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Vehicle-to-Home Usage Scenarios for Self-
Consumption Improvement of a Residential Prosumer 

With Photovoltaic Roof 
 
Francesco Giordano, Member, IEEE, Alessandro Ciocia, Member, IEEE, Paolo Di Leo, Member, IEEE, Andrea Mazza, Member, 
IEEE, Filippo Spertino, Senior Member, IEEE, Alberto Tenconi, Senior Member, IEEE, Silvio Vaschetto, Senior Member, IEEE, 

Abstract — This paper proposes a procedure for the 
control of Electric Vehicle (EV) batteries, aiming to have 
an optimal matching between local renewable production, 
domestic loads and EV consumption. The procedure starts 
with the analysis of historical PhotoVoltaic (PV), EV and 
domestic load profiles. Load and PV profiles are 
forecasted using statistical based algorithms, while the 
expected patterns of EV usages are forecasted using a 
combination of statistics and clustering techniques. Then, 
the forecasted profiles are used to estimate future energy 
balances trough an optimization process. Finally, the real 
time management corrects the forecasting logic and checks 
the parameters of the EV storage to guarantee its correct 
and safe operation. Three different EV usage profile 
(obtained by the clustering of 215 real users) are shown 
and their impact on the energy balance of EV-PV-home 
systems is quantified. The results are finally compared 
with those obtained with a traditional rule-based logic 
working without forecasts, by also reporting a detailed 
analysis of the main aspects having an impact on the 
results. 

Keywords— Electric vehicles, photovoltaic systems, 
battery management systems, forecasting, prosumer. 

I. INTRODUCTION 

A. Motivations 
The worldwide industrialization and the increasing demand 

for electricity result in problems of energy supply and 
environmental pollution. As an example, in 2017, the 
transportation sector was responsible of 24% of direct CO2 
emissions in the world [1]. Referring only to transportation 
sector, road vehicles (e.g. cars and trucks) accounted for 77% 
of both global energy demand and CO2 emissions. Thus, the 
renewal of transportation sector is fundamental for an effective 
fight against climate change. In fact, research and industry are 
working for the electric conversion of the transportation sector 
[2][3][4], that will even more supplied by Renewable Sources 
(RS). Moreover, the installation cost of renewable systems, 
especially Photovoltaic (PV) generators faced a drop in the last 
years [5]. Thus, in many countries, the local electricity 
production is more cost-effective than the absorption from the 

grid [6]. Furthermore, the batteries installed in Electric 
Vehicles (EV) could increase the use of renewable resources 
and the flexibility of the electric system. As a result, a recent 
line of research is studying the use of EVs and their effects on 
the energy balance of users equipped with charging station and 
photovoltaic generators. This kind of research is in line with 
the exploitation of the concept of Power-to-X [7], which has 
been recently exploited for coupling different sectors with 
proper conversion systems (e.g., Power-to-Gas [8]). The cases 
investigated in this paper aim to present an application 
combining the concept of Power-to-Mobility (P2M) and 
Power-to-Home (P2H) applied to residential customer. These 
applications aim both to guarantee the sufficient level of charge 
to the vehicle, and to increase the exploitation of RS-based 
production. The choice to investigate the above aspects for 
residential customer has been driven by the issue of recent 
standards that already indicate as potential charging mode the 
one using the home plant. For example, IEC 61851 [9]) defines 
this kind of charging mode as Mode 1. 

In line with this and considering charging points equipped 
with bi-directional conversion units, it is possible to exploit the 
presence of a battery system (installed on the car) to improve 
the performance of the prosumer where non-dispatchable 
generation (i.e., PV system), radial distribution system (the 
home plant), loads and a storage system (not always available, 
i.e., the electric vehicle) are installed. It is worth noting that the 
case study considers a grid (i.e., the home plant) connected to 
the main grid, and it is thus considered that the system operator 
is still responsible for guaranteeing frequency and voltage 
quality standards.  

B. State of the art 
The interaction between loads, PV and EVs is not new in 

literature. For example, [10] and [11] show two case studies. In 
both cases, real residential loads and PV production profiles are 
analyzed, and stochastic models are used to predict future 
energy flows due to the use of EVs. The results show that, 
thanks to EVs, an improvement in the matching between PV 
generation and loads is possible, with consequent energy and 
economic benefits for the users. In [12], the energy and the 
environmental performance of a PV system that satisfies the 
electric demand of a single EV, as well as the space heating 
and cooling demand of an office building in Southern Italy is 
analyzed. Under the assumptions made by the authors, the 
simulations put into evidence that, in the best case, 59% of the 
PV production is used by local loads and an EV. A similar 
work was presented in [13], where the benefit of using PV to 
charge EV is investigated from the point of view of electric 
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grid management. As a matter of fact, the distribution system 
operator would reduce the negative effect of high numbers of 
distributed generators in the grid (such as voltage fluctuations 
[14], harmonic content increase [15], and the overheating of the 
power lines). In [13], they concluded that, despite the better 
matching between loads and PV generation introduced by EVs, 
system upgrades will be still necessary (e.g., the installation of 
new transformers with higher sizes and the reduction of 
impedance of lines). 

In the above cited works, the main issue is the lack of an 
advanced control strategy for the optimal management of 
batteries. In particular, storage is simply discharged when 
power is required by the car, and batteries are charged when 
the car is connected to the charging station. A possible 
improvement consists of the development of a Smart Storage 
Management (SSM) for EV batteries, which optimizes charge-
discharge cycles by pursuing a pre-defined goal. Following this 
logic, batteries inside the car can be used to feed residential 
loads (Vehicle-to-Home, V2H) or the grid (Vehicle-to-grid 
V2G). Obviously, the management must guarantee the correct 
work of the storage for traveling, by appropriate constraints. 

In order to implement SSM, different possible approaches 
are proposed in literature. The first approach combines the 
management of the charge-discharge cycles of EV batteries 
with a real-time check of PV generation, loads and storage 
parameters. In literature, some energy management logics for 
EV/PV systems are based on the heuristic approach 
[16][17][18]. In such works, algorithms are based on simple 
logical rules to instantaneously react to new events (e.g. 
plugging/unplugging of an EV, increasing/decreasing of PV 
power). However, they use only real-time information and 
cannot optimize the charging pattern for a longer time period. 
As a conclusion, it is necessary to combine the prediction of 
future EV states with an efficient real-time management.  

The second approach consists of a procedure, which does 
not perform a real time management: the optimal charge-
discharge cycles are calculated by elaborating a priori 
production and EV/load profiles. The possible data elaboration 
algorithms are grouped in three main categories: 

• Deterministic methods: the EV-PV-load profiles are 
inputs of the simulation, and they are fixed a priori. 
Examples of deterministic method applications for EV-
PV-load systems are present in [19] and in [20]. In both 
cases, a linear optimization problem is solved, and a 
significant improvement is demonstrated. In particular, 
there is a better match between local PV production and 
loads, and the electricity cost reduction is achieved, with 
respect to the case without a smart storage management. 

• Stochastic methods, which consider EV-PV-load 
profiles randomly generated on the base of opportune 
criteria. For example, Probability Density Function 
(PDF) for the PV production is built from historical 
data. Then, the PDF is used to randomly generate new 
profiles. The works in [21]-[23] show that the stochastic 
methods result in a more realistic analysis, with respect 
to deterministic methods. 

• Forecasting statistical methods, which predict future 
EV-PV-load profiles based on historical data and 
analysis of trends. This forecasting method is used in 

[24] and [25] to predict power flows in a micro-grid, 
and in office buildings, respectively. Nevertheless, in 
the two above cited papers, the forecast is used only for 
PV and loads. For sake of simplicity, a deterministic 
approach has been used to estimate data related to 
electric vehicles. 

By using deterministic and stochastic methods, it is not 
possible to evaluate the performance of a real time 
management system, which corrects its operation in case of 
differences between input information and real profiles. 
Finally, in [26], a forecasting statistical method based on model 
predictive control is proposed, which includes both the real 
time management and the forecast of EV usage. However, 
aspects related to the maximization of use of local renewable 
source and the maximization of energy efficiency are not 
addressed.  

The present work is the extended version of [27]: in that 
paper, a heuristic algorithm had been used to define charge-
discharge profiles of EV storage, whereas EV consumption 
profiles were based on the analysis of a survey, performed to 
analyze different scenarios for EV usage. 

The main advancement presented in this paper consists of: 
• The fully use of forecasts statistical methods for PV, 

loads and even EV profiles, in combination of a rule-
based logic. 

• The use of real data presented in [28] to choose the 
types of users, thus substituting in this way the survey 
used as data source in [27]. 

• The introduction of a new methodology which differs 
from the one presented in [27], as we now aim at 
improving the self-consumption acting on the 
charging/discharging cycles and not only at quantifying 
its generic improvement due to the introduction of EVs. 

Furthermore, the paper presents a detailed analysis of the 
challenges existing when “human aspects” (i.e., the need of a 
sufficient level of charging for the trips) and weather 
conditions must be taken into account, showing results with 
perfectly forecasted data and data affected by forecasting error.  

The remaining part of the paper is organized as follows: 
Section II presents the methodology, with emphasis on the 
different forecasting methods that are needed. Section III 
shows the results applied to three cases, by highlighting the 
aspects that can affect the results, whereas Section IV reports 
the concluding remarks. 

II. PROPOSED METHODOLOGY 
The present work proposes a methodology to correctly 

design a smart storage management for EV batteries in a 
residential electrical plant is shown in Fig. 1. 

It includes a PV generator, residential loads, and an electric 
vehicle. The EV battery is charged by a charging station, and it 
can work both as controllable load (i.e., it can be charged from 
PV or the grid), or as controllable generator, (i.e., it can 
discharge to supply local loads). The PV generator is connected 
to the local AC bus through a DC/AC converter. No other 
storage systems exist, and thus, if the PV production is higher 
than the load and the car is not at home, the surplus is injected 
into the grid. The proposed methodology is shown in Fig. 2. 
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Fig. 1. Scheme of the residential building with a PV plant and EV charger 

 
Fig. 2. Flowchart of the proposed procedure 

In the STEP #α, the system imports in a database all the 
available historical data related to EV usage, PV generation 
and residential load profiles. In STEP #β, each data set is 
elaborated to estimate the future profiles (provided as weekly 
profiles with a 15-min time step). This step is explained in 
Sections II-A, II-B and II-C. In particular, for the EV usage 
profile forecasts algorithm in II-B, a data driven approach 
which combines statistical operations and clustering 
methodology (kmedoids) is used. For load and PV forecasts in 
II-C, an Autoregressive Moving Average Algorithms (ARMA) 
is used. The authors are aware about the possibility to use 
other machine learning methodologies (such as Artificial 
Neural Networks, ANNs) for forecasting Load, PV and EV 
usage profiles. However, ANNs return highly accurate results 
in an hourly and sub-hourly scale, while diverging for daily 
scale [29,30]. Therefore ANNs result inaccurate for the time 
windows considered in our work.  In STEP #γ, an Energy 
Management Algorithm (EMA) uses the estimated energy 
flows to calculate the optimal charging/discharging patterns 
(Section II-D) Finally, STEP #δ consists of the real-time 
management of the storage based on real time data by taking 
into account the optimized results. In particular, the Battery 
Management System compares real energy flows and checks 
if they differ from the forecasted values. If necessary, charge-

discharge profiles are changed, in order to follow the 
optimization criteria and always guarantee the safe and correct 
operation of the battery (Section II-E).  Finally, in terms of 
hardware implementation, the methodology requires that the 
EV owns an on-board hardware able to collect the EV usage 
data and forecast the day-ahead behaviors referring to the car, 
and bidirectional converter. At the house side, a smart charger 
capable to collect on site production and consumption data is 
required, to forecast the day-ahead behaviors of load and 
generation, and to finally perform STEP #γ and STEP #δ. 

A. Elaboration of intial EV usage profiles through clustering 
In order to improve the battery management, some works 

propose the forecast of EV usage profiles [31–35]. The 
forecasts addressed in those works are based on the 
aggregation of a consistent number of EV cars, but they do not 
analyze in detail the prediction of a single vehicle. 

On the other hand, the present work focuses on the 
behavior of an individual EV obtained from a clusterization 
applied to 215 EV usage pattern available in [28] covering 
three years (2013-2015). In particular, the database includes the 
departure and the arrival time, the distance and the energy 
consumed for every travel, but it does not include the 
destination. Thus, the information related to the presence of the 
car at home is missing, even if it is important for the clustering 
procedure. Therefore, an assumption is made: each EV is 
considered parked at home mainly during night. Moreover, it is 
assumed that if more than two trips are done between the first 
and the last trip of the day, at least one has as destination the 
user’s home. 

The EV presence at home is checked for each time step (1-
min) and is stored in a boolean variable xpres,t indicating the 
presence of the EV. At time step t, the parameter xpres,t = 1, if 
the car is present at home, or xpres,t=0 if the car is away. All xpres 
status, among the period of observation of the EV, define the 
Boolean vector xpres. The average 𝑥̅𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, calculated on all the 
values included in xpres represents the fraction of time in which 
the car is parked at home (i.e. the fraction of time in which EV 
storage exist). The 𝑥̅𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 values are the input of clusterization 
process, which aim to define of the most representative 
vehicles to perform simulations and generalize the results. 

Clustering is performed with the k-medoid technique, 
which derives from the k-means algorithm [36]. These 
algorithms create groups of similar EV profiles by performing 
an iterative procedure. For each group, the algorithm defines a 
centroid, which is the (fictitious) profile that better represents 
the profiles in each group. The assignment of one profile to the 
correct group is performed comparing it with the current 
centroids, and thus each EV profile is included in the group 
with the most similar centroid. After each assignment, the 
centroid inside each group is updated to take into account the 
characteristics of the new added profile. The procedure is 
repeated until the distance between each group and respective 
centroid is minimized [37]. 

The main issue of these algorithms consists of the 
definition of the number of clusters k, that needs to be assumed 
a priori. A Silhouette Clustering Algorithm (SCA) can be 
useful to solve this issue [38]. In fact, the SCA defines if a 
profile is well represented by its group, or it should be part of 
another existing group, helping in the definition of the total 
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number of clusters. In particular, the SCA calculates a 
dimensionless index Sclust that can range from -1 to 1. A high 
positive value indicates that the object is well represented by its 
cluster and it is poorly represented by the other clusters. 
Thanks to the combination of k-medoids and SCA, the optimal 
number of clusters that well represents the whole database is 
defined. The best silhouette average value (Sclust = 0.60) is 
obtained by dividing the whole database in three clusters. 
Therefore, the three respective centroids are chosen as 
representative EV’s. In order to compare the different EV 
usages, this work considers four weeks: the fourth week of 
January, the first week of May, the third week of July, and the 
second week of October. These weeks are chosen among the 
dataset in order to have representative seasonal weeks 
especially with respect to the PV production and the load 
consumption profiles. Fig. 3 shows the comparison between the 
three chosen EV profiles EV#1, EV#2 and EV#3, during the 
fourth week of January. The x-axis shows the time-distribution 
of the trips during the entire week for the three EV profiles. 
The energy consumptions (in kWh) for each trip are shown on 
the y-axis. In addition, the shaded areas are used to indicate the 
periods of time in which the car is parked at home, i.e. the time 
in which EV storage could be used. 

It can be noticed that EV#2 presents the most systematic 
behavior during the week compared to the other profiles. In 
fact, the car is not available during the working hours, while it 
is present during the night and often also during the weekend. 
Regarding the energy requirements, trips on weekends have 
higher consumption than the ones related to the weekdays. This 
profile is assumed to be related to a typical worker profile, 
working not far from home. In this case, the total presence at 
home is 𝑥̅𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐸𝐸𝐸𝐸#2 = 0.80.  

Conversely, EV#1 presents higher energy consumption for 
working day trips. In this case the presence at home is the 
lowest (𝑥̅𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐸𝐸𝐸𝐸#1= 0.70). 

 
Fig. 3. Comparison between EV#1, EV#2 and EV#3 profiles during the 

last week of January 
Finally, the EV#3 profile is characterized by the highest 

presence of the car at home (with 𝑥̅𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐸𝐸𝐸𝐸#3= 0.90), and also a 
less regular use. According to the analysis conducted in [27], 
the case of EV#3 can be considered as a freelance user. Table I 
reports more details about the three EV profiles in the four 
considered weeks. The energy consumption during the week is 
defined by the parameter Econs, while 𝑋𝑋�𝑃𝑃𝑃𝑃  represents the 

percentage of time in which PV is producing and EV is at 
home.  

As above described the consumption of EV#1 is the highest 
among the four considered weeks. However, the match of the 
PV is poor. On the other hand, EV#3 present a lower 
consumption and a better match with PV with respect to EV#1. 
Finally, EV#2 represents an intermediate situation. 

TABLE I.  COMPARISON OF EV USAGE PROFILES. 
 Jan May Jul Oct 

EV#1 
Econs [kWh] 110 65 80 76 

𝑿𝑿�𝑷𝑷𝑷𝑷 [%] 14 17 35 12 

EV#2 
Econs [kWh] 36 35 30 32 

𝑿𝑿�𝑷𝑷𝑷𝑷 [%] 6 20 33 8 

EV#3 
Econs [kWh] 45 20 38 50 

𝑿𝑿�𝑷𝑷𝑷𝑷 [%] 30 48 50 29 

B. Forecast of Electric Vehicle Usage Profiles 
Fig. 4 shows a flowchart containing the subroutine used to 

estimate the future use of the EV starting from historical data. 
In STEP#A, the historical data are imported for each day of the 
week, i.e., all Mondays are selected and analyzed, followed by 
the other days. In STEP#B, all the Mondays included in the 
database are extracted and the number of trips per each 
Monday is calculated. For example, considering a 1-year 
database the total number of Mondays is 52, and therefore 52 
numbers of trips are stored in a vector nglobal. Then, in STEP#C 
it is defined the estimated value of trips that will occur in future 
Mondays nestim, calculated as the statistical mode of the vector 
nglobal. In STEP#D, a subgroup Nmode is defined: it is a matrix 
containing the information only related to the Mondays with 
number of the trips corresponding exactly to the statistical 
mode nestim. 

 
Fig. 4. Scheme of the subroutine for the esimation of EV usage profiles 

After the definition of the expected number of trips per day, 
it is necessary to estimate also the departure time, the duration, 
and the energy consumption for each future trip. With this 
purpose, STEP#E performs the clusterization of the departure 

STEP #A

STEP #C

Import of EV usage historical data

STEP #B
Selection of similar weekdays (e.g. all the Mondays)

Calculation of the most frequent number of trips nestim during 
Mondays

Definition of subgroup Nmode containing only the 
information about  the Mondays in which the number of the 

daily trips corresponds to the statistical mode nestim

Clusterization of the departure times for Mondays included 
in subgroup Nmode

STEP #D

STEP #F

STEP #E

Definition of centroids for departure times

Calculation of the number of trips in each Monday

STEP #G Calculation of energy consumption and duration for each trip
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times occurred during the previous Mondays. In particular, the 
clusterization is carried out through k-medoids technique; only 
the information of the matrix Nmode is used for this operation. 
The centroids of the cluster are the first outputs of the 
procedure: they are calculated in STEP#F and provide 
information about the most probable departure times for the 
next Mondays. Finally, in STEP#G, trip duration and energy 
consumption of each trip are calculated as the average values 
considering all the trips occurring in a defined time-frame 
centered on the centroids. The same procedure is repeated for 
all the days of the week. 

Fig. 5 shows an example of comparison between a 
measured EV usage profile (EV#2) and the related EV forecast, 
based on historical data. The forecast is performed according to 
the above described subroutine and refers to the winter week. 

 
Fig. 5. Estimated and real EV usage profiles: EV#2 during january week 

As in case of Fig. 3, Fig. 5 shows the distribution of the 
trips during the entire week. In addition, the shaded areas 
indicate the periods of time in which the car is expected to be 
parked at home. These areas are estimated on the base of the 
Boolean vector 𝐱𝐱�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 defined similarly to xpres in Section II-A. 

In the specific case, the forecast of departure times is 
accurate (there is a good correspondence between the real and 
the forecasted trip times). However, in order to quantify these 
results, it is necessary to calculate the error between the 
expected consumption and the measured EV usage profiles. 
For every reference time window of two hours, the error ErrEV 
is calculated as the difference between measured consumed 
energy EEV,meas and the related prediction EEV,pred, normalized by 
the average energy consumption 𝐸𝐸�𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 among the different 
time windows. The Forecast Quality Index (FQI) is then 
defined as the difference between the unitary value and the 
average of the errors ErrEV. The index assumes its maximum 
value 1 in the theoretical case of exact prediction, while it 
could assume negative values in case of poor estimation. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸 = 1 − 𝐸𝐸𝐸𝐸𝐸𝐸�����𝐸𝐸𝐸𝐸 (1) 

with 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1 − �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�

𝐸𝐸�𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (2) 

Table II shows the above described quality indexes for the 
three considered case studies (EV#1, EV#2, and EV#3). The 

index values are obtained for the three vehicles during the four 
seasons. 

TABLE II.  COMPARISON OF EV USAGE PROFILES. 

 𝑭𝑭𝑭𝑭𝑭𝑭𝑬𝑬𝑬𝑬#𝟏𝟏 𝑭𝑭𝑭𝑭𝑭𝑭𝑬𝑬𝑬𝑬#𝟐𝟐 𝑭𝑭𝑭𝑭𝑭𝑭𝑬𝑬𝑬𝑬#𝟑𝟑 

Jan 0.65 0.73 0.82 

May 0.77 0.76 0.79 

Jul 0.62 0.75 0.83 

Oct 0.74 0.81 0.81 

The indexes lie between 0.6 and 0.8. In particular, the 
highest values are obtained for the third case (EV#3) because, 
as described in Section II-A, this EV is generally parked at 
home, i.e., its use variability is low and easily predictable. 
Nevertheless, the prediction of EV#2 is well matched with the 
related real data: EV#2 is much more used than EV#3, but its 
usage profile is systematic, and it well represents the use of a 
daily worker. 

C. Forecast of load and PV Production profiles 
In order to optimize the management of the EV battery, it is 

necessary an estimation of future residential load and PV 
generation profiles. For this purpose, another subroutine, based 
on an Auto Regressive Moving Average (ARMA) algorithm 
[39], is introduced. In order to predict a week profile, it is 
performed the ARMA using the days before and after the 
week that has to be forecasted (or target week). For example, 
Fig. 6 shows the data used for the forecast of load 
consumption. The inputs are the 45 days before the target week 
and the 45 days after, respectively.  

The values referring to the 45 days after are obtained from 
the previous year. The same procedure is used for PV 
production, with a different time frame, i.e. 30 days before and 
after the target week1. 

 
Fig. 6. Time frame used for the residential load forecasts 

Fig. 7 shows the comparison between the measurements of 
PV production and residential loads (Fig. 7a), and estimated 
profiles (Fig. 7b) during a winter week. The residential load 
and the PV production profiles are derived from a 
measurement campaign carried out during the years 2016-2017 
in a household located in Northern Italy. The PV generator is a 
roof-mounted 6 kWp plant (inclination 15°, azimuth 90° W, 
latitude 45◦ 04’, longitude 7◦ 41’). The data have been scaled to 
obtain an equivalent 9 kWp power plant. Residential loads 
refer to a family of two people, which uses the most common 
appliances and an electric boiler for hot water. The description 
of the load and PV profiles is presented in [40]; the 

 
1 These time frames have been obtained by an iterative procedure: different 
time frame been checked and chosen on the basis of the defined quality 
estimation indexes values  
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measurement uncertainties and the other main specifications of 
the data acquisition systems are reported in [41].  

Both data-sets have a resolution of 1-min. In the case of PV 
generation, the estimated profile well matches the average real 
production, with the highest deviation in case of a rainy day 
(Wednesday). 

 
Fig. 7. Comparison between predictions and actual values for household 

loads (a) and PV generation (b) in the last week of January 

Regarding loads, the variability is much higher, due to not 
regular behavior of the people in the family.  

In order to quantify the quality of the forecasts, two 
quality indexes are introduced. In case of loads, for every 
reference time window, an error Errload is calculated as the 
difference between measured absorbed energy Eload,meas and the 
related prediction Eload,pred normalized by the average energy 
consumption 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 among the different time windows. 
The forecast quality index FQIload is the difference between the 
unitary value and the average of the error ErrLoad. 

𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝐸𝐸𝐸𝐸𝐸𝐸�����𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4) 

The same criterion is used to calculate the forecast quality 
index for PV production 

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 = �𝐸𝐸𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑃𝑃𝑃𝑃,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝐸𝐸�𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (5) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 = 1 − 𝐸𝐸𝐸𝐸𝐸𝐸�����𝑃𝑃𝑃𝑃 (6) 

where EPV,meas is the measured PV production, EPV,pred is 
the predicted energy, and 𝐸𝐸�𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is the average PV energy 
produced in the reference period. 

Table III shows the indexes calculated for the four weeks,. 
In all of them, the PV production is better estimated than load 
profiles. This is due to a lower variability in terms of energy of 
the PV in the time window considered. The only exception is 
October, in which the high variability in solar radiation (due to 
a long succession of sunny and cloudy days) leads to a worse 
forecast. 

D. Optimization of charge-discharge profiles based on 
forecasts 
In the proposed procedure, the future optimal charge- 

discharge profiles of the EV battery are obtained by 
minimizing the electricity exchange with the grid. 

TABLE III.  COMPARISON OF EV USAGE PROFILES. 

Week 𝑭𝑭𝑭𝑭𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑭𝑭𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷 

29-05/Jan 0.57 0.81 
01-7/May 0.54 0.65 
17-23/Jul 0.68 0.86 
09-15/Oct 0.63 0.35 

This optimization is performed before the real time 
management, and it is based only on the forecasted power 
profiles. As defined in Section II-B, the expected presence at 
home of the EV is defined by the Boolean variable 𝐱𝐱�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Due 
to the presence of this variable, the following problem 
statement is formulated as a Mixed Integer Linear 
Programming (MILP). As above mentioned, the optimization 
consists of objective function defined in (7a), which is the 
minimization of the sum of grid exchanges (Pgrid,t) in the N time 
steps composing the analyzed period (e.g., a week). The 
constraints of the optimization problem are defined as follows: 
• The first constraint shown in (7b) imposes a null value for 

EV battery power (Pbatt,t), if the car will not be at home i.e., 
if the Boolean 𝐱𝐱�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is equal to 0 in the time-step t. 

• The constraint in (7c) consists of a charging power 
adjustment that limits the charge and discharge of the 
battery in order to do not exceed the Point of Delivery 
(POD) contractual power Pcontr. The charging power 
adjustment is a control logic truly performed by most of the 
commercial EV chargers, as shown in [42]–[43]. 

• The constraint in (7d) is the power balance based on 
forecasted profiles. 

• The constraint in (7e) ensures that the charged/discharged 
energy lies in the State of Charge (SOC) lower and upper 
boundaries, i.e., SOCmin and SOCmax, respectively  

Finally, the SOC is defined by Equations (7f) and (7h), 
where EEVpred is the EV absorbed energy per trip predicted, Rbatt 
is the battery charged/discharged energy ratio, and Etot,batt is the 
capacity of the battery. From Equations (7f) and (7h) it can be 
seen that the only difference between charging and discharging 
consists in the round trip efficiency ηrt. 

 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡

∑ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡�𝑁𝑁
𝑡𝑡=1  (7a) 

s.t. 

�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡� = 0 ∀t|𝑥𝑥�𝑡𝑡 = 0 (7b) 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 ∀t (7c) 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ∀t (7d) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∀t (7e) 

where 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1 ≔ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 −
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 (7f) 

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ≔ �

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡∙𝑡𝑡
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 𝑖𝑖𝑖𝑖  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ≥ 0

𝜂𝜂𝑟𝑟,𝑡𝑡 ∙
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡∙𝑡𝑡
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 𝑖𝑖𝑖𝑖  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ≤ 0
 (7g) 
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The two SOC limits SOCmin and SOCmax, have been chosen 
according to battery degradation criterion. In particular, battery 
degradation can result from over discharge and over charge 
[45]. Therefore, the minimum and maximum SOC have been 
set to 30% and 95% respectively, similar to [46]–[51]. The 
round-trip efficiency ηrt is not easily estimable since it depends 
on many factors, such as technology of the battery, topology of 
the charge/discharge regulator, distance from the EV plug-in 
point to the PV source and the load connection points. 
However, the main producers of residential systems for the PV 
energy storage declare for their systems a round-trip efficiency 
around 80% [42]–[44]. 

In addition to the minimum level for the battery 
(SOCmin=30%), necessary to preserve battery life, another 
quota of energy is kept in the storage as an energy reserve. This 
reserve (expressed as a quota of the storage capacity Ebatt in 
kWh) is added to the EV’s SOCmin obtaining a new minimum 
threshold SOCmin,tot. It is calculated considering two factors: the 
predictability of the considered EV (or its Forecast Quality 
Index) and the predicted PV availability. In particular, three 
different cases are considered: 
• Case #1: FQI >70 and a predicted PV availability > 50% of 

the total EV need 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 0.8 · 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⁄   (8) 
• Case #2: for FQI >70 and a predicted PV availability < 

50% of the total EV need 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 1.5 · 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⁄   (9) 
• Case #3: for FQI <70 and a predicted PV availability < 

50% of the total EV need 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 1.5 · 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⁄   (10) 
 where Efor,travel is the forecasted energy during the next 
period of time when the car is not at home in kWh. 

The optimization provides the expected power (charged or 
discharged) from the storage Pbatt,t. For the sake of clarity, in 
order to distinguish between expected powers and real time 
values, it is introduced a command vector for the rule-based 
logic. Thus, the Pbatt,t is discretized as reported in (11). This 
command vector 𝐳𝐳𝐸𝐸𝐸𝐸 is able to suggest an optimized power 
pattern, leaving the choice of the exact power values to the 
real-time logic: 

𝑧𝑧𝐸𝐸𝐸𝐸,𝑡𝑡 ≔ �
   1             𝑖𝑖𝑖𝑖  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 > 0
   0            𝑖𝑖𝑖𝑖  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 = 0
 −1             𝑖𝑖𝑖𝑖  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 < 0

 (11) 

E. Rule-based Real-Time Management 
The Rule-based real-time logic finally applies the effective 

charging/discharging EV battery power in each t. The real- 
time management working principle is shown in Fig.8, where 
the actual applied battery variables are distinguished with a 
star. First, the logic checks if the car is available at home. If the 
car is not at home, nothing happens, and the battery power is 
zero. Otherwise, three different cases are possible according to 
the states of the command 𝑧𝑧𝐸𝐸𝐸𝐸,𝑡𝑡.  

The case 𝑧𝑧𝐸𝐸𝐸𝐸,𝑡𝑡 = 1 means that the command is requiring a 
charge. The logic, checks if there is PV production, and a 
positive answer will result in a charging fed by the PV when its 

production is greater than the load. If the answer is negative 
(e.g., during the dark hours), the charging power for the battery 
charging is taken from the grid and dynamically set for not 
exceeding Pcontr. 

 
Fig. 8. Flowchart of the real-time management logic 

The case 𝑧𝑧𝐸𝐸𝐸𝐸,𝑡𝑡 = −1, means that the command is requiring a 
discharge. The logic checks if SOC* is less than the lower limit. 
If the answer is positive, the command vector is changed in the 
zero state. Otherwise, if the answer is negative, the EV battery 
will supply the fraction of the load that is not supplied by the 
PV generator. 

The case 𝑧𝑧𝐸𝐸𝐸𝐸,𝑡𝑡= 0 means that the command vector is not 
requiring any specific battery state or was disabled from 
precedent steps. In this case, if SOC*

t is greater than the 
minimum, P*

batt;t will follow the instantaneous positive or 
negative difference between PV and load, addressing real-time 
balancing and maintaining Pgrid,t equal to zero. On the contrary, 
only charging will be enabled from the PV or directly adjusted 
from the grid. 

Finally, in order to avoid overcharge, in case of SOC*
t ≥ 95%, 

the control will only permit discharge. 

III. SIMULATION RESULTS 

The case studies refer to the scheme shown in Fig. 1. The 
total capacity of the battery is chosen 40 kWh, according to the  
analysis conducted in [27]. Finally, the simulations have been 
run with an initial SOC value of 25% charged from an external 
source. 

A. Energy Indicators 
Two indicators are used in this work to measure the 

effectiveness of the proposed methodology: Self-consumption 
(Scons) and Self-sufficiency (Ssuff). 
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The self-consumption index Scons is defined as the ratio 
between the amount of energy produced by the PV which is 
directly consumed by the house and the car and the total 
amount of PV energy produced in a defined time interval [52]: 

SCons = Ematch / EPVtotal     (12) 

where EPVtotal represents the total amount of PV energy 
produced. and Ematch represents the portion of energy directly 
produced and consumed. 

Unlike, the self-sufficiency index Ssuff is the ratio between the 
amount of energy produced and consumed and the sum of the 
energy requirements of the house and the car [53][54]: 

SSuff = Ematch / ELtotal      (13) 

 where ELtotal represents the local energy demand, thus house 
and car energy needs. 

It is possible to express Ematch through the following sum 

Ematch =Elgc+Ebatt,wheel+Edis,PV   (14) 

where: 

• Elgc is the energy locally produced by PV generators and 
immediately consumed by residential loads.  

• Ebatt,wheel is the energy locally produced by PV 
generators and stored in the EV battery that will be used 
by the EV.  

• Edis,PV is the portion of the energy discharged by EV 
battery to feed local loads, originally produced by PV. 

Fig. 9 aims to clarify the introduced energy quantities and 
provides an example of daily power profiles for an EV-PV 
home system. For sake of simplicity, in Fig. 9 the EV is 
considered at home all day. 

 
Fig. 9. Daily power profiles and energy balance for an EV-PV-home system 

B. Energy balance results 
The proposed methodology is applied to three case studies. 

For each case study, the residential load and PV generation 
profiles are identical. On the contrary, the EV Usage profiles 
are different. As described in Section II-A, the selected EV 
profiles are the centroids of a database composed of 215 EVs. 
As a result, EV#1, EV#2 and EV#3 are different and well 
represent three typical electric vehicle usage profiles. 
Regarding the simulate time frame, four weeks are considered 
to represent the four seasons. 

The results are compared with respect to the ordinary rule-
based logic without forecasts described in [27]; which is, thus, 
chosen as reference logic. Table IV and Table V report the 
proposed and the reference logic results in terms of self-
consumption and self-sufficiency respectively. As expected, 
due to the highest presence at home, EV#3 reports the best 
results overcoming the complete self-sufficiency in the weeks 
of May and July thanks to the energy stored into the EV 
battery. The worst case is instead represented by EV#1 which 
is characterized by high EV consumption at the wheel and low 
presence at home. 

Table VI highlights the percentage deviation achieved from 
the proposed logic with respect to the reference one. From the 
comparison it results evident that the proposed logic creates 
some slight improvements in the warm seasons. On the 
contrary, no tangible differences are observed in the cold 
seasons.  

More in detail, the proposed logic guarantees performance 
effects if the obtainable PV energy in charge (EVPV) is similar 
or higher compared to the EV consumption at the wheels 
(EVPV/EVWheel ≥1). The obtainable PV energy in charge is here 
defined as the PV availability when the car is at home; thus, it 
represents the maximum theoretical battery capacity that can be 
possibly charged from the PV . 

This behavior is easy to explain with the fact that if the PV 
availability is very low with respect to the car needs, the grid 
charging time positioning does not have any impact in 
energetic terms. To make more visible this dependence, Table 
VII reports the obtainable PV energy in charge with respect the 
EV consumption, confirming that the logic performance for 
both indexes is strongly dependent on this rate. However, in 
terms of self-sufficiency, little improvement becomes visible 
even with lower PV availability thanks to a wiser exploitation 
of the battery capacity. 

Moreover, in one case (EV3 January week), a slight under-
performance with respect to the reference logic is obtained. 
This is due to the imprecise forecasting that have left to a not 
optimal battery management. This aspect will be fully 
investigated in the next section. 

TABLE IV.  SELF CONSUMPTION: PR OPOSED AND REFERENCE LOGIC. 

 
Proposed Logic Reference Logic 

EV#1 EV#2 EV#3 EV#1 EV#2 EV#3 
% % % % % % 

Jan 54 41 88 54 41 89 
May 35 43 43 35 40 42 
Jul 58 38 43 57 35 40 
Oct 45 22 69 45 22 69 

TABLE V.  SELF SUFFICIENCY: PROPOSED AND REFERENCE LOGIC. 

 
Proposed Logic Reference Logic 

EV#1 EV#2 EV#3 EV#1 EV#2 EV#3 
% % % % % % 

Jan 24 36 70 24 35 69 
May 54 95 119 53 87 113 
Jul 104 119 121 100 109 111 
Oct 22 18 46 22 18 44 
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TABLE VI.  PROPOSED LOGIC PERCENTAGE DEVIATION. 

 
Scons Ssuff 

EV#1 EV#2 EV#3 EV#1 EV#2 EV#3 
% % % % % % 

Jan - - -1 - - -3 
May - +7,5 +2 +2 +7,5 +5 
Jul +3,5 +9 +7,5 +4 +9 +9 
Oct - - - - - +5 

TABLE VII.  OBTAINABLE PV ENERGY IN CHARGE WITH RESPECT TO THE 
EV CONSUMPTION. 

 EVpv / EVWheel 

 EV#1 EV#2 EV#3 
 % % % 

Jan 26 44 146 
May 64 191 723 
Jul 155 745 470 
Oct 28 20 83 

For matter of comparison, Table VIII shows the energy 
indicators calculated for the four weeks without any EV. It can 
be noticed SCons is lower than  when EV#1, EV#2 or EV#3 are 
considered. On the other hand, in some cases, especially in the 
seasons with lower solar radiation, SSuff can result higher in the 
case without EV, because the absence of the EV brings to a 
reduced total electric load that is satisfied by the PV generator.  

TABLE VIII.  ENERGY INDEXES FOR THE BASE CASE WITHOUT EV. 

 Scons Ssuff 
 % % 

Jan 26 44 
May 15 63 
Jul 8 52 
Oct 14 23 

C. Further discussions 
From the above results it follows that the performance of 

the proposed logic depends on two factors: quality of the 
forecasting and PV availability. Regarding the forecast 
uncertainty, with the aim to investigate the full potential of the 
methodology, the logic was tested with real data as input (exact 
predictions). Table IX shows the percentage deviation of the 
results obtained with exact prediction with respect to the 
reference logic. The results, in this latest case, are clearly 
higher respect the proposed logic with forecasting. In 
particular, improvements in self-consumption and self-
sufficiency of 17% and 19% respectively have been recorded 
for EV#3 in the week of May, when the theoretical PV energy 
in charge is seven times higher than the car energy need. 
Moreover, exact prediction leads to a visible improvement in 
self consumption even for the week of May of EV#1 
characterized by a relatively low theoretical PV energy in 
charge (64% of the car energy need). Furthermore, no 
underperformance has been obtained in the specific case of 
EV#3 January week. 

Regarding the PV availability, with the aim to investigate 
its effect, the logic was tested for different the PV plant sizes. 
Fig. 10 and Fig 11 show the behavior of the proposed logic 
both with forecasts and exact predictions for the worst case of 
EV#3 January week. In particular, Fig. 10 reports the self-

consumption indexes while Fig. 11 provides the self-
sufficiency indexes.  

TABLE IX.  EXACT PREDICTION PERCENTAGE DEVIATION. 

 
Scons Ssuff 

EV#1 EV#2 EV#3 EV#1 EV#2 EV#3 
% % % % % % 

Jan - - - - +3 +1 
May +3 +8 +17 + 2 +9 +19 
Jul +9 +14 +10 +10 +15 +9 
Oct - - - - - +5 

 
Fig. 10. Self-consumption of the proposed logic with forecasts and exact 
predictions for the EV#3 January week for different PV plant sizes 

 
Fig. 11. Self-sufficiency of the proposed logic with forecasts and exact 
predictions for the EV#3 January week for different PV plant sizes 

The results show that already with 12 kWp plant the 
proposed logic does not anymore underperform the reference, 
while a potential 15% increment in self-consumption is 
obtainable with exact predictions. For the specific case and the 
EV battery capacity considered (40 kWh), the best result is 
achieved with the 15 kWp plant. In this case, the improvements 
of the proposed logic reach 10% and 20% for self-consumption 
and self-sufficiency, respectively. The potential improvements 
of exact predictions are in the order of 25% and 30% 
respectively. Higher PV plant sizes lead to an earlier battery 
capacity filling, by reducing the possibility of the logic to 
operate, thus reducing the benefits. 

IV. CONCLUSIONS 

This work proposed a new methodology to manage the 
charge/discharge of an EV battery connected to a household 
with a PV plant. The methodology uses historical data and 
complete forecasting for all the variables of the system (EV 
consumption, PV generation, load), in order to optimize the 
real time battery management. The aim of the optimization is 
the reduction of the grid exchange, improving self-
consumption and self-sufficiency.  

The three case studies represent three EV usages derived 
from the application of a clustering technique to the usage 
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patterns of 215 vehicles. The proposed logic has been 
compared to the reference rule-based logic without forecasting. 
The results have shown that tangible improvements are 
achieved (up to 9%) if the PV availability is not too low with 
respect to the EV energy needs. In order to investigate the full 
potential of the methodology, also the exact prediction case has 
been considered, by showing an improvement up to 15%, even 
with a lower PV generation. 

An additional analysis has been made, by considering the 
worst-case scenario: if PV availability increases, the benefits of 
the proposed logic will increase as well. In case of 15 kWp, the 
improvement with respect to the reference logic is around 25%. 

Future work will aim to apply the proposed forecast logics 
to a higher number of vehicles in order to increase the 
reliability of the bidirectional power transfer operations to and 
from the vehicles considering a wider kinds of loads (office, 
commercial centers, and so on). In this framework, emerging 
players (as aggregators) will play a fundamental role which 
needs to be properly addressed by considering the technical 
specifications of the used devices. 
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