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Abstract

A new finite-volume total variation diminishing (TV@\eme is proposed for
the solution of moment transport equations in quadrature-based moment methods
(QBMM). The proposed scheme is capable of presérving important properties of
the moments, such as realizability and bounded he idea behind the approach
is to limit the flux of all the moments at e celhface with the same limiter value.
The proposed numerical technique w; ly compared with other realizable
schemes developed for the moment transport equations, showing that the method
is able to keep the moments realizable and bounded at the same time.

Keywords: Quadrature—baz@ment methods (QBMM); Moment

realizability; Moment beuhgdedness; Population balance equation (PBE);

High-resolution sc inite-volume method.

o

Tle evolution in space and time of a population of disperse elements

droplets, bubbles or particles moving in a continuous fluid) can be de-

sciibed by using an Eulerian approach through the solution of a generalized
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population balance equation (GPBE). It is an integro-differential equation
written in terms of a number density function (NDF) representing, at every
point of the physical space, the number of elements that have a particular
state belonging to the so-called phase space, i.e. the space of the properti

required to characterize the system under investigation (e.g. element sj (\g
locity, chemical composition, temperature). The Quadrature-Bas Qent
Methods (QBMM) are proved to be efficient in solving the G where the
transport equations for some moments of the underlying Nére solved in-
stead of the GPBE [1]. These methods are based on thie'dssumption that the
underlying NDF has the form of a multi-dimensi @mation of weighted
kernel density functions (KDF) centered on th/(%rature abscissas, where
the quadrature weights and abscissas be'fetrieved from the moments by
means of the so-called inversion algdm (such as the Product-Difference
(PD) [2] and the Chebyshev [3] algorifhms). In most cases, the KDF is a

Dirac delta function, especi n a continuous reconstruction of the NDF

is not necessary. While ethods are efficient and promising, especially

when coupled wit tational Fluid Dynamics (CFD) codes, their prac-
tical use encoumnter§ inherent difficulties to cope with. One major issue is
the realizmg)consistency of the transported moment set, meaning that
there Q:) iS5t an underlying number density function (NDF) corresponding

he*transported moments. Confining the discussion to the finite-volume
m%thod, the most common cause of the non-realizability (also known as nu-
merical moment corruption) lies in the spatial discretization of the transport

term of the moment equation, when high-order spatial discretization schemes

are used. This problem is often related to the convective term, as in many
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cases the governing equations have a hyperbolic form. Desjardins et al. [4]
demonstrated that the 1%*-order scheme guarantees the realizability of the
moments, provided the CFL condition is respected. However, this scheme
results in highly diffusive solutions, leading sometimes to unacceptable p
dictions, hence the necessity of adopting high-order schemes. On t%@

hand, employing high-order finite-volume schemes for 1ndependen

of the moments may cause non-realizability issues | devel—
opment of a realizable high-order scheme for the solutio f m ment trans-
port equations is crucial. In this regard, Vikas an 6] presented

the so-called realizable quasi-high-order schem on the evaluation
hg

weights of the quadrature. With thi od, the quadrature interpola-

of the moment fluxes at the cell faces using the\interpolated abscissas and
et% 3

tion is performed by applying 1% clleme to the quadrature abscissas
and high-order schemes to the quadratlire weights. This approach produces
less diffusive solutions a tees the realizability of the transported
moments, prov1ded o on the time step is respected. However, no
analysis was cond the boundedness property of this approach, which

Qnee unbounded predictions are not physically allowed

can not be ignexe
[7]. Kah QQ;@}) formulated a 2"-order kinetic scheme that makes use of

the c oments to transport the moments indirectly while maintain-

th n the moment space. However, the application of their method
hlamom with more than four moments involves difficult algebra [9].
Recently, Laurent and co-workers [9] developed a similar approach based on
reconstructing the coefficients (i (for its definition refer to [9]) instead of the

canonical moments. However, their original (; reconstruction based scheme
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cannot be applied easily to the unstructured grids and therefore they sug-
gested a simplified version of this scheme that involves division of the cells
into three parts as proposed by Berthon [10].

The present work introduces a new technique, called equal-limiter sche

to overcome the non-realizability problem when 2"d-order TVD (Tot
ation Diminishing) schemes are applied to the moment transport % i
The technique is based on using an equal limiter given by t imiter

function for all the moments, and it will be shown thit@ effective to

avoid non-realizable set of moments. Moreover, it ation to three-
dimensional unstructured grids is straightforwar aper is organized as
follows. First, it will be proved that, in a one-dimensional Riemann problem,

the concept of equal-limiter emerges na

ally(if no source term is included in
the moment transport equations. importance of using an identical

limiter given by the limiter function fat all the moments will be clarified in

a general case by solving | @emann problem at each cell face and the
role of the time step &?p}ining the realizability of the moments will be
th

aper shows how this technique can be applied to

explained. Moreov;
CFD codes, wi Qany assumption on velocity field or type of mesh grid. In
the final ,

mparison between different techniques will be performed

by so ment transport equations in some one- and two-dimensional

o
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2. TVD scheme for moment transport equation

2.1. Moment transport equation

As previously mentioned, QBMM deal with the solution of the trans-
port equations written in terms of the moments of the NDF, instead of:
GPBE itself. The NDF is a complex multi-dimensional functional de-
pends on the so-called external coordinates, i.e. the position of elfements
in the physical space and time, and on the internal coord;j a%lich are
the generic properties associated to each element of th ation, such as
size, velocity, chemical composition or temperatun@h n the internal co-
ordinates do not include the velocity of the e s of the disperse phase,
N is ‘called Population Balance

the resulting transport equation for t

Equation (PBE) [1]. Although it is possi

apply the proposed numerical

scheme to the transport equation for\a, multivariate set of moments, let us

consider a univariate PBE W@ size of the elements of the disperse phase,
L, as the internal coord@ the sake of simplicity and clarity. In this
case, the PBE can bg/ritten as follows [11]:

of | o o(Lf)
" oL h (1)

where flL,x,t) denotes the NDF. In addition, U = U(x,t) is the
veloci@ the disperse phase, L represents the continuous rate of change
i size of elements due to the continuous processes (e.g. mass transfer
driven growth) and h introduces the contribution of the discrete events (e.g.

aggregation/breakage) into the PBE. It is worth remarking that the velocity
of the disperse phase appearing in Eq. (1) does not depend on the size of
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the elements: such approximation has been made to simplify the following
discussion and it is not a limitation of the proposed approach.

By definition, the k'"-order moment of f with respect to L is:

MF(x, t) = /Ooo F(L,x, ) L*dL (@

The importance of the moments lies in the fact that lower-ordeu%/ nts
t

are associated to various integral properties of the populatlon ance,

volume fraction of the disperse phase. The above de on can be used to

in this case the 3'-order moment with respect to L i g por¥i nal to the

from now on we assume a one-dimensional case where the velocity is constant

derive moment transport equations from Eq. ( % the sake of simplicity,

(u) and the contribution of the conti us%afesses is negligible (L = 0).
The transport equation for the k! oment reduces to the following

partial differential equation:

oM*  OMF - Q
= Kk
o T or (3)

where h* is the sourc@ changing the k*"-order moment due to the discrete

events. GenerallyNthis source term is a complex multi-dimensional integral
which depe he NDF itself. QBMM employ the so-called quadrature
Q) to express the functional form of the NDF. If we consider

appro
ly Q)\ternal coordinate, it is possible to write a generic integral in the

following way and therefore close the moment transport equations:

N

J, 709D = 3 weg(La) (4

where w, and L, are the weights and abscissas of the N-node quadrature

formula. This means that the NDF is approximated as a summation of delta

6
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functions centered on quadrature abscissas:

- Zl wad(L — L) (5)

This method is called Quadrature Method of Moments (QMOM) and it
designed to solve univariate PBE [12]. The weights and abscissas are dgter-
mined from the transported moments by employing an inversion g&hm
(such as PD or Chebyshev algorithms), provided the set of s is re-
alizable. This is usually referred as the moment problem [43]: in particular,
when the support of the NDF is Q; =0, +oo[ as %ase it is called
finite Stieltjes moment problem. When the su t e NDF is different,
ie. Qp =] — 00, +oo[ or 2 =|0, 1], we refer tofipite Hamburger and finite
Hausdorff moment problems respectiv T three different supports re-
sult in different constraints on t orted set of moments to ensure
its realizability [13, 14]. However, the’non-realizability problem is common
to all these cases and pos ain challenge in practical applications of

@nethod, this can happen particularly during

QMOM. In the finite-
the interpolation Qﬁe ments on to the faces to calculate the flux of the

moments thro s if high-resolution TVD schemes are employed.

zzz@ume Method

tioned before, the present study focuses on the non-realizability

the context of the finite-volume method. The general formulation

of the finite-volume method can be found in the specialized literature [15,
16], and therefore is omitted here. Let a single-stage explicit method be
adopted to march in time and the source terms be handled using fractional-

step approach [15]. In this way, the finite-volume method transforms Eq. (3)

7
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into the following discretized form written for the generic cell i of size Az in
the spatial domain:

. At
Mz'k :Mf Ax (Fz+1/2 Filil/Q) (6>

(MEy™ = M - At @

where MF, MF* and (MF)"*! refer to, respectively, the moment v che
current time (,), the intermediate value of the fractional-ste '%N’ach and
the moment value at the new time (¢,,1) after a time step,of At. Further-
more, FF /o and Fk i+1/2 denote the numerical flux %’\e left and right
faces of the cell 7 respectively, each depends on boring cell values at
time t,, according to the selected numerical /%Ctlon From now on, the
primary focus of the work will be on %Izrtlcularly the calculation of
the flux of the moments at the faces; effect of the source term will be
clarified afterwards.

It is desirable to Calcuxes using high-resolution schemes, which

are on the basis of sl iter methods. These methods use a high-order
scheme where the gg{is smooth enough, otherwise they switch to a low-
order one to Qﬂon—physical oscillations in the numerical solution [15].
In this Wa& tion exhibits higher order of accuracy, comparing to 15%-
order @ , without losing the boundedness. Using Lax-Wendroff as the
-order scheme and upwind as the low-order one will form the so-called
flug-limiter methods with the following numerical flux functions [15]:

_ 1 lu| At
F;'k_l/g =u MF+utMF |+ §|U| <1 - Aa:) o(0) 1/2)AM e (8)

_ 1 lu| At
A ] (B vl LGNS
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where
_ 1
ut = §(u +Ju|) and u” = i(u — |ul]) (10)
In addition, AM}F /2 and AM} /2 are respectively the jumps across the 1
and right faces, defined following the below convention: Q
A]\41'16—1/2 = Mz'k - Mz'k—l x

The flux-limiter ¢ is a function of the smoothness of M* a@ace (05i1/2)-
The smoothness is commonly defined as follows | 1?@

A variety of flux-limiter functions 1n the literature such as min-

mod [17] and van Leer [18].

Substituting the numer1 xes in Eq. (6) yields the following dis-
cretized equation: @
At
' j j leil) - EU (MﬁH Mz'k)
) [¢(91+1/2)AM+1/2 O(0F ;) AM]) 1/2]

(13)
Concept of Equal-Limiter

The flux-limiter methods were developed to address the issue of bound-
edness that occurs in the case of employing high-order schemes to solve hy-
perbolic problems. One would ideally desire to use these methods for the

solution of the moment transport equations, particularly when the 1%*-order

9
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accuracy is not sufficient to describe the behavior of the system under study.
However, in general, the non-realizability problem hinders their direct prac-
tice in solving the moments transport equations. In this section, it is shown

that this limitation can be overcome by selecting an equal limiter for all(t§

moments.

The starting point is to show that the idea of equal-limiter Aegs in
the case of employing 2"4-order TVD schemes for the pure mo vection
with no source term ((M})"*! = MF*) in a Riemann proklem)example. It
will be also shown that in this case the moments remai %Z&ble. Then, the
discussion will continue to highlight the advantag (ﬁloying equal-limiter
in a more general context, where the effect of @ation and breakage will
be also taken into account.

The argument begins with re 7 (13) for the case u > 0 without

loss of generality!:
(MFY™1 — ap V%Qf )
1
- 4/&7 V) [¢(6f+1/2)AMiZ1/2 - ¢(9£€71/2>AM£1/2} (14)

where v = u%; the Courant number. The smoothness at the left and
it

right face@
‘ ) M,kl_Mk2 MF — MF
— i— i— d ek — 7 i—1 15
2" T v S T o
N |

ten as follows Eq. (12):

7

et us consider a Riemann problem example with the following initial

'The case © < 0 can be formulated similarly and leads to the same conclusions

10
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data:

. ° M} itz <0
M (Z’, O) =M"= o (16>
MF ifz >0
where M F and M k are obtained from the initial left and right NDFs, f fr

and consequently constitute two realizable sets of moments. It is S ted
that the numerical solution of the k*"-order moment at any 14 and
any time step t,, including the zero time, can be expresicé

MF Mk—a(Mk MF)y , 0<al<1 (17)

where af' is a constant that changes with tﬁ ceé‘ndex ¢ and the time step

but not due to the moment order or vahie. other words, this constant is

the same for all the moments of a cell at each time step. It is worth

mentioning that the initial data(Eq. (16)) corresponds to af =1 for z; < 0
and af = 0 for z; > 0. Ne to substitute Eq. (17) in Eq. (14), which
after simplifications ?@ following;:

(MFyH = ) v — ) (M — MP)
Q@ (1-v [¢ M‘_ ) - a)
O o (St ) | adf - i
v — )} - a?“(z&f M) (18)

and a?™ collects several coefficients that do not depend on the moment

(=)

11
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values:

aj"t = a —v(a} —ay)
1 CL? - a?fl n n
B 51/(1 —v) [‘b (M) (aiyy — af) &
a’?fl B (1,?72 n n
— L T2 ARy 19
o () ) Qe
Equation (19) has the same structure of Eq. (14), therefore, i s that

a} is the solution of an advection equation for the variable & obtained by the
27d_order TVD finite-volume scheme. As a consequen 7%guaran’ceed that

an+1

T remains bounded to the values of the previgti\tinje step, i.e. between
E; a}e

0 and 1. Now it can be concluded that the pos d solution at time step

t, is also valid at the next time step ¢,4;: ?V
Myt = M - (SN 0 <t <1 (20)

As mentioned before, the init @ a (Eq. (16)) can be expressed by Eq. (17),

therefore, the postulate ion is indeed the solution of Eq. (14) at any

time step with the inibi ata defined by Eq. (16). Moreover, it can be

proved that the.sOlgition guarantees the realizability of the moments at any

time step Q@itial set is realizable. To proceed with the proof, the
18

followi ion is used for representing the set of moments:

= M0 Mt ] (21)

It is worth reiterating that /N is the number of quadrature nodes. The set of

moments can be defined as follows:
W= [ f()a(L)dL (22)

12
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where q(L) = [L° L' ... L*1".
Equation (20) can be written for the set of moments by using the notation

introduced in Eq. (21):

Wit =W, — ¢ (W, — W) (&

It should be emphasized that Eq. (23) is derived based on the fac atZt?“

is identical for all the moments. The proof follows by substif%ﬁ)q. (22)

in Eq. (23) and performing some manipulations: :

| ranydr = /[ g ﬁm"“d@d
0

fn-i-l ( _ n+1 fr+an+1 @ (25>

The above equation guarant e non-negativity of the f"** because both

fr and fl are defined to% egative NDFs and 0 < a™ < 1. Conse-
1

(24)

or

quently, the momen (g i at time step t,,1 is realizable, see [4].
Returning ba the’equal-limiter concept, it was previously highlighted
that an idenyé' 2 jz 1 for all the moments is essential to keep the moment
R

set realizable i iemann problem example. The identical a™ originates,

in tu@m the equal limiters calculated at the left and right faces (i.e.,
):

n n
Q; 1 — Q;_9

o6t ) =0 ( ) et ot =0 (B0 e

n n n
Q; — a; "4 i+l @

When source terms are present, the limiters are not generally identical for

all the moments, because in this case the smoothness of the moments may

13
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change differently and this may cause the non-realizability of the transported

moment set. This suggests to find a technique to employ an identical limiter

in the calculation of the moment fluxes at the faces.

Again Eq. (13) is rewritten for the case of u > 0 (here a local Riem&

problem is solved at each face of cell 7):

MM = MF —v(MF — MF )

N

1 2:
- 5’/(1 - V)[¢(9f+1/2>AM+1/2 o(0;_ 1/2 JAM, —1/2

which can simply be expressed as follows by collec%%erms containing

the moment of cells i — 1, 7 and ¢ + 1:

M = Bt + bt - i\

with
B —V—*Vl—
CF —1—V+ QX 1+1/2 ) + (0 1/2>]
Df:;l/ +1/2

(28)

(29)

Writing E@ or the set of moments of order k =1,2,...,2N — 1 yields:

- BIMY, com?

DYM?

7 i+1
1% 1 1 1 1 1
M; _ B;M; N C; M; Di M,
2N —1x% 2N—-1 2N—1 2N—-1 2N—1 2N—1 2N—-1
M; B; M= C; M; D; M
set i-1 set i set i+1
(30)

14
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The three sets of moments in Eq. (30) can easily become non-realizable be-
cause, in general, the coefficients B as well as CF and D¥ might differ from
one moment to another (belonging to the same moment set) as a consequence
of unequal limiters. Marchisio and Fox [1] showed that a small change in j

one moment can make a consistent set of moments non-realizable. Q&

other hand, if identical limiters are selected to estimate the fluxe the

moments at the left and right faces, Eq. (30) can be written a@hﬁvs:

| fraWar = [T(Bifis + Cifi = Difir)al L)@%Q (31)

\ SQ
fi = Bifia +Cifi — Difiga (32)

where B; as well as C; and D; are elow by choosing an equal limiter
at the left face, ¢(0i—1/2), and one at’ the right face, ¢(;11/2), for all the

moments:

B, = ;I/( & i— 1/2
Ci=1 (1 =) [0(Ois1/2) + O(0i-1/2)]
D; 7@§Zv)¢ (0it1/2) (33)

t sh e noted that there is still no proof for the moment realizability

case of employing equal limiters when source terms in the moment
transport equation are present, because the last term in Eq. (32) is negative
[4] [6]. However, the contribution of the negative term can be kept small
enough through adjusting the time step since the coefficient D; diminishes as

the time step is reduced to zero. In other words, the non-realizability problem

15



261

262

263

264

267

268

269

270

271

272

273

274

275

277

278

279

280

281

282

283

284

285

can be prevented by adjusting the time step, whereas it can arise easily

regardless of the time step if the limiters are calculated independently. One

should be careful when the moment sets lie on the boundary of the moment

space. In such case, the underlying number density functions are inde

some point distributions, i.e summation of some weighted delta funesions.

Therefore, if the moment sets in Eq. (30) are near or on the bound% the
ity

moment space, reduction of the time step cannot resolve the r issue
since the supports of the corresponding underlying number@ty functions

in Eq. (32) may hardly match each other. A possible ir@ can be adopting

the 1-D adaptive quadrature technique proposed E and co-workers [19].

By this technique, the maximum number of quadrature nodes is selected in

0 (!%mate the quadrature weights

in’the interior of the moment space.

such a way that the moments require

and abscissas form a set which is |

It is noteworthy that the local reductign of the number of quadrature nodes

is not a problem for the e @ter scheme, in contrast to the quasi-high-
order scheme, since the @s to be interpolated are the moments and not
the quadrature ab {sgand weights.

The final pei be addressed is the choice of an equal flux-limiter at
each face. Cii the constraint on the boundedness of the solution narrows
the ¢ e equal flux-limiter. As mentioned before, the 2°%-order TVD

mes=Have this notable feature of preserving the solution bounded. It is
ex{remely useful for the QMOM since the low-order moments are propor-
tional to physical properties that are bounded in nature, such as mean size,

surface area or volume fraction. Harten [20] established the sufficient crite-

ria for a scheme to be TVD, which provide constraints on the flux-limiter

16
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292

293

294
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296

297

298

299

300

301

functions:
$@)=0 if <0 and 0<¢(d) <min(20,2) if 6 >0 (34)

Fig. 1 represents these constraints graphically (shaded area) following &

work of Sweby [21]. Moreover, it depicts the 2"d-order region propos
Sweby [21] (hatched area) within which the flux-limiter function Qwo
such examples are shown by the solid line (minmod limiter,@y d the
dashed line (van Leer limiter [18]).

The flux-limiter functions in the literature Shaér% mon feature of

of the moments is an

being non-decreasing functions of 6. Using this f e,)it is simple to show
that the smallest flux-limiter among all the ﬁ%&

obvious choice that guarantees the baginde of all the moments. The

neral limiter function at a given

face, e, can be represented as ¢(6%) with k = 0,1,...,2N — 1. These limiters

respect the conditions expre Eq. (34):

p(0F) =0 if K and 0 < ¢(A%) < min(20%,2) if 6" >0
(35)

flux-limiters calculated independe

Suppose tha@gnotes the limiter with the minimum value:

6{”9(9?) < (0% for k=0,1,..,2N —1 (36)
E 0" c{0% | ke{0,1,...,2N —1}} (37)

and since the flux-limiter functions are non-decreasing:

0" <0* for k=0,1,..,2N —1 (38)
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On the other hand, the upper boundary of the TVD region shown in Eq. (35),

min(26%,2), is a non-decreasing function, therefore:

min (207, 2) < min(260%,2) for k=0,1,..,2N — 1 (39)
since ¢™™ respects the conditions specified in Eq. (35), it can be con G&
that:

0 < ¢r™ <min(20F,2) for k=0,1,..,2N -1 Q%‘ (40)

in other words, ¢™" falls always in the TVD region speki in Fig. 1 for all
(&Edgd

the moments. As a result, the moments remain using this limiter,
following the proof given by Harten [20].
It should be mentioned that, in ggnera minimum limiter can fall

outside the 2"-order region of Sw e moments, hence resulting in

solutions with accuracy of lower ordety Nevertheless, the numerical results

reported in the next Sectio remarkable improvements in comparison
to the 1%%-order solutions mportantly, the results indicate a significant
advantage of the pr d Scheme over the realizable high-order scheme of

Vikas et al. [6] it is able to produce bounded solutions.

4. Appli@n to CFD Codes

T@Ction focuses on the application of the equal-limiter scheme to CFD
codes; which is indeed our ultimate goal of introducing this scheme. For this
purpose, the following three-dimensional conservative transport equation is
considered for the k*'-order moment:

OMPF N ﬁ (
ot ox

uM*) =0 (41)
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The source term is not included since the focus is only on the advection of the
moments. In the context of finite volume methods, Eq. (41) is integrated over
the volume of each computational cell and then the integral of the convective
term over the volume of each cell is replaced with the net flux of the mome

through the faces of that cell (Gauss’s theorem). Therefore, the folleyin

semi-discretized equation is obtained for a generic cell i [16]: \/
dMF 1
i - fi MFE = 42
@ T Ay, (e S =0 ( )% (42)

e
where M* and u, are the moment of order k and @i‘cy at a generic
(&

face e of cell 7 respectively. In addition, n, and ote respectively the

outward unit normal vector and the surfacg ares, of face e and AV, is the

volume of the cell i. The transient termNu Eq§, (42) is not discretized for the

reason that becomes clear later. In codes, the flux of the velocity field
at the cell faces, i.e. (u. - 0.)Y9, is geferally known. However, the value of

the moments at the faces M} not available and should be interpolated

from the values at t}&h of neighbouring cells.
The implementati f high-resolution TVD schemes in CFD codes is usually
on the basis gl—diﬁereme scheme, of which the anti-diffusive contri-

bution is imitedfo prevent oscillations in the solution [22]:

P MG+ o(05) Ne(Mp — M) (43)
~~ —_—
upwind anti-diffusive part

where ME and M} refer to the values of the moment of order k at the centers
of the upwind and downwind cell neighbours of the face e respectively. The
selection of the upwind and downwind cells is based on the direction of the

velocity field at face e, which is the same for all the moments. In addition,
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the coefficient ). takes a positive constant value between 0 and 0.5, which
depends on the distances between the center of face e and the centers of
the two neighbouring cells. The advantage of employing an identical limiter
can be illustrated by rearranging Eq. (43) and writing it for a set of 2N &

moments as follows:

M 1= X0(6)] M eqs ﬂﬁvg

M [1- ecb( o)l M

M2N-1 {1_>\6¢(92N 1 2N 1 &92]\{ 1 M2N 1

set e set U set D

(44)
In general, the limiters for different mo EZ(Q 01), ..., ¢(0*N1) are
not the same. Therefore, the moment Sets "U" and "D" can easily become
non-realizable, leading to the -realizable set of interpolated moments at
face e. However, selectin Q‘cical limiter, let it be ¢™" guarantees the
realizability of the i ;@) d moment set e, as long as the moment sets

'"U" and "D" are zab e:

My Mp
M} . M}
(=A™ | 77 || P (45)
2N 1 M2N 1 M2N 1
—— ——
sot e set U set D

It is worth reiterating that the value of limiter ¢™" is between 0 and 2.
Moreover, the moment sets "U" and "D" belong to the previous time step

if an explicit method is used to advance in time, and therefore they are
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realizable.

It should be noted that the realizability of the interpolated moments on the
faces does not ensure the realizability of the calculated moments at the new
time step. To elaborate, let the transient term in Eq. (42) be integrated usi

an explicit Euler scheme [16] and then write the fully-discretized e ﬁg

for the set of 2N — 1 moments:

N
Wit = W2 - 2L S i) s, Wy QQV (46)

AV,

e
The use of an identical limiter for all the momentsﬁ%es that the mo-
1

ment set W be realizable, and therefore an und umber density func-

tion (fZ) can be associated to it. This allows writing Eq. (46) as:

At
n+l _ rn n A
fi - fz Avl Z(ue ne e (47>

e

The summation in the above equation can be separated into two contributions
of in-going and out-going @

A
fzn-i_l = fzn - %min[(u’g ' ﬁe)a O]Sef;l - A; Zmax[(u’; ' ﬁe)7 O]Sef(;n

e

e
@ in-going fluxes out-going fluxes

(48)

The iu~goi uxes have positive sign and cannot rise the realizability issue,
?ea Tthe outgoing fluxes have negative sign and can cause realizability is-
sug, i.e. negativity of /!, However, the out-going fluxes can be still decom-
posed into two separate upwind and downwind contributions corresponding
to the upwind and downwind neighbouring cells of the corresponding faces.

It is noteworthy that the upwind cell of these faces indeed coincides with cell
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1 since the flux at these faces is out-going. Thus, the first and third terms of

the RHS of Eq. (48) can be written as follows:

A
(1- 0o 5 Zmax[(u: 5. om) fr
- (A 2 S e ), ]s F9)

where fD denotes the (downwind) neighbouring cell separated Qa from
cell i. As can be seen, the entire contribution of the cell ¢ @1
as the coefficient behind f]* is positive, leading to ti\% wing CFL-like

e as long

condition:

AA‘Z " max[(u? - f,), 05, < 1 \i: (50)

Therefore, the only remaining negative\céptributions are due to the infor-
mation (distributions) of the downwind cells (with respect to cell ¢) that
propagates back into cell 1, v@s the characteristic of high-order schemes.
These negative contribuﬁ%ﬁ generally lead to the non-realizability issue,
i.e. negativity of f/"¢"NHowever, similar to the previous discussion done for

one-dimensional stant-velocity cases, the negative contributions can be

kept small (i arison to the contribution of f*) by controlling the time

step. It i@worthy that this technique may fail as the moment sets are
ear/ @e boundary of the moment space, as explained before.

ing back to the time-integration of the transient term in Eq. (42),

it should be noted that one notable advantage of the equal-limiter scheme

is the possibility of using implicit time-integration for the advection of the

moments. This is due the fact that the equal-limiter scheme interpolates

the moments directly, whereas, for instance, the quasi-high-order scheme is
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normally implemented using explicit time-integration schemes. This aspect
is particularly important when the solution of the population balance equa-

tion is incorporated into a CFD solver, since the implicit time-integration

schemes are commonly adopted in these codes.
Lastly, the proposed technique is very simple from the comput '(rg
point of view and can be easily implemented in three-dimensidwal “CFD

solvers. The only additional steps are comparing the limiter v. culated
for the moments at each face and then replacing them Wfti@smallest one

at the corresponding face. 0
5. Numerical Examples %

This section evaluates the performatige ogghe proposed technique for the

advection of moments in two differe . The first one is focused on com-

paring the predictions obtained_by différent schemes for the advection of the

moments in a mono—dimenqj)h nstant-velocity problem. The second part
eNef

e schemes by solving the moment transport

lid-driven cavi

evaluates the perform
equations couple@ge CFD simulation of a two-dimensional transient
fl

5.1. O e@nsional advection with constant-velocity

Ti@r‘c employs the equal-limiter scheme for the advection of moments
i ially mono-dimensional problems with the disperse particle size as the
only internal coordinate of the PBE. The first example deals with the pure
advection of the moments without any source term, while the next examples

includes the aggregation/breakage source terms in the moment transport

equations. The results are compared with those obtained via a 1%*-order
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432
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434

435
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438

439

scheme and the realizable high-order scheme (or quasi-2"4-order scheme) by

Vikas et al. [6]. In addition, the analytical solution is reported whenever it

is available.

All the cases use 3-node quadrature to approximate the NDF. This nu

ber of nodes requires to track the first 6 moments with respect to t ar-

ticle size,

MO M?', ...,M5. The calculation of the weights and a%
prob-

the quadrature is done by using the Chebyshev algorithm. T
lems are defined over the spatial domain [0, 1], which i s discre 1zed to cells

of identical size Ax = 0.01. The fluxes at the fac e alculated using

using the minmod function, as it was also use

ikas et al [6]. Two ghost

high-resolution limited-flux methods. The lim turn are computed
d g e

cells at the left side of the domain anfyone h st cell at the rlght side are

considered to cope with the three- required by the high-resolution

schemes.

fixing the

The advection velocity, u, #§ set to 1.0 and At is calculated by

CFL condition ¢ 0.5. The following solution procedure is

used to advance in tim ing from the initial data, which is based on the

explicit fractional- hod for time integration:

1. Initiali z@ oments in the interior domain.

e boundary conditions at the two left ghost cells.

chulate the limiters for all the moments at each face.

4. Find the minimum limiter at each face.

5. Calculate the flux of the moments using the minimum limiter at each

face.
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461

6. Compute the intermediate values of the moments at each interior cell
using the fluxes at the corresponding left and right faces after a time

step equal to At.

7. Find the weights and the abscissas of the quadrature at each int%&
cell using the intermediate values of the moments. Q

8. Calculate the source contributions at each interior cell u corre-

sponding quadrature approximation of the NDF.

9. Advance the intermediate values of the mo:g@a%each interior cell
by one time step At using the calculate@%ce erms.

10. Apply the boundary condition a he%’ﬂ[ ghost cell using zero-order

extrapolation from the last i iok el of the domain.

11. Repeat steps 3 to 10 untide@btaining the solution at the desired time.

Steps 8 and 9 (fractio prapproach) are obviously required only if the
source terms are prése In this work, the source terms are treated by a
single-stage me as explained in steps 8 and 9. However, these steps can
be modifie a two-stage method, leading to higher accuracy for the
fractional- approach as explained by LeVeque [15]. It should be empha-

ized C)uhis suggestion concerns the application of two-stage methods only
fox'updating the intermediate moments by the source terms. Therefore, no
realizability issue is generally expected in case of using two-stage methods
instead of one-stage method only to treat the source terms, provided that

the intermediate moments after the advection are realizable. Furthermore,
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step 7 is done even in the case without source term to check the realizability
of the moments.

More details on the problem settings are presented for each case sepa-

rately. &

5.1.1. Pure advection of the moments

The first example is the one-dimensional pure advection of @nen’cs,

i.e. no source term, with the following initial and boundar@ ions:

IC: Mz;,0)=M*  for i=0,1,2,.., : )
MF*(z_q,t,) = MF(xNg, T) = M}
g )

BC' (ghost cells) : ! (51)

M (xp+17t ) ¥ P?tn
where the interior cells are numbeged to p. The initial conditions
MP* and the boundary conditions M} two sets of scaled moments having

the shape of different log-no

@ distributions, 10/ and Y,. The parameters
of the distributions, i.e. can and the standard deviation of the cor-
responding normal difgibufions, are respectively (i1, ) = (In(0.008),0.22)
and (up, 0p) = @@005),0.2). Furthermore, the zero-order moments are
]\2 0 = 2000 @ = 800000 respectively. It should be noted that the two
log-nor @lributions have different parameters to avoid their quadra-
ture roximations having the same abscissas. Otherwise, the interpolated
alhsCiS®as on the faces are identical to those of the cells regardless of the
enfployed scheme. Then, it is trivial to show that, in this special case, the
quasi-2"d-order scheme proposed by Vikas et al. [6] is essentially the same

as applying 2°%-order scheme directly to the moments.

Figure 2 compares the results obtained from 1%*-order scheme, quasi-2"9-
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507

order scheme and the proposed equal-limiter scheme. Furthermore, the an-
alytical solution is plotted in Fig. 2 to provide a benchmark. It is pointless
to report the results by the standard 2"d-order TVD scheme since, as proved

before, the corresponding results would be identical to those obtained
S
scheme is very diffusive. The quasi-2"d-order scheme improves the€gcchgacy
of the results by applying 2"%-order scheme to the weights. %@Ver, the
moments do not remain bounded simply because apply'n@.‘ D scheme

to the weights does not guarantee the boundedness e fransported mo-

the equal-limiter scheme. As expected, the solution given by the {Stq

The least oscillations belong to the moment of oxder zero as expected, since

ments, hence appearance of the non-physical oéil ions in the solutions.

it is simply equivalent to the sum of the weights, the variable to which the

TVD scheme is applied in the qu ovder scheme. The oscillations be-

r increases. It should be noted that,

according to our tests, the Eions may increase or vanish depending on

come more obvious as the moment or

the characteristics of t lying NDFs. The best predictions belong to
the equal-limiter s hich is indeed the full 2"4-order TVD scheme since

this numerical exaMple is the same as the pure advection Riemann problem
studied mé@.
any o abierl.
Woment advection with source term

The next examples deal with a more practical application. The moments

Consequently, the predictions are bounded and without

of a particle size distribution are introduced and advected in the domain while
they are subject to local changes due the effect of the aggregation/breakage

of the particles. The initial and boundary conditions are the same as the case
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of pure advection (see Eq. (51)). In the following, two cases are presented
in which the aggregation and breakage are considered separately. Both ag-
gregation and breakage are modeled by assuming a constant kernel. For the
case of breakage, the daughter size distribution is expressed by assumi
symmetric fragmentation of the particles [23]. The reasoning behin (S
simplistic assumptions is the possibility of obtaining analytical sol@ for
the moments of the NDF.

Constant aggregation kernel. In this case, the source @in Eq. (7) is
calculated as follows [23]: %

13 > s
b= 5 2 e X wialli £ L0 3K“@iawm 2 wighe (52)
= =1

p=1
where K, = 107> (m? - s7!) is the aggr tXZernel.
The solutions obtained by the studie
be seen, both quasi-2"4-order ﬁqual—limiter schemes improve the accuracy
t

chemes are shown in Fig. 3. As can

of the results with respect, st_order scheme. It is notable that, despite
employing the minir?ﬁﬁf?er, the equal-limiter scheme produces almost
comparable resu o tHose of the quasi-2"-order scheme. Moreover, the
solutions of @g’ca‘ce that only 1%%-order and equal-limiter schemes are
bounded, fas expécted. Instead, a slight degree of overshoot and undershoot
exists(in the solution of the quasi-2"4-order scheme. The appearance of these
?ﬁ oscillations is certainly due to the numerics as both aggregation and
bregakage of the particles have no effect on the moment of order three with
respect to the particle size. Although no analytical solution is available for

M5, some degree of overshoot and undershoot can be observed visually in

the solution obtained by the quasi-2"d-order scheme. Again it can be seen
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that the amplitude of the oscillations are intensified as the moment order
increases. It is worth mentioning that employing the standard 2"%-order
TVD scheme is not feasible because the moments get corrupted shortly after
starting the simulation and consequently the Chebyshev algorithm fails

calculate the weights and the abscissas required for the source calc {(S
Even reducing the time step by a factor of 100, equivalent to an im ?ﬂlly
small CFL value of 0.005, cannot remedy the non-realizability . This
shows the effectiveness of the proposed equal-limiter sche ﬁ@eserving the
realizability of the moments when the 2"4-order TV (%es are employed.
%e, the source term in

Symmetric constant breakage kernel. In this

Eq. (7) is calculated as follows [23]:

3
=3 wi,a2<3*k>/3L§aKb — K (53)
a=1

where K, = 4 (s71) is the breakage kernel.
Fig. 4 depicts the resul ed by the studied schemes along with the
arguments presented for the case of pure ag-

analytical solutions. T
gregation apply BJQlO is case with the difference that here the oscillating

i 2"dorder scheme is more intense. This further high-

behavior of t u
lights the Qj ge of the equal-limiter scheme whenever the boundedness

of the@

/ re advection in two-dimensional transient flow

is strictly required.

The previous part presents satisfactory results obtained by the equal-
limiter scheme in the one-dimensional constant-velocity Riemann problem
examples. However, it is important to examine the predictions obtainable

by the proposed scheme in systems with higher dimensions and realistic flow
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fields, e.g. non-constant and/or transient velocity. For this purpose, a famil-
iar two-dimensional transient flow, known as lid-driven cavity, is selected to
compare the results for the pure advection of moments obtained by employ-

ing upwind, quasi-2"4-order and equal-limiter schemes. The moments belo

to the distributions that represent the population of micro-droplets
are transported by a carrier liquid. The micro-droplets are assu

not have their own inertia and therefore they move with thf@locity

of the carrier liquid.

The simulation domain is a square with length (L) f%m and it is dis-
cretized by a structured uniform Cartesian grid @ing of 10000 square
cells of size 1 mm. The flow is confined by four beundaries of type wall, from

(

which the top one moves with the veloc of 1 (m/s) while the others are
(v) is set to 2.5 x 107 (m?/s),

which results to Reynolds number of Z00 defined by UL/v. The liquid is

fixed. The kinematic viscosity of

assumed to be stagnant at ero and then a transient flow develops in
the liquid due to the ¢ @velocity (U) applied at the top wall.

The transient si are done by using the icoFoam solver of Open-
FOAM softw Q

equations C; iquid phase numerically by using the PISO algorithm [16].

h solves the governing (constant-density) Navier-Stokes

The tc) is set to 0.0001 (s) to keep the maximum Courant number

w 0= The solution of the velocity field at three time instants are shown
k’& The solver is modified to solve simultaneously the moment trans-
port equations. At the beginning of each time step, the moments of the
micro-droplet population are advected in time using the velocity field of the

previous time step. Then, the flow field of the liquid phase is updated by us-
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ing the PISO algorithm. Regarding the advection of moments, as mentioned
in Section 4, the implicit Euler time-integration can be used with the advec-
tion schemes that deal with the moments directly, and therefore is adopted
here when the upwind and equal-limiter schemes are employed. On the ot
hand, the quasi-2"%-order scheme is implemented with Euler explici &
integration. It should be noted that the reasoning behind emp@the
implicit time-integration scheme is to highlight the advanta equal-
limiter scheme, which is its compatibility with the impl'ci@roach. Con-
%he interpolation

cerning the flux-limiter, the minmod function is us

interpolation of moments in case of employing egual-limiter scheme.

of quadrature weights in case of employing qua:é 2 der scheme and the

Two different cases corresponding to tfwo differént initial conditions for the

moments are considered. The first4 dition is defined such that there

is no micro-droplets in the domain excépt for a square patch where a popu-

ge size of 100 (pum) and standard devia-

d/ The population is assumed to be distributed

lation of micro droplets wi

tion of 20 (um) is intr
ace. The initial conditions for the moments are

log-normally on t iz
calculated basedomMghis log-normal distribution which is scaled to adjust the
g the micro-droplets equal to 0.05 (assuming spherical shape

volume fr@
for thg droplets). Fig. 6 depicts the initial conditions for the moment

rd ree, along with the solutions for the same moment at ¢ = 3 s ob-

2"d_order and equal-limiter

tained by employing the 1%%-order upwind, quasi-
schemes. As can be seen, the solution obtained by the upwind scheme suffers
from high numerical diffusion. On the other hand, both the quasi-2"-order

and equal-limiter schemes yield comparable results, which have higher resolu-
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tion with respect to the one obtained by the upwind scheme. It is noteworthy
that the same contour plots (but of different values) are obtained for the other
moments, which is expected since the shape of the distribution corresponding
to the underlying NDF remains the same in pure advection. As a result, t
abscissas of the quadrature approximation are the same in all the cell (tg
domain. Q
As mentioned previously, the quasi-2"4-order scheme interpol uadra-
ture abscissas with a 1%%-order scheme, whereas it interpo at@ quadrature
weights with a 2"d-order scheme. Therefore, when t %rature abscissas
are the same throughout the domain, the entire esﬁon of the quasi-27d-
order scheme for the pure advection of momen@\e same as the 2"d-order

scheme. The reason is that, in this case{he vilue of abscissas on the faces are

the same as those at the cell cente dl€ss of the employed scheme. Con-
sequently, the pure advection of momehts by interpolating the weights onto
the faces with a given 2"9- heme and then constructing the moments

on the faces (using th ¢ Abscissas) is equivalent to the pure advection

of moments by int ing the moments directly onto the faces using that

wever, this equivalency is not generally valid when the

2"d_order schepte.
abscissas cr}?&e same through the domain. Thus, it is worth examining

the p@ ce of the schemes in case of existing two different distributions,

havirg different quadrature abscissas, in the system at time zero. For
this purpose, the same square patch (with the same population of micro-
droplets) defined by the initial conditions of the previous case is considered
also here. However, it is assumed that another population of micro-droplet

exists outside the square patch, instead of assuming no micro-droplet existing
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in that zone. Let the population of micro-droplets out of the square patch
be also distributed log-normally on the size space with average size equal to
50 (um) and standard deviation of 7.5 (um). This distribution is scaled to
have the volume fraction of the micro-droplets equal to 0.001. Then, the ip

tial condition of the moments is defined based on this scaled distributi ,&
shown in Figs. 7 and 8 for the moments of order zero and three re@ely.

Moreover, the predictions at ¢ = 3 s are depicted by these or the

mentioned moments. As can be seen in Fig. 7, the value @obtamed by
employing the quasi-2"%-order scheme do not remai k%ied between the
limits defined by the initial conditions. It is not (@tha‘c in QBMM, the
transported variables are indeed the moments and therefore in the pure ad-

e s%iufion for the moments should

by the initial conditions. This

vection with a solenoidal velocity field;

remain bounded between the limi

issue concerning the quasi-2°%-order eme can be associated to the fact

that this scheme interpola, @ weights and abscissas of the quadrature
separately, and therefo @18 no guarantee that the TVD criteria [20] are
respected by this gg« On the other hand, the solution obtained by the
equal-limiter Q(When it is used with the minimum limiter) respects
the boun eSy property of the moments. Moreover, the applied change in
the in@ dition of the moments should not change the pattern of the

tiof=contour plots, since the current initial condition with the two dis-
tributions can be changed to a problem with initial condition similar to the
previous case (micro droplets existing only in a square patches) by a change

of variables. However, the comparison between the results shown in Fig. 8

with those depicted in Fig. 6 highlights that only the equal-limiter scheme
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reproduces the same pattern for M3 in both cases. Furthermore, the pattern
of the results obtained by the equal-limiter scheme for My and M3 shown
in Figs. 7 and 8 are the same, whereas this is not the case for the results

obtained by the quasi-2"4-order scheme. This final example emphasizes &
tly,

e.g. equal-limiter scheme, instead of interpolating some variables

the moments. j Q\)

advantage of employing a scheme which interpolates the moments Ag

6. Conclusions
A new technique called equal-limiter schem Qoposed to overcome
the non-realizability problem that arises W 2nd order TVD schemes
are employed to solve the moment tr uatlons in the context of
QBMM. The central idea behind th nique is that the interpolated mo-
ments on the faces must for realizable set when the moment fluxes are
being calculated. Following~thi§idea, it was explained that using an identical
flux-limiter for all th @{?ts at each face guarantees the realizability of
the interpolated é&'and consequently helps to preserve the realizabil-
% moments. Although no formal proof has been given

ity of the tr@
to ensure fhat\the equal-limiter scheme preserves the realizability of the mo-

menty under general conditions, it has been shown that this feature can be
in the limit of small time steps (as long as the moment sets are
rom the boundary of the moment space). On the contrary, adjusting
the time step can not mitigate the non-realizability problem if the limiters
are independently calculated for each moment of the transported moment

set. This fact was also illustrated by the numerical tests as the moments
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did not remain realizable even with impractically small time step in the case
of employing the standard 2"-order TVD scheme. Moreover, it was proved
that the minimum limiter is a possible practical option for the equal limiter
if the boundedness feature of the TVD schemes has to be retained.

though selecting the minimum limiter may imply solutions of lower er,
the one-dimensional numerical examples showed that the results o g by

2nd

equal-limiter and quasi-2"“-order schemes are comparable in f accu-

racy. More importantly, the improvement in the accurac§ @bserved also

for the solutions obtained by the equal-limiter sch% a _bne-way coupled

the new technique does not only improve the atguracy of the solution with

QMOM-CFD simulation of a transient two—dimé& flow. Furthermore,

respect to the 1%%-order solution but al§g keeys the solution bounded, which

was shown to be an advantage ove i-2°order scheme by comparing

their predictions in both one- and twofdimensional numerical examples. In
addition, the implementati ﬁ@\e scheme is simple and can be integrated
into the CFD simulati @y

The future wo focus on applying the proposed scheme to the

three—dimens% D simulation of polydisperse systems and studying its

predictimn@

?v

parison to those of the other discretization schemes.
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ACCEPTED MANUSCRIPT

3.0

Figure 1: Flux-limiter functions. The shaded area specifies the TVD region and the
hatched area is the 2°%-order region by Sweby [21]. The minmod [17] and van Leer [18]

limiter functions are shown by the continuous and dashed curves respectively.
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Figure 2: Comparison of the results obtained by employing different schemes for the case
of pure advection: 1) analytical solution (dot-dashed line); 2) upwind scheme (continuous

line); 3) quasi 2"d-order scheme (dotted line); 4) equal-limiter scheme (dashed line)
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Figure 3: Comparison of the results obtained by employing different schemes for the case
of constant aggregation kernel: 1) analytical solution if available (dot-dashed line); 2)

2nd

upwind scheme (continuous line); 3) quasi 2"“-order scheme (dotted line); 4) equal-limiter

scheme (dashed line)
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Figure 4: Comparison of the results obtained by employing different schemes for the case
of symmetric constant breakage kernel: 1) analytical solution (dot-dashed line); 2) upwind

2nd

scheme (continuous line); 3) quasi 2"“-order scheme (dotted line); 4) equal-limiter scheme

(dashed line)
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0.2

Figure 5: Velocity field (m/s) of the simulated 2-D lid-driven cavity flow at three time

instants.
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Figure 6: Comparison of the studied schemes for the advection of M3 in the 2-D cavity

upwind quasi- equal-limiter
second-order

flow. (a) The initial condition at ¢ = 0; (b) the predictions obtained by employing the

different schemes at t = 3.
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Figure 7: Comparison of the studied schemes for the advection of My in the 2-D cavity
flow in case of existing two different distributions in the domain. (a) The initial condition

at t = 0; (b) the predictions obtained by employing the different schemes at ¢t = 3.
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Figure 8: comparison of the studied schemes for the advection of M3 in the 2-D cavity
flow in case of existing two different distributions in the domain. (a) The initial condition

at t = 0; (b) the predictions obtained by employing the different schemes at ¢t = 3.

45



