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Abstract—Alarm logs are a valuable source of information and
play a crucial role in network management. Network devices such
as backbone routers or 3G/4G base stations generate verbose and
detailed logs that network managers process to detect problems
and identify their root causes. Manual analysis of such logs is
extremely time-consuming because of the extensive amount of
data. Therefore, finding suitable automatic methods to process
logs is an important problem in the network analysis area.

In this paper, we target the automatic extraction of situations,
i.e., sequences of events occurring close in time and space
which identify common and recurring patterns. We adopt an
unsupervised machine learning approach to automatically mine
logs and provide information and correlations in network failures.
We face a real use case processing more than 2 million alarms
generated by 2 months of TIM Network Operations Center
in Northern Italy. Most of the features are categorical and
call for specific methodologies to process them. We choose rule
mining of frequent items. We focus on event logs and apply rule
mining methods to extract temporal-spatial correlations and co-
occurrences, i.e., situations. To ease the analyst work, we highlight
the most important rules and offer visualization techniques in
both spatial and temporal dimensions. Results have been verified
to be helpful to recognize common situations and identify possible
future anomalies.

Index Terms—alarm logs, anomaly detection and prediction,
monitoring and measurements for management, telecommunica-
tion network, predictive and real-time analytics.

I. INTRODUCTION

Studying alarm logs is increasingly becoming a vital factor
for improving the performance complex systems such as
computer networks. In general, servers and network devices
such as routers, 3G/4G Base Transceiver Stations (BTSes),
and Mobile Switching Centers (MSCs) generate logs of events
containing alarms, warnings, or simple notifications. For a mo-
bile operator with tens of thousands of devices from different
vendors and technologies, processing such logs is at the same
time both vital to managing the network, and terribly costly
and time-consuming.

Clearly, the volume and variety in the data challenge the
automatic extraction of useful information. Operators have so
far developed custom expert systems that mimic the manual
process the network expert follows – see related work for a
detailed summary. These solutions are complex and custom
and have to be devised for different contexts. Statistical and
data science approaches are thus becoming appealing in the
area of the log network analysis, with the goal to automatically
extract knowledge from the raw data.

In this paper, we leverage unsupervised machine learn-
ing techniques to mine data logs and automatically provide

meaningful information about possible network problems. We
consider a real use case - with data collected from the network
operations center of the telecommunications company TIM1

for their entire 3G/4G mobile network in Northern Italy.
Data includes all the alarms raised during 2 months in 2017,
involving more than 65 000 devices, and reporting more than
1 million events per month in consolidated logs. Each entry
has several fields which range from timestamps to vendor
identification, from alarm type to software version. Our goal
is to detect common patterns in the data, considering both
the temporal and spatial dimensions. We call situations these
common patterns.

Since most of features in the logs are categorical, it is
hard to define a distance measure for applying clustering
algorithms. We thus opt for association rule mining on frequent
items [1]. Originally developed for market basket analysis,
the objective is to extract actionable knowledge from the vast
features of transactional databases. In a nutshell, they are
designed to extract common patterns that emerge from the
data.

Ingenuity must be adopted to apply rule mining in our
context. Our adopted work-flow is shown in Fig. 1. The first
step is to define the time and spatial granularity that we
are interested to study. Events generated by devices which
are close each other, and occur close in time are indeed a
possible symptom of a major situation. Unfortunately, the logs
contain only a coarse timestamping, with precision limited
to the minute granularity. This limits thus the application of
sequence pattern mining, since a lot of events are artificially
co-occurring in our case.

Here, we define a transaction by aggregating all events
generated by devices in the same automatically found spatial
region, and occurring within a given time interval. Transac-
tions are thus like customers receipts that list which goods
(alarm) the customers (network devices) bought (event raised).

Given then a set of transactions, we look for common
events. Here, we rely on association rule mining. Those have
been proposed in similar context in the past (such as [2], [3]).
In our case, the much larger volume of data and the lack of
precise timestamping calls for ingenuity to guide the algorithm
in finding interesting rules out of the noisy and bloated logs.

We apply the methodology considering four separated
datasets, considering alarms raised in the Turin or Milan area,
and in May or September 2017. We automatically highlight

1https://www.tim.it/
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Fig. 1: Followed work-flow for mining patterns in the analyzed
TIM network.

interesting rules based on their frequency and peculiarity.
Some of these occur in all datasets, highlighting recurrent
and common situations. These are presented to the network
analyst using proper visualization techniques that let the expert
gauge both the spatial and temporal dimensions, along with
all details. This actionable information can then be used to
properly manage the situation.

In the following, Sec. II reports the main related works in
the literature. In Sec. III we discuss the characteristics of the
datasets. Sec. IV is devoted to the methodology, in particular
pattern mining, association rules and our definition of matrix
of transaction and itemsets. Sec. V and VI reports the results
by considering rules for each device and each device type,
respectively. Finally, Sec. VII concludes the paper.

II. RELATED LITERATURE

The first works that try to find correlations from alarm
logs are [4], [5]. Both works simply consider logs generated
by network devices and design a semi-automatic approach
using knowledge-based systems where rules must be manually
defined by experts in advance. Unfortunately, when there are
too many pieces of uncleared relations, the big picture of
the network remains vague, with no ability to automatically
identify new patterns.

Authors of Telecommunication Alarm Sequence Analyzer
(TASA) [6], [7] considered GSM networks, as they were
in 1996. They propose an iterative process, containing data
collection, pattern discovery, and post-processing. They look
for sequences of events, trying to find the first one that
led to the cascade of events. In practice, TASA provides
an overwhelming amount of rules, presenting all possible
combination of alarms. In our work, we face much richer and
heterogeneous alarm logs that call for more fine-grained means
to extract correlation. Also, we miss accurate timestamping
which makes sequencing analysis useless. At last, authors in
[8] and [9] also focus on sequential pattern mining. They
assume events follow an exact sequential pattern in time. In
our work, we cannot rely on fine-grained timing information,
and we thus need to take alternative directions.

Among the first to introduce rule mining in the networking
field, authors of [2] consider logs generated by servers in a data
center. Their focus is on the algorithm scalability, with little
interest in the actual insight provided to the system administra-
tor. Here we use well-established algorithms and focus on the

overall system design and information exploitation, including
visualization modules. Similar in spirit is the work in [3],
where both text mining and rule mining are proposed to digest
and summarize router logs, which are much more structured
than entries generated by mobile network devices, like the one
we face here.

Authors in [10] investigated failure detection by using a
clustering technique based on text mining. The proposed
model constructs clusters by grouping together events on the
basis of their message characters and detects anomalies by
tracking events which do not belong to any existing cluster.
These methods are orthogonal to ours and suffer from the dif-
ficulties of processing unstructured text as log events typically
are.

Other works focus on the identification of the root cause
of a problem. In [11] the authors estimate the likelihood of a
node producing an impacting outage. In [12] the authors build
a graph to model event correlation and apply causal inference
approaches to find the root cause of a sequence of events. They
use manually generated templates to normalize log entries,
extract a sequence of events and build the graph from which
they extract root nodes of all directed acyclic graphs. Our
approach is different: we process events without normalizing
them, and we only assume a course time dependency among
entries.

Authors of [13] propose a spatio-temporal factorization
method, which automatically learns underlying network events
from unstructured logs. They regard network log data as a
tensor of location, time and textual information, and extract
template text and relationships that are likely to co-occur.
Although such approach can be more complete and detailed
with respect to our work, we do not analyze the text of the
alarms, nor model the events through a matrix factorization,
ending up with a faster and more scalable methodology.

III. DATASETS

We rely on datasets collected by TIM network operations
center which controls the state of the mobile 3G/4G network
and manage anomalous situations to ensure operations.

Collected data includes alarms for Northern Italy during the
months of May and September 2017, where network devices
produce thousands of alarms daily. Our goal is to reduce the
burden of human operators by presenting together alarms that
occur close in time and space, i.e., that form a situation.

Each alarm has hundreds of fields. We focus on the most
important features, according to the domain experts, to con-
sider only relevant information and exclude fields that are
mostly empty or containing automated messages with little
information. This reduces the set of fields to 27 features. After
a phase of data characterization and analysis, in cooperation
with the field experts, we select the most relevant ones:

• Network Equipment ID (NeID): uniquely identifies the
network device which has generated the alarm. It derives
from the concatenation of three fields:

– Technology: specifies network device technology
(GSM, UMTS, or LTE) and its frequency band.
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Fig. 2: Ranked alarm frequency of different Probable Causes
and Specific Problems generated in Northern Italy in May
2017.

– Equipment: specifies what kind of equipment NeID
is. Its possible values are Base Station Controller
(BSC), Radio Network Controller (RNC), or Base
Transceiver Station (BTS).

– Site: is the site where the device is located. Different
devices might belong to the same site. The site
includes the abbreviation for the province of the site.

For instance, GBSCTO033 represents a GSM (G) BSC,
located in site 033 in Turin, and 1BTSGE121 represents
a LTE 1800 (1) BTS located in site 121 in Genoa.

• Timestamp: first instant this alarm is fired. The alarm re-
mains active until it is solved. Due to the log aggregation
process, timestamp has a minute granularity.

• Probable Cause: text string with the primary cause of the
alarm. The set of possible Probable Causes is different
from vendor to vendor. In the months of the analyses we
observed tens of different Probable Causes.

• Specific Problem: text with secondary cause of the alarm.
We observe hundreds of Specific Problem strings. We
consider this field in case the Probable Cause field is
too generic (see later).

• Site Coordinates: the longitude and latitude of the net-
work device site.

Since there are quite different types of vendors, systems, and
software releases, the available data is very heterogeneous in
format. Furthermore, the temporal granularity of the alarms,
which are aggregated at the precision of minutes, creates a
large number of simultaneous events.

The whole dataset contains 2 033 678 events. We observe
10 773 distinct devices that belong to 4 130 different sites.

Since we target the identification of common and recurrent
situations, we opt to use the Probable Cause as the main
features describing the event. Indeed, the Specific Problem cat-
egories result too fine-grained to let common pattern emerge.

Observing the frequencies of the Probable Causes, the two
most frequent turns out to be Indeterminate and Unavailable,
that clearly carry very little information. To overcome this
limit, we opt to detail these two events by using the Specific
Problem field. In summary, we obtain 64 different alarm types,

defined as a mix of Probable Causes and Specific Problems
using domain knowledge.

Figure 2 depicts final ranked frequencies of the alarms
in Northern Italy. Notice the log scale on the y-axis. The
distribution is very skewed, with some alarms that are very
frequent, with up to 300 000 occurrences, but also with a long
tail of rare events.

IV. PATTERN DISCOVERY

We analyze the data by means of association rule mining,
popularly used for Market Basket Analysis [1] by large retailers
to understand customers purchases. The main objective is to
extract actionable knowledge and co-occurrences from features
of transactional databases.

A. Frequent pattern mining and association rules

Mining frequent itemsets to extract common patterns is one
of the backbones of research in data mining area [14], [15].
Consider the set I of all possible items. A transaction i ⊆ I
is a subset of items for an event. Transaction database T is
the set of all transactions the system has processed within a
given time period. Considering the transaction database T , an
itemset is any subset of any transaction i ∈ T . The support
of an itemset is the fraction of all transactions containing that
particular itemset. An itemset is called frequent if its support is
greater than or equal to a threshold s. The order of an itemset
i is its number of elements, i.e., |i|. For a given support value
s, the frequent itemset with the highest order is said to be
closed. Frequent closed itemsets are called patterns.

Given a database of transactions T , we want to determine all
patterns P that are present in at least a fraction s of the trans-
actions. Looking for all itemsets is an NP-hard problem [16].
In practice, there are algorithms that can efficiently compute
patterns.

Association rules are strongly linked to frequent patterns.
Association rules are widely used to identify frequent patterns
themselves, associations and correlations among itemsets, usu-
ally enriched with measures of interestingness [17]. We follow
the methodology introduced in [1] for mining association rules
in large datasets.

A rule is defined as an implication of the form x⇒ y, where
x, y ⊆ I . Every rule is composed of two different itemsets,
x, and y, where x is called antecedent and y consequent. An
indication of how often the rule has been found to be true is
the confidence:

confidence(x⇒ y) =
support(x ∪ y)

support(x)

Lift interprets the relevance of a rule and it is defined as:

lift(x⇒ y) =
confidence(x⇒ y)

support(y)
=

support(x ∪ y)

support(x) · support(y)

If the events in x and y are independent and identically dis-
tributed (i.i.d.), then support(x ∪ y) = support(x)· support(y)
and lift(x⇒ y) = 1. Instead, the more x and y are correlated,
the more lift(x ⇒ y) is higher. In a nutshell, if the lift is
larger than 1, this lets us know the degree to which those two



occurrences are dependent to each another, and makes this rule
potentially useful for predicting the consequent in future data
sets.

In order to find the most frequent itemsets, we apply the FP-
Growth algorithm [18]. It efficiently calculates all frequently-
occurring itemsets, using a data structure known as FP-tree.
FP-Growth utilizes a depth-first search and uses a pattern-
growth approach, which results in low memory consump-
tion and fast execution time [19]. The output of FP-Growth
operator is frequent items which are the suitable input for
creating association rules that we compute using the software
RapidMiner2.

To select which rules to present, we select a minimum
threshold on support and confidence to focus on rules that
are often satisfied. Among the found rules, we analyze the
ones with the highest lift.

B. Definitions of transactions

The first step is to define what kind of relations we are
interested to study and then define the transactions accord-
ingly. In a transaction database, each row corresponds to a
transaction whereas each column indicates a possible item.
We will use binary transaction matrices, where the value can
be either 0, i.e, representing the absence of an alarm, or 1, i.e.,
the presence of an alarm. Different definitions of transactions
and items have different results and their own advantages and
drawbacks.

We want to understand what is likely to happen 1) within
close time and 2) in close space. For time aggregation, we de-
fine an appropriate time-window where we aggregate alarms in
a single transaction. As we shrink the window, we get patterns
with a faster dynamic. From domain knowledge, we consider
non-overlapping windows of 2 hours. Each transaction then
contains the set of alarms observed during an interval of 2
hours.

For space, we decided to cluster the network devices ac-
cording to the geographical coordinates of their site. For each
Italian province in the dataset, we apply the clustering algo-
rithm K-means [20] with K of the same order of magnitude of
the number of radio network controllers in that province. Then,
we put alarms from devices that belong to different clusters in
different transaction matrices. For example, in Fig. 3, we report
the positions of all the network elements in the province of
Turin and we color them according to the cluster they belong
to (result of K-means with K = 5).3

As a result, each transaction matrix contains alarms that
happen in the same region and within 2 hours. For a month, in
the province of Turin, we have 5 clustered regions (matrices),
each with 372 transactions (rows), that correspond to 12 2-
hours long time intervals per day for May 2017.

For defining the items of the matrix, i.e., its columns, we
identify two complementary approaches.

2https://rapidminer.com/
3Unfortunately we do not have the physical topology of the network to

cluster devices.
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Fig. 3: Example of division in space of Turin province (cov-
ering 6 821 km2). Devices are spatially divided into 5 clusters
using K-means algorithm.

First, we want to understand the correlations among specific
devices. In the province of Turin, we observe 1 407 devices.
We consider each of them as an item, and then the transaction
matrix results with 1 407 columns. If a device has fired at
least an alarm in the 2 hours of time in a cluster of space, its
transaction row will have value 1 for that device. With this, the
rules are useful to analyze which are those devices (items) that
frequently fire alarms at the same time, in the same region.

In the second approach, we want to understand correlation
among alarms and the device type raising them. For this, we
use only the device type, i.e., equipment and technology, and
we add the alarm type (as defined in Sec. III). In this second
case we have 271 combinations of equipment, technology,
alarm type, which are the columns of the transaction matrix
(we observe 23 combinations of equipment and type, and 64
types of Probable Cause + Specific Problem).

By considering this second type of transactions, we get
(possibly less) rules that may be subsequently generalized in
other regions.

V. ANALYSIS OF PATTERNS OF SINGLE SEPARATED
DEVICES

In the first transaction definition we consider each network
device as an item and look for specific recurrent patterns
involving the same set of devices.

To reduce the heterogeneity of data, we focus on datasets
of Milan and Turin provinces, separately, and in May and
September, separately. Let us focus first on the province of
Turin in May. Table I shows the most frequent itemsets. The
GBSCTO033 and GBSCTO034 have support equal to 0.861,
meaning that they appear in 86.1% of the transactions in their
region (cluster). They appear jointly in 75.5% of cases, and
also with GBSCTO0032 in 57.9% of transactions.

Itemsets alone offer little information, since they report
only the co-occurrences of alarms. Rule mining instead would
provide not only the co-occurrence probability, i.e., the con-
fidence, but also extract the correlation, measured by the
lift, allowing us to extract the important itemsets. To avoid
extracting too many rules, we select a minimum confidence



TABLE I: 6 most frequent itemsets in Turin, May 2017.

Support Itemset
0.861 GBSCTO033
0.861 GBSCTO034
0.755 GBSCTO033, GBSCTO034
0.666 UBTSTO109
0.579 GBSCTO032, GBSCTO033, GBSCTO034
0.503 GBSCTO033 UBTSTO109

equal to 0.7 and a minimum support of 0.085. With these
parameters, 9 214 rules are extracted for Turin in the May
dataset.

We rank these with decreasing lift, and look for closed
rules, i.e., we select those rules with the highest number of
items, for which the probability of observing the consequent is
much higher than an i.i.d. assumption would offer. These rules
are marked as situations. We checked the topmost ones with
the TIM analysts, who were able to confirm that these were
indeed problems that were causally related, some of which
were already known, while others were new. In the following,
we report a significant example of a rule.

Table II shows the situation with the highest lift: 3 an-
tecedent items are linked to 7 consequent items. The an-
tecedent holds true for 33 time bins. The consequent is
present 32 times, leading to a confidence of 97% and a
lift of 11.2, a value much higher than 1. To let the analyst
investigate the incident, Fig. 4 highlights the strong temporal
correlation among alarms network devices generated. Each
row represents a device identifier (NeId). A blue dot is reported
if that device was firing alarms in that 2-hours time bin.
The plot focuses on May 6th, 2017 during which a clear
synchronized pattern emerges. Fig. 5 investigates the spatial
dimensions. It reports the 10 devices (belonging to 8 sites)
on a map. The maximum distance among these devices is
13 km, while the maximum distance within the cluster is much
larger, i.e., 40 km. All of the devices involved are BTSes work-
ing either with UMTS/800LTE/1800LTE technology. Almost
every Probable Cause raised is a Quality of Service alarm
“sync reference PDV problem”. After analyzing this situation,
TIM domain experts confirmed the correlation of these alarms
within these devices, confirming as well the situation to be a
typical event of a link failure that involves a specific region.
Other cases (not reported for brevity) highlighted major events
due to the failure of a BSC causing a major outage involving
several BTSs, or the loss of synchronization due to NTP server
failure.

TABLE II: Example of a situation in Turin with confidence =
0.97 and lift = 11.2 where 10 devices are involved.

Antecedent UBTSTO27F, UBTSTO08E, UBTSTO384

Consequent UBTSTO0B7, UBTSTO14A, 8BTSTO384
1BTSTO0B7, 8BTSTO0B6, 1BTSTO156
1BTSTO00D
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Fig. 4: Scatter plot of timestamps of the example situation
involving the 10 devices for the day of May 6th, 2017.

Fig. 5: Geographical location of the 10 devices, in 8 sites (red
dots), involved in the example rule. They are all within 13 km.

VI. ANALYSIS OF PATTERNS OF DEVICE TYPE

With the definition of transaction used in Sec. V, we
have pinpointed specific correlations among specific device
IDs. Here we generalize the approach and consider the sec-
ond definition of an item which describes both the device
type/technology and the alarm type. In order to filter signifi-
cant rules, we set the minimum confidence again to 0.7, but we
lower the minimum support to 0.05. 4 681 rules are extracted
for Turin in May 2017.

We let the reader appreciate the expressiveness of these.
Fig. 6 shows the scatter plot of the lift vs. the inverse of
support, with the red line showing the average lift. Observe
how lift grows to values much higher than one – albeit for
rules that have limited support (rightmost part of the Figure).
In a nutshell, some specific rules exhibit a very high lift,
consequently appearing much more frequently than by chance
- pinpointing very high correlation. These rules hold true in
few time bins, but enough to emerge as frequent patterns.
These are the most interesting situations.

As before, we showcase a significant rule - detailed in
Table III. This rule has a confidence of 0.9 and a lift of 7.
Spatial representation of all single devices of that type that
were involved showcases a dense area covering the whole city
(not reported for brevity). The domain experts confirm that
this correlation is due to a failure of a specific type of BSC
device of a specific vendor, that are same for the month of
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Fig. 6: Scatter plot of lift and inverse of support considering
device type and alarm type for Turin in May 2017. Moving
average is showed in red.

TABLE III: Example of a situation extracted considering
device type, technology and alarm type as items. This rule
has confidence = 0.9 and lift = 7.

Antecedent UBTS-equipmentMalfunction
GBTS-Cell Logical Channel Availability Supervision
GBSC-Data Output AP Transmission Fault
UBTS-UtranCell ServiceUnavailable

Consequent UBTS-Heartbeat Failure

May and September and are present in both the provinces of
Turin and Milan.

As we have decoupled the rule definition from the specific
devices, we can now study if rules hold true in different
provinces, and at different time periods. For this, we extracted
rules considering four separated datasets – in the Turin and
Milan province, and in May and September 2017. We then
check for the subset of rules that hold true in all four datasets.

We end up with 70 common rules, which are thus generic
situations that may hold true at a different time, in different
places. The previously described rule is one of these.

In summary, the rule mining approach we propose in this
paper results in a nice and flexible tool to analyze logs and
automatically identify important situations.

VII. CONCLUSIONS

We faced the problem to aid the domain experts by present-
ing correlation and patterns in verbose alarm logs. For this,
we investigated the adoption of rule mining solutions, where
ingenuity is required to find a proper definition of items, and
transactions.

We prepared the data via data exploration and item defi-
nition, including spatial clustering of alarms, before applying
frequent pattern mining and association rule mining. We then
ordered rules based on lift and closeness to select the most
interesting situations. These were verified by the TIM Net-
work Operations Center team, who confirmed that those were
indeed significant and recurrent situations, some of which were
unknown to them. We believe this is a first step in designing

an automatic methodology to extract knowledge from alarm
logs and simplify network maintenance.
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