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The effect of airflow rate control on the performance of a fan-
assisted solar air heating façade 

Francesco Isaia1,*, Stefano Fantucci1, Valentina Serra1, Valeria Longo2 
1 TEBE Research Group, Department of Energy, Politecnico di Torino, Italy 
2 Politecnico di Torino, Italy 
* francesco.isaia@polito.it 

Abstract. Solar Air Heating Façades (SAHF) can exploit solar radiation to partially fulfil the building heating and 
ventilation demand. This study was developed starting from an experimental campaign on a full scale fan-assisted 
SAHF applied to an outdoor test cell (TWINS) located in Torino (Italy). The data gathered from the monitoring 
activity were used to validate a white box model, developed in EnergyPlus. An axial fan drives the airflow through 
the façade; therefore, the supplied air temperature can be controlled by changing the fan speed. For this purpose, 
a PID (Proportional Integrative Derivative) controller was developed. This study demonstrates that the application 
of different control strategies significantly affects the façade overall performance and behaviour. Results highlight 
that the system can reach an average seasonal solar efficiency of up to 30%. Furthermore, by operating the system 
in heating-mode only and controlling the supply air temperature at 25°C, the system operates for 30% of the 
heating season, while at 40°C the system can provide fresh pre-heated air with an higher exergy level for the 10% 
of the winter period. Fan-assisted SAHF represent a valuable retrofit strategy solution in all buildings that present 
space limitations for the installation of centralised ventilation systems, helping to address the nZEB target 
requirements. 

1. Introduction 
The new frontier of buildings energy efficiency, for both new constructions and energy retrofit of the 
existing ones, is represented by the nearly Zero Energy Buildings (nZEB). This target can be reached, 
to a large extent, by simultaneously adopting different strategies to minimise the energy needs and to 
cover them, in large part with renewable sources. 
 Since the performance of the building envelope (high insulation level, air tightness, and optimal 
thermal inertia) can only partially help to reach the nZEB target, a new tendency is to design 
multifunctional and adaptive building envelope components that can integrate different functionalities 
(even combined) such as: ventilation, shading, heat storageas well as exploitation of Renewable Energy 
Sources (RES). 
Building-integrated passive solar façades represent a widely used technology in retrofit and energy 
saving actions, demonstrating their potential for the reduction of the heating load up to 40–50% [1]. 
These technologies usually combine the effects of the solar collector, the thermal storage wall, and the 
solar chimney. An example of passive solar façade is the Trombe Wall, which consists of an external 
glazed layer, an air gap and a massive inner wall that presents two vents at the top and the bottom [2]. 
The amount of the heat transferred from the cavity of the wall to the internal environment and the air 
flow rate are strongly related phenomena. The unvented Trombe wall is used as an insulation layer 
which reduces the thermal transmittance of the building envelope [3], but several studies state that the 
ventilation of the component can be an important control mechanism for the building heating [4], [5], 
[6], [7], [8] or cooling (compared to the unvented Trombe Wall) [9]. 
 In this study, the winter performance of an opaque solar façade system embedding decentralised 
ventilation (fan-assisted solar air heating façade) was studied. The system consists in a Supply Air 
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Façade (SAF) which provides fresh pre-heated air to the indoor environment in the winter season, while 
it can improve the exploitation of passive cooling strategies in summer (night ventilation). 
 The system is composed by different functional elements, a glazed layer in the outer part, a 
massive wall component in the inner side and an air cavity in the middle activated by an axial-fan that 
supply a controlled air flow rate to the indoor environment.  
 The system behaviour was preliminary monitored during an experimental campaign in outdoor 
test cells in Torino (Italy). During the experimental activity, the axial fan provided a constant air flow 
rate of 26 m3/h (0.5 1/h Air Changes per Hour in a typical residential room of ~19 m2 of floor area). 
The experimental results were used to validate a white box model of the façade, developed in EnergyPlus 
that has been used to perform parametrical analyses to optimise the system design. 
 The aim of the study is to analyse the effect of different fan operating strategies, for this sake, the 
results of the always-on configuration was compared with a system operating in heating-mode (supplied 
air is warmer than 20°C) that was controlled with a PID control that operates between different heating 
stages (supplied air between 25 and 40°C). 

2. Methodology 
The measured experimental data, deeply described in a previous publication of the authors [10], were 
used to validate a numerical model. A set of simulations were carried out during the heating season to 
estimate the effect of different system configurations on the annual performance by varying both the 
transparent and opaque wall components. This assessment led to the identification of the best 
technological solutions for the two components. 
 Then, a second set of simulations, presented in this paper, were performed implementing different 
ventilation PID control strategies (supply temperature set-point from 25 to 45°C). 

2.1. Numerical simulation 
Building components implementing ventilated channels can be simulated by means of CFD models. 
However, several studies have demonstrated that, for annual simulations, the use of Building Energy 
Simulation (BES) software represent a good compromise between results accuracy and computational 
cost [11].  
 The examined element was modelled in DesignBuilder and simulated in EnergyPlus with a time 
step of 15 minutes.  
 The ventilated cavity was vertically divided into five thermal zones; two fictitious regions were 
modelled to simulate the air inlet and supply. Each zone was interconnected with the adjacent one by 
horizontal openings (holes) that allow the forced airflow to pass from one element to the above one, 
considering a perfect air mixing inside each zone (Figure 1). 
 Throughout the model calibration, the solar radiation, the air flow rate, and the external and 
internal temperatures measured values were set as input data, while the external surface and the supply 
air temperatures were compared to validate the simulation model. 
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Figure 1. a) Scheme of the simulation model (TZ are the thermal zones); b) Layers and components of 

the SAHF 

2.2. Optimisation of the functional layers 
The façade element was optimised by changing its functional layers (namely, the transparent and 
opaque). To maximise free heat gains and to minimise the thermal losses, the transparent component 
needs to be chosen considering a balanced combination of solar transmission coefficient and thermal 
transmittance. The opaque component has mainly impact on the system heat storage capabilities, 
influencing the response of the façade (higher inertia means longer delays) and the attenuation of the 
peak temperatures. 
 Among different simulated scenarios that were not reported in the paper for the sake of brevity, 
it was found that the optimal configuration is the one that maximises the glazing insulation while 
increasing the wall heat capacity. For this reason, a Double Glazed Unit (DGU) with a low emissivity 
pane and argon-filled cavity (U-value 1.4 W/m2K) was selected as the transparent layer, while a solid 
brick wall (50 cm thick) was selected as the opaque element (U-value 1.2 W/m2K and Surface Mass 
Density 1040 kg/m2). 
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2.3. Ventilation control 
During the previous simulations, the component was analysed considering the fan always on at its 
maximum speed. In this way, the supply air was introduced in the internal environment even when it 
reached temperature values below 20°C (indoor heating set-point temperature in winter period). To use 
the façade component as an auxiliary system for heating, supply temperatures below 20°C should be 
avoided. Therefore, a PID controller was developed to modulate the air flow rate, enabling the control 
of the supply set-point temperature. Different set-point temperatures were considered (25°C, 30°C, 35°C 
and 40°C). If the measured supply temperature reached values below 20°C, the controller would stop 
the air flow (air flow rate set to 0 m3/s). 

3. Results and discussion 
The seasonal simulation of the base façade system demonstrates that for around 30% of the heating 
period the system keeps the supply temperature above 20 °C, positively contributing to the indoor space 
heating. Even if the façade system is not always able to contribute to the space heating, it can still provide 
fresh pre-heated air required for ventilation purposes, thus allowing a reduction of the energy 
consumption through the decrease of the ventilation heat losses. In particular, the component (of about 
2.5 m2) supplies 26 m3/h, which corresponds to about 0.5 ACH considering a ~19 m2 room of 2.7 m 
height. 

3.1. Ventilation control results 
When the PID controller is implemented in the numerical simulations, the air flow rate is evaluated at 
each time step so to keep the supply temperature at the desired set-point. The lower the fan speed, the 
higher the supply temperature, since at lower flow rates it takes longer for air to travel inside its cavity, 
where the heat transfer occurs. In Figure 2 it is possible to see how the PID controls the supply 
temperature so to maintain it in the desired set-point (only 25°C and 40°C are shown) by changing the 
air change rate. 

 
Figure 2. Supply air temperature (Tsupply) and inlet air flow (Ventilation) values obtained by applying 

the PID control with set-point temperature of (a) 25°C and (b) 40°C in a typical winter day. 
 
From Figure 3 (a) it is possible to notice several peculiarities of the system. First of all, in all the PID 
systems, the fan is off for the 70% of the heating season because the supply temperature would have 
been lower than the indoor air temperature (20°C). Considering all the different set-point cases, from 
Tsp,25 to Tsp,40, the set-point supply temperatures were maintained within ±2°C for, respectively, the 17%, 
15%, 12% and 9% of the simulated period.  
 The obtained results demonstrate that during the simulation period there are entire days in which 
the ventilation is absent. 
 In Figure 3 (b) the average seasonal solar efficiency (ηsol) are summarised. This performance 
indicator is defined as the ratio between the heat energy provided by the supplied pre-heated air and the 
incident global solar energy radiation (Eq. 1): 
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ηsol= 
∑ Qsupply

m
n

∑ Qsol
m
n

∙ 100 (1)  

where n and m refer to the beginning and the end of the heating period (15th October – 15th April) [10]. 
It can be observed that compared to the not-controlled component (Ci), the average seasonal efficiency 
values increase in the case of Tsp25 and Tsp30 while achieving similar or slightly lower performances in 
the Tsp35 and Tsp40 configurations. It is worth to be noted that to maintain lower set-point temperatures, 
higher air flows are needed (Figure 2). This also implies fans of bigger size, with the drawback of higher 
energy consumption and noise emission. In the present study, the fan energy consumption was neglected 
in the calculation of the performance indicator ηsol. In the experimental case study (not-controlled 
component, Ci), two monthly energy efficiencies were assessed in the winter period: the total efficiency 
(ηtot) and the net efficiency (ηnet): 

ηtot= 
∑ Qsupply+∑ Qcond

m
n

m
n

∑ Qsol
m
n

∙ 100 (2)  

ηnet= 
∑ Qsupply+∑ Qcond -∑ Qfan

m
n

m
n

m
n

∑ Qsol
m
n

∙ 100 
(3)  

Where Qcond is the heat exchanged between the cavity and the internal environment and Qfan the electrical 
power required by the fan. 
 Observing the difference between the above described winter monthly average efficiencies, it is 
possible to have an idea of the fan energy consumption impact on the overall efficiency. On average, 
fan energy consumption led to a reduction of the total efficiency (ηtot) of around 6%. However, this 
efficiency reduction cannot be extended to the controlled case studies, since the system operates with 
variable air flow rates. Further investigations will be carried out. 
 

(a) (b) 
 

  

Figure 3. (a) Cumulative frequency distribution of the supply temperature obtained by the façade 
system during the PID control actions; (b) Comparison of seasonal average solar efficiency (ηsol) 

values obtained during the PID control simulation. 
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4. Conclusions 
In this study, the effect of different ventilation setting on the performances of a fan-assisted Solar Air 
Heating Façade (SAHF) was investigated. The experimental results carried out on a full-scale façade 
module where used to validate a dynamic simulation model, which was then used to assess the 
performance of the system under different PID control actions. 
 The façade system is able to supply fresh air that can be used for heating or ventilation purposes. 
By controlling the ventilation system through PID control actions, it is possible to use the system in 
heating-mode only, with the result of keeping a desired set-point temperature for a significant portion 
of the heating period. 
 Simulation results highlight that operating the SAHF system in heating-mode only and controlling 
the supply air temperature with a PID control at 25±2°C the system can provide pre-heated air for about 
the 17% of the heating season, while increasing the supplied temperature to 40±2°C, the system can 
supply air with an higher exergy level for the 9% of the winter period. Fan-assisted SAHF represent a 
responsive building element that can operate as a decentralised ventilation unit while exploiting solar 
radiation as a renewable energy source. This feature makes the system a valuable solution if applied as 
a retrofit strategy in all buildings that present space limitations for the installation of centralized 
ventilation systems, helping to address the requirements to reach the nZEB target. 
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