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Abstract. The Schubert derivation is a distinguished Hasse-Schmidt derivation on the
exterior algebra of a free abelian group, encoding the formalism of Schubert calculus
for all Grassmannians at once. The purpose of this paper is to extend the Schubert
derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic
Fock space). Classical vertex operators naturally arise from the integration by parts
formula, that also recovers the generating function occurring in the bosonic vertex
representation of the Lie algebra gl∞(Z), due to Date, Jimbo, Kashiwara and Miwa
(DJKM). In the present framework, the DJKM result will be interpreted as a limit
case of the following general observation: the singular cohomology of the complex
Grassmannian G(r,n) is an irreducible representation of the Lie algebra of n × n
square matrices.
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Introduction

0.1 The Goal. Let r,n ∈ N ∪ {∞} such that r 6 n. The main characters of this paper are i) the
exterior algebra

∧
Mn of a free abelian groupMn :=

⊕
06j<n Zbj and ii) the cohomology ring Br,n of the

Grassmann variety G(r,n). By the latter we mean the following. If 0 6 r 6 n <∞, Br,n stands for the
usual singular cohomology ring H∗(G(r,n),Z) of the Grasmannian variety parametrizing r-dimensional
subspaces of the complex n-dimensional vector space. If n = ∞, the ring Br := Br,∞ will denote
the cohomology of the ind-variety G(r,∞) (see e.g. [2, p. 302] or [4, 12]), which is a polynomial ring
Z[e1, . . . , er] in r-indeterminates. If r = n = ∞, instead, Gr(∞) := G(∞,∞) is the ind-Grassmannian
constructed e.g. in [12, Section 3.3] or the Sato’s Universal Grassmann Manifold (UGM), as in e.g. [20].
In this case B := B∞,∞ is the Z-polynomial ring in infinitely many indeterminates. Let Bij ∈ EndZ(Mn)
such that Bij(bk) = biδjk, and let

gln(Z) :=
⊕

06i,j<n

Z ·Bij ⊆ EndZ(Mn), (1)

which is a Lie algebra with respect to the usual commutator. Clearly gln(Z) = EndZ(Mn) if n < ∞.
This paper is inspired by the following simple observation, for which we have not been able to find an
explicit reference in the literature:

The ring Br,n is a module over the Lie algebra gln(Z).

If r = 1 the claim is obvious, because if e denotes the hyperplane class of Pn−1, then B1,n = Z[e]/(en)
is a free abelian group of rank n and, therefore, the standard representation of its Lie algebra of
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endomorphisms. The general case, for r < ∞ and arbitrary n > r, follows from noticing that all
A ∈ gln(Z) induce an even derivation δ(A) on

∧
Mn:

δ(A)u := Au, ∀u ∈Mn

δ(A)(v ∧ w) := δ(A)v ∧ w + v ∧ δ(A)w, ∀v,w ∈
∧
Mn.

(2)

Since δ([A,B]) = [δ(A), δ(B)], the map A 7→ δ(A)|
∧rM makes

∧r
Mn into an (irreducible) repre-

sentation of gln(Z). Then Br,n gets equipped with a gln(Z)-module structure as well, due to the
Z-module isomorphism Br,n →

∧r
Mn. Recall that the latter is the composition of the Poincaré

isomorphism, mapping Br,n onto its singular homology H∗(G(r,n),Z), with the natural isomorphism
H∗(G(r,n),Z)→

∧r
H∗(Pn−1,Z) ∼=

∧r
Mn, as in [6], or [7, diagramme (5.27)].

For r = ∞, the fact that B is a gl∞(Z)-module is well known, and is due to the isomorphism of B with
each degree Fm of the fermionic Fock space which, roughly speaking, plays the role of an infinite exterior
power. Its structure has been explicitly described by Date, Jimbo, Kashiwara and Miwa (DJKM) in [3],
see also [13, Formula (1.17)] and [15, p. 53], by computing the shape of a generating function B(z,w)
encoding the multiplication of any polynomial by elementary matrices Bij of infinite sizes.

In our contribution [8] we determine the shape of the same generating function in the case r <∞, by
using the formalism of Schubert derivations in the sense of [7]. The formula we obtain is new (as far as
we know), and has a classical flavor (occurring as a 2-parameter deformation of the Schur determinant
occurring in Giambelli’s formula). We then felt the need to show that our methods also work in the
known case r = ∞. The output is the present paper, in which we offer an alternative deduction of the
DJKM bosonic vertex representation of gl∞(Z), based on the extension of the Schubert derivations to
an infinite wedge power. Our method to compute the gln(Z)-structure of Br,n then works uniformly
for all pairs r 6 n ranging over N ∪ {∞}.

0.2 Outline. The main tool used in this paper is the notion of Hasse–Schmidt (HS) derivation on
an exterior algebra, quickly recalled in Section 2. Let M :=

⊕
i∈Z Z · bi be a free abelian group

with basis b := (bi)i∈Z. A map D(z) :
∧
M →

∧
M[[z]] is said to be a HS derivation on

∧
M if

D(z)(u∧v) = D(z)u∧D(z)v. In this paper, we shall be concerned mainly with the Schubert derivations
(Section 3). They are denoted by σ+(z),σ+(z) and by σ−(z),σ−(z), where σ±(z) :=

∑
i>0 σ±iz

±i ∈
EndZ(

∧
M)[[z±1]] are the unique HS derivations such that σjbi = bi+j, for all i, j ∈ Z, and σ±1(z) are

their inverse in End(
∧
M)[[z±1]].

The reason it is appropriate to call σ±(z) and σ±(z) Schubert derivations is explained in [7, 9]. As
a matter of fact, the operator σi acting on

∧r
M, obeys the same combinatorics enjoyed by the special

Schubert cocycles in the cohomology ring of a Grassmannian G(r,n), for r and n big enough.
The Fermionic Fock space (FFS), a graded abelian group F =

⊕
m∈Z Fm, comes into the game in

Section 4, playing the role of something like
∧∞

M (often denoted in the literature by
∧∞/2

M, to signify
that is generated by semi-infinite exterior monomials, see e.g. [16, Section 3] or [1, Section 1]). It is a
notion for which there are excellent classical references in the literature, such as [5, 14, 15]. However,
to keep the exposition as self contained as possible, Section 4 supplies an alternative ad hoc algebraic
construction of it, which widely suffices for our purposes and, possibly, may be useful for pedagogical
ones.

The extension of the Schubert derivations to the FFS is not entirely trivial, although not difficult.
It turns out that the vertex operators occurring in the classical presentation of the Boson–Fermion
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correspondence can all be recovered by multiplying the four Schubert derivations σ±(z) and σ±(z).
For instance σ+(z)σ−(z) and σ+(z)σ−(z) are basically the bosonic vertex operators acting on the Fock
representation of the Heisenberg Lie algebra, [5, 15], and are described in Sections 6–7. Let δ(z,w) :=∑
i,j∈Z δ(Bij)z

iw−j, where Bij are as in the first part of this introduction. The main result of this paper
is that the action of δ(z,w) on each degree of the FFS, is proportional to the product

σ+(z)σ−(z)σ+(w)σ−(w)

of the four Schubert derivations, and it coincides with it in degree 0. The product σ−(z)σ+(w) commutes
up to a rational factor, determined in Section 8:

σ+(z)σ−(z)σ+(w)σ−(w) =
(

1 −
w

z

)−1

Γ(z,w) (3)

where we set
Γ(z,w) := σ+(z)σ+(w)σ−(z)σ−(w)

Formula (3) is precisely the DJKM expression of the representation of gl∞(Z) on F0, defined over the
integers.

To achieve the DJKM expression in its classical form (Section 9), one tensors by Q and reads the
expression as acting on B ⊗Z Q via its isomorphism with each degree of the FFS. By essentially the
same arguments as in [9, Theorem 7.7], one easily checks that:

Γ(z,w) = exp

(∑
i>1

xi(z
i −wi)

)
exp

(
−
∑ 1

i

(
1

zi
−

1

wi

)
∂

∂xi

)
, (4)

where the sequence (x1, x2, . . .) is defined through the equality (1 − e1z+ e2z
2 − · · · ) exp(

∑
i xiz

i) = 1.
Thus formula (4) is precisely [15, equation (5.33)], i.e. (3) turns into [15, equation (5.32)] for m = 0
(Cf. Corollary 9.4).

0.3 We should finally remark that many of the tools employed in this paper within the framework of
Schubert derivations have already been reviewed in other contributions (e.g. [6, 7, 9, 10, 11]), which
we might well refer to. However, since the vocabulary of HS–derivations is not yet standard, it seems
motivated to recall the basic notions and facts in order to keep the paper as self contained as possible.

1 Notation

1.1 A partition is a monotone non–increasing sequence λ of non-negative integers λ1 > λ2 > . . . such
that all the terms are zero but finitely many. We denote by `(λ) := ]{i | λi 6= 0} its length. We denote
by P the set of all partitions and by Pr the set of all partitions of weight at most r. The partitions
form an additive semigroup: if λ,µ ∈ P, then λ + µ ∈ P. If λ := (λ1, λ2, . . .), we denote by λ(i) the
partition obtained by removing the i-th part:

λ(i) := (λ1 > λi−1 > λ̂i > λi+1 > . . . ,

where ̂ means removed. By (1j) we mean the partition with j parts equal to 1.
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1.2 We denote by
∧
M =

⊕
r>0

∧r
M the exterior algebra of a free abelian group M :=

⊕
i∈Z Z · bi

with basis b := (bi)i∈Z. A typical element of
∧r
M is a finite linear combination of monomials of the

form
bi−1

∧ · · ·∧ bi−r
with ∞ > i−1 > · · · > i−r > −∞. Given (m, r,λ) ∈ Z× N× Pr, the following notation will be used:

brm+λ = bm+λ1 ∧ bm−1+λ2 ∧ · · ·∧ bm−r+1+λr ∈
r∧
M>m−r+1 ⊆

∧
M. (5)

1.3 We denote by M>j the sub-module of M spanned by all bk with k > j, i.e. M>j :=
⊕
i>j Z · bi.

In this case
r∧
M>j :=

⊕
λ∈Pr

Zbrr−1+j+λ and
∧
M>j =

⊕
r>0

r∧
M>j.

2 Hasse-Schmidt Derivations on Exterior Algebras

Main detailed references for this section are [6, 7, 9].

2.1 Definition. A Hasse-Schmidt (HS) derivation on
∧
M is a Z-linear map D(z) :

∧
M→

∧
M[[z]],

such that for all u, v ∈
∧
M:

D(z)(u∧ v) = D(z)u∧D(z)v. (6)

If Di ∈ EndZ(
∧
M) is such that D(z) =

∑
i>0Diz

i, then equation (6) is equivalent to

Di(u∧ v) =

i∑
j=0

Diu∧Di−jv. (7)

IfD0 is invertible, up to termwise multiplying D(z) byD−1
0 , we may assume thatD0 = id∧M. Thus D(z)

is invertible in EndZ(
∧
M)[[z]]. An easy check shows that the formal inverse D(z) :=

∑
j>0(−1)jDjz

j

is a HS-derivation as well.
A main tool of this paper is:

2.2 Proposition. The integration by parts formulas hold:

D(z)u∧ v = D(z)(u∧D(z)v), (8)

u∧D(z)v = D(z)(D(z)u∧ v). (9)

Proof. Straightforward from definition 2.1.
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2.3 Duality. Let βj : M → Z be the unique linear form such that βj(bi) = δij. The restricted dual
of M is M∗ :=

⊕
j∈Z Z · βj. Recall the natural identification between

∧r
M∗ and (

∧r
M)∗:

βi1 ∧ · · ·∧ βir(bj1 ∧ · · ·∧ bjr) =

∣∣∣∣∣∣∣
βi1(bj1) · · · βi1(bjr)

...
. . .

...
βir(bj1) · · · βir(bjr)

∣∣∣∣∣∣∣ .
The contraction of u ∈

∧r
M against β ∈M∗ is the unique vector βyu ∈

∧r−1
M such that the equality

η(βyu) = (β∧ η)(u),

holds for all η ∈
∧r−1

M∗.

2.4 Definition. The map DT (z) =
∑
i>0D

T
i z
i :
∧
M∗ →

∧
M∗[[z]] such that

(DT (z)η)(u) = η(D(z)u),

is called the transpose of the HS-derivation D(z).

By [9, Proposition 2.8], it follows that DT (z)(η1 ∧ η2) = DT (z)η1 ∧ DT (z)(η2), for all η1,η2 ∈
∧
M∗,

i.e that DT (z) is a HS derivation on
∧
M∗.

3 Schubert Derivations

3.1 Definition.The Schubert derivations are the unique HS-derivations

σ+(z),σ−(z) :
∧
M→

∧
M[[z±1]] (10)

such that σ±(z)bj =
∑
i>0 bj±iz

±i. Their formal inverses σ±(z) ∈ End(
∧
M)[[z]] are the unique HS-

derivations
∧
M→

∧
M[[z]] such that

σ±(z)bj = bj − bj±1z
±1. (11)

3.2 Notational Remark. To save notation, we preferred to write σ−(z) and σ−(z) rather than the
more precise σ−(z

−1) and σ−(z
−1), hoping that the subscript “−” to σ may suffice to avoid possible

confusions.
Put σ±(z) =

∑
j>0 σ±jz

±j and σ±(z) =
∑
j>0(−1)jσ±jz

±j. Then:

σibj = bi+j, ∀i, j ∈ Z, (12)

while σiu = 0 if u ∈
∧6 |i|−1

M, for all i ∈ Z (Cf. [9, Secs. 3.1–3.2]).

3.3 Remark. The operator σi defined on M are precisely the shift operators Λi as in [15, p. 32]. The
only difference is that i) we extend them to all the exterior algebra of M (and then to the associated
fermionic Fock space) embedding them into a Schubert derivation; ii) due to i), we preferred to use the
notation σi to emphasize the interpretation in terms of Schubert calculus. The shift operators σi acts
on b0 as the cap product of the class of a linear space of codimension i with the fundamental class of
some Pn (which is 0 if i > n).
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3.4 Remark. Let σ∗+(w) :
∧
M∗ →

∧
M∗[[w]] be the Schubert derivation on

∧
M∗, i.e. the unique

HS-derivation such that
σ∗(w)βj =

∑
i>0

σ∗iβj ·wi =
∑
i>0

βj+iw
i.

Its inverse σ∗+(w) is the unique HS-derivation on
∧
M∗ such that

σ∗+(w)βj =
∑
i>0

(−1)iσ∗iβjw
i = βj − βj+1w.

An easy check shows that σ−(z) =
∑
σ−iz

−i = σ∗T+ (w)|w=z−1 . Similarly σ−(z) = σ∗T+ (w)
|w=z−1 :∧

M→
∧
M[[z−1]].

3.5 Proposition. The following equalities hold:

σT−(z)βj =
∑
i>0

βj+iz
−i = σ∗+(w)βj|w=z−1 , (13)

σT−(z)βj = βj − βj+1z
−1 = σ∗(w)βj|w=z−1 . (14)

Proof. It follows from the definition.

4 Fermionic Fock Space

4.1 There are several excellent references concerning the definition of the fermionic Fock space [5, Ch.
5] or [14, 15]. It amounts to the rigorous formalization of the idea of an infinite exterior power. We
propose here an elementary algebraic construction of it, that suffices for our purposes.

Let [M] be the free Z-module generated by the basis [b] := ([b]m)m∈Z. Identify [M] with a sub-
module of the tensor product

∧
M⊗Z [M] via the map [b]m 7→ 1⊗ [b]m. Let W be the

∧
M–submodule

of
∧
M⊗Z [M] generated by all the expressions {bm ⊗ [b]m−1 − [b]m,bm ⊗ [b]m}m∈Z. In formulas:

W :=
∧
M⊗

(
bm ⊗ [b]m−1 − [b]m

)
+
∧
M⊗

(
bm ⊗ [b]m

)
.

4.2 Definition. The fermionic Fock space is the
∧
M-module

F := F(M) :=

∧
M⊗Z [M]

W
. (15)

Let
∧
M⊗Z [M]→ F be the canonical projection. The class of u⊗ [b]m in F will be denoted u∧ [b]m.

Thus the equalities bm∧ [b]m = 0 and bm∧ [b]m−1 = [b]m hold in F. Notation as in (5). For all m ∈ Z
and λ ∈ P let, by definition

[b]m+λ := brm+λ ∧ [b]m−r,

where r is any positive integer such that `(λ) 6 r. Then F is a graded
∧
M-module:

F :=
⊕
m∈Z

Fm,
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where
Fm :=

⊕
λ∈P

Z[b]m+λ =
⊕
r>0

⊕
λ∈Pr

Zbrm+λ ∧ [b]m−r. (16)

4.3 Definition. The fermionic Fock space of charge m is the module Fm as in (16) [15, p. 36].

4.4 Proposition. The equality bj ∧ [b]m = 0 holds for all j 6 m.

Proof. Indeed:

bj ∧ [b]m = bj ∧ bm ∧ · · ·∧ bj ∧ [b]j−1 = ±bj ∧ bj ∧ bm ∧ · · ·∧ [b]j−1 = 0.

4.5 Proposition. The image of the map
∧r
M ⊗ Fm → F given by (u, v) 7→ u ∧ v is contained in

Fm+r.

Proof. Let bi1 ∧ · · ·∧ bir ∈
∧r
M with i1 > · · · > ir. Write

i1 = m+ 1 + r+ λ1, · · · , ir = m+ 1 + λr.

If λ1 > · · · > λr, then

bi1 ∧ · · ·∧ bir ∧ [b]m = brm+1+r+λ ∧ [b]m ∈ Fm+r,

otherwise the product is zero.

4.6 In particular each u ∈M defines an action u∧ : Fm → Fm+1 given by

brm+λ ∧ [b]m−r 7−→ (u∧ brm+λ)∧ [b]m−r. (17)

Similarly, one may consider a contraction action of
∧
M∗ on F, mapping Fm 7→ Fm−1. Define the

contraction of [b]m+λ against βj as follows: choose r such that `(λ) 6 r and m− r 6 j. Declare that

βjy[b]m+λ =
(
βjyb

r
m+λ

)
∧ [b]m−r, (18)

and extend by linearity. The definition does not depend on the choice of r > max(`(λ),m − j). For
instance

βmy[b]m = βmy(bm ∧ [b]m−1) = [b]m−1.

4.7 Remark. Using the wedging and contraction operators (17) and (18), is easy to show that F is an
irreducible representation of a canonical Clifford algebra onM⊕M∗, called Fock fermionic representation
in [5, Section 5.], which motivates the terminology we adopted.

4.8 Duality. We denote by F∗ the restricted dual of F, contructed out of the restricted dual of M∗,
precisely as one did for F. The typical element of F is of the form

[β]m+λ = βrm+λ ∧ [β]m−r.

8



The duality pairing F∗×F→ Z is defined by [β]m+λ([b]n+µ) = δm,nδλ,µ. It extends the natural duality
between

∧r
M and

∧r
M∗. The contraction of f ∈ Fm against β ∈M∗ is defined by

η(βyf) = (β∧ η)(f),

for all η ∈ F∗m−1. More explicitly, keeping into account that f is a finite sum of elements of the form
[b]m+λ, one has:

βy[b]m+λ = βybrm+λ ∧ [b]m−r + (−1)r−1brm+λ ∧ (βy[b]−m−r).

Since β is a finite sum
∑
aiβi, the contraction βy[b]−m−r is a finite sum.

5 Extending HS-derivations to F

This section is devoted to extend the Schubert derivations (3.1), and their transposed, to suitable maps
F → F[[z]] and F∗ → F∗[[z−1]]. The purpose is to (re)-discover the bosonic vertex operators as in
[15, Theorem 5.1] or [14, p. 92]. This will supply an alternative way to look at the bosonic vertex
representation of the Lie algebra gl∞(Z), due to Date-Jimbo-Kashiwara-Miwa [3, 13]. Although those
authors worked over the complex numbers, we work over the integers because it is sufficient for our
purposes.

The sought for extension of the Schubert derivations to F will be attained by looking at each degree
Fm one at a time.

5.1 Let σ+(z),σ−(z) :
∧
M →

∧
M[[z±1]] be the Schubert derivations and σ+(z),σ−(z) :

∧
M →∧

M[[z±1]] their inverses as in Section 3.1. We first extend them to Z-basis elements of [M] and then
we extend to all F by mimicking the typical behavior of an algebra homomorphism.

5.2 Let us begin to extend the definition of σ±(z) and σ±(z) to elements of [M] as follows:

σ+(z)[b]m := (σ+(z)bm)∧ [b]m−1, (19)

and
σ+(z)[b]m :=

∑
j>0

(−1)j[b]m+(1j)z
j (20)

for all m ∈ Z. We demand, on the other hand, that σ−(z) and σ−(z) act on [M] as the identity:

σ−(z)[b]m = [b]m and σ−(z)[b]m = [b]m, (21)

for all m ∈ Z.

Notice that (20) can be equivalently written in Fm as:

σ+(z)[b]m =
∑
j>0

(−1)j[b]j
m+(1j)

∧ [b]m−jz
j.

We now extend the Schubert derivations, as in 3.1, to all Fm.

9



5.3 Definition. The extension of the Schubert derivations σ±(z),σ±(z) to Z-linear maps Fm →
Fm[[z

±1]] is defined by:

σ±(z)[b]m+λ = σ±(z)(b
r
m+λ ∧ [b]m−r)

= σ±(z)b
r
m+λ ∧ σ±(z)[b]m−r, (22)

and

σ±(z)([b]m+λ) = σ±(z)
(
brm+λ ∧ [b]m−r

)
= σ±(z)b

r
m+λ ∧ σ±(z)[b]m−r. (23)

5.4 Proposition. For all i ∈ Z, σi[b]m = bm+i ∧ [b]m−1 and is thence zero if i < 0.

Proof. If i > 0, σi[b]m is the coefficient of zi in the expression

σ±(z)bm ∧ [b]m−1 =
∑
i>0

σibm · zi ∧ [b]m−1 =
∑
i>0

bm+i ∧ [b]m−1z
i.

If −i > 0, instead, σ−i[b]m is the coefficient of z−i in the right–hand side of the equation σ−(z)[b]m =
[b]m, which is zero as stated.

5.5 Proposition. For all i > 0, the maps σ±i : Fm → Fm satisfy the i-th order Leibniz rule

σ±i(b
r
m+λ ∧ [b]m−r) =

i∑
j=0

σ±jb
r
m+λ ∧ σ±i∓j[b]m−r. (24)

Proof. In fact, the left–hand side of (24) is the coefficient of z±i of the expression σ±(z)(b
r
m+λ∧[b]m−r),

which by definition is
σ±(z)(b

r
m+λ)∧ σ±(z)[b]m−r.

The equality
σ−(z)b

r
m+λ ∧ σ−(z)[b]m−r = σ−(z)b

r
m+λ ∧ [b]m−r

implies
σ−ib

r
m+λ ∧ [b]m−r = σ−ib

r
m+λ ∧ [b]m−r,

as all the other terms involving σ−j[b]m−r vanish for j > 0. Moreover, using Proposition 5.4, one sees
that the coefficient of zi in σ+(z)(b

r
m+λ ∧ [b]m−r) is

σi(b
r
m+λ ∧ [b]m−r) =

i∑
j=0

σjb
r
m+λ ∧ σi−j[b]m−r =

i∑
j=0

σjb
r
m+λ ∧ σi−j[b]m−r (25)

as desired.
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5.6 Proposition. The following equalities hold:

σ±i(b
r
m+λ ∧ [b]m−r) =

i∑
j=0

σ±jb
r
m+λ ∧ σ±i∓j[b]m−r

Proof. The formula readily follows by comparing the coefficient of z±i on either side of formula (23).

In particular σ−j(b
r
m+λ ∧ [b]m−r) = σ−j(b

r
m+λ)∧ [b]m−r

5.7 Lemma. Let zr := (z1, . . . , zr) be indeterminates over Z. Then:

σ+(z1) · · ·σ+(zr)bm−r = bm−r +

r∑
j=1

(−1)jej(zr)bm−r+j, (26)

where ei(zr) is the i-th elementary symmetric polynomial in (z1, . . . , zr).

Proof. If r = 1, σ+(z1)bm−1 = bm−1 − bmz1 = bm−1 − e1(z1)bm, showing that Lemma 5.7 holds in
this case. Suppose that (26) holds for all 1 6 s 6 r− 1. Then

σ+(z1)σ+(z2) · · ·σ+(zr)bm−r

= σ+(z1)(bm−r − e1(z2, . . . , zr)bm−r+1 + · · ·+ (−1)rz2 · · · zrbm−1)

=
∑
j=0

(−1)jej(z2, . . . , zr)(bm−r−j − z1bm−r−j+1)

= bm−r +

r∑
j=1

(−1)jej(zr)bm−r+j,

as desired.

5.8 Proposition. For all m ∈ Z and r > 0:

brm ∧ σ+(z1) · · ·σ+(zr)[b]m−r = [b]m. (27)

Proof. One has

bm ∧ · · ·∧ bm−r+1 ∧

r∑
j=0

(−1)jej(zr)bm−r+j ∧

r∑
j=0

(−1)jej(zr)bm−r−1+j ∧ · · · = [b]m.

5.9 Corollary. For all m ∈ Z:
bm ∧ σ+(z)[b]m−1 = [b]m.

Proof. In fact the typical coefficient of zi, i > 0, is the sum of monomials of the form bm∧bm∧ · · · = 0,
so that the only surviving summand is bm ∧ [b]m−1 = [b]m.
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5.10 Proposition. The maps σ+(z),σ+(z) : Fm → Fm[[z]] and σ−(z),σ−(z) : Fm → Fm[[z
−1]] are

mutually inverse.

Proof. The formal power series σ+(z) and σ+(z) are both invertible in Fm[[z]], as the constant term is
the identity of Fm. It then suffices to show that σ+(z) is the left inverse of σ+(z), because in this case
it must coincide with its inverse. Now for all m ∈ Z and each λ ∈ P,

σ+(z)σ+(z)[b]m+λ = σ+(z)σ+(z)(b
r
m+λ ∧ [b]m−r) = brm+λ ∧ σ+(z)σ+(z)[b]m−r

for all r > `(λ), where we used the fact that σ+(z),σ+(z) are mutually inverse HS–derivations on∧
M>m−r+1. It will then suffice to show that σ+(z)σ+(z) acts on [b]m as the identity, for all m > 0.

Using Corollary 5.4, one easily gets:

σ+(z)σ+(z)[b]m = σ+(z) (σ+(z)bm ∧ [b]m−1) = bm ∧ σ+(z)[b]m−1 = [b]m.

Similarly, since σ−(z)σ−(z)bj = bj, for all j ∈ Z, then

σ−(z)σ−(z)[b]m+λ = σ−(z)[σ−(z)b]m+λ = [σ−(z)σ−(z)b]m+λ = [b]m+λ.

5.11 Proposition. For all partitions λ of length at most r and all m ∈ Z, the integration by parts
formulas hold:

σ+(z)b
r
m+µ ∧ [b]m−r+λ = σ+(z)(b

r
m+µ ∧ σ+(z)[b]m−r+λ); (28)

brm+µ ∧ σ+(z)[b]m−r+λ = σ+(z)(σ+(z)b
r
m+µ ∧ [b]m−r+λ). (29)

Proof. Obvious.

5.12 Proposition. Let i1, . . . , ir be an index sequence of length r > 1. Then

σi1 · · ·σir[b]m = (σi1 · · ·σirbrm)∧ [b]m−r. (30)

Proof. Let (z1, . . . , zr) be indeterminates over Z. Then σi1 · · ·σir[b]m is the coefficient of zi11 · · · zirr in
the expansion of σ+(z1) · · ·σ+(zr)[b]m. Now, by virtue of Corollary 5.8:

σ+(z1) · · ·σ+(zr)[b]m = σ+(z1) · · ·σ+(zr)
(
brm ∧ σ+(z1) · · ·σ+(zr)[b]m−r

)
(31)

As σ+(zi) is a HS-derivation, one obtains

σ+(z1) · · ·σ+(zr)[b]m = σ+(z1) · · ·σ+(zr)brm ∧ [b]m−r. (32)

Comparing the coefficient of zi11 · · · zirr on either side of equality (32), yields formula (30).

5.13 Proposition. For all λ ∈ Pr, let ∆λ(σ+) := det(σλj+j−i)16i,j6r. Then Giambelli’s formula
holds:

[b]m+λ = ∆λ(σ+)[b]m.

Proof. By virtue of Proposition 5.12:

∆λ(σ+)[b]m = ∆λ(σ+)[b]
r
m ∧ [b]m−r.

Now ∆λ(σ+)[b]
r
m can be read in the exterior power

∧r
M>m−r+1, and then one may invoke [6, Formula

(17)] or [7, Corollary 5.8.2].
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5.14 Boson–Fermion Correspondence. Let ζ ∈ EndZ(F) defined by ζ[b]m+λ = [b]m+1+λ. It is an
automorphism of F and may be thought of as an extension to Fm of the determinant of the map σ1|M

.
Let now B := Z[e1, e2, . . .] be the polynomial ring in the infinitely many indeterminates (e1, e2, . . .) with
Z-coefficients. Let E(z) := 1 +

∑
j>1(−1)jejz

j and H := (hj)j∈Z be the sequence in B defined by the
equality

H(z) :=
∑
j∈Z

hjz
j :=

1

E(z)
. (33)

From (33) it turns out that hj = 0 for j < 0, h0 = 1 and, for j > 0, hj is a Z-polynomial in the eis,
homogeneous of degree j, once each ei is given degree i. It is well known that [18]

B :=
⊕
λ∈P

Z∆λ(H),

where
∆λ(H) := det(hλj−j+i)16i,j6r,

and r is any positive integer bigger or equal than `(λ).
This enables one to equip F0 with a B-module structure by declaring that hiu = σi(u) for all u ∈ F0.

In particular, for all λ ∈ P:

σ+(z)[b]m+λ =
1

E(z)
[b]m+λ. (34)

Since Fm = ζmF0, each of them inherits a structure of free B-module generated by ζm[b]0. Consider the
polynomial ring B[ζ, ζ−1].

5.15 Definition. The Boson–Fermion correspondence is the B[ζ, ζ−1]-module structure of F

B[ζ, ζ−1]⊗ F→ F,

defined by
∆λ(H)[b]m = [b]m+λ = ∆λ(H)b

r
m ∧ [b]m−r = brm+λ ∧ [b]m−r, (35)

where r is any integer bigger than `(λ).

In particular ∆λ(H)[b]0 = [b]0+λ and ζm∆λ(H)[b]0 = ∆λ(H)ζ
m[b]0 = ∆λ(H)[b]m. Notice that, on the

dual side, i.e. in F(M∗), one has ζm[β]0 = [β]−m. In fact

δm−n,0 = δm,n = [β]m([b]n) = [β]m(ζ
n[b]0) = ζ

n[β]m([b]0

from which ζn[β]m = [β]m−n.

6 Vertex Operators

Via the Boson–Fermion correspondence 5.15, the Schubert derivations σ−(z),σ−(z) induce natural maps
B→ B[z−1].
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6.1 Definition. Define σ−(z),σ−(z) : B→ B[z−1] through the equalities

(σ−(z)∆λ(H)) [b]0 := σ−(z) (∆λ(H)[b]0) = σ−(z)[b]0+λ

and
(σ−(z)∆λ(H))[b]0 := σ−(z) (∆λ(H)[b]0) = σ−(z)[b]0+λ.

6.2 Proposition.

σ−(z)hn = hn − hn−1z
−1, (36)

σ−(z)hn =
∑
j>0

hn−jz
−j. (37)

Proof. Recall that hj = 0 for j < 0. Let us prove (36) first.

(σ−(z)hn)[b]0 = σ−(z)(hn[b]0) = σ−(z)(bn ∧ [b]−1)

= (bn − bn−1z
−1)∧ [b]−1 = (hn − hn−1z

−1)[b]0,

whence (36). The proof of (37) is analogous:

(σ−(z)hn)[b]0 = σ−(z)(hn[b]0) = σ−(z)σn[b]0

= σ−(z)(bn ∧ [b]−1) = σ−(z)bn ∧ [b]−1

=
∑
j>0

bn−j ∧ [b]−1z
−j =

∑
j>0

hn−jz
−j[b]0,

whence (37).

6.3 Remark. The sum (37) is an infinite sum but its multiplication by [b]m is finite, for all m ∈ Z.
For instance

∑
j>0 hn−jz

n−j[b]0 =
∑

06j6n hn−jz
n−j[b]0.

Let σ−(z)H denote the sequence (σ−(z)hn)n∈Z (respectively σ−(z)H = (σ−(z)hn)n∈Z). The follow-
ing is one of the main results concerning the combinatorics of the subject.

6.4 Theorem. Schur determinants commute with taking σ−(z):

σ−(z)∆λ(H) = ∆λ(σ−(z)H) and σ−(z)∆λ(H) = ∆λ(σ−(z)H), (38)

Proof. By Proposition 5.12, the equality [b]0+λ = ∆λ(Hr)[b]0 holds in the exterior power
∧r
M>−r+1.

We contend that
(σ−(z)∆λ(Hr))[b]0 = ∆λ(σ−(z)H)[b]0,

and this is true by [9, Theorem 5.7] that relies on a general determinantal formula in a polynomial ring
due to Laksov and Thorup [17, Theorem 0.1]. The same argument holds verbatim for σ−(z).
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6.5 Corollary. σ−(z),σ−(z) : B→ B[z−1] are rings homomorphisms.

Proof. In fact B = Z[h1,h2, . . .]. Then

σ−(z)(hi1 · · ·hir) = σ−(z)(
∑
λ

aλ∆λ(H))

=
∑
λ

aλ∆λ(σ−(z)H) = σ−(z)hi1 · · ·σ−(z)hir .

The proof for σ−(z) is totally analogous.

In other words, σ−(z),σ−(z) : B→ B[[z−1]] are Hasse-Schmidt derivations on B, in the genuine sense
of e.g. [19, p. 207].

6.6 Lemma. For all m ∈ Z, r ∈ N and λ ∈ Pr:

brm+λ+(1r) ∧ bm−r+1 = [b]r+1
m+1+λ. (39)

Proof. The definition of the left–hand side of (39) is

bm+1+λ1 ∧ · · ·∧ bm+1−r+1+λr ∧ bm+r−1

= bm+1+λ1 ∧ · · ·∧ bm+1−(r+1)+2+λr ∧ bm+1−(r+1)+1

that is precisely the definition of its right–hand side.

6.7 Corollary.
brm+λ+(1r) ∧ [b]m−r+1 = [b]m+1+λ.

Proof. In fact

brm+λ+(1r) ∧ [b]m−r+1 = brm+λ+(1r) ∧ bm−r+1 ∧ [b]m−r

= [b]r+1
m+1+λ ∧ [b]m−r = [b]m+1+λ.

6.8 Let R(z) ∈ EndZ[z,z−1](F[[z, z
−1]) given by R(z)[b]m+λ = zm+1[b]m+1+λ. It is clearly invertible:

R(z)−1[b]m+λ = z−m[b]m−1+λ, i.e. R(z)−1 is an endomorpism of F homogeneous of degree −1. On the
bosonic side, define (R(z)ζm∆λ(H))[b]0 = z

m+1[b]m+1+λ, so that R(z)ζm∆λ(H) = z
m+1ζm+1∆λ(H). It

is a homogeneous operator of degree 1 (and is the fermionic counterpart of the R operator mentioned
in [15, Theorem 5.1]). Notice that for all j ∈ Z, one has R(z)(σj[b]m+λ) = σj(R(z)[b]m+λ), as an
immediate check shows, whence the commutativity rules

σ±(z)R(z) = R(z)σ±(z) and σ±(z)R(z) = R(z)σ±(z). (40)

6.9 Proposition. Let b(z) :=
∑
i∈Z biz

i ∈M[[z−1, z]]. Then for all φ ∈ F

b(z)∧ φ = R(z)σ+(z)σ−(z)φ
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Proof. Each φ ∈ F is an integral finite linear combination of homogeneous elements, each summand
belonging to Fm for some m. Moreover each element of Fm is an integral linear combination of basis
elements of the form [b]m+λ of Fm. Hence it suffices to prove the proposition for φ = [b]m+λ.

b(z)∧ [b]m+λ

=
∑
i∈Z

biz
i ∧ brm+λ ∧ [b]m−r (definition of b(z) and [b]m+λ)

=
∑

i>m−r+1

biz
i ∧ brm+λ ∧ [b]m−r (the wedge products vanish for i < m− r+ 1)

= zm−r+1σ+(z)bm−r+1 ∧ brm+λ ∧ [b]m−r (by definition of σ+(z))

= zm−r+1σ+(z)(bm−r+1 ∧ σ+(z)b
r
m+λ ∧ σ+(z)[b]m−r) (integration by parts (8))

= zm−r+1σ+(z)(z
rσ−(z)[b]

r
m+λ+(1r) ∧ bm−r+1 ∧ σ+(z)[b]m−r) (Definition of σ−(z))

= zm+1σ+(z)(σ−(z)[b]
r
m+λ+(1r) ∧ [b]m−r−1) (zm+1 = zm−r+1zr)

= zm+1σ+(z)(σ−(z)[b]
r
m+λ+(1r) ∧ σ−(z)[b]m−r−1) (the σ−(z) action (21) on [b]m−r+1)

= zm+1σ+(z)σ−(z)([b]
r
m+λ+(1r) ∧ [b]m−r−1) (σ−(z) is a HS derivation)

= zm+1σ+(z)σ−(z)[b]m+1+λ

= R(z)σ+(z)σ−(z)[b]m+λ (by definition of the map R(z))

= R(z) · 1

E(z)
σ−(z)[b]m+λ (by the B-module structure (34) of F).

6.10 Corollary. Let Γ(z) : B[ζ, ζ−1]→ B[ζ, ζ−1][[z]] be given by

(Γ(z)ζm∆λ(H))[b]0 := b(z)∧ [b]m+λ.

Then

Γ(z) = R(z)σ+(z)σ−(z) = R(z)
1

E(z)
σ−(z).

Proof. Obvious from the definition.

6.11 Lemma. Let R(z)T : F∗[[z, z−1] → F∗[[z, z−1] be the transpose of the operator
R(z) : F[[z, z−1]]→ F[[z, z−1]] as in 6.8. Then

R(z)T [β]m+λ = zm[β]m−1+λ, (41)

and
(R(z)T )−1[β]m−1+λ = (R(z)−1)T [β]m−1+λ = z−m[β]m+λ. (42)
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Proof. To prove (41):

(R(z)T [β]m+µ)([b]m−1+λ) = [β]m+µ(R(z)[b]m−1+λ)

= [β]m+µ(z
m[b]m+λ) = z

mδµ,λ,

and then R(z)[β]m+µ = zm[β]m−1+µ as stated in (41). The proof of (42) is straightforward.

6.12 Corollary. If β(z−1) =
∑
j∈Z βjz

−j−1 ∈M∗[[z−1, z]], then

β(z−1)∧ [β]m−1+µ = z−1(R(z)−1)TσT−(z)σ
T
+(z)[β]m+µ. (43)

Proof. Let σ∗+(w),σ
∗
+(w) be the Schubert derivations on

∧
M∗ as in Remark 3.4. Let β(w) =

w
∑
j∈Z βjw

j. Then applying Proposition 6.9

β(w)∧ [β]m−1+µ = w
∑
j∈Z

βjw
j ∧ [β]m−1+µ

= wR(w)σ∗+(w)σ
∗
−(w)[β]m−1+µ = wR(w)Tσ∗+(w)σ

∗
−(w)[β]m+µ.

Putting w = z−1 and observing that σ∗−(w)βj|w=z−1 = σ+(z)
Tβj and σ∗+(w)βj|w=z−1 = σ−(z)

Tβj, for

all j ∈ Z, one finally obtains (43).

6.13 Proposition.

β(z−1)y[b]m+λ = z−1R(z)−1σ+(z)σ−(z)[b]m+λ

= z−1R(z)−1E(z)σ−(z)[b]m+λ. (44)

where the last equality follows from (34).

Proof. For all (λ,µ) ∈ P× P and all m ∈ Z:

[β]m−1+µ(β(z)y[b]m+λ) = (β(z−1)∧ [β]m−1+µ)([b]m+λ).

By Corollary 6.12, then

[β]m−1+µ(β(z)y[b]m+λ) = z−1(R(z)−1)TσT−(z)σ
T
+(z)[β]m+µ

(
[b]m+λ

)
= [β]m−1+µ(z

−1σ+(z)σ−(z)R(z)
−1[b]m+λ),

whence (44), because of (40).

6.14 Corollary. Let Γ∗(z) := B[ζ, ζ−1]→ B[ζ, ζ−1][[z]] be given by

(Γ∗(z)ζm∆λ(H))[b]0 := β(z−1)y[b]m+λ.

Then
Γ∗(z) = z−1R(z)−1σ+(z)σ−(z) = z

−1R(z)−1E(z)σ−(z).

Proof. A straightforward consequence of the definition.
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7 Another expression for Γ ∗(z)

7.1 Notation as in Section 1. Expanding the determinant of the Schur polynomial ∆λ(H) along the
first row, according to Laplace’s rule, one easily checks that

∆λ(H) = hλ1∆λ(1)(H) − hλ2−1∆λ(2)+(1)(H) + · · ·+ (−1)r−1hλr−r+1∆λ(r)+(1r−1)(H). (45)

Unable to find a better compact notation for it, we denote by ∆λ(z
−λ,H) the determinant obtained by

∆λ(H) under the substitution hλj−i+1 → z−λj+i−1. In other words:

∆λ(z
−λ,H) :=

∆λ(1)(H)

z−λ1
−
∆λ(2)(H)

zλ2−1
+ · · ·+ (−1)r−1

∆λ(r)+(1r−1)(H)

zλr−r+1
(46)

or, more explicitly

∆λ(z
−λ,H) :=

∣∣∣∣∣∣∣∣∣∣∣∣

1

zλ1
1

zλ2 + 1
· · · 1

zλr+r−1

hλ1+1 hλ2 · · · hλr+r−2
...

...
. . .

...
hλ1+r−1 hλ2+r−2 · · · hλr

∣∣∣∣∣∣∣∣∣∣∣∣
. (47)

Then, we have:

7.2 Proposition.

β(z−1)y[b]m+λ = z−m−1

(
∆λ(z,H) + (−1)r−1

∑
j>0

(−1)j∆λ+(1r+j)(H)z
j+r

)
[b]m−1. (48)

Proof. First of all we apply directly Leibniz rule enjoyed by the derivation β(z−1)y:

β(z−1)y[b]m+λ = β(z−1)y(brm+λ ∧ [b]m−r)

= β(z−1)ybrm+λ ∧ [b]m−r + (−1)r−1brm+λ ∧
(
β(z−1)y[b]m−r

)
.

(49)

We compute separately the two summands occurring in the r.h.s. of (49). Let us begin with the second
one:

brm+λ ∧
(
β(z−1)y[b]m−r

)
= brm+λ ∧ z−m+r−1σT+(z)βm−ry[b]m−r

= z−m−1+rbrm+λ ∧ σ+(z)(βm−ry[b]m−r)

= zm−1+rbrm+λ ∧ σ+(z)(βm−ry(σ+(z)bm−r ∧ [b]−m−1+r))

= z−m−1+rbrm+λ ∧ σ+(z)[b]m−r−1

= z−m−1+rbrm+λ ∧
∑
j>0

(−1)j[b]m−r−1+(1j)z
j
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= z−m−1+r
∑
j>0

(−1)jbrm−1+λ+(1r) ∧ [b]m−1−r+(1j)z
j

= z−m−1
∑
j>0

(−1)j[b]m−1+λ+(1r+j). (50)

To compute the first summand, instead, it is sufficient to apply the definition 2.3 of contraction: each
bi occurring in the expression brm+λ is replaced, with the appropriate sign, by z−i−1. The straightforward
equality,

brm+λ = (−1)jbm−j+λj+1
∧ brm+λ(j)+(1j−1), 1 6 j 6 r,

holding by the very meaning (5) of the notation brm+λ, easily implies that

β(z−1)ybrm+λ =
1

zm+1

br
m+λ(1)

zλ1
−

br
m−1+(λ(2)+(1))

zλ2−1
+ · · ·+ (−1)r−1

br
m−r+1+(λ(r)+(1r−1))

zλr−r+1

=
1

zm+1
∆λ(z

−λ,H)[b]m−1, (51)

where in the last equality we used the Boson–Fermion correspondence (35). Formula (48) then follows
by plugging (50) and (51) into (49), and using again the Boson–Fermion correspondence.

8 Commutation Rules

8.1 Proposition.

i) The following commutation rules hold in EndZ(
∧
M) for all i, j ∈ Z:

σiσj = σjσi, σiσj = σjσi, σiσj = σjσi. (52)

ii) All the operators σ±(z),σ±(z) :
∧
M→

∧
M[[z]] are mutually commuting.

Proof. i) We check only for the first of (52), the remaining two being similar. One has that for all
k ∈ Z, one has σiσjbk = bk+i+j = σjσibk. Assume commutation holds for

∧r−1
M. Each u ∈

∧r
M

is a sum of typical elements of the form b∧ v for b ∈M and v ∈
∧r−1

M. Then

σiσj(b∧ v) = σi

j∑
k=0

σkb∧ σj−kv

=

i∑
l=0

j∑
k=0

σlσkb∧ σi−lσj−kv

=

i∑
l=0

j∑
k=0

σkσlb∧ σj−kσi−lv = σjσi(b∧ v),

where the third equality follows by induction, which proves i). Item ii) is a straightforward consequence
of i).
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The commutation rules (52) do not hold when σ±(z) and σ±(z) are extended to the fermionic space
F. For example,

σ−1σ2[b]0 = σ−1b2 ∧ [b]−1 = b1 ∧ [b]−1 6= 0 = σ2 · 0 = σ2σ−1[b]−1.

8.2 Notation. Let R(z,w) be a rational expression having poles in z = 0, w = 0 and z − w = 0.
Following [14, p. 18] we denote by iw,zR(z,w) the expansion of R(z,w) as a formal power series in
(z/w) and by iz,w the expansion of the same expression as a formal power series of w/z.

8.3 Lemma. For all m ∈ Z,

σ−(w)σ+(z)[b]m = iw,z
w

w− z
σ+(z)σ−(w)[b]m.

Proof.

σ−(w)σ+(z)[b]m = σ−(w)(σ+(z)bm ∧ [b]m−1) (decomposition of [b]m)

= σ−(w)σ+(z)bm ∧ [b]m−1 (distributing σ−(w) with
respect to ∧)

= σ−(w)
∑
j>0 bm+jz

j ∧ [b]m−1 (definition of σ+(z))

=
∑
j>0

j∑
i=0

bm+jz
j

wi
∧ [b]m−1

=

(
1 +

z

w
+
z2

w2
+
z3

w3
+ · · ·

)
σ+(z)σ−(w)bm ∧ [b]m−1

= iw,z
w

w− z
σ+(z)σ−(w) · [b]m.

8.4 Proposition. Let σ±(z) and σ±(z) considered as maps from F → F[[z±1]]. Then the following
commutation rules holds

σ−(w)σ+(z) = iw,z
w

w− z
· σ+(z)σ−(w) (53)

σ−(z)σ+(w) = iz,w
z

z−w
σ+(w)σ−(z) (54)

Proof. Let us prove (53). For all λ ∈ P we have

σ−(w)σ+(z)[b]m+λ = σ−(z)σ+(w)(b
r
m+λ ∧ [b]m−r)

provided that r is bigger or equal than the length of the partition λ. Now we use the definition 5.3 of
the extension of σ±(z) to F. This gives:

σ−(w)(σ+(z)b
r
m+λ ∧ σ+(z)bm−r ∧ [b]m−r−1) =
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= σ−(w)σ+(z)b
r
m+λ ∧ σ−(w)σ+(z)bm−r ∧ [b]m−r−1

Proposition 8.1 ensures that σ−(w) and σ+(z) commute on
∧
M so obtaining

σ+(z)σ−(w)b
r
m+λ ∧ σ−(w)σ+(z)[b]m−r

and now we apply Lemma 8.3 to finally obtain:

σ+(z)σ−(w)b
r
m+λ ∧ σ−(w)σ+(z)[b]m−r = σ+(z)σ−(w)

(
brm+λ ∧

w

w− z
[b]m−r

)
= iw,z

w

w− z
σ+(z)σ−(w)[b]m+λ

which proves the commutation formula (53). To prove (54) we take the inverse of either side of (53)
obtaining

σ+(z)σ−(w) =
(

1 −
z

w

)
σ−(w)σ+(z),

from which
σ−(w)σ+(z) = iw,z

w

w− z
σ+(z)σ−(w).

Changing the role of the indeterminates z and w one obtains precisely (54).

9 The DJKM Bosonic Vertex Representation of gl∞(Z)
9.1 Let Bij := bi ⊗ βj ∈ M ⊗M∗ ∼= End(M) and gl∞(M) :=

⊕
i,j∈Z ZBij. It is a Lie algebra with

respect to the obvious Lie bracket [A,B] = AB− BA (A,B ∈ gl∞(Z)). Let

δ : gl∞(Z)→ EndZ(
∧
M)

be the representation of gl∞(Z) as a sub-algebra of derivations, A 7→ δ(A), defined by (2).

9.2 Proposition. Let b⊗ β ∈M⊗M∗ and u ∈
∧
M. Then

δ(b⊗ β)(u) = b∧ (βyu).

Proof. As u ∈
∧
M is a finite sum of homogeneous elements, we may assume without loss of generality

that u ∈
∧r
M. Then we argue by induction on r > 1. If u ∈M, δ(b⊗ β)(u) = β(u)b = b(βyu), and

the claim holds for r = 1. Assume now the property true for all u ∈
∧i
M and 1 6 i 6 r − 1. Each

v ∈
∧r
M is a finite sum of monomials of the form u∧w, with u ∈M and w ∈

∧r−1
M. We may then

assume v = u∧ w and, in this case,

δ(b⊗ β)(u∧ w) = β(u)b∧ w + u∧ b∧ (βyw)

= b∧ (β(u)w − u∧ βyw)

= b∧ (βy(u∧ w)).
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Let us now extend the derivation δ of
∧
M to F as follows. Let [b]m+λ = brm+λ ∧ [b]m−r ∈ Fm ⊆ F.

Each A ∈ gl∞(Z) is a finite linear combination
∑
ij aijbi⊗βj. Let k be the minimum among all j such

that aij 6= 0 and let r > 0 such that m− r < k. Thus one defines δ : gl∞(Z)→ EndZ(Fm) via:

δ(A)|Fm [b]m+λ = δ(A)[b]m+λ = δ(A)[b]rm+λ ∧ [b]m−r.

An easy check shows that the definition does not depend on the choice of r > 0 such that m − r < k.
Let

δ(z,w)|Fm =
∑
i,j∈Z

δ(Bij)|Fmz
iw−j : Fm → Fm[[z,w

−1]]

9.3 Theorem [3, Date–Jimbo–Kashiwara–Miwa].

δ(z,w)|Fm =
∑
i,j∈Z

δ(Bij)|Fmz
iw−j =

zm

wm
σ+(z)σ−(z)σ+(w)σ−(w)

=
zm

wm
iz,w

z

z−w
σ+(z)σ+(w)σ−(z)σ−(w)

=
zm

wm
iz,w

z

z−w

E(w)

E(z)
σ−(z)σ−(w). (55)

Proof. We have ∑
δ(Bij)|Fm [b]m+λz

iw−j =
∑

δm(bi ⊗ βj)[b]m+λz
iw−j

= b(z)∧ (wβ(w−1)y[b]m+λ))

= b(z)∧ (w−mσ+(w)σ−(w)[b]m−1+λ)

= w−mb(z)∧ σ+(w)σ−(w)[b]m−1+λ.

Now σ+(w)σ−(w)[b]m−1+λ is a Z[[w,w−1]-linear combination of elements of Fm−1 and b(z)∧ is Z[[w,w−1]
linear. Proposition 6.9 applied to Fm−1 gives

zmσ+(z)σ−(z)w
−mσ+(w)σ−(w)[b]m+λ

=
zm

wm
σ+(z)σ−(z)σ+(w)σ−(w)[b]m+λ

=
zm

wm
iz,w

z

z−w
σ+(z)σ+(w)σ−(z)σ−(w)[b]m+λ,

and using the definition of the B-module structure of Fm one gets precisely (55).

Let (B(m)(z,w)∆λ(H))[b]m = δ(z,w)[b]m+λ.

9.4 Corollary (The DJKM bosonic Vertex Representation of gl∞(Z)). Using the Boson–
Fermion correspondence 5.14:

B(m)(z,w) =
zm

wm
· iz,w

z

z−w
Γ(z,w),
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where the vertex operator Γ(z,w) is given by

Γ(z,w) =
E(w)

E(z)
σ−(z)σ−(w). (56)

Proof. It follows straightforwardly from the definition and expression of (55) for δ(z,w)Fm .

9.5 Let A∞(Z) be the Lie algebra of matrices (aij)i,j∈Z having only finitely many non-zero diagonals,
i.e. aij = 0 if |i − j| >> 0. In this case the representation δm must be replaced by a modified

representation δ̂m [15, p. 40]:
δ̂m(Bij) = δm(Bij) if i 6= j or i = j > 0,

δ̂m(Bii) − 1Fm = δm(Bii) if i = j 6 0.

Then, to obtain the generating function of the representation of Bij via r̂m it suffices to subtract from
formula (55) the series∑

j60

zjw−j[b]m+λ =
∑
j>0

(w
z

)j
[b]m+λ = iz,w

z

z−w
[b]m+λ,

so obtaining ∑
i,j∈Z

δ̂m(Bij)z
iw−j = iz,w

z

z−w
·
(
zm

wm
Γ(z,w) − 1

)
,

where Γ(z,w) is like in (56).

9.6 Remark. Recall that Γ(z,w) =
E(w)

E(z)
σ−(z)σ−(w) is a well defined operator B → B[[z,w−1],

which is defined over the integers. In BQ := B ⊗Z Q one can define variables (x1, x2, . . .) through the
equalities [15]:

exp

(∑
i>1

xiz
i

)
=

1

E(z)
and exp

(
−
∑
i>1

xiw
i

)
= E(w). (57)

Moreover in [9, Theorem 5.7] it is shown that, over the rationals,

σ−(z) = exp

(
−
∑
i>1

1

izi
∂

∂xi

)
and σ−(w) = exp

(∑
i>1

1

iwi
∂

∂xi

)
, (58)

so that after substituting (57) and (58) into expression (56) returns the traditional form (4).
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