
19 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Formally specifying and checking policies and anomalies in service function chaining / Valenza, F.; Spinoso, S.; Sisto,
R.. - In: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS. - ISSN 1084-8045. - 146:(2019), pp. 1-14.
[10.1016/j.jnca.2019.102419]

Original

Formally specifying and checking policies and anomalies in service function chaining

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.jnca.2019.102419

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.jnca.2019.102419

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2798861 since: 2023-04-27T13:41:45Z

Elsevier

Formally Specifying and Checking Policies and Anomalies in Service Function Chaining

Fulvio Valenza∗, Serena Spinoso, Riccardo Sisto

aDipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Abstract

One of the proposed management strategies for SDN networks is to specify tra�c forwarding through policies, where

each policy rule identi�es a tra�c �ow and its traversed service chains.

While network operators need to check network con�gurations as soon as possible, the SDN veri�cation literature

focuses on checking policy correctness during or after their deployment. This paper, instead, proposes early veri�cation

of forwarding policies before their deployment, by looking for the presence of anomalies that can potentially lead to

erroneous and unexpected network behaviour. The proposed veri�cation relies on a formal model that enables high

�exibility in specifying both a forwarding policy and the set of anomalies to verify. The presented approach is e�cient

and highly scalable, as con�rmed by tests with large networks.

Keywords: Service Function Chaining, Forwarding policies, Formal veri�cation.

1. Introduction

A recent innovation in networking is the Service Func-

tion Chaining (SFC) concept [1], which consists in instan-

tiating an ordered sequence of network functions, and con-

sequently steering a particular portion of packets (e.g. the

ones of a particular user) through the deployed chain.

However, SFC services have introduced additional com-

plexity and many challenges in �ow management, addressed

with the introduction of Software De�ned Networking (SDN)

[2], which centralises the network management logic into

a single programmable Controller.

Network operators can simply use one of the existing

network programming languages to program the SDN con-

troller and dictate the forwarding behaviour of the net-

work at run-time. Those languages (e.g., Flow-based Man-

agement Language (FML), Frenetic and Merlin) provide

∗Corresponding author

Email addresses: fulvio.valenza@polito.it (Fulvio Valenza),

serena.spinoso@polito.it (Serena Spinoso),

riccardo.sisto@polito.it (Riccardo Sisto)

di�erent levels of abstraction for expressing network-wide

policies.

This paper focuses on the concept of forwarding policy,

which is a collection of rules for de�ning how packets must

be classi�ed and forwarded in a SFC.

After the speci�cation phase, a forwarding policy is

translated into the most suitable con�guration of SDN

switches, e.g. FlowTable entries for an OpenFlow switch1,

which the Controller will install to instantiate the desired

service chains.

Network operators should check the presence of errors

and ambiguities in policy speci�cations, otherwise faults

in network con�gurations may arise at run-time. For ex-

ample, an ambiguous speci�cation may generate a con�ict

among �ow entries in switches' FlowTables (e.g., two en-

tries manage the same tra�c �ow, but one entry enforces

the action �drop" while the other one enforces the action

"�ood" for the same �ow).2

1https://www.opennetworking.org/
2OpenFlow solves these con�icts by adopting priorities among

Preprint submitted to Journal of Network and Computer Applications July 30, 2019

Even if some of the aforementioned programming lan-

guages perform their own validity checks before translating

policy speci�cations into OpenFlow entries, these checks

depend on the language adopted to program the network.

Instead, in order to achieve best network reliability and

security, the administrator should have a uniform check-

ing mechanism, independent of the adopted controller lan-

guage.

In addition, so far the literature has proposed many

OpenFlow-oriented veri�cation tools (e.g., [3, 4, 5, 6]) to

check the violation of network invariants in the output

of the forwarding policy translation (i.e., in the Open-

Flow switches con�gurations). However, these tools detect

problems during or after the switch con�gurations deploy-

ment. Instead, an earlier detection, done during the policy

speci�cation phase, would have two advantages. The �rst

one is that, in case of error detection, error �xing is faster,

because the �xing phase can start earlier, without even

having to start the deployment phase. The second one

is that, in case of error, the computational and storage

resources necessary for translating the anomalous policy

rules and for deployment are not wasted as otherwise hap-

pens.

An early veri�cation is fundamental, especially in the

new smart and IoT environments managed through SDN,

that are becoming essential elements in the industrial net-

work systems (INSs) with the advent of Industry 4.0 and

Factory of the Future paradigms [7]. In these systems,

where security and safety are strictly interdependent and

productivity is one of the main goals, the introduction of

mechanisms for detection of unexpected behaviours be-

fore the deployment phase would improve the security and

safety of the systems. Moreover, it can also avoid the waste

of computational resources from the side of the controller,

due to translation and storage of erroneous inputs.

�ow entries. However, the highest-priority entry may not be the

most suitable one for managing that particular tra�c �ow, which

can lead to anomalous behaviour.

Table 1: List of acronyms used in this paper.

DPI Deep Packet Inspection

FML Flow-based Management Language

FOL First Order Logic

HSA Header Space Analysis

IDS Intrusion Detection System

PGA Policy Graph Abstraction

SAT Satis�ability Modulo Theory

SDN Software De�ned Networking

SFC Service Function Chain

VPN Virtual Private Network

In this paper, we mainly aim at enabling early error

detection on forwarding policies, relying on a formal mod-

elling approach. In practise, a precise and unambiguous

meaning is given to a forwarding policy speci�cation, in-

dependently of the adopted programming language and of

its level of abstraction. A Forwarding policy will thus be

expressed by means of a single formalism that embraces

the variety of abstractions o�ered by the existing SDN

programming languages.

By anomaly, we mean any erroneous or unwanted pol-

icy speci�cation (e.g. including errors, con�icts or sub-

optimizations), which may be due to e.g. human errors,

and that may cause misleading network conditions and

states. An example of anomaly is the violation of an

operator-de�ned constraint of the SFC (e.g. network func-

tion ordering) or a con�ict in the forwarding speci�cations.

We assume the correctness of the translation algorithm

that generates OpenFlow rules from policy rules, because

it is generally implemented as an automatic process and

thus we leave its veri�cation out of scope.

Even if we eliminate anomalous policy speci�cations,

other errors in network forwarding may still be present at

run-time, due to wrong con�gurations installed into the

network functions (e.g., wrong �ltering rules installed in

�rewalls). Errors of this kind can be detected and solved

by means of other approaches, such as the ones proposed

in [8, 9, 10], that use complex network models and re-

2

quire more time-consuming veri�cation algorithms. For

this reason, the approach we are proposing does not sub-

stitute other more complex and accurate analyses, but it

aims at early and fast detection of a number of anomalies

already in the policy speci�cation phase.

Another contribution of our approach is the possibil-

ity to de�ne and verify custom anomalies speci�ed by the

operator, in addition to a set of pre-de�ned anomalies cor-

responding to general mistakes to be avoided in any net-

work. This high �exibility in de�ning the anomalies to

check is desirable because it enables the customisation of

the veri�cation process.

In our view, both custom and pre-de�ned anomalies

can be speci�ed using the same formalism, thanks to a

set of operators that let one precisely and unambiguously

specify the meaning of each anomaly. The anomalies spec-

i�ed by means of these operators are automatically trans-

lated into formulas in First Order Logic (FOL) that are

�nally fed to the veri�er along with a policy to be checked.

In this way, the user is not exposed to the complexity of

FOL.

In this paper, we also propose a possible pre-de�ned

set of anomalies to be detected. Such set includes novel

anomaly classes proper of the SFC domain in addition to

those classes of anomalies that lead to errors in the derived

OpenFlow con�gurations and that have already been stud-

ied in the literature [11].

The remainder of this paper is organized as follows:

Section 2 presents the current state of the art; Section 3

summarizes the problem statement and contributions of

this work; Sections 4, 5, 6 respectively describe the struc-

ture of a forwarding policy, the supported operators for

specifying anomalies and the anomaly detection model.

We have also implemented an anomaly detection process,

in order to evaluate the time required to verify policies for

a whole network (Section 7). Finally, Section 8 concludes

the paper and presents some possible future works.

2. Background

The most relevant works related to our approach can be

divided into three categories, i.e. SDN veri�cation, SDN

programming languages and network policy analysis.

SDN veri�cation. The current literature on SDN veri�-

cation generally adopts two approaches: either o�-line or

real-time veri�cation. The o�-line OpenFlow-oriented ver-

i�cation tools take a snapshot of the global network be-

haviour, e.g. by collecting the forwarding entries installed

into the network switches, or they model the behavior

of the network when the SDN controller runs a particu-

lar SDN program, and check whether some basic invari-

ants hold. A �rst example of o�-line tool is NICE [12],

which checks the presence of network invariants by com-

bining model checking and symbolic execution approaches.

Similarly, Anteater [13] veri�es such invariants by express-

ing them as boolean satis�ability (SAT) problem instances

while NetPlumber [4] relies on Header Space Analysis (HSA)

in order to detect forwarding loops and leakage problems.

The real-time approach consists of placing the veri�ca-

tion tool as a layer between SDN Controller and network

switches. This is the case of VeriFlow [3], which dynami-

cally checks if the absence of forwarding loops and black

holes is satis�ed at each OpenFlow rule insertion.

The main limitation of such o�-line and real-time tools

compared to what we are proposing here is that they do

not perform an early detection of errors and faults.

SDN Programming languages. The literature presents a

variety of SDN programming languages. Even though they

do not focus on our main aim of checking network correct-

ness, they share with our work the need to specify a for-

warding policy and they also provide some form of check-

ing on the policy that can be speci�ed. For this reason,

we analysed their variety in modelling packet forwarding

in order to de�ne a veri�cation model �exible enough to

ful�l the network operators' needs, while the checks they

3

provide on policies can be considered as a basis for de�ning

a set of pre-de�ned policy anomalies.

Frenetic [14] and NetCore [15] are two �rst examples.

They let the user identify tra�c �ows by means of a low-

level abstraction, i.e. predicates over standard OpenFlow

headers (e.g. IP address, VLAN id, etc.) and operators

like union and intersection applied on those predicates.

The same level of abstraction is o�ered by Pyretic [16],

which allows sequential and parallel policy compositions

in addition to what is o�ered by Frenetic and NetCore.

A similar approach is also adopted by Merlin [17], also

which enables network operators to de�ne forwarding poli-

cies with bandwidth constraints.

All such languages o�er the possibility to perform some

static checks on policy descriptions, but they all miss an

underlying formal model of policy and anomaly, and each

one of them performs only some speci�c and �xed checks

over a forwarding policy (e.g. Merlin checks only if a pol-

icy modi�cation introduced by tenants includes the chains

enforced in the original policy set down by the operators;

FML �rst detects a �xed set of con�icts and then it �xes

them by exploiting resolution techniques; FatTire gener-

ates network con�gurations that are con�ict-free by con-

struction but does not provide other forms of checking).

Hence, the use of a veri�cation mechanism speci�c for the

adopted language limits the set of errors and faults that

can be detected.

Some of these languages also cover additional problems

in network operation, like fault-tolerance for FatTire and

bandwidth allocation for Merlin. On the contrary, we do

not claim to cover such range of problems, but we only aim

at detecting anomalies in forwarding policy speci�cations.

Network Policy analysis. The literature focuses mostly on

detecting redundancies and con�icts among rules that make

up a policy in several domains. Among such domains, the

most relevant ones for our work are the �ltering and the

OpenFlow ones. In such domains, a con�ict is generally

seen as a faulty network state derived by two con�guration

rules (e.g. �rewall rules and switch �ow entries) that over-

lap and have di�erent, con�icting actions. Redundancy

of policy rules, instead, is generally considered a kind of

sub-optimization in policy speci�cation.

Part of our model has been inspired by the previous

works on con�ict analysis over such domains (e.g. [18], [19],

[11]), but we have reinterpreted and extended them to be

applied to the SFC domain, not only for con�icts or re-

dundancy, and to be used also with a high-level modelling

formalism.

In the �ltering domain, Al-Sharer et al. [18] have pro-

posed a tree-based representation of �rewall con�gurations

to check anomalies among �ltering policies. In particular,

the underlying formal model is able to detect an anomaly

between two rules by checking which relationship exists

between them. A similar approach has been proposed by

Cuppens et al. [20], who have included the analysis of NID

con�gurations. The main limitation of these works is that

checking only relationships among rules limits the set of

anomalies that can be detected, while we envision a model

�exible enough to enable operators to de�ne their own

anomalies, in addition to a pre-de�ned set of anomalies to

be checked in every network.

Other solutions have a similar limitation, like Liu et

al. which focuses on building anomaly- and redundancy-

free �rewall con�gurations [21]. Such solutions check the

relationships between rules two by two, while we envision

a complete analysis over the whole set of rules that can

detect anomalies triggered by one, two or many rules.

Regarding the OpenFlow domain, in addition to the

fact that such proposals (e.g. [11], [22]) can perform a late

SDN network analysis, most of them search for con�icts

in OpenFlow con�gurations only, and overlook other kinds

of miscon�guration (e.g. network function ordering). In

this direction, an interesting and promising work was pro-

posed by Prakash et al. [23]. Through a Policy Graph

Abstraction (PGA) to express OpenFlow policies and an

4

algorithm to automatically compose such policy graphs,

the authors are able to determine an appropriate service

order and to resolve policy con�icts, by minimizing oper-

ator interventions.

3. Problem Statement and proposed solution

As claimed above, all the aforementioned policy-oriented

programming languages o�er only some of static checks,

and they miss an underlying formal model for both policy

and anomaly speci�cation. This means that an admin-

istrator can check only a limited and �xed set of errors

and faults over the chosen forwarding policy rules, in case

one of the existing SDN programming languages is used.

Moreover, these checks are not based on mathematically

rigorous models.

Our aim is, thus, to o�er administrators, on one side, a

single mechanism that can check a richer set of anomalies

in their forwarding policy rules and, on the other side,

a mechanism to de�ne their own anomalies to check. A

mathematical foundation is given to these mechanisms by

de�ning a formal language to specify a forwarding policy

and a FOL-based model to specify custom anomalies and

to detect their presence in the policy rules that will be

enforced in the network, can be performed.

In particular, our formal language and model rely on

a middle-level of abstraction between the high-level repre-

sentation adopted by the existing SDN programming lan-

guages and the low-level rules installed into the network

switches (e.g. OpenFlow rules). In this way, both top-

down and bottom-up anomaly analysis.

In the former, administrators specify the preferred for-

warding policy by using one of the SDN programming lan-

guages; such policy will be translated into our formalism

to be checked by our anomaly model. In case no anomalies

are identi�ed, policy rules can be translated into the low-

level con�gurations that will be installed into the network.

The bottom-up analysis, instead, may be applied in

case an administrator changes manually the network con-

�guration (e.g. by adding a new OpenFlow rule in a switch

FlowTable), willing to make sure of the new network con-

�guration correctness. Thus, starting from the low-level

rules installed in the network nodes, these are mapped

into our policy model which is analysed for checking the

presence of anomalies. The literature has proposed many

OpenFlow-oriented veri�cation tools that can detect the

presence of anomalies introduced by switches con�gura-

tions updates. However, these tools can follow only the

bottom-up approach and cannot perform a top-down anal-

ysis.

In our view, an anomaly represents any erroneous and

undesired condition that an administrator wants to detect

and eliminate in a forwarding policy, in order to guarantee

a self-consistent policy and avoid some tra�c forwarding

errors in the network at run-time. We are targeting not

only con�icts among policy rules but also, for example,

anomalies triggered by a single rule, such as the viola-

tion of an ordering constraint in the sequence of functions

speci�ed by a single rule. For example, a network oper-

ator wants to ensure that a NAT is always con�gured to

process tra�c before a �rewall. This means that we have

to detect the anomalous situation when a NAT is located

after a �rewall in the SFC topology. Another example is

when an administrator wants to speed up web services re-

sponse by making sure all web tra�c between users and

their servers traverses a web cache.

In summary, we propose a veri�cation approach that

is: (i) independent from the overhead language adopted

to program the network; (ii) �exible enough to cover a

large set of anomalies (i.e. non only con�icts); (iii) gen-

eral enough to enable the use of the di�erent levels of ab-

straction allowed by the aforementioned languages. Our

model, in fact, can be integrated into any SDN Controller

programmable with a policy-oriented language. The only

thing network operators need is the addition of a language-

speci�c module to map the forwarding policy from the

adopted language into our model or vice-versa. However

5

in this paper we are mainly interested in presenting the

details of the model and its features, while the design of

translation modules is left as future work. In the next

sections, we present our formal model for both policy and

anomalies in more detail, and we provide also a rich set of

anomaly examples.

4. Forwarding policy model

In our model, a forwarding policy (RF) is a set of for-

warding rules (or simply rules), each one putting in rela-

tion tra�c �ows with the SFCs those �ows can traverse

at run-time. A generic forwarding rule r in a forwarding

policy (r ∈ RF) has the following structure:

r = (M, C,P), r ∈ RF (1)

where:

• M is the tra�c �ow managed by the rule, which

belongs to the set of all possible �ows in a network

(M ∈ M);

• C is the set of SFCs thatM can potentially traverse

at run-time and it is a subset of the whole set of

chains instantiated in the network (C ⊆ C);

• P is the set of Properties associated to the �ow M

and to the set of SFCs C that M can potentially

traverse (P ⊆ P).

Note that in our model we suppose that not necessar-

ily all the packets of a �ow M traverse all the con�gured

chains at run-time. In a real scenario, packet forwarding,

in fact, depends also on network function con�guration and

state, thus a �ow can be forwarded to zero, one, many or

all of the allowed chains, and individual packets belonging

to a �ow can traverse di�erent chains. As an example, let

us consider a �owM de�ned as all web tra�c with a given

source address, and let us assume we want this �ow to be

allowed to reach only a collection of web servers, all behind

a load balancer, which selects at runtime the destination

Table 2: List of notations and symbols used in this paper.

r forwarding rule

a anomaly

n
g
i is the g-th network �eld in ri

v
g
i is it is the value associate to n

g
i

cki speci�es the k-th chain in the i-th rule

f
wk
i is the w-th function in cki

M tra�c �ow managed by the rule

C SFCs that M can potentially traverse at run-time

P properties associated to the �ow M

N network �elds

NH packet header �elds

NN high-level names

K Knowledge base

RF forwarding policy

M set of all tra�c �ows

C set of all SFCs

P set of all Properties

K set of all Knowledge

K set of all Anomalies

MN M in name-based representation

M 〈 M in header-based representation

usr_src sender

usr_dst receiver

f_type tra�c type

eth_src ethernet source

eth_dest ethernet dest

eth_src ethernet source

eth_dest ethernet dest

vlan_id vlan id

ip_src ip source

ip_dest ip dest

ip_proto ip proto

port_src port source

port_dest port dest

Ψ Translation function

π(f) the position of the f in the chain

= equivalence

� dominance

� equivalence or dominance

> majority

∼ correlation

⊥ disjointness

⊂ inclusion

∈ membership

[] ordered sequence

{} set

6

web server for each packet, based on its internal algorithm

and state. In this case, we can write a policy that asso-

ciatesM with a set of chains, each one including the load

balancer and one of the destination web servers. In other

cases, the packets of a �ow can even traverse more than

one chain at a time. This happens, for example, with a

mirroring function that replicates the incoming �ow onto

di�erent outgoing chains. Note also that the proposed

model does not consider rule priorities as instead it has

been done in the OpenFlow domain ([11], [22]). This is be-

cause we are working at a higher abstraction level, where

we loose the notion of order among forwarding rules. It

is only when a forwarding policy is translated into Open-

Flow �ow entries that we need a priority in FlowTables.

Another reason for omitting priorities is also that each

forwarding rule speci�es all the allowed chains for a set

of �ows. For this reason, in order to avoid ambiguity in

a policy, forwarding rules should be speci�ed with non-

overlapping tra�c �ows. When this condition is violated,

we have an anomaly in the policy according to our model.

Since network operators should not be limited to use

one particular SDN programming language (e.g. FML,

Merlin, Pyretic) and each language has its own formal-

ism and abstraction level, our model has been designed

with two levels of abstraction for specifying tra�c �ows.

Generally, a �owM is modelled by referring to a set of net-

work �elds. A network �eld n is an element of N (n ∈ N)

and the de�nition of N varies based on the level of ab-

straction we adopt. In particular to model M, we rely

either on a set NH of packet header �elds (i.e. header-

based representation) or on a set NN of high-level names

(i.e. name-based representation). A name is a label de-

�ned by network operators to represent elements in their

networks, such as hosts, network functions, tra�c types,

VLANs and subnets. A set of names can thus be used to

identify a particular tra�c �ow, for example the one of

an SSH connection from a particular user to a particular

external subnet.

The veri�cation work�ow of our model consists of re-

ceiving the forwarding policy (expressed in one of the two

formalisms), performing the veri�cation step, and report-

ing the anomalies detected, otherwise continuing with the

SFC deployment. An additional step is performed in case

policy rules are expressed in the name-based abstraction.

In this case, after the �rst veri�cation step, the high-level

policy is translated into the corresponding header-based

representation and its correctness is checked again. This

two-fold check enables high �exibility in the formalism to

adopt, along with a more complete and early anomaly de-

tection.

In the next sub-sections we present the details of how

tra�c �ows are modelled and how the name-based repre-

sentation can be mapped onto the header-based one.

4.1. Name-based representation

In the name-based representation, NN can be de�ned

as follows:

NN = {usr_src, usr_dst, tr f_type} (2)

where each �eld nn of this set has a de�ned meaning. For

example, in (2), the �elds indicate respectively the sender,

receiver and tra�c type that characterize a tra�c �ow,

but this set can be extended as needed to include more

�elds.

Generally, each network �eld nn has a type, i.e. the

set of values that can be taken by the �eld. A value v has

to be speci�ed for each �eld nn of N in order to identify

a tra�c �ow. In addition to specifying single values, it is

also possible to specify sets of values or even any value,

which is represented by the special symbol ∗. Hence, a

�ow MN in the name-based representation (MN ∈ MN)

is formally de�ned by a set of equalities, one for each nn:

MN = (usr_src = vusr_src, usr_dst = vusr_dst,

tr f_type = vtr f_type)

Examples of values for tr f_type are single values like

�tcp", �udp", �ftp", �ssh" or sets of names like �{http,

7

https}"3, while usr_src and usr_dst can indicate for ex-

ample users, hosts, subnets, VLANs, etc... (e.g., �User1",

�Department1" and �Turin").

4.2. Header-based representation

We also provide another way to model a tra�c �owM,

where network �elds refer to standard packet header �elds.

In particular, our header-based representation of a �ow

MH currently relies on a set NH of OpenFlow �elds nh,

but of course this set can be extended too. More precisely,

NH is currently de�ned as follows:

NH = {eth_src, eth_dst, eth_type, vlan_id,

ip_src, ip_dst, ip_proto, port_src, port_dst}

Similarly to theMN model, each nh is characterised by

a type and, in order to specify a �ow, it must be assigned

either a single value or a set of values or all values (∗). A

set of values can be expressed as a range in case the type is

a totally ordered set. For example, in a �ow speci�cation

we can use ip_dst = 8.8.8.0/24 or port_dst = [80, 100],

because the types of IP address and port number �elds are

totally ordered sets of values, but if we prefer we can also

use single values (e.g., ip_dst = 8.8.8.151 or port_dst =

80).

Hence, a �owMH ∈ MH is formally de�ned as follows:

MH = (eth_src = veth_src, eth_dst = veth_dst,

eth_type = veth_type, vlan_id = vvlan_id,

ip_src = vip_src, ip_dst = vip_dst,

ip_proto = vip_proto, port_src = vport_src,

port_dst = vport_dst)

Our model supports the translation of the name-based

representation into the header-based one. We suppose this

process is performed by an additional entity, named policy

engine, similar to the one provided at runtime by program-

ming languages based on names (e.g. FML).

3tr f_type can be initialized with any other name of well-known

protocols.

Our policy engine uses a knowledge base K ⊆ K that is

a set of mappings from high-level names to corresponding

low-level values. Formally, K is a set of entries k, each one

being a set of name-value pairs, where the value paired

with "name" is the high-level name mapped by the entry

and the other values are the corresponding low-level values.

The entries k ∈ K can include di�erent low-level values

according to the type of high-level name they map.

The algorithm used by the policy engine to map a

name-based �ow speci�cation MN ∈ MN into its corre-

sponding header-basedMH ∈ MH using a knowledge base

K ⊆ K is formally represented by a function Ψ :

Ψ : K ×MN 7→ MH, Ψ (K,MN) =MH

This function translates each �eld of MN into one or

more �elds ofMH . Note that the header-based �elds into

which each name-based �eld is translated can depend on

the knowledge base. In our speci�c setting, they depend

on the types (client or server) of the end users involved.

4.3. SFC representation

As speci�ed in (1), a forwarding rule also includes the

service chains (i.e., SFCs) C that can be traversed by the

�ow M. In detail, C is the set of chains c enforced by a

rule, which is, in turn, a sub-set of all possible chains C:

C = {c1, c2..., cn}, ck ∈ C ⊆ C

Each chain ck ∈ C is represented in our model as an or-

dered sequence of network functions ck = [f 1k , f 2k , ..., f mk].

Each function f wk in a chain ck is one of the functions

present in the network and it is modelled by the pair:

f wk =< f_idwk , f_typewk >

where f_idwk is the function identi�er and f_typewk is

the function type, which necessarily has to belong to the

catalogue of network functions (F) o�ered by the opera-

8

tor4. Thus we model a network chain as:

ck =[< f_id1k , f_type1k >, ..., < f_idmk , f_typemk >],

f_typewk ∈ F

This approach o�ers a level of detail in modelling SFCs

higher than the one o�ered by existing formalisms. The

SDN programming languages that explicitly manage ser-

vice chains (e.g. Merlin, FatTire) generally indicate just

the types of functions, without being able to consider their

real instances deployed into the network. Thanks to our

approach, instead, network operators can describe their

networks more precisely and perform more accurate checks.

To summarise, given a forwarding rule r, its name-based

representation is:

r = (MN, C) = ((usr_src = vusr_src, usr_dst = vusr_dst,

tr f_type = vtr f_type), {[< f_id11, f_type11 >, ...], ...})

while its header-based representation is:

r = (MH, C) = ((eth_src = veth_src, eth_dst = veth_dst,

eth_type = veth_type, vlan_id = vvlan_id, ip_src = vip_src,

ip_dst = vip_dst, ip_proto = vip_proto, port_src = vport_src,

port_dst = vport_dst), {[< f_id11, f_type11 >, ...], ...})

4.4. Properties representation

A properties set P is modelled by referring to a set

of Properties. In our model, the properties enable net-

work administrators to specify several requirements useful

to mange system resource and/or quality of service (QoS).

In particular, a property p (p ∈ P) is a kind of resource

allocated to a speci�c tra�c �ow M. Possible examples

4In this paper, we use abbreviations in the formulas to indicate

the type of network function involved in the network chains. In par-

ticular, we use these abbreviations in the next examples: HOST (End

Host), SERVER (Web Server), FW (�rewall), NAT (network address

translator), DPI (deep packet inspection), MN (monitor), LB (load-

balancer), SPAM (anti-spam), CACHE (web-cache), IDS (intrusion

detection system), VPN (virtual private network) and L7_FW (layer

7 �rewall).

of properties, such us Bandwidth and VNF node compu-

tational power, have been listed in [24, 25].

P is thus formally de�ned by a set of equalities between

a property p and its numerical value v.

P = (p1 = vp1
, p2 = vp2

, ..., pn = vpn)

We considered the value vp as a minimum value. This

means that for the tra�c �ow M and for the C at least

the value vp has to be allocated for the system resource

indicated by p.

It is also possible to specify any value for a property,

by means of the symbol ∗ (i.e., no requirements about

minimum quantity of resources are speci�ed).

The next sections �rst introduce the relational opera-

tors that can be used for building anomaly speci�cations.

Such operators enable pairwise comparisons between the

elements that compose a forwarding rule or that belong

to di�erent rules. We then introduce the anomaly model,

which is a FOL formula that involves a set of pairwise

comparisons.

To help the readers, from now on, in this paper we

indicate the elements of a forwarding rule ri as follows:

• M is the tra�c �ow speci�cation, regardless if its be-

ing name-based or header-based (i.e. MN andMH);

• Mi, Ci and Pi are respectively the �ow, the SFCs,

and the properties dictated by rule ri;

• ni is a generic network �eld of rule ri;

• ngi is the g-th network �eld in ri and v
g
i is its value;

• cki speci�es the k-th chain in the i-th rule;

• f wk

i is the w-th function in cki .

We use this notation in case we are referring to di�erent

forwarding rules (e.g., ri and rj), while in case we are indi-

cating a single rule, we do not use any index as subscript

to indicate the rule itself r and its elements.

9

5. Relational operators for anomaly speci�cation

In order to enable the speci�cation of anomalies, the

model o�ers a set of relational operators. These operators

enable the speci�cation of pairwise comparisons (x ∈ X),

each one involving network �elds, SFCs and proprieties be-

longing to the same or to di�erent rules. Formally, these

comparisons are predicates that let us �nally identify sets

of matching forwarding rules. More precisely, if x is a

comparison that involves �elds and SFCs belonging to the

same generic rule r, x can be regarded as a function of

r which returns the result (true or false) of the compari-

son evaluated on r. Moreover, x identi�es the set of rules

r such that x(r) is true. If instead x involves �elds and

SFCs belonging to two di�erent rules ri, rj , then x can be

regarded as a function of two variables ri, rj which returns

the result (true or false) of the comparison evaluated on ri

and rj . Moreover, x in this case identi�es the set of pairs

of rules (ri, rj) such that x(ri, rj) is true.

Note that for simplicity, in the following subsection, we

do not describe the operators used to evaluate properties.

This is because we use the same operators used for numeric

values (i.e., =,,, >, <).

5.1. Network �eld operators

We have de�ned a set of relational operators to com-

pare network �elds in the name-based representation and

in the header-based one. Even though the value-type of a

network �eld may depend on which one of the two repre-

sentations is used, the meaning of our relational operators

remains unchanged.

In order to perform a pairwise comparison between

network �elds and, in turn, to check when one or more

forwarding rules match an anomaly, we need to establish

inclusion relationships among network �elds. The inclu-

sion relationships involving sets of values and single values

derive naturally from the set inclusion concept. For exam-

ple, in the header-based representation, a range of network

addresses includes single IP addresses (similarly for a port

range and single port numbers).

However, in the name-based abstraction, where sym-

bolic names are used, we may need to extend the inclusion

relationship by also considering the meaning of symbolic

names. For example, for the tr f_type �eld, which speci-

�es one or more network protocols, we suppose to use the

native inclusion relation among the network protocols over

the di�erent levels of the ISO/OSI stack. In particular, a

network protocol of a stack layer includes a set of protocols

in the above layer and it is also included by a protocol of

the underlying layer. For example, the Layer4 TCP pro-

tocol includes many Layer7 protocols (e.g., HTTP, FTP)

and it is included by the Layer3 protocol IP. For what

concerns instead usr_src and usr_dst, we suppose that a

user name can be associated to a host name, which in turn

belongs to a subnet: for example, the user �Alice" is as-

sociated to the host name �HostA" that is included in the

sub-net �Department1". These relations that bind names

have to be speci�ed by the operator and are added to the

knowledge base of the policy engine, so that the veri�er

can take them into account.

The supported operators are listed below.

• equivalence (=): two �elds are equivalent if the

value(s) they can take (in the �ows of the rules they

belong to) are the same, even though they are di�er-

ent �elds. For example, if MH includes port_src =

80 and port_dst = 80, then, for rule r, which in-

cludes MH , we have port_src = port_dst. While,

if MN has usr_src = Alice and usr_dst = Alice,

similarly to the previous case, usr_src = usr_dst.

Of course, equivalence can also be applied to �elds

belonging to the �ows of di�erent rules;

• dominance (�): a �eld dominates another one if it

can take all the values that can be taken by the other

�eld. For example, if port_srci = [1024, 2048] and

port_srcj = [1024, 1500], then port_srci � port_srcj .

10

Another example is if tr f_typei = {http, https} and

tr f_typej = {http}, then tr f_typei � tr f_typej .

Inclusion relations over names are also taken into

account. For example, let us suppose tr f_typek =

{tcp} and tr f_typej = {http}, then tr f_typek �

tr f_typej thanks to the above mentioned inclusion

relation over protocols. Generally, this operator makes

sense for �elds that can take sets of values rather

than single values;

• majority (>): this operator can be applied only to

�elds that are speci�ed to take single numeric val-

ues. In this case, a network �eld is greater than

another one if their values have this relation (e.g.,

if port_src = 70001 and port_dst = 65535 then

port_src > port_dst);

• correlation (∼): two �elds are correlated if they

share some values but none dominates the other.

Generally, this operator makes sense for �elds that

can take sets of values rather than single values. For

example, if port_srci = [1024, 1500] and port_srcj =

[0, 1100], then port_srci ∼ port_srcj . Similarly,

if tr f_typei = {pop3, imap, snmp} and tr f_typej =

{ f tp, snmp}, then tr f_typei ∼ tr f_typej ;

• disjointness (⊥): two network �elds are disjoint

if they do not share any value. For instance, if

port_srci = [1000, 1024] and port_srcj = [1100, 8080],

then port_srci ⊥ port_srcj . Similarly, if tr f_typei =

{http, https} and tr f_typej = {imap, imaps}, then

trd_typei ⊥ tr f_typej .

The model also o�ers the negative form of the afore-

mentioned operators, like non-disjointness (6⊥ - two �elds

are either equal, correlated or one dominates the other)

and non-equivalence (, - two �elds can be correlated, dis-

joint or one can dominate the other).

Also, the above operators can be applied not only to

compare two �elds but also �elds and single values or �elds

and sets of values with the obvious meaning.

Moreover, combinations of operators are allowed. This

is the case of equivalence or dominance (� - i.e., a network

�eld is equivalent to or dominates another one), equiva-

lence or correlation (' - i.e., a network �eld is equivalent

or correlated to another one) and equivalence or majority

(≥ - i.e., a network �eld is equivalent to or greater than

another �eld).

5.2. SFC operators

As already mentioned, here we de�ne new operators,

in order to enable comparisons that involve SFCs. First,

we introduce the following notation to represent ordered

sequences (i.e., SFCs) and unordered sets of network func-

tions:

• ordered sequence ([]): this notation was already

introduced for the speci�cation of SFCs inside for-

warding rules. It is also used to represent ordered

sequences of network functions in an anomaly spec-

i�cation. Via the wild card character *, the pro-

posed model supports the speci�cation of unidenti-

�ed functions, i.e. functions for which only the type

is speci�ed, not the identity. For example, a chain

composed of a NAT followed by a �rewall can be

speci�ed generically as [< ∗, N AT >, < ∗, FW >];

• set ({}): this notation can be used to specify un-

ordered collections of functions. For example, a chain

including an application �rewall (L7_FW) and a

DPI, not necessarily in this order, can be speci�ed

as {< ∗, L7_FW >, < ∗,DPI >}.

For what concerns the comparison between SFCs that

can belong to the same forwarding rule or to di�erent rules,

we extend the current literature by enabling pairwise com-

parisons between: (i) two chains of either the same or

di�erent rules; (ii) a chain and an ordered sequence of

functions (i.e., a chain not managed by a forwarding rule);

(iii) a chain and a set of functions. In some cases, the same

operators can be used for di�erent types of comparisons,

11

the exact meaning of the comparison being determined by

the types of the compared elements.

In case of comparison between two chains (of the same

or of di�erent rules - e.g., ck and cl) or a chain and an

ordered sequence (e.g., ck and [f 1, f 2, ..]), the following

operators can be used:

• equivalence (=): two chains are equivalent if they

are the same ordered sequence of network functions

(e.g., if ck = [f 1, f 2] and cl = [f 1, f 2], then ck = cl);

• dominance (�): a chain dominates another one

when it contains the second chain as a subsequence

and the two chains are not equivalent (e.g., if ck =

[f 1, f 2, f 3] and cl = [f 2, f 3], then ck � cl);

• correlation (∼): two chains are correlated if none

dominates the other, but they share an ordered sub-

chain (e.g., if ck = [f 1, f 2, f 3] and cl = [f 4, f 2, f 3],

then ck ∼ cl);

• disjointness (⊥): two chains are disjoint if they

do not have any sub-chain in common (e.g., if ck =

[f 1, f 2, f 3] and cl = [f 4], then ck ⊥ cl).

The comparison between a chain and an unordered set

of functions (i.e., ck and { f 1, f 2, ...}), instead, can involve

the following operators:

• correlation (∼): a chain is correlated to a set of

functions if it contains some of those functions (e.g.,

ck = [f 1, f 2, f 3] ∼ { f 4, f 2, f 3});

• disjointness (⊥): a chain and a set of functions

are disjoint if they do not share any function (e.g.,

ck = [< spam, SPAM >, < f w, FW >, < dpi,DPI >] ⊥

{< mn, MN >});

• inclusion (⊂): a set of non-ordered functions is in-

cluded into a chain if all of its functions are part of

the chain (e.g., if ck = [< spam, SPAM >, < nat, N AT >

, < f w, FW >], then {< nat, N AT >} ⊂ ck).

It is interesting to note that in some particular cases,

the inclusion and dominance operators take the same mean-

ing. Let us consider, for example, that one wants to specify

the condition that a network function f belongs to a chain

c. This condition can be expressed either by the com-

parison { f } ⊂ c or by c � [f]. However, it is better to

have di�erent operators, in order to cover a richer set of

anomalies and keep expressions as simple as possible. For

example, if the model would support only the dominance

operator, a network operator could specify that m func-

tions f 1, f 2,..., f m, not necessarily in this order, belong to

a SFC, by specifying: c � [f 1] ∧ c � [f 2] ∧ ∧ c � [f m]

By also supporting the inclusion operator (⊂), we then

make the formula syntax less complex and less likely to be

mistaken: { f 1, f 2, ..., f m} ⊂ c

For SFC comparisons too, the model o�ers the neg-

ative forms of the aforementioned operators (e.g., non-

correlation (/), non-dominance (�), etc.), and some com-

binations of operators (i.e., equivalence or dominance (�),

equivalence or correlation (') and inclusion or equivalence

(⊆)). The support of negative and combined operators en-

riches the expressiveness of our model in describing the

anomalies to check. Even though network operators could

exploit existing formalisms like Merlin and FatTire for

specifying forwarding policies, they will miss the high-level

�exibility o�ered by our model in de�ning the anomalies to

check. A feature we o�er is the possibility to de�ne both a

positive and a negative form of an anomaly (e.g., �Traffic

from User1 passes through FW" or �does not pass

through FW").

In order to further enlarge expressivity, we de�ne also

another new operator that lets us specify comparisons re-

lated to the position of a function within a service chain:

• π(f , c) returns the position of function f within chain

c, if { f } ⊆ c, or 0 otherwise. Let us consider for

example c = [< nat, N AT >, < f w, FW >]. The NAT

position inside c is π(< nat, N AT >, c) = 1.

12

Finally, the model also allows one to check the mem-

bership of a chain ck within a set of chains Ci:

• membership (∈): this boolean operator returns

true if a chain ck belongs to the set of chains Ci of the

forwarding rule ri and false otherwise. For example,

let us consider ck = [< spam, SPAM >, < f w, FW >

, < dpi,DPI >] and C = {[< nat, N AT >, < f w, FW >

], [< spam, SPAM >, < f w, FW >, < dpi,DPI >]},

then c ∈ C is true. The model supports also the

negative form of this operator (i.e, <).

6. Anomaly model

Formally, an anomaly a ∈ A is a predicate de�ned on

one or more rules, where A is the whole set of forward-

ing anomalies (or simply anomalies) de�ned by a network

operator.

For example, if r is a variable that represents a rule,

an anomaly can be formally represented by a function a(r)

that returns the boolean true if the anomaly is present in

the single rule r and false otherwise. Similarly, if ri and

rj are two rules, an anomaly can be de�ned as a func-

tion a(ri, rj) that returns the boolean true if the anomaly

is present in the pair of rules (ri, rj). More generally, an

anomaly that involves n rules r1, r2, ..., rn, can be repre-

sented by a function a(r1, r2, ..., rn) that returns the boolean

true if the anomaly is present in this set of rules and false

otherwise. A policy is anomaly-free if :

∀a ∈ A a(r1, ..., rn) = f alse ∀(r1, . . . , rn) ∈ RF×· · ·×RF |n ≥ 1

according to the arity of a.

In detail, an anomaly is formally speci�ed by a set

of Horn clauses that involve pairwise comparisons. Each

clause is a conjunction of positive comparisons xi on rule

�elds and chains, which implies the presence of the anomaly

in a single rule or in a pair of rules. Hence, the structure

of Horn clauses that de�ne anomalies is as follows:

x1 ∧ x2 ∧ ... ∧ xq → a(r), a ∈ A

x1 ∧ x2 ∧ ... ∧ xq → a(r1, ..., rn), a ∈ A
(3)

lb_a

ids_a

ids_b

fw lb_b

Web
Servers

server_a

End
Hosts

host_a

SUBNET
130.192.225.0/24

SUBNET
8.8.8.0/24

Figure 1: Topology example.

In practice, the intersection of the sets of rules iden-

ti�ed by the comparisons that occur in the left hand side

of the formula is the set of rules in which the anomaly is

present.

In order to be �exible enough, the model supports also

existential (∃) and universal (∀) quanti�cation over SFCs

in the left hand side of the Horn clauses to specify that

some comparisons have to be satis�ed by at least one or

by all the SFCs of a forwarding rule5.

An example of anomaly that refers to pairs of rules and

that uses universal quanti�cation is the rule duplication

anomaly, which occurs when a policy includes two identi-

cal rules. This anomaly can be speci�ed as the anomaly

that is true when the pairwise equivalence between all the

elements of two rules expressed in the header-based repre-

sentation (ri and rj), including all the SFCs, is satis�ed:

eth_srci = eth_srcj ∧ eth_dsti = eth_dstj∧

eth_typei = eth_typej ∧ vlan_idi= vlan_idj∧

ip_srci = ip_srcj ∧ ip_dsti = ip_dstj∧

ip_protoi = ip_protoj ∧ port_srci = port_srcj∧

port_dsti = port_dstj ∧ cki ∈ Cj, ∀cki ∈ Ci∧

clj ∈ Ci, ∀clj ∈ Cj ∧ bani = banj ∧ memi = memj∧

rami = ramj ∧ ncpui = ncpu j → Duplication(ri, rj)

(4)

5In this model, when we quantify universally on pairs of chains,

we are considering implicitly pairs of di�erent chains. For example,

in case we check the correlation among the SFCs in a forwarding rule,

we can specify cki ∼ cli , ∀cki , cli ∈ Ci to check only pairs of di�erent

chains, without indicating explicitly that k , l.

13

Since we aim at checking the presence of anomalies

among forwarding rules expressed both in the name-based

and in the header-based abstraction, our model needs to

express anomalies with reference to both abstraction lev-

els. To better understand how anomalies are expressed

in both formalisms, let us consider another example of

anomaly with reference to Figure 1. A network operator,

who wants to make sure all web tra�c between user Alice

and Google servers traverses a �rewall, can de�ne a cus-

tom anomaly triggered if such web tra�c may not traverse

a �rewall. This anomaly, which involves a single rule, is

expressed in the name-based representation as

usr_src = Alice ∧ usr_dst = Google ∧ tr f_type = http∧

{< ∗, FW >} 1 ck, ∀ck ∈ C → webNoFirewall(r)

while in the header-based representation, if we assume Al-

ice has IP address 130.192.225.116 and Google servers have

IP 8.8.8.0/24, the same anomaly is represented as

eth_src =∗ ∧eth_dst =∗ ∧eth_type = 0x0800 ∧ vlan_id =∗

∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24∧

ip_proto = 0x06 ∧ port_src =∗ ∧port_dst = 80∧

{< ∗, FW >} 1 ck, ∀ck ∈ C → webNoFirewall(r)

As anomaly speci�cations are FOL formulas with pred-

icates de�ned over policy rules, they inherit the standard

formal semantics of FOL formulas, while the semantics of

predicates is determined by the semantics of the relational

operators we have de�ned. The presence of anomalies can

be detected in a policy speci�cation by means of general

purpose tools such as automated theorem provers or pro-

duction rule systems, as it will be shown in Section 7. The

correctness of veri�cation results depends on the correct-

ness of such tools, which is generally assumed.

6.1. Anomaly Types

In the this subsection, we identify a number of types

of anomalies, giving examples for each of them. Some of

these examples can be considered as part of the set of pre-

de�ned anomalies. Note that the pre-de�ned anomalies

that we present as examples are not exhaustive, since we do

not claim to cover the whole set of anomalies that arise in

the SFC domain. The main aim of this paper is to enable

the formal speci�cation of policy rules and anomalies and

the detection of a consistent number of anomalies as early

as possible. Note also that the proposed anomalies do

not include those anomalies that are combinations of the

presented types. Of course, the model is able to treat and

detect also this kind of anomalies. However, we preferred

to limit our presentation to these type of anomalies, and

encourage network operators to build customized ones.

The types of anomalies that we are proposing are based

mostly on the object of comparison rather than on the

comparison operator occurring in the formula. For this

reason, in the following formulas that we use for de�ning

anomaly types, we leave the operator unspeci�ed and we

indicate it generically by the ? symbol.

6.1.1. Single-Field anomalies

The anomalies in this class are those that involve only

comparisons between single network �elds and speci�c val-

ues. Thus, following the generic anomaly structure de�ned

in (3), a comparison x that composes a single �eld anomaly

is expressed as: x = n ? v

Where the symbol v represent any well-formed values

that it may be compared with the network �eld.

Examples of anomalies of this class are the ones trig-

gered when the sender user refers to a non authorized name

(e.g. a name �u� that is in the list of unauthorized names

�FakeUsers") or when port numbers are grater than their

maximum values. Such kind of anomalies belong to the

set of pre-de�ned anomalies, since they are mistaken pol-

icy speci�cations in every network topology. They can be

expressed by the following formulas:

usr_src = u|u ≺ FakeUser → BadUserSrc(r) (5)

port_src > 65535→ BadPortSrc(r) (6)

port_dst > 65535→ BadPortDst(r) (7)

14

6.1.2. Field-Pair anomalies

A Field-Pair anomaly is one that contains only pairwise

comparisons of di�erent network �elds belonging to the

same forwarding rule, like source and destination IP. Thus

a generic Field-Pair anomaly is one expressed by means of

comparisons that take the following form:

x = no ? np

An example of Field-Pair anomaly is when source and des-

tination users (or IP addresses) are the same, which is

speci�ed by means of the following formulas:

usr_src = usr_dst → BadUserName(r) (8)

ip_src = ip_dst → BadIpAddress(r) (9)

Of course, these are other examples included in the pre-

de�ned set of anomalies supported by our model.

6.1.3. Node Traversal anomalies

These anomalies are those that arise when a tra�c �ow

can (or cannot) traverse one or more network functions.

In this model, we specify the tra�c �ow by comparing

network �elds with speci�c values (i.e., x = n ? v).

Hence, such anomalies are expressed by comparing net-

work �elds with speci�c values and chains with ordered or

non-ordered sets of functions. The forms of comparisons

in these anomalies are:

x = n ? v, x = c ? [f 1, f 2, ..., f m],

x = c ? { f 1, f 2, ..., f m}

where c is a generic chain speci�er which can be existen-

tially or universally quanti�ed. In order to identify when

a custom anomaly like �Web traffic does not pass

through an IDS" is triggered in a case scenario like the net-

work shown in Figure 1, we can use the following anomaly

expressed in the two available representations:

usr_src = Alice ∧ usr_dst = Google ∧ tr f_type = {http}

∧ ck � [< ∗, IDS >], ∀ck ∈ C → NoWeb2IDS(r)

eth_src = ∗ ∧ eth_dst = ∗ ∧ eth_type = 0x0800 ∧ vlan_id

= ∗ ∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24∧

ip_proto = 0x06 ∧ port_src = ∗ ∧ port_dst = 80∧

ck � [< ∗, IDS >], ∀ck ∈ C → NoWeb2IDS(r)

6.1.4. Node Ordering anomalies

this class contains anomalies that are violations of or-

dering constraints on the functions traversed by a �ow.

Such constraints can be expressed in terms of the posi-

tion of the w-th network function within a chain c (i.e.,

π(f w, c)) and they may be required to hold for at least one

or for all the chains of the forwarding rules that manage

that �ow. Of course, in order to express the �ow for which

the constraint is checked, network �eld comparisons can

be used. Hence these anomalies are speci�ed by formulas

including the following comparisons:

x = n ? v, x = π(f w, c) ? π(f q, c) with f w, f q ∈ c

An example is when we want to ensure that a NAT is al-

ways con�gured to process tra�c before a �rewall. This

means that we have to detect the anomalous situation

when a NAT is located after a �rewall in the SFC topol-

ogy, which can be done by the following anomaly de�nition

based on the position operator:

usr_src =∗ ∧usr_dst =∗ ∧tr f_type =∗ ∧

π(< ∗, N AT >, c) > π(< ∗, FW >, c),

∃c ∈ C → Nat A f terFW(r)

the equivalent formula in the header-based representation:

eth_src =∗ ∧eth_dst =∗ ∧eth_type =∗ ∧vlan_id =∗ ∧

ip_src =∗ ∧ip_dst =∗ ∧ip_proto =∗ ∧port_src =∗ ∧

port_dst =∗ ∧π(< ∗, N AT >, c) > π(< ∗, FW >, c),

∃c ∈ C → Nat A f terFW(r)

(10)

15

Furthermore, another example is when we want to en-

sure that all tra�c to web servers passes through web

caches. The formula can be expressed as follows in the

header-based representation:

eth_src =∗ ∧eth_dst =∗ ∧eth_type = 0x0800

∧ vlan_id =∗ ∧ip_src =∗ ∧ip_dst =∗ ∧

ip_proto = 0x06 ∧ port_src =∗ ∧port_dst = 80∧

π(< ∗, SE RVE R >, c) < π(< ∗,CACHE >, c),

∃c ∈ C → ServerBe f oreCache(r)

(11)

6.1.5. Chain Constraint anomalies

This category includes anomalies that can be detected

by comparing the chains of a set with one another. (e.g.,

some chains in a forwarding rule are equal). Thus such

anomalies contain comparisons between SFCs (ck ? cw)

that belong to the same forwarding rule, and network �elds

comparisons to identify the �ow (n ? v or no ? np):

x = n ? v, x = no ? np, x = ck ? cl

As an example, let us consider a network graph where

that a web tra�c is balanced on two chains (Figure 1) and

let us assume that we want to require that web tra�c is

processed either by the same (i.e., equivalent) chains or

by a similar (i.e. correlated or dominated) chains. This

means that the two chains must not be disjoint and we can

detect this anomalous situation by means of the following

header-based formula:

eth_src =∗ ∧eth_dst =∗ ∧eth_type = 0x0800∧

ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24∧

ip_proto = 0x06 ∧ port_src =∗ ∧port_dst = 80∧

vlan_id =∗ ∧ck ⊥ cl, ∀ck, cl ∈ C → Dis jointChains(r)

6.1.6. Sub-Optimization anomalies

Such anomalies aim at detecting under-optimizations

of the policy speci�cation and thus situations where more

forwarding rules can be substituted by a single rule. In

order to detect such anomalies, it is necessary to discover

the forwarding rules that have the same sets of chains and

properties. Hence the anomalies in this class include the

following comparisons:

x = noi ? np
j x = cki ∈ Cj, ∀cki ∈ Ci ∧ clj ∈ Ci, ∀clj ∈ Cj

Under this class, we include the duplication anomaly de-

�ned in (4). The following formulas are another example,

where we detect those forwarding rules that refer to com-

pletely disjoint tra�c �ows but that enforce the same set

of SFCs:

usr_srci , usr_srcj ∧ usr_dsti , usr_dstj∧

tr f_typei ⊥ tr f_typej ∧ cki ∈ Cj, ∀cki ∈ Ci∧

clj ∈ Ci, ∀clj ∈ Cj ∧ bani = banj ∧ memi = memj∧

rami = ramj ∧ ncpui = ncpu j → SubOptimizedFlows(ri, rj)

eth_srci , eth_srcj ∧ eth_dsti , eth_srcj∧

eth_typei , eth_typej ∧ vlan_idi , vlan_idj∧

ip_srci ⊥ ip_srcj ∧ ip_dsti ⊥ ip_dstj∧

ip_protoi , ip_protoj ∧ port_srci ⊥ port_srcj∧

port_dsti ⊥ port_dstj ∧ cki ∈ Cj, ∀cki ∈ Ci∧

clj ∈ Ci, ∀clj ∈ Cj ∧ bani = banj ∧ memi = memj∧

rami = ramj ∧ ncpui = ncpu j → SubOptimizedFlows(ri, rj)

6.1.7. Con�icting anomalies

In our model, con�icts arise when two forwarding rules

manage the same tra�c �ow but they do not specify the

same sets of chains. If the two rules are installed into the

network, inconsistencies in the tra�c forwarding can be

generated at run-time. Hence a formula for detecting this

kind of anomaly includes the following comparisons:

x = noi ? np
j

x = cki ∈ Cj, ∀cki ∈ Ci x = cki < Cj, ∀cki ∈ Ci

x = cki ∈ Cj, ∃cki ∈ Ci x = cki < Cj, ∃cki ∈ Ci

(12)

The comparisons x that compose a con�icting anomaly

have been selected so as to enable the speci�cation of dif-

16

ferent types of relationships between two sets of chains.

An example of relationship is the case in which two sets

Ci and Cj contain the same SFCs or also when Ci contains

all the chains of Cj as subset. Another case is when Ci

and Cj do not have any chain in common. This means

that the policy contains two forwarding rules that forward

the same tra�c �ow to di�erent sets of SFCs. This kind

of con�ictual anomaly can be detected for example by the

following formula:

eth_srci = eth_srcj ∧ eth_dsti = eth_dstj∧

eth_typei = eth_typej ∧ vlan_idi = vlan_idj∧

ip_srci = ip_srcj ∧ ip_dsti = ip_dstj∧

ip_protoi = ip_protoj ∧ port_srci = port_srcj∧

port_dsti = port_dstj ∧ cki < Cj, ∀cki ∈ Ci∧

clj < Ci, ∀clj ∈ Cj → Dis jointChains(ri, rj)

(13)

Note that some cases of �con�icting" forwarding rules

according to the anomaly model (12) may not be consid-

ered by the network operators as con�icting anomalies.

This is because this kind of anomaly depends on the net-

work topology and on what the operator considers erro-

neous for her network. Let us consider the case of two

forwarding rules ri and rj to forward the tra�c between

the end-host h_a and the web server ws_a:

ri = ((eth_src =∗, eth_dst =∗, eth_type =∗, vlan_id =∗,

ip_src = 130.192.225.11, ip_dst = 8.8.8.11, ip_proto = 0x06,

port_src =∗, port_dst =∗), {[< h_a,H >, < vpn_a,VPN >,

< f w, FW >, < ws_a,WS >], [< h_a,H >, < vpn_b,VPN >,

< dpi,DPI >, < f w, FW >, < ws_a,WS >]}

ban = 100MB/s,mem = ∗, ram = 16GB, ncpu = 5)

rj = ((eth_src =∗, eth_dst =∗, eth_type =∗, vlan_id =∗,

ip_src = 130.192.225.11, ip_dst = 8.8.8.11, ip_proto = 0x06,

port_src =∗, port_dst =∗), {[< h_a,H >, < vpn_a,VPN >,

< f w, FW >, < ws_a,WS >], [< h_a,H >, < vpn_b,VPN >,

< dpi,DPI >, < f w, FW >, < wsa,WS >], [< h_a,H >,

< vpn_a,VPN >, < mn, MN >, < ws_a,WS >]}

ban = 100MB/s,mem = ∗, ram = 16GB, ncpu = 5)

In this example, rj contains an additional SFC with respect

to ri, but this kind of policy (even if it is ambiguous and

non-optimized) may not be a con�ict because, for example,

each of those chains contains a VPN functionality and the

operator does not want to be advertised in such cases.

In this paper, we consider as pre-de�ned con�ictual

anomaly only the case when the two forwarding rules do

not have any SFC in common, as de�ned in (13). All

the other possible con�ictual anomalies have to be speci-

�ed by the network operators and are classi�ed as custom

anomalies (Table 4). An example of operator-de�ned con-

�icting anomaly could be the case of a tra�c �ow that is

managed by two forwarding rules that enforce �correlated"

sets of SFCs (i.e., the two sets share some SFCs but they

are not the same):

eth_srci = eth_srcj ∧ eth_dsti = eth_dstj∧

eth_typei = eth_typej ∧ vlan_idi = vlan_idj∧

ip_srci = ip_srcj ∧ ip_dsti = ip_dstj∧

ip_protoi = ip_protoj ∧ port_srci = port_srcj∧

port_dsti = port_dstj ∧ ∃cki ∈ Ci, c
k
i < Cj∧

∃cyi ∈ Ci, c
y
i ∈ Cj ∧ ∃clj ∈ Cj, c

l
j < Ci

∃cpj ∈ Cj, c
p
j ∈ Ci → CorrelatedChains(ri, rj)

(14)

6.1.8. Global Properties anomalies

These anomalies arise when any �ow violates some re-

quirements speci�ed by the network administrator about

properties. Thus, a comparison x that is used to express

this type of anomaly is takes the form: x = p ? vp

An example of anomaly belonging to this class is when

the network administrator wants that any �ow consumes

less than 1000 Mbit/s of bandwidth: in this case, any pol-

icy requiring more than 1000 Mbit/s for a �ow is anoma-

lous. Such anomalies are considered as custom anomalies.

17

6.1.9. Speci�c Properties anomalies

These anomalies are speci�c cases of the previous ones.

They arise when one or more speci�c chain (i.e. one that

contains a speci�c functions) traversed by M, violates

some requirements speci�ed by the network administra-

tor. The forms of comparisons in these anomalies are:

x = n ? v, x = p ? vp,

x = c ? [f 1, f 2, ..., f m],

x = c ? { f 1, f 2, ..., f m}

These anomalies belong to custom anomalies.

An example is when all chains traversed by a http �ow,

does not have more than 1TB of Memory allocated for that

�ow. The violation of this requirement can be formalized

as the following anomaly:

tr f_type = {http} ∧ ck ∈ [< ∗,CDN >], ∀ck ∈ C∧

mem < 1T B→ CDNmemory(r)

A forwarding rule like the following one is a�ected by the

above anomaly:

r =((usr_src =∗, usr_dst =∗, tr f_type = http),

[< f wa, FW >, < cdna,CDN >], (ban = 100MB/s,

mem = 2T B, ram = 16GB, ncpu = 3))

7. Implementation and performance

In order to evaluate our approach, we have implemented

a Java-based prototype and tested its performance under

di�erent scenarios. We have run our tests on an Intel

i7-4600U@2.10GHz workstation with 8 GB of RAM. The

main purposes of this experimental evaluation were: (i)

validate our model in a real-case scenario; (ii) identify the

main factors that in�uence the veri�cation performance;

and �nally (iii) evaluate veri�cation time as a function of

the most in�uential factors.

7.1. Implementation

Our Java-based prototype exploits Drools [26], as ver-

i�cation engine. Drools is a Rule-Based System that uses

the ReteOO algorithm to perform the inferences [27]. A

Rule-Based System is a Knowledge-Based System that en-

codes information in the form of rules. Listing 1 shows the

structure of generic rules in the Drools language.

In our prototype, every Drools rule represents an anomaly,

while forwarding rules are implemented as Java objects

against which Drools rules are checked.

when

// cond i t i ons (query language)

then

// ac t i ons (java)

end

Listing 1: Structure of a rule statement in the Drools language.

As an example, Listing 2 contains a rule used to check if

a forwarding rule presents a wrong source port de�nition

(i.e., there is a source port anomaly).

1ru l e "SRC Port anomaly"

2// Rule : wrong source por t d e f i n i t i o n

3when

4f : ForwardingRule (

5(getPortSrc () . getStar tValue () <0))

6as : AnomalySet ()

7not (Anomaly (

8getType () . compareTo (" s r c port ")==0 &&

9getRuleId () . conta in s (f . ge t Id ())

10) from as . getAnomalies ())

11then

12Anomaly a=new Anomaly () ;

13a . setType (" s r c port ") ;

14a . getRuleId () . add (f . ge t Id ()) ;

15s . getAnomalies () . add (a) ;

16end

Listing 2: An example of Drools rule.

In other words, the meaning of Rule in Listing 2 is:

When:

• there is a forwarding rule f with source port less

then zero (lines 4 to 5);

18

• in the anomaly set as (lines 6 and 10) there are no

other anomalies, of type wrong source port (line 7),

related to f (line 8).

Then:

• a new wrong source port anomaly related to f is

created (lines 11 to 14).

7.2. Validation and Performance Evaluation

For validation, we used a sample network scenario ob-

tained, by approximating part of our campus network.

Such scenario (shown in Figure 2) has been manually setup

with real data and policy rules. It contains about 35

clients, 15 servers, 10 network functions (i.e an IDS, a VPN

Gateway, an Application Firewall, a Monitor, a Packet Fil-

ter, a Web Cache, an Anti Spam and two Load Balancers),

and the policy contains 23 forwarding rules. In this sce-

nario, we performed the validation in less than 5ms, by de-

tecting 4 anomalies: 2 Single-Field, 1 Con�icting, 1 Node

ordering.

In order to evaluate the performance of the proposed

approach, some tests were run using a number of syntheti-

cally generated scenarios, so as to have a rough estimation

of processing times in di�erent cases.

Test scenarios were generated starting with a medium-

size network, which is able to stress the main aspects

of the solution. Speci�cally, this network includes about

300 hosts that generate several types of tra�c �ows (i.e.,

HTTP, POP3 and SMTP) towards the internal servers and

the Internet, processed by about 10 network functions.

The forwarding rules used for the evaluation are ex-

pressed in the header-based representation, which allows a

level of detail higher than the name-based representation

and facilitates us in creating more complex anomalies in

the testing scenario. A set of forwarding rules has been

automatically generated to create each use-case. Thanks

to the header-based representation, we have increased pro-

gressively the size of the forwarding rule set, by increasing

the number of tra�c �ows and by considering wider and

wider ranges of port numbers and tra�c types and more

subnets and hosts. In this way, we have been able to test

the scalability of the veri�cation process.

For what concerns the set of anomalies checked at each

test-run, we have considered both those anomalies the

model supports by default (i.e., the pre-de�ned set that

includes 16 anomalies) and other new custom anomalies,

speci�c for the tested network scenario. In detail, our for-

warding rule set has been generated so as to trigger at least

one anomaly for each class presented in Section 6.1. The

whole set of anomalies that have been checked in our net-

work scenarios is summarized in Tables 3 and 4, where, for

each anomaly, we present a possible formula that detects

that anomaly for a speci�c �ow.

Moreover, in the automatic generation process, we have

set a threshold on the percentage of forwarding rules (with

respect to the total rule set) that trigger an anomaly. Fig-

ure 3a shows that, for each rule set-size, we have evaluated

the elapsed time with the following percentages of anoma-

lous rules: 10%, 20%, 50% and 80%.

The obtained results indicate that the elapsed time to

complete veri�cation grows linearly with the number of

forwarding rules. This is highlighted in the four test sce-

narios. Each measured time has have been averaged on

100 test-runs. Veri�cation time grows up to 340ms in the

worst case (the solid line in Figure 3a).

In order to also evaluate the dependency of veri�cation

time on the percentage of forwarding rules that trigger an

anomaly, we report another plot (Figure 3b). Keeping

constant the number of forwarding rules, we plot veri�ca-

tion time for percentages of anomalies growing from 0%

to 100%. The plot in Figure 3b, shows the behavior for a

number of forwarding rules set to 100, 300, 500, 700 and

1000 rules. Once again the dependency is linear.

As we can note from the achieved results (Figure 3b),

the percentage of forwarding rules that bring to an anomaly

has a greater in�uence on veri�cation time when the rule

19

INTERNET

VPN GATEWAY

GATEWAY

ROUTER

NAT

END HOSTS

ROUTER

WEB SERVERS MAIL SERVERS

PACKET
FILTER

APPLICATION
FIREWALL

MONITOR
IDS

WEB
CACHE

ANTI
SPAM

LOAD
 BALANCER

LOAD
BALANCER

COMPUTER SCIENZE
DEPARTMENT

Figure 2: Campus network topology.

Table 3: Pre-de�ned set of anomalies.

Class Anomaly Formula

Single-Field

bad usr_src speci�cation see (5)

bad port_src speci�cation see (6)

bad port_dst speci�cation see (7)

bad vlan_id speci�cation vlan_id < 1 ∧ vland_id > 4094→ BadVlanId(r)

bad eth_type speci�cation eth_type , {0x0800, 0x0806, 0x8100} → BadEthT ype(r)

bad ip_proto speci�cation ip_proto , {0x01, 0x06, 0x11} → BadIpProto(r)

Pair-Field
equal source and destination names see (8)

equal source and destination IP addresses see (9)

equal source and destination Ethernet addresses eth_src = eth_dst → BadEthernet Address(r)

Sub-Optimization forwarding rule duplication see (4)

Con�icting a single �ow is forwarded to di�erent chains see (13)

set size grows. This can be con�rmed by comparing the

trend in the case of 100 forwarding rules, where the elapsed

time is almost constant, and in the case of 1000 rules,

where the elapsed time grows more rapidly with the incre-

ment of the anomaly percentage.

The achieved results are also con�rmed in an additional

20

Table 4: Others custom set of anomalies.

Class Anomaly Formula

Node
Traversal

web tra�c does not eth_type = 0x0800 ∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

traverse a web-cache port_dst = 80 ∧ ck � [< ∗,CACHE >], ∀ck ∈ C → WebNot2Cache(r)

mail tra�c does not eth_type = 0x0800 ∧ ip_src = 130.192.225.244 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

traverse an anti-spam port_dst = 25 ∧ ck � [< ∗, SPAM >], ∀ck ∈ C → MailNot2Spam(r)

web tra�c traverses eth_type = 0x0800 ∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

an anti-spam port_dst = 80 ∧ ck � [< ∗, SPAM >], ∀ck ∈ C → Web2Spam(r)

mail tra�c traverses eth_type = 0x0800 ∧ ip_src = 130.192.225.244 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

a web-cache port_dst = 25 ∧ ck � [< ∗,CACHE >], ∀ck ∈ C → Mail2Cache(r)

internet tra�c does not eth_type = 0x0800 ∧ ip_src = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧ port_dst = 80 ∧

pass through a L7 �rewall ck � [< ∗, L7_FW >], ∀ck ∈ C → InternetNot2Firewall(r)

Node
Ordering �rewall non located after a see (11)

NAT function but before it

Chain
Constraint Internet tra�c is not eth_type = 0x0800 ∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

forwarded to correlated port_dst = 80 ∧ ck / cl, ∀ck, cl ∈ C → InternetNoCorrelatedChains(r)

chains

Con�icting a single �ow is forwarded see (14)

to di�erent chains

test case (Figure 3c), where we have evaluated veri�cation

time with a growing number of �anomalous" rules in dif-

ferent sized rule-sets (i.e., 100, 300, 500, 700 and 1000

forwarding rules). Also in this test-scenario, it is evident

that the performance of our veri�cation approach is in-

�uenced by both the number of forwarding rules and the

percentage of these that trigger an anomaly.

Moreover, we can also note that the veri�cation time is

in the range between 340ms, in the worst case with 1000

forwarding rules and 80% of �anomalous" rules (Figure 3a),

and 400ms, when each one of the 1000 forwarding rules

triggers an anomaly (i.e., the solid lines in Figure 3b and

Figure 3c).

The achieved results show that our veri�cation ap-

proach takes a time in the order of hundreds of milliseconds

in the case of a real-sized network with a growing number

of tra�c �ows and time increases linearly with the com-

plexity. Moreover, we measured the memory required by

our tool during the execution of synthetically generated

scenarios. We noted that the memory consumption was

approximately the same in all scenario and in the worst

case (i.e., 1000 forwarding rules with 80% of anomalies) it

was approximately 1GB.

Considering the performance in terms of time and mem-

ory, it is reasonable to use our approach in a real network

scenario.

8. Conclusion

In this paper we have proposed a formal approach to

specify and verify SFC policies. According to the proposed

approach, the presence of anomalies in a forwarding policy

can be detected before deployment, i.e. before the policy

rules are enforced by the SDN Controller and installed into

the network switches. In order to achieve this goal, we have

designed a two-fold formal representation of the forwarding

policy that characterises packet forwarding in the network

(i.e., in terms of tra�c �ows and service chains) and of

the set of anomalies that have to be detected against the

21

200 400 600 800 1,000
0

100

200

300

400

Number of forwarding rules

V
er
i�
ca
ti
o
n
T
im

e
[m

s]

10% of anomalies

20% of anomalies

50% of anomalies

80% of anomalies

(a) Veri�cation time evaluated with a growing

number of forwarding rules.

0 20 40 60 80 100
0

100

200

300

400

% of anomalous forwarding rules

V
er
i�
ca
ti
o
n
T
im

e
[m

s]

100 forwarding rules

300 forwarding rules

500 forwarding rules

700 forwarding rules

1000 forwarding rules

(b) Veri�cation time evaluated with a growing

percentage of forwarding rules that satisfy an

anomaly.

0 200 400 600 800 1,000
0

100

200

300

400

Number of anomalous forwarding rules

V
er
i�
ca
ti
o
n
T
im

e
[m

s]

100 forwarding rules

300 forwarding rules

500 forwarding rules

700 forwarding rules

1000 forwarding rules

(c) Veri�cation time evaluated with a growing

number of anomalies.

Figure 3: Evaluation times of forwarding policy veri�cation.

policy rules. This has been done using standard notations

such as First Order logic and Horn clauses.

This formal approach enables precise and unambigu-

ous speci�cations of policy rules and of related anomalies,

and, through the application of already existing veri�ca-

tion engines, it allows rigorous veri�cation of the absence

of anomalies and the consequent guarantee that a veri-

�ed policy is anomaly-free, under the assumption that the

veri�cation engine is correct.

Moreover, the proposed model is highly �exible and

extendible, because it allows network operators to de�ne

their own sets of anomalies. A minimum level of correct-

ness in the network can be always guaranteed, by having a

core set of pre-de�ned anomalies (e.g., capturing bad pol-

icy rule speci�cations or forwarding loops), which can then

be extended by the operators.

In order to prove the usefulness of this approach in a

real network scenario, we have implemented and tested a

Java-based prototype of our veri�cation model, exploit-

ing Drools as inference engine. We have achieved veri�ca-

tion times in the magnitude of milliseconds for networks of

reasonable size. This evaluation has been performed un-

der di�erent conditions created by increasing the number

of forwarding rules con�gured in the considered network

use-case and the percentage of such rules that trigger an

anomaly.

For the future, we plan to extend the expressiveness

of the model by considering also the con�gurations in-

stalled into the network functions that make up the service

chains. In some cases, �ow forwarding may depend also on

the packet processing performed by the network functions,

which, in turn, depends on the function con�gurations.

Moreover, in order to further improve the usability of

the approach, in the future we aim to extend the proposed

approach by exploiting techniques for the automatic re-

�nement of anomaly rules, starting from high-level require-

ments, and automatic strategies for the update of policy

rules when anomalies are detected.

22

Finally, the proposed model could become a wider, and

more ambitious contribution. Since policy-based systems

are largely widespread in data protection, �ltering, access

control, and many other policy domains, a useful contri-

bution can be to extend this veri�cation model in order

to encompass di�erent policy domains. An extended ver-

i�cation model could verify that a domain-speci�c policy

is consistent also in the presence of policies belonging to

other domains.

ACKNOWLEDGMENT

This work was supported in part by the European Com-

mission, under Grant Agreement no. 786922.

[1] J. Halpern and C. Pignataro, �Service function chaining (sfc)

architecture,� Internet Requests for Comments, RFC Editor,

RFC 7665, 2015.

[2] R. Sahay, W. Meng, and C. D. Jensen, �The application of soft-

ware de�ned networking on securing computer networks: A sur-

vey,� Journal of Network and Computer Applications, vol. 131,

pp. 89 � 108, 2019.

[3] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. God-

frey, �Veri�ow: Verifying network-wide invariants in real time,�

in Presented as part of the 10th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 13), 2013,

pp. 15�27.

[4] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-

own, and S. Whyte, �Real time network policy checking using

header space analysis,� in Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 13), 2013, pp. 99�111.

[5] S. K. Dey, M. M. Rahman, and M. R. Uddin, �Detection of

�ow based anomaly in open�ow controller: Machine learning

approach in software de�ned networking,� in 2018 4th Interna-

tional Conference on Electrical Engineering and Information

Communication Technology (iCEEiCT), Sep. 2018, pp. 416�

421.

[6] E. Tantar, A.-A. Tantar, M. Kantor, and T. Engel, �On us-

ing cognition for anomaly detection in sdn,� in EVOLVE - A

Bridge between Probability, Set Oriented Numerics, and Evo-

lutionary Computation VI, A.-A. Tantar, E. Tantar, M. Em-

merich, P. Legrand, L. Alboaie, and H. Luchian, Eds. Cham:

Springer International Publishing, 2018, pp. 67�81.

[7] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano,

and C. Zunino, �Leveraging sdn to improve security in indus-

trial networks,� in 2017 IEEE 13th International Workshop on

Factory Communication Systems (WFCS), May 2017, pp. 1�7.

[8] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto,

and R. Sisto, �Formal veri�cation of virtual network function

graphs in an sp-devops context,� in Service Oriented and Cloud

Computing. Springer, 2015, pp. 253�262.

[9] C. Basile, D. Canavese, C. Pitscheider, A. Lioy, and F. Valenza,

�Assessing network authorization policies via reachability anal-

ysis,� Comput. Electr. Eng., vol. 64, no. C, pp. 110�131, 2017.

[10] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu,

�Symnet: Scalable symbolic execution for modern networks,�

in Proceedings of the 2016 ACM SIGCOMM Conference,

ser. SIGCOMM '16. New York, NY, USA: ACM, 2016,

pp. 314�327. [Online]. Available: http://doi.acm.org/10.1145/

2934872.2934881

[11] R. Bifulco and F. Schneider, �Open�ow rules interactions:

de�nition and detection,� in Future Networks and Services

(SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1�6.

[12] M. Canini, D. Venzano, P. Pere²íni, D. Kosti¢, and J. Rexford,

�A nice way to test open�ow applications,� in Proceedings of

the 9th USENIX Conference on Networked Systems Design and

Implementation (NSDI'12). USENIX Association, 2012, pp.

10�10.

[13] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,

and S. T. King, �Debugging the data plane with anteater,� ACM

SIGCOMM Computer Communication Review, vol. 41, no. 4,

pp. 290�301, oct 2011.

[14] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-

ford, A. Story, and D. Walker, �Frenetic: A network program-

ming language,� in ACM SIGPLAN Notices, vol. 46, no. 9.

ACM, 2011, pp. 279�291.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker, �A com-

piler and run-time system for network programming languages,�

in ACM SIGPLAN Notices, vol. 47, no. 1, ACM. ACM Press,

2012, pp. 217�230.

[16] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker,

�Modular sdn programming with pyretic,� Technical Report of

USENIX, 2013.

[17] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Fos-

ter, �Managing the network with merlin,� in Proceedings of the

Twelfth ACM Workshop on Hot Topics in Networks. ACM,

2013, p. 24.

[18] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, �Con�ict

classi�cation and analysis of distributed �rewall policies,� IEEE

Journal on Selected Areas in Communications, vol. 23, no. 10,

pp. 2069�2084, 2005.

[19] F. Valenza, C. Basile, D. Canavese, and A. Lioy, �Classi�cation

and analysis of communication protection policy anomalies,�

23

http://doi.acm.org/10.1145/2934872.2934881
http://doi.acm.org/10.1145/2934872.2934881

IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp.

2601�2614, Oct 2017.

[20] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, �Complete

analysis of con�guration rules to guarantee reliable network se-

curity policies,� International Journal of Information Security,

vol. 7, no. 2, pp. 103�122, 2007.

[21] M. G. Gouda and A. X. Liu, �Structured �rewall design,� Com-

puter Networks, vol. 51, no. 4, pp. 1106�1120, mar 2007.

[22] B. Lopes Alcantara Batista, G. A. Lima de Campos, and M. P.

Fernandez, �Flow-based con�ict detection in open�ow networks

using �rst-order logic,� in Proceedings of the IEEE Symposium

on Computers and Communication (ISCC 2014). IEEE, mar

2014, pp. 1�6.

[23] C. Prakash, J. Lee, Y. Turner, J. Kang, A. Akella, S. Baner-

jee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang, �PGA: using

graphs to express and automatically reconcile network policies,�

in Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, SIGCOMM 2015, 2015, pp.

29�42.

[24] J. G. Herrera and J. F. Botero, �Resource allocation in nfv:

A comprehensive survey,� IEEE Transactions on Network and

Service Management, vol. 13, no. 3, pp. 518�532, Sep. 2016.

[25] A. Fischer, J. F. Botero, M. Duelli, D. Schlosser, X. Hessel-

bach, and H. de Meer, �ALEVIN - A framework to develop,

compare, and analyze virtual network embedding algorithms,�

ECEASST, vol. 37, 2011.

[26] M. Bali, Drools JBoss Rules 5.0 Developer's Guide. Packt

Publishing Ltd, 2009.

[27] D. Sottara, P. Mello, and M. Proctor, �A Con�gurable

Rete-OO Engine for Reasoning with Di�erent Types of

Imperfect Information,� IEEE Trans. Knowl. Data Eng.,

vol. 22, no. 11, pp. 1535�1548, 2010. [Online]. Available:

https://doi.org/10.1109/TKDE.2010.125

Fulvio Valenza (fulvio.valenza@polito.it) received his

M.Sc. (summa cum laude) in 2013 and his Ph.D. (summa

cum laude) in Computer Engineering in 2017 from the

Politecnico di Torino, Torino, Italy. Currently, he is a

Researcher at the Politecnico Torino, Italy. His research

activity focuses on network security policies, orchestration

and management of network security functions in SDN/NFV-

based networks, threat modelling.

Serena Spinoso (serena.spinoso@polito.it) received her

Ph.D in Computer and Control Engineering from Politec-

nico di Torino, Turin, Italy in 2017 and her M.Sc.Degree

(summa cum laude) in Computer Engineering in 2013. Her

research interests include techniques for con�guring net-

work functions in NFV-based networks and formal meth-

ods applied to verify forwarding correctness of SDN-based

networks.

Riccardo Sisto (riccardo.sisto@polito.it), MS in Elec-

tronic Engineering in 1987, Ph.D in Computer Engineering

in 1992, has been with Politecnico di Torino as researcher,

associate professor, and, since 2004, full professor of Com-

puter Engineering. His current research activity is about

formal methods applied to computer networks. On this

and related topics he has authored and co-authored more

than 100 scienti�c papers. Riccardo Sisto is senior member

of the ACM.

24

https://doi.org/10.1109/TKDE.2010.125

	Introduction
	Background
	Problem Statement and proposed solution
	Forwarding policy model
	Name-based representation
	Header-based representation
	SFC representation
	Properties representation

	Relational operators for anomaly specification
	Network field operators
	SFC operators

	Anomaly model
	Anomaly Types
	Single-Field anomalies
	Field-Pair anomalies
	Node Traversal anomalies
	Node Ordering anomalies
	Chain Constraint anomalies
	Sub-Optimization anomalies
	Conflicting anomalies
	Global Properties anomalies
	Specific Properties anomalies

	Implementation and performance
	Implementation
	Validation and Performance Evaluation

	Conclusion

