a file for every switch. Each row
in this file corresponds to an observation per epoch and is
formatted as follow:

[timestamp, bandwidth, bytes, packets, packets port],

where timestamp denotes the time at which the record is
obtained, bandwidth is the the measured bandwidth, bytes
refers to the number of bytes sent and received by the
switch, packets expresses the total number of packets sent and
received by the switch, and, lastly packets port indicates the
amount of packets sent and received in the selected port. Note
how the timestamp is essential to apply TS analysis, while it is
not used by ML algorithms. RoPE uses the statistics collected

to fit the model. With a period r of 20 s (selected to avoid
network instability, see Section VII-D) we predict the future
available bandwidth and decide when to steer the route.
Algorithm 1 Prediction-based routing

1: Let t be the epoch, and r the prediction period
2: Let A and B be the target source and destination
3: P← all the paths between A and B
4: Ps ← the best s paths in P
5: U← best path
6: for every epoch t do
7: Monitor the path in Ps

8: if r has elapsed since last prediction then
9: FLs ← future predicted load on the s paths in Ps

10: FLU ← future predicted load on U
11: if FLU > Threshold then
12: U ← P [min(FLs)].
13: close;

Overall Procedure. The objective of the algorithm is to
optimize the available bandwidth between the source A and
the destination B, which affects the application transmission
time. In the telemedicine example described before, A is the
Plugin connected to the microscope, while B is the edge server.
The controller detects the best s paths for the pair (A, B) and
stores them into the set Ps. The parameter s is used to avoid
looking for all the paths if this number is significant. Every
epoch, the controller obtains the statistics and saves them for
the prediction, which occurs every period r. In this phase, we
estimate the future value for the paths in Ps, and the path
whose prediction is the minimum, i.e., “argmin”, is set as the
default one.

C. Cost Function

RoPE predicts the bandwidth on links and selects the best
path on the basis of this value. However, different applications
have different requirements in terms of throughput, latency,
jitter, and different prediction algorithms may have different
effects on these parameters.

To evaluate the fitness of such an algorithm to the use case,
we define a cost function CK,I(D) that takes into account the
above aspects of communication. While the metric is inspired
by similar studies [53] in our case we are not limited to video
streaming scenarios. The cost function CK,I(D) of a sent file
which requires D bytes, I packets and K time intervals, is
made up of the following terms:

1) Average Throughput: the average throughput per time
interval k: 1

K

∑K
k=1 Tk, where Tk denotes the throughput

at interval k
2) Average latency: the average latency per packet

i: 1I
∑I

i=1 Li, where Li is the latency for packet i
3) Average jitter: the average jitter between two consecutive

packets: 1
I−1

∑I
i=2 |Li−Li−1| = 1

I−1

∑I
i=2 Ji, where Ji

indicates the jitter for packet i
4) Average jitter variation: the average difference of

jitter among two consecutive jitter measurements
1

I−2

∑I
i=3 |Ji−Ji−1| = 1

I−2

∑I
i=3 ∆Ji where ∆Ji refers

to the jitter variation for packet i

5

Notice that, besides the standard performance metrics of
throughput, latency, and jitter, it is worth also considering the
jitter variation since for interactive systems, such as Tactile
and Telepathology, this element affects the user experience,
as demonstrated in [54], [55]. Users and application pro-
grammers may have different preferences on which of the
four components is more important, so we define a tunable
objective function as a weighted sum of the aforementioned
components:

CK,I(D) = αD
K∑K

k=1 Tk
+ µ

1

I

I∑
i=1

Li+

+ λ
1

I − 1

I∑
i=2

Ji + γ
1

I − 2

I∑
i=3

∆Ji (1)

Here α, µ, λ, γ are non-negative weighting parameters corre-
sponding to average throughput, average latency, average jitter
and average jitter variation respectively. A relatively small α
indicates that the user is not particularly concerned about a
very high bitrate; the large γ is, the more effort is made
to achieve smoother changes of video quality. A large µ,
relatively to the other parameters, indicates that a user is
deeply concerned about low latency communication.

In summary, this definition of CK,I(D) is quite general as
it allows us to model varying user preferences on different
contributing factors. The goal of our routing strategy is to
minimize (1) in order to guarantee the optimal user experience.
In fact, a higher throughput, along with lower values of latency
and jitter, leads to a lower value for the function. Therefore,
we need to select the proper prediction method in order to
obtain the best routing strategy that minimizes (1).

V. PREDICTION ALGORITHMS ANALYSIS

The task of bandwidth prediction can be formulated as
a regression problem, i.e., predicting a real-valued number
based on single or multiple real-valued input features. For
the sake of clarity we classify the applied algorithms in
2 categories, (i) Time-Series (TS) algorithms, (ii) Machine
Learning (ML) algorithms. The following subsections reflect
this classification and each one describes in-depth the structure
of our algorithms.

The idea is to predict the bandwidth, in such a way the
controller can check whether the desired application fits the
network load. For instance, if the application is sending a video
streaming of 300kb/s and the predicted available bandwidth of
the current path is 500kb/s, this means the path complies with
the requirements. If the available bandwidth is 200kb/s, the
controller enforces a new path.

A. Time-Series Models

These solutions are based on traditional regression algo-
rithms that predict the future values using the history and the
evolution of such value in the past. The history used is made
up of past values associated with the timestamp. The presence
of the tuple < timestamp, value > leads to the name Time-
Series.

Simple Exponential Smoothing. Simple Exponential
Smoothing (SES) is a good choice for data with no clear
trend or seasonality. Let yt be the bandwidth on a link at
time t. We compute a k-steps ahead prediction. Formally, we
forecast the value of the bandwidth at time t+k, yt+k, where
k is also called horizon.

yt+k = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + ..., (2)

where α is the smoothing parameter for 0 ≤ α ≤ 1. If α
is large (close to 1), more weight is given to more recent
observations. The quantity yt+k represents the predicted value
and is used to decide whether or not a congestion will occur.
Holt-Winters. The prediction is composed of three submodels
that fit a time series: an average value, a slope (or trend) over
time and a cyclical repeating pattern (seasonality) [56]. These
three aspects of the time series behavior are expressed as three
types of exponential smoothing. The model requires several
parameters: one for each smoothing (α, β, γ), the length of
a prediction season, and the number of periods in a season.
Here below we report how the Holt-Winters seasonal method
includes the forecast equation and three smoothing equations:
one for the level Lt, one for the trend bt and one for the
seasonal component denoted by St, with smoothing parameters
α, β and γ:

level Lt = α(yt − St−s) + (1− α)(Lt−1 + bt−1),

trend bt = β(Lt − LLt−1) + (1− β)bt−1,

seasonal St = γ(yt − Lt) + (1− γ)St−s,

forecast yt+k = Lt+ kbt + St+k−s,

where s is the length of the seasonal cycle, for 0 ≤ α ≤ 1, 0
≤ β ≤ 1 and 0 ≤ γ ≤ 1.
ARIMA. ARIMA is a class of models typically used for
analyzing and forecasting time series (e.g., financial market
data). A standard notation for this method is ARIMA(p, d, q),
where the parameters account for seasonality, trend, and noise
in datasets. In particular, p captures the auto-regressive compo-
nent i.e., the number of lag observations included in the model,
also called the “lag order”; d captures the integrated part of the
model, it is the number of times that the raw observations are
differenced, also called the degree of differencing; q captures
the moving average part of the model and represents the size
of the moving average window, also called the order of moving
average. The ARIMA overall model is given by the following
equation:(

1−
p∑

i=1

αiL
i

)(
1− L

)d
yt =

(
1 +

q∑
i=1

θiL
i

)
εt, (3)

where L is the lag operator — the number of past samples
considered during the prediction — and αi are the parameters
of the autoregressive part of the model; the θi are the param-
eters of the moving average while εt are error terms. Such
error terms εt are generally assumed to be independent and
identically distributed (i.i.d.) variables sampled from a normal
distribution with zero mean, which is what we did.
SARIMA. To deal with seasonal effects, we make use
of the seasonal ARIMA (SARIMA), which is denoted
as ARIMA(p, d, q)(P,D,Q)s. Here, (p, d, q) are the non-
seasonal parameters described above, while (P,D,Q) follow

6

the same definition but correspond to the seasonal components
of the time series. The term s is the periodicity of the model
(4 for quarterly periods, 12 for yearly periods, etc.).

The Ryu controller is in charge of collecting all bandwidth
values and save them in a time series Y = {yt, yt−1, ..}.
The sequence is then used to fit the model and find the
aforementioned parameters. Once the model is built, it is
used to forecast the yt+k value, which is then used to avoid
congested paths in a telepathology session.

B. Machine Learning Algorithms

Machine Learning has received great attention in recent
years, due to the ease of use and the wide range of applications
that can benefits. In this section we define a model for the
most popular algorithms, providing a brief explanation of the
advantages and disadvantages of applying for each of them.
In our model the set of features used is represented by [times-
tamp, bandwidth, bytes, packets, packets port], however, for
ML methods only a subset is considered:

a) ∆ Packets: the number of packets received and transmit-
ted by the switch in the time interval;

b) ∆ Bytes: the number of bytes received and transmitted
by the switch in the time interval;

c) ∆ Packets port: the number of packets received and
transmitted by the switch on a certain port in the time
interval.

Our problem lies in the Regression procedure since the
aim is to predict a continuous value, as opposed to other
well-known problems such as classification and clustering. A
real number is more effective than a class value as in the
Classification problem because it can be used to check if a
streaming video will be delayed or not, as described in Section
VII. By computing the available bandwidth on a path, we are
able to verify whether the bit-rate of communication fits the
path or not, and in case move to another path. Hence, the
output variable is the bandwidth of the links connected to the
switch. The predicted value is the same as the TS models,
while in ML models the input set is based on more features
than just the past bandwidth.
Linear. The simplest machine learning model is to build a
linear regression model, where there is a linear relationship
between the dependent (y) variable and the set of independent
(x) variables.
Polynomial. Polynomial regression is a special case of linear
regression. But in this case, higher order powers (2nd, 3rd or
higher) of an independent variable are included.
Support Vector Regression. Support Vector Machines
(SVMs) are supervised learning models [57], that aim to
analyze data and recognize patterns, used for classification
tasks. Support Vector Regression (SVR), is the regression
version of the popular SVM and a state-of-the-art machine
learning tool for multivariate regression.
Gradient Boosting Regression. Gradient boosting is a ma-
chine learning technique used both for regression and classifi-
cation problems. Like other boosting methods, it builds the
model in a stage-wise fashion, and it generalizes them by
allowing optimization of an arbitrary differentiable loss func-
tion. The intuition behind the gradient boosting algorithm is

to repetitively leverage the patterns in residuals and strengthen
a model with weak predictions and improve it. Once a stage
that do not have any pattern that could be modeled is reached,
residuals modeling can be stopped (otherwise it might lead to
overfitting). In other words, for Gradient Boosting Regression
(GBR) a regression tree is fit on the negative gradient of the
given loss function.
Partial Least Squares Regression. Partial least squares re-
gression (PLSR) is a statistical method similar to other regres-
sors; instead of finding hyperplanes of maximum variance be-
tween the dependent and independent variables, it finds a linear
regression model by projecting the predicted variables and the
input variables to a new space [58]. PLSR is used to find the
fundamental relations between the two matrices X and Y, i.e.
a latent variable approach to model the covariance structures
in these two spaces. PLSR is particularly suited when there
is multicollinearity among X values. Conversely, standard
regression will fail in these cases (unless it is regularized).
Decision Tree Regression. A decision tree has a flow-chart-
like structure, where each internal (non-leaf) node denotes a
test on an attribute. Each branch represents the outcome of a
test, and each leaf node holds a class label. The topmost node
in a tree is the root node. The general approach of deriving
predictions from a few simple if-then conditions can be applied
to regression problems as well. Unlike linear models, Decision
Tree Regression (DTR) is able to capture non-linear interaction
between the features and the output value [59].
Random Forest Regression. The random forest model for
regression (RFR) is a type of additive model that predicts by
combining decisions from a sequence of base models. More
formally this class of models can be written as:

g(x) = f0(x) + f1(x) + f2(x) + ...,

where the final model g is the sum of simple base models
fi. Here, each base classifier fi is a simple decision tree.
This broad technique of using multiple models to obtain better
predictive performance is also known as model ensembling. In
RFR, all the base models are constructed independently using
a different subsample of the data.

As a matter of fact, classical and ML methods are not that
different from each other but distinguished by whether the
models are more simple and interpretable or more complex
and flexible. Hence, classical statistical algorithms tend to be
much quicker and easier-to-use.

VI. PREDICTION ALGORITHMS EVALUATION

The algorithms presented in this section aim at predicting
the future available bandwidth on a single path. The path
consists of a certain number of link, the assumption is that the
SDN controller knows the topology of the network. Nowadays
many SDN controllers, e.g., Onos, Ryu, OpenDayLight, can
obtain a logical view of the network topology. In our testbed
Ryu is chosen as SDN controller technology due to its usability
and a lighter approach as a python framework for SDN appli-
cation development: thus, a faster response on flow installation
was expected, as confirmed in previous work [60]. In addition,

7

since it is developed in Python, it has many predictors and
machine learning libraries readily available.

This section exposes the logic of the methods and the
errors in the prediction. Collected data are split into three sets:
Training set, Validation set, and Test Set. Training Set is used
to decide the parameters of the algorithm and Validation Set
to compare the performance of a single family of algorithms
with different settings. Finally, we use the Test Set to asses
the quality of implemented algorithms.

In this section, the algorithms are compared on the basis of
the accuracy of predicting. Even though ML algorithms rely
on features to predict, while TS algorithms on history, we
can compare the quality using standard error measures. We
compute the Mean Absolute Percentage Error (MAPE) which
is given by:

MAPE =
1

n

n∑
t=1

100×
∣∣∣∣yt − ytyt

∣∣∣∣ , (4)

where yt and yt are the real and the predicted observations.
Furthermore, for each model we compute the Root Mean

Square Error (RMSE) and the Maximum Prediction Error
(MAXE) to obtain information about the mean and the max-
imum error of the prediction. A direct comparison of the
benefits for the user by applying each of these algorithms is
performed in Sec.VII, where we compute the cost function
defined (Eq. 1). In this section, a comparison among the
algorithms on the basis of the standard errors is shown.

A. Data set

The data used in this section are collected via the Mininet
network emulator. In particular, a communication between
a device and a server occurs in the emulated environment
to reproduce the critical traffic in the edge network. This
is a video streaming application, where a live video is sent
via ffmpeg [61] from a client to a server at the edge. To
realistically represent the emulated loads over physical links,
we set our parameters using real publicly available Internet
traces [62].

We collected a dataset made of more than 50, 000 historical
samples. We then split it into training (80%), validation (10%)
and test (10%) set, and the error is computed on the test only.
The bottom line, however, is that we cannot know for sure
which approach results in the best QoE and so it becomes
necessary to compare model performance and extensively
study methods properties. The framework choose which model
to use in light of these findings.

B. Pre-processing of Collected Data

The first thing to analyze is the stationarity of the time
series. For classical forecasting methods, we want to clear
trend and seasonality in the time series, by modeling these
components and removing them from observations. When
using ML algorithms, the stationarity test is another source of
information. Hence, it can be used to select and engineer the
feature in a suitable way that copes with the non-stationarity
of the data.

We performed the Augmented Dickey-Fuller (ADF) test to
check and confirm evidence that the time series is stationary

SVR Poly Linear GBR PLSR DTR RFR
Algorithm

0.00

0.03

0.05

0.08

0.10

A
bs

ol
ut

e
re

la
tiv

e
er

ro
r

(a)

Arima Sarima Holt SES LS
Algorithm

0.00

0.03

0.05

0.08

0.10

A
bs

ol
ut

e
pe

rc
en

ta
ge

er
ro

r

(b)
Fig. 2: Error box for Time Series and Machine learning
algorithms. The results are comparable meaning the quality
of TS methods.

or non-stationary. The null hypothesis of such a test is that
the time series can be represented by a unit root, that it is
not stationary. The alternate hypothesis is that the time series
is stationary. We use the p-value from the test to establish
whether the series is stationary. A p-value below a threshold
(such as 5% or 1%) suggests we reject the null hypothesis and
the series is stationary, meaning it does not have some time
structure.

TABLE I: ADF Test to evaluate the stationarity of a time
series.

Test
Statistics

p-
Value

1% Critical
Value

5% Critical
Value

10% Critical
Value

Z(t) -6.771 0.001 -3.433 -2.863 -2.567

Table I shows test statistic value of -6. The more negative
this statistic, the more likely we are to reject the null hy-
pothesis. This value is less than the value of -3.433 at 1%.
This suggests that we can reject the null hypothesis with a
significance level of less than 1%. A p-value ≤ 0.05 leads to
rejecting the null hypothesis (H0) and the data is stationary;
vice versa the data is non-stationary. The autocorrelation
analysis is useful to understand how many lags consider in
the model. If the data show low correlation or no correlation,
then can be hard to predict the target values through a time
series problem.

We can confer the stationarity of our data set according to
our p-value. This confirms that the data do not have a trend or
seasonal effects, and can be easier to model. TS methods as-
sume or require the time series to be stationary to be effective,
and results in the next corroborate quality of TS models.

C. Algorithms Analysis

We implemented the algorithms exposed in the previous
section (§ V) and assess the performance for each one of them.
A good predictor should at least outperform a simple algorithm
in which the next value is a replica of the Last Sample (LS).
This is not considered as a statistical algorithm due to the
simplicity of the method, but it is a recommended baseline to
compare the quality of the implemented method.

We investigate the error of the prediction of the mentioned
algorithms. The results show that the error of the best TS
algorithm (Holt) is comparable to the best of ML algorithms
(GBR), as shown in Figure 2.

Observation 1. Often simple models (e.g., those looking at
recent epochs) are enough to achieve very low bandwidth
prediction errors.

8

0 5 10 15 20
Lag

−0.25

0.00

0.25

0.50

0.75

1.00

A
ut

oc
or

re
la

tio
n

(a)

0 5 10 15 20
Lag

−0.25

0.00

0.25

0.50

0.75

1.00

Pa
rt

ia
lA

ut
oc

or
re

la
tio

n

(b)

Fig. 3: (a) Autocorellation function (ACF) and (b) Partial
autocorellation function (PACF) of observed data, used for
tuning (S)ARIMA’s parameters p and q.

TABLE II: Time-Series results when the function is fitted for
each new observation.

Algorithm MAPE RMSE MAXE

SES 3.12 36.45 678.69
Holt-Winters 2.87 33.17 110.41

ARIMA 2.67 30.73 597.05
SARIMA 3.70 42.83 626.22

LS 3.69 43.39 937.84

Next, we compare the most popular algorithms in the Ma-
chine Learning field, where all experiments are performed us-
ing Python implementations of the presented algorithms [63].
In addition, regarding the forecasting horizon, every model has
been designed for forecasting with this horizon, since the most
common usage scenario is the one-step-ahead prediction.

We define the parameters grid for each method to be
searched. At the end of the process, the algorithm is tuned us-
ing the optimal set of parameters returned by this optimization
process. For RFR, we define the number of estimators = [10,
50, 70, 100, 200] and random state = [0, 1, 2, None]. The same
set of random states is used for DTR as well. Regarding PLSR,
the number of components is set to 1, after a study performed
on [0, 1, 2, 5] set. For the Polynomial model, the degree refers
to the maximum exponents in the function, and we evaluated
all the numbers between 2 and 7. The SVR algorithm has more
parameters to be set, and we chose cost between 0.7 and 1.0,
and epsilon = [0.01, 0.1, 0.5, 1.0]. The kernel value is a string,
evaluated among = [rbf, poly, linear]. Finally,for GBR we set
the n estimators the same as for RFR, and learning rate =
[0.01, 0.05, 0.1, 0.5] and max depth = [2, 3, 4, 5].

To choose the most suitable parameter combination for each
method, we perform an initial study of the performance on a
validation set. For each method, the parameter combination
yielding the higher accuracy is chosen. The resulting parame-
ters for ML algorithms are summarized in Table III.

Furthermore, the same process is applied to all TS methods
with all parameter combinations defined in the parameter grids
to train the time series. In particular, to choose the parameters
for ARIMA and SARIMA, the ACF and PACF plots were used
to study the parameters (Figure 3). In particular, ACF is used
to determine q while PACF for p in the Equation 3. The result
obtained after the grid search was compared to the statistical
finding to assess the accuracy.

The Autocorrelation Function (ACF) is a measure of the
correlation between the time series with a lagged version of
itself. The Partial Autocorrelation Function (PACF) instead

TABLE III: Hyperparameters set in our methods.

Method Hyperparameters

Linear –
SVR cost=1.0, kernel=rbf, epsilon=0.1

Polynomial degree=4
GBR n estimators=500, max depth=4, learning rate=0.01
PLSR n components=1
DTR random state = 1
RFR n estimators=70, random state=2

measures the correlation between the time series with a lagged
version of itself but after eliminating the variations already
explained by the intervening comparisons. These can be used
to determine the p and q values as follows: p is the lag
value where the Partial Autocorrelation Function (PACF) chart
crosses the upper confidence interval for the first time [64],
in our case p = 1. q instead is the lag value at which
the Autocorrelation Function (ACF) chart crosses the upper
confidence interval for the first time, in this case q = 1.

TABLE IV: Comparison of error for ML algorithms.

Predictor MAPE RMSE MAXE

LINEAR 2.70 31.15 599.55
POLYNOMIAL 2.66 30.96 590.51

SVR 2.65 30.54 585.61
GBR 2.66 30.68 586.98
PLSR 3.14 37.40 885.59
DTR 3.36 41.16 539.34
RFR 2.91 33.50 580.91

To choose the best methods to address the user specification,
the framework relies on the data shown in Table IV and
Table II. The tables summarize the main details about errors
and performance. MAPE is used to select the best algorithms,
while MAXE to compare the maximum error, useful to under-
stand the routing achievements in Section VII. Algorithms like
Holt-Winters and DTR do not have the lowest error (MAPE
and RMSE) but have a low MAXE. This means they are on
average correct and are not far off the real value, even though
the predicted value is not too close to the actual one. Routing
based on this class of algorithms can achieve excellent results
because they can reduce the number of false positive (wrong
peak), but it can be hard to detect a true positive (real peak).

In addition to tabular data, we present scatter plots to
provide insight into how median and maximum error reflect
into predicted values. Fig. 4 compares the actual and predicted
bandwidth value using different prediction methods. A point
on the diagonal represents perfect prediction; the farther a
point is from the diagonal, the greater the error. We can see that
for GBR and SVR the points are limited in a closed area near
the diagonal. We can notice as there are two main groups of
algorithms: (i) algorithms whose prediction is stable and close
to a mean value, e.g., GBR, SVR, ARIMA, (ii) algorithms
whose prediction is more spread and farther from the real one,
e.g., DTR, SES, RFR. This is related to the standard deviation
of the error, it means that when the prediction is wrong, the
error could be too high leading to an inappropriate conclusion.
On the other hand, the prediction of the group is always close
to the real value, so even though the value is not exact, the
finding is likely more accurate.

9

(a) DTR (b) GBR (c) Linear (d) PLSR

(e) Polynomial (f) RFR (g) SVR (h) LS

(i) SES (j) Holt-Winters (k) ARIMA (l) SARIMA

Fig. 4: Comparison of actual value (x-axis) and predicted value (y-axis). All the algorithms are tested on the same test samples,
and the algorithms whose circle shape is smaller are considered as better.

0 10000 20000 30000 40000
Training set size (samples)

0

25

50

75

100

Tr
ai

ni
ng

tim
e

[s
]

GBR
Poly
Linear
SVR
PLSR
DTR
RFR

(a)

0 10000 20000 30000 40000
Training set size (samples)

0

2

5

7

10

Tr
ai

ni
ng

tim
e

[s
]

ARIMA
SARIMA
Holt
SES

(b)

0 10000 20000 30000 40000
Training set size (samples)

4

6

8

M
A

PE

GBR
Polynomial
Linear
SVR
PLSR
DTR
RFR

(c)

0 10000 20000 30000 40000
Training set size (samples)

3

4

5

6

M
A

PE

ARIMA
SARIMA
Holt
SES

(d)

Fig. 5: Training time and error (MAPE) for different training set sizes.

Observation 2. In some use cases, it is recommended to look
for the minimum MAXE, rather than the minimum error, i.e.,
MAPE.

Another aspect to be considered is the available time to
predict and to train, therefore we study the behavior of the
methods for different training set sizes. Figures 5a-b show the
training time for ML and TS algorithms respectively. As can
be noticed, excepted Holt-Winters, TS algorithms take less
time to train data. Furthermore, ML training time is not linear
w.r.t. to the size, but it is high for small and big sizes, and
low for the medium size.

At the same time, training time must be combined with
error in the prediction for a comprehensive analysis of the
algorithms. Figures 5c-d shows MAPE for both the TS and
ML models. Clearly the more trained data the lower error,
however, it is worth noting that for TS methods the error after
a minimum around the size of 1, 000, tends to slightly increase.
This result suggests using a small training set for this class.
On the other hand, for ML algorithms a general decreasing in
the error holds.

These results confirm our hypothesis of training offline ML
algorithms on a large data set, and train the TS methods online
Holt-Winters is trained online on a small data-set, with no

reduction in the error as proved in Figure 5d.

Observation 3. Simple methods can be trained online and
can address more recent history and more adequate behavior
but on a small training set. For more complex (and often more
accurate) model an offline training is recommended.

For this reason, in RoPE the ML models are trained off-
line and then used on-line for predicting. The classical model
does not need to be trained off-line, and it is better to use
more recent data to predict. In this case, there are two major
approaches: the sliding window and the expanding window. In
the sliding window approach, one uses a fixed size window
for training. On the other hand, the expanding window uses
more and more training data, while keeping the testing window
size fixed. This approach is particularly useful if there is a
limited amount of data to work with. Our choice regarding TS
is to marry the two methods: start with the expanding window
method and, when the window grows sufficiently large, switch
to the sliding window method.

VII. ROUTING EVALUATION

The goal, as mentioned, is to adapt the routing behavior
to better cope with the predicted links conditions. Firstly, we
need to enumerate the cost function weights used in Eq. 1 to

10

Ses Holt Arima Sarima
4

5

6

7

C
k,

I(
D

)

(a)

SVR Poly Linear GBR PLSR DTR RFR
5

6

7

C
k,

I(
D

)

(b)

Fig. 6: The cost function for the tested algorithms. RFR is the
best for ML algorithm, while Holt for TS methods.

take into account specific requirements of different scenarios.
Considering in particular our three use cases, we can observe
how throughput is really crucial for a Telepathology session,
while it is not so relevant for a Disaster response. For Tactile
Internet instead, the latency is the predominant factor. For this
reason, for the Telepathology application we used (α = 106,
µ = 5 × 10−5, λ = 10−3, γ = 2 × 10−9), in the Disaster-
response use case we used (α = 106, µ = 10−6, λ = 10−5,
γ = 10−12), and to emulate Tactile Internet scenarios we used
(α = 103, µ = 10−4, λ = 10−3, γ = 10−10).

In the rest of this section, we first evaluate the performance
of different prediction algorithms. Then, we compare our
approach with existing solutions, and we test the scalability
of our strategy and how it can satisfy specific application
requirements. Finally, we also run sensitivity experiments by
varying some algorithm parameters. The topology we adopted
consists of 10 switches and 20 hosts and is inspired by the
edge network principles [65].

A. Automate the choice of predictor

As demonstrated, a prediction method can provide optimal
results in a number of cases, but might not work properly in
other situations. For this reason, we try to automatically choose
the algorithm to apply, in order to guarantee the best possible
performance. Choosing the right forecasting method for a
given use case is a function of many factors, starting from how
much historical data are available, and if exogenous variables
(e.g., weather, concerts) play a big role. Moreover, we can
consider business needs, whether or not the model needs to
be understandable. We imagine this is not always necessary,
but we may use a classical method to achieve this requirement.

In the context of our Telepathology use case, the choice
of the predictors affects the routing performance (Figure 6).
In particular, the TS and ML methods are considered in
Figure 6a and Figure 6b, respectively. Our results show that
RFR achieves a cost of 5.93, the minimum for the MLs, and
Holt-Winters a cost of 5.51, the best for both classes. While
our results show that the online training phase has a lower cost
than the offline counterpart, this is valid for the considered use
case but, in other circumstances, the training offline may result
as a valuable strategy.

Figure 7 demonstrates how the approach is general and
can handle different use cases and increasing sizes of the
network. In particular, Figure 7a shows the cost function value
for the three use cases, considering the best TS and ML
algorithms for each one. We can see how in a disaster response
network, a prediction made by TS algorithms achieves a better

Disaster Telepathology Tactile
Use Cases

0

5

10

C
k,

I(
D

)

ML best
TS best

(a)

20 40 60
Density of network, (%)

0

10

20

30

40

C
k,

I(
D

)

ARIMA
Holt
SVR
RFR

(b)

Fig. 7: (a) Comparison of different classes of algorithms for
different use cases and (b) algorithms performance among
different topologies with increasing connectivity.

transmission quality. This holds because in this scenario fresh
data (even if in a small quantity) are more reliable than a
huge dataset trained offline, as in ML methods. Conversely,
the offline training phase is desirable for tactile Internet
applications, where patterns can be discovered in advance and
exploited to predict future traffic. This means that, according
to user requirements, a class of methods can be preferred to
tackle the problem. RoPE is able to detect which class of
algorithms to apply and switch among them according to user
needs.

In order to generalize our findings, we deployed a more
random topology where links among switches and hosts are
randomly generated. The number of links between the switches
is a parameter in the generation phase and it affects the density
of the network. This value is changed to evaluate scalability
and test the performance of the framework. Results in the
Telepathology case are depicted in Figure 7b, for a different
number of links in the network.

On the basis of these findings, the choice of the predictor
comprises many factors: use case, expressed as preferences
by the user, seasonality of data, frequency in the adaptation of
routing, and, consequently, frequency of data collection. Our
framework can adequately choose which algorithm to apply,
based on the user preferences, for an autonomous network
management system. In detail, the choice of the best predictor
first selects the class (ML or TS) by evaluating the user needs.
TS is used by default for its ability to be trained online
and providing an understandable model. Instead, in case the
application exhibits patterns that a schema can discover offline,
ML is preferred. For example, among the three use cases that
we evaluated, ML class provides the best results for Tactile
Internet, while TS for Telepathology and Disaster Response.
However, other cases can be considered as well. Thanks to the
generality of the approach, they can be studied by leveraging
the general cost function in order to better identify the proper
class. The further comparison is distinct for the two classes
as follows. (i) For the TS methods: on one hand, if marked
seasonality is denoted, the system selects ARIMA for the best
MAPE (Table II). In fact, ARIMA provides a lower MAPE
compared to SARIMA and a comparable training time. For
both the algorithms we set the training window to 5, 000
values, since MAPE achieves the minimum at this size for
the two methods (Figure 5d). On the other hand, if there is no
seasonality, we then investigate the value of r, and if greater
than the default value (20s), we select Holt-Winters with the
training set size of 1, 000 samples as default predictor. In such

11

12 13 14 15 16 17
Latency [s]

0.7

0.8

0.9

1.0

1.1

Th
rp

ug
hp

ut
 [k

bp
s] RoPE

OFSP
ECMP
MetricMap

(a)

RoPE OFSP MetricMap ECMP
0

5

10

15

C
k,

I(
D

)

(b)

RoPE OFSP MetricMap ECMP
0

2

4

6

8

C
k,

I(
D

)

(c)

RoPE OFSP MetricMap ECMP
0.0

2.5

5.0

7.5

10.0

C
k,

I(
D

)

(d)

Fig. 8: Comparison for different routing strategies. (a) Trade-off between latency and throughput. Our solution provides an
higher throughput and a lower latency. (b)-(c)-(d) The effectiveness of the three routing strategies among the three use cases,
Disaster, Telepathology and Tactile respectively.
a way, we select the more accurate method w.r.t SES, but we
limit the training set to reduce the training time to a reasonable
value (Figure 5b) that can also achieve the best MAPE for
this method (Figure 5d). When r is lower than the default,
we set SES as the preferred option for its lower training
time (Figure 5b) in order to satisfy the more frequent routing
updates. (ii) For the ML methods: our system sets SVR as the
predefined predictor method for its lowest MAPE (Figure 5c
and Table IV). In this case, the size of training data partially
affects the accuracy, and, for this reason, we use as much data
as available, since SVR minimizes the MAPE on almost any
size of the training set.

Furthermore, the system allows the user to request for any
algorithm presented and evaluated in this paper. For example,
the user can choose an algorithm with a small MAXE, such
as DTR, since a considerable prediction error would lead to
erroneous routing selection, with a severe consequence on the
application. In this case, a conservative approach may appear
to be an effective strategy, and the predictor results to be less
precise but almost correct most of the time.

B. Routing Performance Improvement

In this experimental setup we evaluate the quality im-
provement by comparing our solution against other currently
deployed algorithms (Figure 8).

In particular, we compare RoPE against the Equal-Cost-
Multi-Path (ECMP), Online Flow Size Prediction (OFSP) [32]
and agasint MetricMap [33]. ECMP, a well-known algorithm,
is used a the baseline. In OFSP, authors detect elephant flows
by means of the GPR algorithm; hence, the least congested
path to route such flows is selected while the ECMP protocol
is used to route mice flows. MetricMap uses the Very Fast
Decision Tree (VFDT) online algorithm [66] to learn and
classify traffic. The routing protocol is atop MintRoute and
specified for Wireless Networks, but can be generalized.

First, we compare the achieved latency and throughput by
using the RFR prediction algorithm for RoPE in Figure 8a.
From this result, we can state that RoPE reduces the latency
while increasing the application throughput, with respect to
the other solutions. The result also points out the flaws of a
simple yet deployed approach ECMP, highlighting the benefits
brought by an adaptive routing combined with SDN.

Although throughput and latency can be considered as the
most major metrics to evaluate, we rely on the cost function
(Eq. 1) for a more general evaluation. Figures 8b-c-d depict
the function value for the three exposed use cases. As can be
seen, RoPE significantly outperforms all the other methods.

The resulting routing policy reduced the latency while keeping
a stable jitter and high throughput among the three use cases.
We can state that our approach yields the best results for the
considered applications. We may observe how, while OFSP
optimizes the routing for elephant flow that is not long in time,
our approach can modify the path even in a second phase, use-
ful for long transmission. Similarly for MetricMap, where on-
line training does not lead to a significantly improved quality.

Observation 4. Modifying the routing even when the commu-
nication is ongoing can improve the application quality.

C. Real-case Environment on GENI

To establish the practicality of our approach, we test its scal-
ability over the GENI testbed [67], which provides physical
machines and physical links for testing purposes. In particular,
we deployed the three applications and the models are re-
trained over real-world data following the same procedure
exposed in Section VI, but the emulated network of Mininet
is replaced with physical and virtual links. Based on the
previous findings, we select the optimal predictors for each
use case and the results are compared against the above state-
of-the-art algorithms, as detailed in Figure 9. A comparison
between Fig. 8 and 9 shows that conclusions about RoPE
in Mininet hold in GENI as well, even though a higher
latency and throughput is obtained in real networks. The RoPE
cost function is adequately smaller than the state-of-the-art.
Moreover, Table V provides details on each component of the
cost function for a Disaster Response scenario. As can be seen,
no algorithm outperforms the others in all the adopted metrics,
but RoPE achieves excellent results in both the latency and the
jitter, which leads to an overall better outcome.

TABLE V: Performance evaluation in the context of the
Disaster Response application running on the GENI virtual
network testbed. Even in these real settings RoPE outperforms
related solutions.

Solutions Thr. [kbps] Lat. [µs] Jit. [ms] ∆ Jit. [ns] CK,I(D)

RoPE 3929.7 10.48 0.83 9.53 10.58
OSFP 4107.1 12.07 1.00 7.22 12.16

MetricMap 4077.1 13.39 1.02 9.03 13.48
ECMP 3702.2 17.43 0.96 4.68 17.52

In addition to the evaluation by means of Eq. 1, we also
consider the requirements of the applications and we check
whether or not these are satisfied by RoPE. In Table VI we
compare the specific requirements against results achieved

12

RoPE OFSP MetricMap ECMP
0

5

10

15

C
k,

I(
D

)

RoPE OFSP MetricMap ECMP
0

10

20

30

C
k,

I(
D

)

RoPE OFSP MetricMap ECMP
0

20

40

C
k,

I(
D

)

(a) (b) (c)
Fig. 9: Comparison for different routing strategies over the GENI testbed. Our solution outperforms the related work, as
confirmed by (a)-(b)-(c), where the cost function with the proper coefficients is computed for the three use cases, Disaster
Scenario, Telepathology and Tactile Internet, respectively.

1 2 5 10
Horizon

0.00

0.03

0.05

0.08

A
bs

ol
ut

e
Pe

rc
en

ta
ge

E
rr

or

1 5 30 60
Epoch Length [s]

5

6

7

8

C
k,

I(
D

)

1 10 20 30 60
r, Routing Update Interval [s]

0

5

10

15

20

C
k,

I(
D

)

(a) (b) (c)
Fig. 10: (a) Error vs Horizon for TS methods. (b) Error vs Epoch length for TS and ML algorithm. (c) Routing update interval
and cost function.

TABLE VI: Application requirements and the satisfiability
achieved by using RoPE.

Use Case Measurement Required Value Obtained Value

Tactile Latency 1 ms 532.274 µs
Telepathology Video Bitrate 900 kbps 902.45 kbps

Latency 100 ms 22.76 ms
Disaster Jitter 1 ms 0.832 ms

App. Throughput 3 Mbps 3.929 Mbps

by using RoPE on the GENI testbed. We can notice how
RoPE brings benefit even from a user perspective, fulfilling
the demands of the applications and enabling the deployment
of such services.

Tactile applications entail at least 1-ms latency to work
appropriately, hence we select an algorithm that best suits such
circumstances, with the help of the cost function. In particular,
by using SVR as a predictive algorithm, we can satisfy the
requirement and guarantee an adequate service.

Similarly, we select Holt-Winters for the Telepathology use
case, where we focus on the achieved bitrate and latency. We
deployed an application that sends the video captured by the
emulated microscope and sends it to a program responsible for
performing video processing [2]. The client sends the video at
a maximum bitrate through ffmpeg and we measure whether
or not the network can provide the adequate throughput.
Besides, we desire the latency to be lower than 100 ms to
assure the real-time control of the microscope. Holt-Winters
was chosen based on previous experiments, and it provides
excellent results, as proved in Table VI.

Finally, we select ARIMA for the Disaster Response use
case. In order to evaluate the feasibility of applications de-
ployed during a disaster, we implemented a program that con-
tinuously sends the recorded audio to a server that processes
it and provides useful information such as the presence of hu-
mans and the corresponding location. The requirements are se-

lected so that Google libraries used to process audios work best
and to enable a fast response. The results (Table VI) reveal that
the use of RoPE ensures the application to function properly.

D. Sensitivity Analysis

We also conduct a sensitivity analysis of the performance
of predictors with respect to key design parameters for the ref-
erence use case of the Telepathology application. (Figure 10).
Horizon. We run tests to study if it is possible to predict more
than one future value. The results of figure 10a demonstrates
that TS algorithms provide a low error even predicting more
than 1-step ahead. In this way, the algorithm can be used
to predict more than one single value, ensuring that the
bandwidth in the future will be under the threshold for a while.
In fact, the graph shows that the prediction error is generally
independent of the horizon.
Epoch Length. The Epoch length refers to the time interval
in collecting data from the switches. We investigate how
the performance of the system changes w.r.t. the bandwidth
measurement granularity. Figure 10b shows that a even a not
very frequent collection leads to a low cost function, for this
reason, we set it to 5-sec.
Routing Update Interval. As discussed in § VII, we want
routing to adapt to the network conditions, but without in-
troducing instability over the network. In Figure 10c we
evaluate the cost function for different adaptation interval.
We can notice that 30 seconds provides the best quality in
transmission. This value also guarantees adaptability without
incurring in too frequent changes.

VIII. CONCLUSION

This paper presents RoPE, a new solution to speed up the
transfer of critical data. Its main novelty resides in its traffic
engineering logic: it predicts the future load on links of a path
and then chooses the best one according to data computed.
This algorithm allows avoiding congested paths and reduces

13

delay in the transmission, providing a more effective way of
routing critical information with respect to other algorithms
existing in the literature. The results confirm the impossibility
of one prediction algorithm to fit all the use cases. Apparently,
Machine Learning provides excellent results, which reduces
the latency in critical communications. However, Time Series
can be used for their fast training phase and the straightforward
model. In fact, the results suggest that for Disaster response
applications TSs are more appropriate.

RoPE leverages SDN features, e.g., centralized controller
and the context-based control path, to collect information
about the traffic load on the links and takes a new road
in case of predicted congestion. Leveraging SDN switches
programmability, the framework can quickly react to excessive
predicted load on links and adapts the routing to address the
congestion. This framework is intended to overcome well-
known problems related to edge-based applications, such as
latency and throughput requirements. Due to the diversity
of applications and data generated, RoPE addresses the user
needs by autonomously detecting the data properties, selecting
the proper model and applying prediction values to the routing.

Moreover, the paper presents a comprehensive analysis of
regression algorithms to evaluate the advantages and disad-
vantages of the class of methods and depicts the logic behind
the presented framework. Possible future work might focus on
investigating whether new models can be used in addition to
the ones implemented.

ACKNOWLEDGEMENT

This work has been partially supported by NSF under Award
Numbers CNS1647084, CNS1836906, and CNS1908574.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan 2017.

[2] A. Sacco, F. Esposito, P. Okorie, and G. Marchetto, “Livemicro: An
edge computing system for collaborative telepathology,” in Proceedings
of the 2nd USENIX Workshop on Hot Topics in Edge Computing, ser.
HotEdge ’19. New York, NY, USA: ACM, 2019.

[3] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration
algorithm for edge computing resources with guarantees,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications,
April 2019, pp. 2548–2556.

[4] D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reli-
able composition approach for geo-distributed latency-sensitive service
chains,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, April 2019, pp. 1792–1800.

[5] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York, NY,
USA: ACM, 2016, pp. 272–285.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM,
2015, pp. 325–338.

[7] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: Auto-tuning video abr
algorithms to network conditions,” in Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp. 44–58.

[8] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein,
“Salsify: Low-latency network video through tighter integration between
a video codec and a transport protocol,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 267–282.

[9] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’17. New
York, NY, USA: ACM, 2017, pp. 197–210.

[10] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[12] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Comput. Surv., vol. 52, no. 1, pp. 2:1–2:23, Feb. 2019.

[13] A. Scalingi, F. Esposito, W. Muhammad, and A. Pescapé, “Scalable
provisioning of virtual network functions via supervised learning,” in
2019 IEEE Conference on Network Softwarization (NetSoft) (NetSoft
2019), Paris, France, Jun. 2019.

[14] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[15] B. Schlinker et al., “Engineering egress with edge fabric: Steering oceans
of content to the world,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: ACM, 2017, pp. 418–431.

[16] K.-K. Yap et al., “Taking the edge off with espresso: Scale, reliability
and programmability for global internet peering,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 432–445.

[17] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet traffic forecasting
using neural networks,” in The 2006 IEEE International Joint Confer-
ence on Neural Network Proceedings, July 2006, pp. 2635–2642.

[18] E. S. Yu and C. Y. R. Chen, “Traffic prediction using neural networks,”
in Proceedings of GLOBECOM ’93. IEEE Global Telecommunications
Conference, Nov 1993, pp. 991–995 vol.2.

[19] Y. Li et al., “Inter-data-center network traffic prediction with elephant
flows,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 206–213.

[20] Cooperative association for Internet data analysis. [Online]. Available:
http://www.caida.org/tools

[21] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
Transactions on Networking (TON), vol. 11, no. 4, pp. 537–549, Aug.
2003.

[22] J. Strauss, D. Katabi, F. Kaashoek, and F. Kaashoek, “A measurement
study of available bandwidth estimation tools,” in Proceedings of the
3rd ACM SIGCOMM Conference on Internet Measurement, ser. IMC
’03. New York, NY, USA: ACM, 2003, pp. 39–44.

[23] J. Sommers, P. Barford, and W. Willinger, “A proposed framework
for calibration of available bandwidth estimation tools,” in 11th IEEE
Symposium on Computers and Communications (ISCC’06), June 2006,
pp. 709–718.

[24] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’11. New York, NY, USA: ACM, 2011, pp. 8:1–8:12.

[25] K. He et al., “Measuring control plane latency in sdn-enabled switches,”
in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, ser. SOSR ’15. New York, NY, USA:
ACM, 2015, pp. 25:1–25:6.

[26] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis: a
rule-based intrusion detection approach,” IEEE Transactions on Software
Engineering, vol. 21, no. 3, pp. 181–199, March 1995.

[27] R. Beverly, K. Sollins, and A. Berger, “Svm learning of ip address
structure for latency prediction,” in Proceedings of the 2006 SIGCOMM
Workshop on Mining Network Data, ser. MineNet ’06. New York, NY,
USA: ACM, 2006, pp. 299–304.

[28] P. Bermolen and D. Rossi, “Support vector regression for link load
prediction,” Computer Networks, vol. 53, no. 2, pp. 191 – 201, 2009.

[29] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer tcp throughput,” SIGCOMM Computer Communication Review,
vol. 35, no. 4, pp. 145–156, Aug. 2005.

[30] M. Swany and R. Wolski, “Multivariate resource performance forecast-
ing in the network weather service,” in SC ’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, Nov 2002, pp. 11–11.

14

[31] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” IEEE/ACM Transactions on
Networking (TON), vol. 18, no. 4, pp. 1026–1039, Aug. 2010.

[32] P. Poupart et al., “Online flow size prediction for improved network
routing,” in 2016 IEEE 24th International Conference on Network
Protocols (ICNP), Nov 2016, pp. 1–6.

[33] Y. Wang, M. Martonosi, and L.-S. Peh, “Predicting link quality using
supervised learning in wireless sensor networks,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 11, no. 3, pp. 71–
83, Jul. 2007.

[34] D. Wolpert, K. Tumer, and J. Frank, “Using collective intelligence to
route internet traffic,” in Advances in neural information processing
systems, 1999, pp. 952–960.

[35] S. Kumar and R. Miikkulainen, “Dual reinforcement q-routing: An on-
line adaptive routing algorithm,” in Proceedings of the artificial neural
networks in engineering Conference, 1997, pp. 231–238.

[36] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
ospf weights,” in Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (Cat. No.00CH37064),
vol. 2, March 2000, pp. 519–528 vol.2.

[37] R. Cohen, Y. Dagan, and G. Nakibly, “Proactive rerouting in network
overlays,” in 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, May 2018, pp. 1–9.

[38] M. Chiesa, G. Rétvári, and M. Schapira, “Lying your way to better traffic
engineering,” in Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’16.
New York, NY, USA: ACM, 2016, pp. 391–398.

[39] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework
for cooperative video processing in multimedia iot systems,” IEEE
Transactions on Multimedia, vol. 20, no. 5, pp. 1126–1139, May 2018.

[40] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, March 2014.

[41] C. Kalalas, L. Thrybom, and J. Alonso-Zarate, “Cellular communi-
cations for smart grid neighborhood area networks: A survey,” IEEE
Access, vol. 4, pp. 1469–1493, 2016.

[42] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5g-enabled
tactile internet,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 460–473, March 2016.

[43] A. A. Ateya, A. Vybornova, R. Kirichek, and A. Koucheryavy, “Multi-
level cloud based tactile internet system,” in 2017 19th International
Conference on Advanced Communication Technology (ICACT), Feb
2017, pp. 105–110.

[44] A. Ateya, A. Muthanna, I. Gudkova, A. Abuarqoub, A. Vybornova, and
A. Koucheryavy, “Development of intelligent core network for tactile
internet and future smart systems,” Journal of Sensor and Actuator
Networks, vol. 7, no. 1, p. 1, 2018.

[45] R. S. Weinstein, A. R. Graham et al., “Overview of telepathology, virtual
microscopy, and whole slide imaging: prospects for the future,” Human
Pathology, vol. 40, no. 8, pp. 1057 – 1069, 2009.

[46] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb 2018.

[47] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[48] H. Trinh, D. Chemodanov, S. Yao, Q. Lei et al., “Energy-aware mobile
edge computing for low-latency visual data processing,” in 2017 IEEE
5th International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2017, pp. 128–133.

[49] S. Chung et al., “A novel image-based tool to reunite children with their
families after disasters,” Academic Emergency Medicine, vol. 19, no. 11,
pp. 1227–1234, 2012.

[50] J. Wang, J. Pan, and F. Esposito, “Elastic urban video surveillance
system using edge computing,” in Proceedings of the Workshop on Smart
Internet of Things, ser. SmartIoT ’17. New York, NY, USA: ACM,
2017, pp. 7:1–7:6.

[51] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber
foraging of mobile devices,” IEEE Communications Surveys Tutorials,
vol. 14, no. 4, pp. 1232–1243, Fourth 2012.

[52] J. Burchard, D. Chemodanov, J. Gillis, and P. Calyam, “Wireless mesh
networking protocol for sustained throughput in edge computing,” in
2017 International Conference on Computing, Networking and Commu-
nications (ICNC), Jan 2017, pp. 958–962.

[53] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“Developing a predictive model of quality of experience for internet

video,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 339–350, Aug. 2013.

[54] M. Alreshoodi and J. Woods, “Survey on QoE\QoS correlation models
for multimedia services,” arXiv preprint arXiv:1306.0221, 2013.

[55] Q. Zhang, J. Liu, and G. Zhao, “Towards 5g enabled tactile robotic
telesurgery,” arXiv preprint arXiv:1803.03586, 2018.

[56] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and R. J. Gibbens,
“How green is multipath tcp for mobile devices?” in Proceedings of
the 4th Workshop on All Things Cellular: Operations, Applications, &
Challenges. New York, NY, USA: ACM, 2014, pp. 3–8.

[57] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[58] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a
tutorial,” Analytica Chimica Acta, vol. 185, pp. 1 – 17, 1986.

[59] M. Xu, P. Watanachaturaporn, P. K. Varshney, and M. K. Arora,
“Decision tree regression for soft classification of remote sensing data,”
Remote Sensing of Environment, vol. 97, no. 3, pp. 322–336, 2005.

[60] S. Troia, A. Rodriguez, R. Alvizu, and G. Maier, “Senatus: An exper-
imental sdn/nfv orchestrator,” in 2018 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
Nov 2018, pp. 1–5.

[61] FFmpeg documentation. [Online]. Available: https://www.ffmpeg.org/
[62] Unina Traffic and data traces. [Online]. Available: http://www.grid.

unina.it/Traces/index.php
[63] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine

learning in python,” Journal of machine learning research, vol. 12, pp.
2825–2830, Nov. 2011.

[64] J. H. F. Flores, P. M. Engel, and R. C. Pinto, “Autocorrelation and
partial autocorrelation functions to improve neural networks models
on univariate time series forecasting,” in The 2012 International Joint
Conference on Neural Networks (IJCNN), June 2012, pp. 1–8.

[65] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[66] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’01.
New York, NY, USA: ACM, 2001, pp. 97–106.

[67] Geni, Exploring Networks of the Future. [Online]. Available:
https://www.geni.net/

Alessio Sacco received the M.Sc. degree in Com-
puter Engineering from the Politecnico di Torino,
where he is currently pursuing the Ph.D. degree
in Computer Engineering. His research interests in-
clude architecture and protocols for network man-
agement; implementation and design of cloud com-
puting applications; algorithms and protocols for
service-based architecture, such as Software Defined
Networks (SDN), used in conjunction with Machine
Learning algorithms.

Flavio Esposito is an Assistant Professor with the
Department of Computer Science at Saint Louis
University (SLU). He also has an affiliation with the
Parks College of Engineering at SLU. He received
an M.Sc. degree in Telecommunication Engineering
from the University of Florence, Italy, and a Ph.D. in
computer science from Boston University in 2013.
Flavio worked in the industry for a few years,
and his main research interests include network
management, network virtualization, and distributed
systems. Flavio is the recipient of several awards,

including four National Science Foundation awards and two best paper awards,
one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

