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A novel finite-volume TVD scheme to overcome
non-realizability problem in quadrature-based moment

methods

Mohsen Shieaa, Antonio Buffoa,∗, Marco Vannia, Daniele L. Marchisioa

aDipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy

Abstract
A new finite-volume total variation diminishing (TVD) scheme is proposed for
the solution of moment transport equations in quadrature-based moment methods
(QBMM). The proposed scheme is capable of preserving important properties of
the moments, such as realizability and boundedness. The idea behind the approach
is to limit the flux of all the moments at each cell face with the same limiter value.
The proposed numerical technique was eventually compared with other realizable
schemes developed for the moment transport equations, showing that the method
is able to keep the moments realizable and bounded at the same time.

Keywords: Quadrature-based moment methods (QBMM); Moment

realizability; Moment boundedness; Population balance equation (PBE);

High-resolution scheme; Finite-volume method.

1. Introduction1

The evolution in space and time of a population of disperse elements2

(e.g., droplets, bubbles or particles moving in a continuous fluid) can be de-3

scribed by using an Eulerian approach through the solution of a generalized4
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population balance equation (GPBE). It is an integro-differential equation5

written in terms of a number density function (NDF) representing, at every6

point of the physical space, the number of elements that have a particular7

state belonging to the so-called phase space, i.e. the space of the properties8

required to characterize the system under investigation (e.g. element size, ve-9

locity, chemical composition, temperature). The Quadrature-Based Moment10

Methods (QBMM) are proved to be efficient in solving the GPBE, where the11

transport equations for some moments of the underlying NDF are solved in-12

stead of the GPBE [1]. These methods are based on the assumption that the13

underlying NDF has the form of a multi-dimensional summation of weighted14

kernel density functions (KDF) centered on the quadrature abscissas, where15

the quadrature weights and abscissas can be retrieved from the moments by16

means of the so-called inversion algorithms (such as the Product-Difference17

(PD) [2] and the Chebyshev [3] algorithms). In most cases, the KDF is a18

Dirac delta function, especially when a continuous reconstruction of the NDF19

is not necessary. While these methods are efficient and promising, especially20

when coupled with Computational Fluid Dynamics (CFD) codes, their prac-21

tical use encounters inherent difficulties to cope with. One major issue is22

the realizability or consistency of the transported moment set, meaning that23

there must exist an underlying number density function (NDF) corresponding24

to the transported moments. Confining the discussion to the finite-volume25

method, the most common cause of the non-realizability (also known as nu-26

merical moment corruption) lies in the spatial discretization of the transport27

term of the moment equation, when high-order spatial discretization schemes28

are used. This problem is often related to the convective term, as in many29
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cases the governing equations have a hyperbolic form. Desjardins et al. [4]30

demonstrated that the 1st-order scheme guarantees the realizability of the31

moments, provided the CFL condition is respected. However, this scheme32

results in highly diffusive solutions, leading sometimes to unacceptable pre-33

dictions, hence the necessity of adopting high-order schemes. On the other34

hand, employing high-order finite-volume schemes for independent transport35

of the moments may cause non-realizability issues [5]. Therefore, the devel-36

opment of a realizable high-order scheme for the solution of moment trans-37

port equations is crucial. In this regard, Vikas and co-workers [6] presented38

the so-called realizable quasi-high-order schemes, based on the evaluation39

of the moment fluxes at the cell faces using the interpolated abscissas and40

weights of the quadrature. With this method, the quadrature interpola-41

tion is performed by applying 1st-order scheme to the quadrature abscissas42

and high-order schemes to the quadrature weights. This approach produces43

less diffusive solutions and guarantees the realizability of the transported44

moments, provided a criterion on the time step is respected. However, no45

analysis was conducted on the boundedness property of this approach, which46

can not be ignored since unbounded predictions are not physically allowed47

[7]. Kah et al. [8] formulated a 2nd-order kinetic scheme that makes use of48

the canonical moments to transport the moments indirectly while maintain-49

ing them in the moment space. However, the application of their method50

to simulations with more than four moments involves difficult algebra [9].51

Recently, Laurent and co-workers [9] developed a similar approach based on52

reconstructing the coefficients ζk (for its definition refer to [9]) instead of the53

canonical moments. However, their original ζk reconstruction based scheme54

3



Acc
ep

te
d

M
anusc

ript

cannot be applied easily to the unstructured grids and therefore they sug-55

gested a simplified version of this scheme that involves division of the cells56

into three parts as proposed by Berthon [10].57

The present work introduces a new technique, called equal-limiter scheme,58

to overcome the non-realizability problem when 2nd-order TVD (Total Vari-59

ation Diminishing) schemes are applied to the moment transport equations.60

The technique is based on using an equal limiter given by the flux-limiter61

function for all the moments, and it will be shown that it is effective to62

avoid non-realizable set of moments. Moreover, its application to three-63

dimensional unstructured grids is straightforward. The paper is organized as64

follows. First, it will be proved that, in a one-dimensional Riemann problem,65

the concept of equal-limiter emerges naturally if no source term is included in66

the moment transport equations. Next, the importance of using an identical67

limiter given by the limiter function for all the moments will be clarified in68

a general case by solving local Riemann problem at each cell face and the69

role of the time step in maintaining the realizability of the moments will be70

explained. Moreover, the paper shows how this technique can be applied to71

CFD codes, without any assumption on velocity field or type of mesh grid. In72

the final part, a comparison between different techniques will be performed73

by solving moment transport equations in some one- and two-dimensional74

test cases.75
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2. TVD scheme for moment transport equation76

2.1. Moment transport equation77

As previously mentioned, QBMM deal with the solution of the trans-78

port equations written in terms of the moments of the NDF, instead of the79

GPBE itself. The NDF is a complex multi-dimensional functional that de-80

pends on the so-called external coordinates, i.e. the position of the elements81

in the physical space and time, and on the internal coordinates, which are82

the generic properties associated to each element of the population, such as83

size, velocity, chemical composition or temperature. When the internal co-84

ordinates do not include the velocity of the elements of the disperse phase,85

the resulting transport equation for the NDF is called Population Balance86

Equation (PBE) [1]. Although it is possible to apply the proposed numerical87

scheme to the transport equation for a multivariate set of moments, let us88

consider a univariate PBE with the size of the elements of the disperse phase,89

L, as the internal coordinate, for the sake of simplicity and clarity. In this90

case, the PBE can be written as follows [11]:91

∂f

∂t
+ ∂(Uf)

∂x
+ ∂(L̇f)

∂L
= h (1)

where f ≡ f(L,x, t) denotes the NDF. In addition, U ≡ U(x, t) is the92

velocity of the disperse phase, L̇ represents the continuous rate of change93

in the size of elements due to the continuous processes (e.g. mass transfer94

driven growth) and h introduces the contribution of the discrete events (e.g.95

aggregation/breakage) into the PBE. It is worth remarking that the velocity96

of the disperse phase appearing in Eq. (1) does not depend on the size of97
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the elements: such approximation has been made to simplify the following98

discussion and it is not a limitation of the proposed approach.99

By definition, the kth-order moment of f with respect to L is:100

Mk(x, t) =
∫ ∞

0
f(L,x, t)LkdL (2)

The importance of the moments lies in the fact that lower-order moments101

are associated to various integral properties of the population. For instance,102

in this case the 3rd-order moment with respect to L is proportional to the103

volume fraction of the disperse phase. The above definition can be used to104

derive moment transport equations from Eq. (1). For the sake of simplicity,105

from now on we assume a one-dimensional case where the velocity is constant106

(u) and the contribution of the continuous processes is negligible (L̇ = 0).107

The transport equation for the kth-order moment reduces to the following108

partial differential equation:109

∂Mk

∂t
+ u

∂Mk

∂x
= h̄k (3)

where h̄k is the source term changing the kth-order moment due to the discrete110

events. Generally, this source term is a complex multi-dimensional integral111

which depends on the NDF itself. QBMM employ the so-called quadrature112

approximation to express the functional form of the NDF. If we consider113

only one internal coordinate, it is possible to write a generic integral in the114

following way and therefore close the moment transport equations:115 ∫
ΩL

f(L)g(L)dL =
N∑
α=1

wαg(Lα) (4)

where wα and Lα are the weights and abscissas of the N -node quadrature116

formula. This means that the NDF is approximated as a summation of delta117
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functions centered on quadrature abscissas:118

f(L) =
N∑
α=1

wαδ(L− Lα) (5)

This method is called Quadrature Method of Moments (QMOM) and it is119

designed to solve univariate PBE [12]. The weights and abscissas are deter-120

mined from the transported moments by employing an inversion algorithm121

(such as PD or Chebyshev algorithms), provided the set of moments is re-122

alizable. This is usually referred as the moment problem [13]: in particular,123

when the support of the NDF is ΩL =]0,+∞[ as in this case, it is called124

finite Stieltjes moment problem. When the support of the NDF is different,125

i.e. ΩL =] −∞,+∞[ or ΩL =]0, 1[, we refer to finite Hamburger and finite126

Hausdorff moment problems respectively. These three different supports re-127

sult in different constraints on the transported set of moments to ensure128

its realizability [13, 14]. However, the non-realizability problem is common129

to all these cases and poses the main challenge in practical applications of130

QMOM. In the finite-volume method, this can happen particularly during131

the interpolation of the moments on to the faces to calculate the flux of the132

moments through faces if high-resolution TVD schemes are employed.133

2.2. Finite-Volume Method134

As mentioned before, the present study focuses on the non-realizability135

issue in the context of the finite-volume method. The general formulation136

of the finite-volume method can be found in the specialized literature [15,137

16], and therefore is omitted here. Let a single-stage explicit method be138

adopted to march in time and the source terms be handled using fractional-139

step approach [15]. In this way, the finite-volume method transforms Eq. (3)140
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into the following discretized form written for the generic cell i of size ∆x in141

the spatial domain:142

Mk∗
i = Mk

i −
∆t
∆x(F k

i+1/2 − F k
i−1/2) (6)

(Mk
i )n+1 = Mk∗

i −∆t h̄ki (7)

where Mk
i , Mk∗

i and (Mk
i )n+1 refer to, respectively, the moment value at the143

current time (tn), the intermediate value of the fractional-step approach and144

the moment value at the new time (tn+1) after a time step of ∆t. Further-145

more, F k
i−1/2 and F k

i+1/2 denote the numerical flux along the left and right146

faces of the cell i respectively, each depends on the neighboring cell values at147

time tn according to the selected numerical flux function. From now on, the148

primary focus of the work will be on Eq. (6), particularly the calculation of149

the flux of the moments at the faces. The effect of the source term will be150

clarified afterwards.151

It is desirable to calculate the fluxes using high-resolution schemes, which152

are on the basis of slope-limiter methods. These methods use a high-order153

scheme where the solution is smooth enough, otherwise they switch to a low-154

order one to prevent non-physical oscillations in the numerical solution [15].155

In this way, the solution exhibits higher order of accuracy, comparing to 1st-156

order solution, without losing the boundedness. Using Lax-Wendroff as the157

high-order scheme and upwind as the low-order one will form the so-called158

flux-limiter methods with the following numerical flux functions [15]:159

F k
i−1/2 = u−Mk

i + u+Mk
i−1 + 1

2 |u|
(

1− |u|∆t∆x

)
φ(θki−1/2)∆Mk

i−1/2 (8)

F k
i+1/2 = u−Mk

i+1 + u+Mk
i + 1

2 |u|
(

1− |u|∆t∆x

)
φ(θki+1/2)∆Mk

i+1/2 (9)
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where160

u+ = 1
2(u+ |u|) and u− = 1

2(u− |u|) (10)

In addition, ∆Mk
i−1/2 and ∆Mk

i+1/2 are respectively the jumps across the left161

and right faces, defined following the below convention:162

∆Mk
i−1/2 = Mk

i −Mk
i−1 (11)

The flux-limiter φ is a function of the smoothness of Mk at the face (θki±1/2).163

The smoothness is commonly defined as follows [15]:164

θki−1/2 =
∆Mk

I−1/2

∆Mk
i−1/2

with I =

 i− 1 if u > 0

i+ 1 if u < 0
(12)

A variety of flux-limiter functions are available in the literature such as min-165

mod [17] and van Leer [18].166

Substituting the numerical fluxes in Eq. (6) yields the following dis-167

cretized equation:168

Mk∗
i = Mk

i −
∆t
∆xu

+(Mk
i −Mk

i−1)− ∆t
∆xu

−(Mk
i+1 −Mk

i )

− 1
2
|u|∆t
∆x

(
1− |u|∆t∆x

) [
φ(θki+1/2)∆Mk

i+1/2 − φ(θki−1/2)∆Mk
i−1/2

]
(13)

3. The Concept of Equal-Limiter169

The flux-limiter methods were developed to address the issue of bound-170

edness that occurs in the case of employing high-order schemes to solve hy-171

perbolic problems. One would ideally desire to use these methods for the172

solution of the moment transport equations, particularly when the 1st-order173
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accuracy is not sufficient to describe the behavior of the system under study.174

However, in general, the non-realizability problem hinders their direct prac-175

tice in solving the moments transport equations. In this section, it is shown176

that this limitation can be overcome by selecting an equal limiter for all the177

moments.178

The starting point is to show that the idea of equal-limiter emerges in179

the case of employing 2nd-order TVD schemes for the pure moment advection180

with no source term ((Mk
i )n+1 = Mk∗

i ) in a Riemann problem example. It181

will be also shown that in this case the moments remain realizable. Then, the182

discussion will continue to highlight the advantage of employing equal-limiter183

in a more general context, where the effect of aggregation and breakage will184

be also taken into account.185

The argument begins with rewriting Eq. (13) for the case u > 0 without186

loss of generality1:187

(Mk
i )n+1 = Mk

i − ν(Mk
i −Mk

i−1)

− 1
2ν(1− ν)

[
φ(θki+1/2)∆Mk

i+1/2 − φ(θki−1/2)∆Mk
i−1/2

]
(14)

where ν = u∆t/∆x is the Courant number. The smoothness at the left and188

right faces are written as follows Eq. (12):189

θki−1/2 = Mk
i−1 −Mk

i−2
Mk

i −Mk
i−1

and θki+1/2 = Mk
i −Mk

i−1
Mk

i+1 −Mk
i

(15)

Now let us consider a Riemann problem example with the following initial190

1The case u < 0 can be formulated similarly and leads to the same conclusions

10
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data:191

Mk(x, 0) =
◦
Mk =


◦
Mk

l if x < 0
◦
Mk

r if x > 0
(16)

where
◦
Mk

l and
◦
Mk

r are obtained from the initial left and right NDFs,
◦
fl and

◦
fr,192

and consequently constitute two realizable sets of moments. It is postulated193

that the numerical solution of the kth-order moment at any generic cell i and194

any time step tn, including the zero time, can be expressed as:195

Mk
i =

◦
Mk

r − ani (
◦
Mk

r −
◦
Mk

l ) , 0 ≤ ani ≤ 1 (17)

where ani is a constant that changes with the cell index i and the time step196

but not due to the moment order or value. In other words, this constant is197

the same for all the moments of a given cell at each time step. It is worth198

mentioning that the initial data (Eq. (16)) corresponds to a0
i = 1 for xi < 0199

and a0
i = 0 for xi > 0. Next step is to substitute Eq. (17) in Eq. (14), which200

after simplifications yields the following:201

(Mk
i )n+1 =

◦
Mk

r − ani (
◦
Mk

r −
◦
Mk

l ) + ν(ani − ani−1)(
◦
Mk

r −
◦
Mk

l )

+ 1
2ν(1− ν)

[
φ

(
ani − ani−1
ani+1 − ani

)
(ani+1 − ani )

− φ
(
ani−1 − ani−2
ani − ani−1

)
(ani − ani−1)

]
(
◦
Mk

r −
◦
Mk

l )

=
◦
Mk

r − an+1
i (

◦
Mk

r −
◦
Mk

l ) (18)

and an+1
i collects several coefficients that do not depend on the moment202

11
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values:203

an+1
i = ani − ν(ani − ani−1)

− 1
2ν(1− ν)

[
φ

(
ani − ani−1
ani+1 − ani

)
(ani+1 − ani )

− φ
(
ani−1 − ani−2
ani − ani−1

)
(ani − ani−1)

]
(19)

Equation (19) has the same structure of Eq. (14), therefore, it appears that204

ani is the solution of an advection equation for the variable a obtained by the205

2nd-order TVD finite-volume scheme. As a consequence, it is guaranteed that206

an+1
i remains bounded to the values of the previous time step, i.e. between207

0 and 1. Now it can be concluded that the postulated solution at time step208

tn is also valid at the next time step tn+1:209

(Mk
i )n+1 =

◦
Mk

r − an+1
i (

◦
Mk

r −
◦
Mk

l ) , 0 ≤ an+1
i ≤ 1 (20)

As mentioned before, the initial data (Eq. (16)) can be expressed by Eq. (17),210

therefore, the postulated solution is indeed the solution of Eq. (14) at any211

time step with the initial data defined by Eq. (16). Moreover, it can be212

proved that the solution guarantees the realizability of the moments at any213

time step if the initial set is realizable. To proceed with the proof, the214

following notation is used for representing the set of moments:215

W =
[
M0 M1 ... M2N−1

]T
(21)

It is worth reiterating that N is the number of quadrature nodes. The set of216

moments can be defined as follows:217

W =
∫ ∞

0
f(L)q(L)dL (22)
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where q(L) = [L0 L1 ... L2N−1]T .218

Equation (20) can be written for the set of moments by using the notation219

introduced in Eq. (21):220

Wn+1
i = Wr − an+1

i (Wr −Wl) (23)

It should be emphasized that Eq. (23) is derived based on the fact that an+1
i221

is identical for all the moments. The proof follows by substituting Eq. (22)222

in Eq. (23) and performing some manipulations:223

∫ ∞
0

fn+1
i q(L)dL =

∫ ∞
0

[(1− an+1
i )

◦
fr + an+1

i

◦
fl]q(L)dL (24)

or224

fn+1
i = (1− an+1

i )
◦
fr + an+1

i

◦
fl (25)

The above equation guarantees the non-negativity of the fn+1
i because both225

◦
fr and

◦
fl are defined to be non-negative NDFs and 0 ≤ an+1

i ≤ 1. Conse-226

quently, the moment set of cell i at time step tn+1 is realizable, see [4].227

Returning back to the equal-limiter concept, it was previously highlighted228

that an identical an+1
i for all the moments is essential to keep the moment229

set realizable in a Riemann problem example. The identical an+1
i originates,230

in turn, from the equal limiters calculated at the left and right faces (i.e.,231

Eq. (18)):232

φ(θki−1/2) = φ

(
ani−1 − ani−2
ani − ani−1

)
and φ(θki+1/2) = φ

(
ani − ani−1
ani+1 − ani

)
. (26)

When source terms are present, the limiters are not generally identical for233

all the moments, because in this case the smoothness of the moments may234

13
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change differently and this may cause the non-realizability of the transported235

moment set. This suggests to find a technique to employ an identical limiter236

in the calculation of the moment fluxes at the faces.237

Again Eq. (13) is rewritten for the case of u > 0 (here a local Riemann238

problem is solved at each face of cell i):239

Mk∗
i = Mk

i − ν(Mk
i −Mk

i−1)

− 1
2ν(1− ν)[φ(θki+1/2)∆Mk

i+1/2 − φ(θki−1/2)∆Mk
i−1/2] (27)

which can simply be expressed as follows by collecting the terms containing240

the moment of cells i− 1, i and i+ 1:241

Mk∗
i = Bk

iM
k
i−1 + Ck

iM
k
i −Dk

iM
k
i+1 (28)

with242

Bk
i = ν − 1

2ν(1− ν)φ(θki−1/2)

Ck
i = 1− ν + 1

2ν(1− ν)[φ(θki+1/2) + φ(θki−1/2)]

Dk
i = 1

2ν(1− ν)φ(θki+1/2) (29)

Writing Eq. (28) for the set of moments of order k = 1, 2, ..., 2N − 1 yields:243 

M0∗
i

M1∗
i

...

M2N−1∗
i


=



B0
iM

0
i−1

B1
iM

1
i−1

...

B2N−1
i M2N−1

i−1


︸ ︷︷ ︸

set i-1

+



C0
iM

0
i

C1
iM

1
i

...

C2N−1
i M2N−1

i


︸ ︷︷ ︸

set i

−



D0
iM

0
i+1

D1
iM

1
i+1

...

D2N−1
i M2N−1

i+1


︸ ︷︷ ︸

set i+1

(30)
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The three sets of moments in Eq. (30) can easily become non-realizable be-244

cause, in general, the coefficients Bk
i as well as Ck

i and Dk
i might differ from245

one moment to another (belonging to the same moment set) as a consequence246

of unequal limiters. Marchisio and Fox [1] showed that a small change in just247

one moment can make a consistent set of moments non-realizable. On the248

other hand, if identical limiters are selected to estimate the fluxes of all the249

moments at the left and right faces, Eq. (30) can be written as follows:250

∫ ∞
0

f ∗i q(L)dL =
∫ ∞

0
(Bifi−1 + Cifi −Difi+1)q(L)dL (31)

or251

f ∗i = Bifi−1 + Cifi −Difi+1 (32)

where Bi as well as Ci and Di are defined below by choosing an equal limiter252

at the left face, φ(θi−1/2), and one at the right face, φ(θi+1/2), for all the253

moments:254

Bi = ν − 1
2ν(1− ν)φ(θi−1/2)

Ci = 1− ν + 1
2ν(1− ν)[φ(θi+1/2) + φ(θi−1/2)]

Di = 1
2ν(1− ν)φ(θi+1/2) (33)

It should be noted that there is still no proof for the moment realizability255

in the case of employing equal limiters when source terms in the moment256

transport equation are present, because the last term in Eq. (32) is negative257

[4] [6]. However, the contribution of the negative term can be kept small258

enough through adjusting the time step since the coefficient Di diminishes as259

the time step is reduced to zero. In other words, the non-realizability problem260
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can be prevented by adjusting the time step, whereas it can arise easily261

regardless of the time step if the limiters are calculated independently. One262

should be careful when the moment sets lie on the boundary of the moment263

space. In such case, the underlying number density functions are indeed264

some point distributions, i.e summation of some weighted delta functions.265

Therefore, if the moment sets in Eq. (30) are near or on the boundary of the266

moment space, reduction of the time step cannot resolve the realizability issue267

since the supports of the corresponding underlying number density functions268

in Eq. (32) may hardly match each other. A possible remedy can be adopting269

the 1-D adaptive quadrature technique proposed by Yuan and co-workers [19].270

By this technique, the maximum number of quadrature nodes is selected in271

such a way that the moments required to calculate the quadrature weights272

and abscissas form a set which is located in the interior of the moment space.273

It is noteworthy that the local reduction of the number of quadrature nodes274

is not a problem for the equal-limiter scheme, in contrast to the quasi-high-275

order scheme, since the variables to be interpolated are the moments and not276

the quadrature abscissas and weights.277

The final point to be addressed is the choice of an equal flux-limiter at278

each face. In fact, the constraint on the boundedness of the solution narrows279

the choice of the equal flux-limiter. As mentioned before, the 2nd-order TVD280

schemes have this notable feature of preserving the solution bounded. It is281

extremely useful for the QMOM since the low-order moments are propor-282

tional to physical properties that are bounded in nature, such as mean size,283

surface area or volume fraction. Harten [20] established the sufficient crite-284

ria for a scheme to be TVD, which provide constraints on the flux-limiter285
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functions:286

φ(θ) = 0 if θ < 0 and 0 ≤ φ(θ) ≤ min(2θ, 2) if θ ≥ 0 (34)

Fig. 1 represents these constraints graphically (shaded area) following the287

work of Sweby [21]. Moreover, it depicts the 2nd-order region proposed by288

Sweby [21] (hatched area) within which the flux-limiter functions lie. Two289

such examples are shown by the solid line (minmod limiter [17]) and the290

dashed line (van Leer limiter [18]).291

The flux-limiter functions in the literature share the common feature of292

being non-decreasing functions of θ. Using this feature, it is simple to show293

that the smallest flux-limiter among all the limiters of the moments is an294

obvious choice that guarantees the boundedness of all the moments. The295

flux-limiters calculated independently by a general limiter function at a given296

face, e, can be represented as φ(θke ) with k = 0, 1, ..., 2N − 1. These limiters297

respect the conditions expressed in Eq. (34):298

φ(θke ) = 0 if θke < 0 and 0 ≤ φ(θke ) ≤ min(2θke , 2) if θke ≥ 0

(35)

Suppose that φmin
e denotes the limiter with the minimum value:299

φmin
e = φ(θme ) ≤ φ(θke ) for k = 0, 1, ..., 2N − 1 (36)

where300

θme ∈ {θke | k ∈ {0, 1, ..., 2N − 1}} (37)

and since the flux-limiter functions are non-decreasing:301

θme ≤ θke for k = 0, 1, ..., 2N − 1 (38)
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On the other hand, the upper boundary of the TVD region shown in Eq. (35),302

min(2θke , 2), is a non-decreasing function, therefore:303

min(2θme , 2) ≤ min(2θke , 2) for k = 0, 1, ..., 2N − 1 (39)

since φmin
e respects the conditions specified in Eq. (35), it can be concluded304

that:305

0 ≤ φmin
e ≤ min(2θke , 2) for k = 0, 1, ..., 2N − 1 (40)

in other words, φmin
e falls always in the TVD region specified in Fig. 1 for all306

the moments. As a result, the moments remain bounded using this limiter,307

following the proof given by Harten [20].308

It should be mentioned that, in general, the minimum limiter can fall309

outside the 2nd-order region of Sweby for some moments, hence resulting in310

solutions with accuracy of lower order. Nevertheless, the numerical results311

reported in the next section show remarkable improvements in comparison312

to the 1st-order solutions. More importantly, the results indicate a significant313

advantage of the proposed scheme over the realizable high-order scheme of314

Vikas et al. [6] since it is able to produce bounded solutions.315

4. Application to CFD Codes316

This section focuses on the application of the equal-limiter scheme to CFD317

codes, which is indeed our ultimate goal of introducing this scheme. For this318

purpose, the following three-dimensional conservative transport equation is319

considered for the kth-order moment:320

∂Mk

∂t
+ ∂

∂x
· (uMk) = 0 (41)
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The source term is not included since the focus is only on the advection of the321

moments. In the context of finite volume methods, Eq. (41) is integrated over322

the volume of each computational cell and then the integral of the convective323

term over the volume of each cell is replaced with the net flux of the moment324

through the faces of that cell (Gauss’s theorem). Therefore, the following325

semi-discretized equation is obtained for a generic cell i [16]:326

dMk
i

dt + 1
∆V i

∑
e

(ue · n̂e)SeMk
e = 0 (42)

where Mk
e and ue are the moment of order k and the velocity at a generic327

face e of cell i respectively. In addition, n̂e and Se denote respectively the328

outward unit normal vector and the surface area of face e and ∆V i is the329

volume of the cell i. The transient term in Eq. (42) is not discretized for the330

reason that becomes clear later. In CFD codes, the flux of the velocity field331

at the cell faces, i.e. (ue · n̂e)Se, is generally known. However, the value of332

the moments at the faces (Mk
e ) is not available and should be interpolated333

from the values at the centers of neighbouring cells.334

The implementation of high-resolution TVD schemes in CFD codes is usually335

on the basis of central-difference scheme, of which the anti-diffusive contri-336

bution is limited to prevent oscillations in the solution [22]:337

Mk
e = Mk

U︸︷︷︸
upwind

+ φ(θke )λe(Mk
D −Mk

U)︸ ︷︷ ︸
anti-diffusive part

(43)

whereMk
U andMk

D refer to the values of the moment of order k at the centers338

of the upwind and downwind cell neighbours of the face e respectively. The339

selection of the upwind and downwind cells is based on the direction of the340

velocity field at face e, which is the same for all the moments. In addition,341
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the coefficient λe takes a positive constant value between 0 and 0.5, which342

depends on the distances between the center of face e and the centers of343

the two neighbouring cells. The advantage of employing an identical limiter344

can be illustrated by rearranging Eq. (43) and writing it for a set of 2N − 1345

moments as follows:346 

M0
e

M1
e

...

M2N−1
e


︸ ︷︷ ︸

set e

=



[1− λeφ(θ0
e)]M0

U

[1− λeφ(θ1
e)]M1

U
...[

1− λeφ(θ2N−1
e )

]
M2N−1

U


︸ ︷︷ ︸

set U

+



λeφ(θ0
e)M0

D

λeφ(θ1
e)M1

D
...

λeφ(θ2N−1
e )M2N−1

D


︸ ︷︷ ︸

set D

(44)

In general, the limiters for different moments, φ(θ0
e), φ(θ1

e), . . . , φ(θ2N−1
e ) are347

not the same. Therefore, the moment sets "U" and "D" can easily become348

non-realizable, leading to the non-realizable set of interpolated moments at349

face e. However, selecting an identical limiter, let it be φmin
e , guarantees the350

realizability of the interpolated moment set e, as long as the moment sets351

"U" and "D" are realizable:352 

M0
e

M1
e

...

M2N−1
e


︸ ︷︷ ︸

set e

= (1− λeφmin
e )



M0
U

M1
U
...

M2N−1
U


︸ ︷︷ ︸

set U

+λeφmin
e



M0
D

M1
D
...

M2N−1
D


︸ ︷︷ ︸

set D

(45)

It is worth reiterating that the value of limiter φmin
e is between 0 and 2.353

Moreover, the moment sets "U" and "D" belong to the previous time step354

if an explicit method is used to advance in time, and therefore they are355
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realizable.356

It should be noted that the realizability of the interpolated moments on the357

faces does not ensure the realizability of the calculated moments at the new358

time step. To elaborate, let the transient term in Eq. (42) be integrated using359

an explicit Euler scheme [16] and then write the fully-discretized equation360

for the set of 2N − 1 moments:361

Wn+1
i = Wn

i −
∆t

∆V i

∑
e

(une · n̂e)SeWn
e (46)

The use of an identical limiter for all the moments guarantees that the mo-362

ment set Wn
e be realizable, and therefore an underlying number density func-363

tion (fne ) can be associated to it. This allows writing Eq. (46) as:364

fn+1
i = fni −

∆t
∆V i

∑
e

(une · n̂e)Sefne (47)

The summation in the above equation can be separated into two contributions365

of in-going and out-going fluxes:366

fn+1
i = fni −

∆t
∆V i

∑
e

min[(une · n̂e), 0]Sefne︸ ︷︷ ︸
in-going fluxes

− ∆t
∆V i

∑
e

max[(une · n̂e), 0]Sefne︸ ︷︷ ︸
out-going fluxes

(48)

The in-going fluxes have positive sign and cannot rise the realizability issue,367

whereas, the outgoing fluxes have negative sign and can cause realizability is-368

sue, i.e. negativity of fn+1
i . However, the out-going fluxes can be still decom-369

posed into two separate upwind and downwind contributions corresponding370

to the upwind and downwind neighbouring cells of the corresponding faces.371

It is noteworthy that the upwind cell of these faces indeed coincides with cell372
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i since the flux at these faces is out-going. Thus, the first and third terms of373

the RHS of Eq. (48) can be written as follows:374 (
1− (1− λeφmin

e ) ∆t
∆V i

∑
e

max[(une · n̂e), 0]Se
)
fni

− (1− λeφmin
e ) ∆t

∆V i

∑
e

max[(une · n̂e), 0]SefnDe
(49)

where fnDe
denotes the (downwind) neighbouring cell separated by face e from375

cell i. As can be seen, the entire contribution of the cell i is positive as long376

as the coefficient behind fni is positive, leading to the following CFL-like377

condition:378

∆t
∆V i

∑
e

max[(une · n̂e), 0]Se < 1 (50)

Therefore, the only remaining negative contributions are due to the infor-379

mation (distributions) of the downwind cells (with respect to cell i) that380

propagates back into cell i, which is the characteristic of high-order schemes.381

These negative contributions can generally lead to the non-realizability issue,382

i.e. negativity of fn+1
i . However, similar to the previous discussion done for383

one-dimensional constant-velocity cases, the negative contributions can be384

kept small (in comparison to the contribution of fni ) by controlling the time385

step. It is noteworthy that this technique may fail as the moment sets are386

near/at the boundary of the moment space, as explained before.387

Returning back to the time-integration of the transient term in Eq. (42),388

it should be noted that one notable advantage of the equal-limiter scheme389

is the possibility of using implicit time-integration for the advection of the390

moments. This is due the fact that the equal-limiter scheme interpolates391

the moments directly, whereas, for instance, the quasi-high-order scheme is392
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normally implemented using explicit time-integration schemes. This aspect393

is particularly important when the solution of the population balance equa-394

tion is incorporated into a CFD solver, since the implicit time-integration395

schemes are commonly adopted in these codes.396

Lastly, the proposed technique is very simple from the computational397

point of view and can be easily implemented in three-dimensional CFD398

solvers. The only additional steps are comparing the limiter values calculated399

for the moments at each face and then replacing them with the smallest one400

at the corresponding face.401

5. Numerical Examples402

This section evaluates the performance of the proposed technique for the403

advection of moments in two different parts. The first one is focused on com-404

paring the predictions obtained by different schemes for the advection of the405

moments in a mono-dimensional constant-velocity problem. The second part406

evaluates the performance of the schemes by solving the moment transport407

equations coupled with the CFD simulation of a two-dimensional transient408

lid-driven cavity flow.409

5.1. One-dimensional advection with constant-velocity410

This part employs the equal-limiter scheme for the advection of moments411

in spatially mono-dimensional problems with the disperse particle size as the412

only internal coordinate of the PBE. The first example deals with the pure413

advection of the moments without any source term, while the next examples414

includes the aggregation/breakage source terms in the moment transport415

equations. The results are compared with those obtained via a 1st-order416
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scheme and the realizable high-order scheme (or quasi-2nd-order scheme) by417

Vikas et al. [6]. In addition, the analytical solution is reported whenever it418

is available.419

All the cases use 3-node quadrature to approximate the NDF. This num-420

ber of nodes requires to track the first 6 moments with respect to the par-421

ticle size, M0,M1, ...,M5. The calculation of the weights and abscissas of422

the quadrature is done by using the Chebyshev algorithm. The spatial prob-423

lems are defined over the spatial domain [0, 1], which is discretized to cells424

of identical size ∆x = 0.01. The fluxes at the faces are calculated using425

high-resolution limited-flux methods. The limiters, in turn, are computed426

using the minmod function, as it was also used by Vikas et al [6]. Two ghost427

cells at the left side of the domain and one ghost cell at the right side are428

considered to cope with the three-cell stencil required by the high-resolution429

schemes. The advection velocity, u, is set to 1.0 and ∆t is calculated by430

fixing the CFL condition equal to 0.5. The following solution procedure is431

used to advance in time starting from the initial data, which is based on the432

explicit fractional-step method for time integration:433

1. Initialize the moments in the interior domain.434

2. Apply the boundary conditions at the two left ghost cells.435

3. Calculate the limiters for all the moments at each face.436

4. Find the minimum limiter at each face.437

5. Calculate the flux of the moments using the minimum limiter at each438

face.439
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6. Compute the intermediate values of the moments at each interior cell440

using the fluxes at the corresponding left and right faces after a time441

step equal to ∆t.442

7. Find the weights and the abscissas of the quadrature at each interior443

cell using the intermediate values of the moments.444

8. Calculate the source contributions at each interior cell using the corre-445

sponding quadrature approximation of the NDF.446

9. Advance the intermediate values of the moments at each interior cell447

by one time step ∆t using the calculated source terms.448

10. Apply the boundary condition at the right ghost cell using zero-order449

extrapolation from the last interior cell of the domain.450

11. Repeat steps 3 to 10 until obtaining the solution at the desired time.451

Steps 8 and 9 (fractional-step approach) are obviously required only if the452

source terms are present. In this work, the source terms are treated by a453

single-stage method as explained in steps 8 and 9. However, these steps can454

be modified to use a two-stage method, leading to higher accuracy for the455

fractional-step approach as explained by LeVeque [15]. It should be empha-456

sized that this suggestion concerns the application of two-stage methods only457

for updating the intermediate moments by the source terms. Therefore, no458

realizability issue is generally expected in case of using two-stage methods459

instead of one-stage method only to treat the source terms, provided that460

the intermediate moments after the advection are realizable. Furthermore,461
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step 7 is done even in the case without source term to check the realizability462

of the moments.463

More details on the problem settings are presented for each case sepa-464

rately.465

5.1.1. Pure advection of the moments466

The first example is the one-dimensional pure advection of the moments,467

i.e. no source term, with the following initial and boundary conditions:468

IC : Mk(xi, 0) =
◦
Mk for i = 0, 1, 2, ..., p

BC (ghost cells) :

 Mk(x−1, tn) = Mk(x−2, tn) = Mk
b

Mk(xp+1, tn) = Mk(xp, tn)
(51)

where the interior cells are numbered from 0 to p. The initial conditions469
◦
Mk and the boundary conditions Mk

b are two sets of scaled moments having470

the shape of different log-normal distributions,
◦
Y and Yb. The parameters471

of the distributions, i.e. the mean and the standard deviation of the cor-472

responding normal distributions, are respectively ( ◦µ, ◦σ) = (ln(0.008), 0.22)473

and (µb, σb) = (ln(0.005), 0.2). Furthermore, the zero-order moments are474
◦
M0 = 20000 and M0

b = 800000 respectively. It should be noted that the two475

log-normal distributions have different parameters to avoid their quadra-476

ture approximations having the same abscissas. Otherwise, the interpolated477

abscissas on the faces are identical to those of the cells regardless of the478

employed scheme. Then, it is trivial to show that, in this special case, the479

quasi-2nd-order scheme proposed by Vikas et al. [6] is essentially the same480

as applying 2nd-order scheme directly to the moments.481

Figure 2 compares the results obtained from 1st-order scheme, quasi-2nd-482
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order scheme and the proposed equal-limiter scheme. Furthermore, the an-483

alytical solution is plotted in Fig. 2 to provide a benchmark. It is pointless484

to report the results by the standard 2nd-order TVD scheme since, as proved485

before, the corresponding results would be identical to those obtained by486

the equal-limiter scheme. As expected, the solution given by the 1st-order487

scheme is very diffusive. The quasi-2nd-order scheme improves the accuracy488

of the results by applying 2nd-order scheme to the weights. However, the489

moments do not remain bounded simply because applying a TVD scheme490

to the weights does not guarantee the boundedness of the transported mo-491

ments, hence appearance of the non-physical oscillations in the solutions.492

The least oscillations belong to the moment of order zero as expected, since493

it is simply equivalent to the sum of the weights, the variable to which the494

TVD scheme is applied in the quasi-2nd-order scheme. The oscillations be-495

come more obvious as the moment order increases. It should be noted that,496

according to our tests, the oscillations may increase or vanish depending on497

the characteristics of the underlying NDFs. The best predictions belong to498

the equal-limiter scheme which is indeed the full 2nd-order TVD scheme since499

this numerical example is the same as the pure advection Riemann problem500

studied in Section 3. Consequently, the predictions are bounded and without501

any oscillation.502

5.1.2. Moment advection with source term503

The next examples deal with a more practical application. The moments504

of a particle size distribution are introduced and advected in the domain while505

they are subject to local changes due the effect of the aggregation/breakage506

of the particles. The initial and boundary conditions are the same as the case507
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of pure advection (see Eq. (51)). In the following, two cases are presented508

in which the aggregation and breakage are considered separately. Both ag-509

gregation and breakage are modeled by assuming a constant kernel. For the510

case of breakage, the daughter size distribution is expressed by assuming511

symmetric fragmentation of the particles [23]. The reasoning behind these512

simplistic assumptions is the possibility of obtaining analytical solutions for513

the moments of the NDF.514

Constant aggregation kernel. In this case, the source term in Eq. (7) is515

calculated as follows [23]:516

hki = 1
2

3∑
α=1

wi,α
3∑

β=1
wi,β(L3

i,α + L3
i,β)k/3Ka −

3∑
α=1

Lki,αwi,α
3∑

β=1
wi,βKa (52)

where Ka = 10−5 (m3 · s−1) is the aggregation kernel.517

The solutions obtained by the studied schemes are shown in Fig. 3. As can518

be seen, both quasi-2nd-order and equal-limiter schemes improve the accuracy519

of the results with respect to the 1st-order scheme. It is notable that, despite520

employing the minimum limiter, the equal-limiter scheme produces almost521

comparable results to those of the quasi-2nd-order scheme. Moreover, the522

solutions of M3 indicate that only 1st-order and equal-limiter schemes are523

bounded, as expected. Instead, a slight degree of overshoot and undershoot524

exists in the solution of the quasi-2nd-order scheme. The appearance of these525

spurious oscillations is certainly due to the numerics as both aggregation and526

breakage of the particles have no effect on the moment of order three with527

respect to the particle size. Although no analytical solution is available for528

M5, some degree of overshoot and undershoot can be observed visually in529

the solution obtained by the quasi-2nd-order scheme. Again it can be seen530
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that the amplitude of the oscillations are intensified as the moment order531

increases. It is worth mentioning that employing the standard 2nd-order532

TVD scheme is not feasible because the moments get corrupted shortly after533

starting the simulation and consequently the Chebyshev algorithm fails to534

calculate the weights and the abscissas required for the source calculation.535

Even reducing the time step by a factor of 100, equivalent to an impractically536

small CFL value of 0.005, cannot remedy the non-realizability problem. This537

shows the effectiveness of the proposed equal-limiter scheme in preserving the538

realizability of the moments when the 2nd-order TVD schemes are employed.539

Symmetric constant breakage kernel. In this case, the source term in540

Eq. (7) is calculated as follows [23]:541

hki =
3∑

α=1
wi,α2(3−k)/3Lki,αKb −

3∑
α=1

wi,αL
k
i,αKb (53)

where Kb = 4 (s−1) is the breakage kernel.542

Fig. 4 depicts the results provided by the studied schemes along with the543

analytical solutions. The same arguments presented for the case of pure ag-544

gregation apply also to this case with the difference that here the oscillating545

behavior of the quasi 2nd-order scheme is more intense. This further high-546

lights the advantage of the equal-limiter scheme whenever the boundedness547

of the solution is strictly required.548

5.2. Pure advection in two-dimensional transient flow549

The previous part presents satisfactory results obtained by the equal-550

limiter scheme in the one-dimensional constant-velocity Riemann problem551

examples. However, it is important to examine the predictions obtainable552

by the proposed scheme in systems with higher dimensions and realistic flow553
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fields, e.g. non-constant and/or transient velocity. For this purpose, a famil-554

iar two-dimensional transient flow, known as lid-driven cavity, is selected to555

compare the results for the pure advection of moments obtained by employ-556

ing upwind, quasi-2nd-order and equal-limiter schemes. The moments belong557

to the distributions that represent the population of micro-droplets which558

are transported by a carrier liquid. The micro-droplets are assumed to do559

not have their own inertia and therefore they move with the same velocity560

of the carrier liquid.561

The simulation domain is a square with length (L) of 10 cm and it is dis-562

cretized by a structured uniform Cartesian grid comprising of 10000 square563

cells of size 1 mm. The flow is confined by four boundaries of type wall, from564

which the top one moves with the velocity (U) of 1 (m/s) while the others are565

fixed. The kinematic viscosity of the liquid (ν) is set to 2.5 × 10−4 (m2/s),566

which results to Reynolds number of 400 defined by UL/ν. The liquid is567

assumed to be stagnant at time zero and then a transient flow develops in568

the liquid due to the constant velocity (U) applied at the top wall.569

The transient simulations are done by using the icoFoam solver of Open-570

FOAM software, which solves the governing (constant-density) Navier-Stokes571

equations for the liquid phase numerically by using the PISO algorithm [16].572

The time step is set to 0.0001 (s) to keep the maximum Courant number573

below 0.1. The solution of the velocity field at three time instants are shown574

in Fig. 5. The solver is modified to solve simultaneously the moment trans-575

port equations. At the beginning of each time step, the moments of the576

micro-droplet population are advected in time using the velocity field of the577

previous time step. Then, the flow field of the liquid phase is updated by us-578

30



Acc
ep

te
d

M
anusc

ript

ing the PISO algorithm. Regarding the advection of moments, as mentioned579

in Section 4, the implicit Euler time-integration can be used with the advec-580

tion schemes that deal with the moments directly, and therefore is adopted581

here when the upwind and equal-limiter schemes are employed. On the other582

hand, the quasi-2nd-order scheme is implemented with Euler explicit time-583

integration. It should be noted that the reasoning behind employing the584

implicit time-integration scheme is to highlight the advantage of the equal-585

limiter scheme, which is its compatibility with the implicit approach. Con-586

cerning the flux-limiter, the minmod function is used for the interpolation587

of quadrature weights in case of employing quasi-2nd-order scheme and the588

interpolation of moments in case of employing equal-limiter scheme.589

Two different cases corresponding to two different initial conditions for the590

moments are considered. The first initial condition is defined such that there591

is no micro-droplets in the domain except for a square patch where a popu-592

lation of micro droplets with average size of 100 (µm) and standard devia-593

tion of 20 (µm) is introduced. The population is assumed to be distributed594

log-normally on the size space. The initial conditions for the moments are595

calculated based on this log-normal distribution which is scaled to adjust the596

volume fraction of the micro-droplets equal to 0.05 (assuming spherical shape597

for the micro-droplets). Fig. 6 depicts the initial conditions for the moment598

of order three, along with the solutions for the same moment at t = 3 s ob-599

tained by employing the 1st-order upwind, quasi-2nd-order and equal-limiter600

schemes. As can be seen, the solution obtained by the upwind scheme suffers601

from high numerical diffusion. On the other hand, both the quasi-2nd-order602

and equal-limiter schemes yield comparable results, which have higher resolu-603
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tion with respect to the one obtained by the upwind scheme. It is noteworthy604

that the same contour plots (but of different values) are obtained for the other605

moments, which is expected since the shape of the distribution corresponding606

to the underlying NDF remains the same in pure advection. As a result, the607

abscissas of the quadrature approximation are the same in all the cells of the608

domain.609

As mentioned previously, the quasi-2nd-order scheme interpolates the quadra-610

ture abscissas with a 1st-order scheme, whereas it interpolates the quadrature611

weights with a 2nd-order scheme. Therefore, when the quadrature abscissas612

are the same throughout the domain, the entire resolution of the quasi-2nd-613

order scheme for the pure advection of moments is the same as the 2nd-order614

scheme. The reason is that, in this case, the value of abscissas on the faces are615

the same as those at the cell centers regardless of the employed scheme. Con-616

sequently, the pure advection of moments by interpolating the weights onto617

the faces with a given 2nd-order scheme and then constructing the moments618

on the faces (using the same abscissas) is equivalent to the pure advection619

of moments by interpolating the moments directly onto the faces using that620

2nd-order scheme. However, this equivalency is not generally valid when the621

abscissas are not the same through the domain. Thus, it is worth examining622

the performance of the schemes in case of existing two different distributions,623

i.e. having different quadrature abscissas, in the system at time zero. For624

this purpose, the same square patch (with the same population of micro-625

droplets) defined by the initial conditions of the previous case is considered626

also here. However, it is assumed that another population of micro-droplet627

exists outside the square patch, instead of assuming no micro-droplet existing628
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in that zone. Let the population of micro-droplets out of the square patch629

be also distributed log-normally on the size space with average size equal to630

50 (µm) and standard deviation of 7.5 (µm). This distribution is scaled to631

have the volume fraction of the micro-droplets equal to 0.001. Then, the ini-632

tial condition of the moments is defined based on this scaled distribution, as633

shown in Figs. 7 and 8 for the moments of order zero and three respectively.634

Moreover, the predictions at t = 3 s are depicted by these figures for the635

mentioned moments. As can be seen in Fig. 7, the values of M0 obtained by636

employing the quasi-2nd-order scheme do not remain bounded between the637

limits defined by the initial conditions. It is noteworthy that in QBMM, the638

transported variables are indeed the moments and therefore in the pure ad-639

vection with a solenoidal velocity field, the solution for the moments should640

remain bounded between the limits defined by the initial conditions. This641

issue concerning the quasi-2nd-order scheme can be associated to the fact642

that this scheme interpolates the weights and abscissas of the quadrature643

separately, and therefore there is no guarantee that the TVD criteria [20] are644

respected by this scheme. On the other hand, the solution obtained by the645

equal-limiter scheme (when it is used with the minimum limiter) respects646

the boundedness property of the moments. Moreover, the applied change in647

the initial condition of the moments should not change the pattern of the648

solution contour plots, since the current initial condition with the two dis-649

tributions can be changed to a problem with initial condition similar to the650

previous case (micro droplets existing only in a square patches) by a change651

of variables. However, the comparison between the results shown in Fig. 8652

with those depicted in Fig. 6 highlights that only the equal-limiter scheme653
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reproduces the same pattern for M3 in both cases. Furthermore, the pattern654

of the results obtained by the equal-limiter scheme for M0 and M3 shown655

in Figs. 7 and 8 are the same, whereas this is not the case for the results656

obtained by the quasi-2nd-order scheme. This final example emphasizes the657

advantage of employing a scheme which interpolates the moments directly,658

e.g. equal-limiter scheme, instead of interpolating some variables related to659

the moments.660

6. Conclusions661

A new technique called equal-limiter scheme was proposed to overcome662

the non-realizability problem that arises when the 2nd-order TVD schemes663

are employed to solve the moment transport equations in the context of664

QBMM. The central idea behind the technique is that the interpolated mo-665

ments on the faces must form a realizable set when the moment fluxes are666

being calculated. Following this idea, it was explained that using an identical667

flux-limiter for all the moments at each face guarantees the realizability of668

the interpolated moments and consequently helps to preserve the realizabil-669

ity of the transported moments. Although no formal proof has been given670

to ensure that the equal-limiter scheme preserves the realizability of the mo-671

ments under general conditions, it has been shown that this feature can be672

achieved in the limit of small time steps (as long as the moment sets are673

far from the boundary of the moment space). On the contrary, adjusting674

the time step can not mitigate the non-realizability problem if the limiters675

are independently calculated for each moment of the transported moment676

set. This fact was also illustrated by the numerical tests as the moments677
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did not remain realizable even with impractically small time step in the case678

of employing the standard 2nd-order TVD scheme. Moreover, it was proved679

that the minimum limiter is a possible practical option for the equal limiter680

if the boundedness feature of the TVD schemes has to be retained. Al-681

though selecting the minimum limiter may imply solutions of lower order,682

the one-dimensional numerical examples showed that the results obtained by683

equal-limiter and quasi-2nd-order schemes are comparable in terms of accu-684

racy. More importantly, the improvement in the accuracy was observed also685

for the solutions obtained by the equal-limiter scheme in a one-way coupled686

QMOM-CFD simulation of a transient two-dimensional flow. Furthermore,687

the new technique does not only improve the accuracy of the solution with688

respect to the 1st-order solution but also keeps the solution bounded, which689

was shown to be an advantage over the quasi-2nd-order scheme by comparing690

their predictions in both one- and two-dimensional numerical examples. In691

addition, the implementation of the scheme is simple and can be integrated692

into the CFD simulations easily.693

The future works will focus on applying the proposed scheme to the694

three-dimensional CFD simulation of polydisperse systems and studying its695

predictions in comparison to those of the other discretization schemes.696
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Figure 1: Flux-limiter functions. The shaded area specifies the TVD region and the

hatched area is the 2nd-order region by Sweby [21]. The minmod [17] and van Leer [18]

limiter functions are shown by the continuous and dashed curves respectively.
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Figure 2: Comparison of the results obtained by employing different schemes for the case

of pure advection: 1) analytical solution (dot-dashed line); 2) upwind scheme (continuous

line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter scheme (dashed line)
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Figure 3: Comparison of the results obtained by employing different schemes for the case

of constant aggregation kernel: 1) analytical solution if available (dot-dashed line); 2)

upwind scheme (continuous line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter

scheme (dashed line)
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Figure 4: Comparison of the results obtained by employing different schemes for the case

of symmetric constant breakage kernel: 1) analytical solution (dot-dashed line); 2) upwind

scheme (continuous line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter scheme

(dashed line)
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Figure 5: Velocity field (m/s) of the simulated 2-D lid-driven cavity flow at three time

instants.

Figure 6: Comparison of the studied schemes for the advection of M3 in the 2-D cavity

flow. (a) The initial condition at t = 0; (b) the predictions obtained by employing the

different schemes at t = 3.
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Figure 7: Comparison of the studied schemes for the advection of M0 in the 2-D cavity

flow in case of existing two different distributions in the domain. (a) The initial condition

at t = 0; (b) the predictions obtained by employing the different schemes at t = 3.
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Figure 8: comparison of the studied schemes for the advection of M3 in the 2-D cavity

flow in case of existing two different distributions in the domain. (a) The initial condition

at t = 0; (b) the predictions obtained by employing the different schemes at t = 3.
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