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Logic Synthesis of Pass-Gate Logic Circuits
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Enrico Macii, Fellow, IEEE,Massimo Poncino,Fellow, IEEE,

Abstract—Emerging devices and new ultra-scaled silicon transis-
tors have shown disruptive electrical and functional properties
that might bring digital hardware to the next level. The key
issue today concerns their integration. Even though the classical
complementary logic style is the most intuitive option, other
strategies such as pass-transistors that were discarded in the
past because they did not fit Silicon MOS-FETs logic should
be reconsidered. Obviously, the assessment of such alternatives
requires customized CAD tools and optimization engines. The
objective of this work is to introduce a synthesis and optimization
flow for pass-gate logic circuits mapped onto emerging ambipolar
technologies. As main contributions we propose: (i) a novel
EXNOR-based decomposition technique that fully exploits don’t
care conditions to generate compact logic function representa-
tions; (ii) a dedicated one-pass synthesis flow where optimization
and technology mapping are concurrently run on a common data
structure, the Reduced Ordered Pass-Diagram. Experimental
results demonstrate that the proposed flow outperforms existing
synthesis tools by achieving more compact circuit representations
with 8.5× less devices and about 8×shallower structures (on
average), while still yielding lower CPU times.

I. I NTRODUCTION

A. Research Context

With the end of the Moore’s law and the emerging of new
computing paradigms, the ICT industry is called to face a big
challenge, i.e., to re-think hardware design from devices to sys-
tems. At the lower levels of the design stack, this effort trans-
lates into a search for technologies that can outperform Silicon
CMOS. In recent years, there has been significant growth
of new devices, such as Silicon Nanowires [1], Magnetic
Tunnel Junctions [2], Domain-Wall Nanowires [3], Graphene
Nanoribbons [4], and Graphene p-n Junction devices [5]. Apart
from their astounding electro-mechanical properties, these
devices implement new logic primitives that might enable the
design of digital circuits with intriguing characteristics. At this
preliminary stage it is hard to predict which one will reach
massive production and therefore speculating on their large-
scale integration is even more risky. We embrace the idea that,
as happened for semiconductors, CAD tools will play a key
role during the selection process [6]. It is therefore essential
to enable the possibility of a fast design exploration for the
assessment of different implementation strategies. This work
points in this direction as it introduces a novel framework for
the logic synthesis ofpass-gate logic circuits mapped onto
ambipolar technologies.

B. Motivations

Static CMOS has become ade-factostandard for VLSI circuits
implementation due to its many desirable properties: resilience
to transistor scaling and supply voltage lowering, large noise

margins, low static power consumption. Unfortunately, as
transistors approached sub-nanometer lengths, most of these
benefits have progressively blurred [7], [8]. With many new
emerging devices experimented by process engineers, CMOS
may possibly lose its supremacy.
New devices, however, also bring along new implementation
styles; some of those that were discarded in the past as
not suited for CMOS have now become a viable alterna-
tive. This is the case of pass-gate logic families, like the
well-known Pass-Transistor Logic (PTL) [9], which already
proved their efficiency for nanoelectromechanical switches
(NEMs) [10], carbon nanotubes (CNTs) [11], and graphene p-
n junctions [12], [13]. A proper assessment of pass-gate logic
circuits requires design tools able to cope with the complexity
of modern designs. For pass-gate logic the state-of-the-art is
still represented by models and algorithms that rely on Binary
Decision Diagrams (BDDs) [15]. In spite of the many values of
BDDs, BDD-based logic synthesis shows several limitations
which lead to poor design quality. As we will show in this
work, there are many margins of improvement.

C. Contributions

This work introduces a dedicated design flow for the logic
synthesis and optimization of ultra-low power pass-gate logic
circuits, an alternative logic style suitable for emerging am-
bipolar devices that naturally implement binate logic prim-
itives, EXOR/EXNOR in particular. The main contributions
are as follows:

1) generalize the idea of EXNOR-based pass-logic, orig-
inally proposed for graphene devices in [16], to other
emerging ambipolar technologies;

2) improve the design flow by means of a new logic syn-
thesis engine built upon(i) a new data-structure called
Reduced Ordered Pass-Diagram, and(ii) an efficient
optimizer that exploits ad-hoc algorithms for redundancy
removal and optimal variable ordering.

The proposed one-pass logic synthesis flow enables an effi-
cient EXOR/EXNOR decomposition that matches the circuit
topology of the pass-gate logic. The obtained circuits achieve
remarkable area savings with respect to those implemented
with tree-based logic synthesis flows commonly adopted for
PTL designs, e.g. [17].
It is worth emphasizing that the objective is not to demonstrate
the superior performance of pass-gate logic style against
CMOS, nor that of directly comparing emerging technologies
against silicon. Other previous works served this purpose, both
for silicon [14], and beyond-silicon devices [10], [11], [12],
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Fig. 1. Example of emerging devices and their logic equivalencewith an
EXNOR-switch node.

[13]. The goal of this work is to enable an efficient synthesis
framework for the pass-gate logic style.
Since an exhaustive validation over all the possible ambipolar
technologies is unfeasible, we restrict the choice to two
relevant case studies, i.e., Silicon Nanowires [1] (SiNW)
and graphene p-n junctions [5]. These represent the extreme
corners of a wide spectrum of emerging devices that reflect
the same logic abstraction. SiNWs, which are still built on
conventional semiconductors, are the ultimate link between
silicon and beyond-silicon circuits; Graphene p-n junctions,
built on a futuristic 2-D flexible substrate, represent the cutting
line. Both show a common property, that is,ambipolarity,
thereby enabling an efficient implementation of binate logic
primitives. As pictorially illustrated in Figure 1, a digital
switch controlled through the built-in EXOR/EXNOR func-
tion is efficiently implemented; the same applies for other
technologies, e.g., Magnetic Tunnel Junctions [2], Carbon
NanoTubes [18], Graphene NanoRibbons [4].

II. T ECHNOLOGY REVIEW

A. Graphene p-n Junctions

The graphene p-n junction (Figure 2-a) has been introduced
and discussed in several works, e.g. [19], [20]. It consists of
a graphene sheet with two metal-to-graphene contacts,A and
Z, which serve as signal input and output respectively, and a
thick oxide layer that isolates the two back-gates,S andU ,
from graphene.
Exploiting the electrostatic doping, voltage potentials on ter-
minals S and U work as a control knob to tune the Fermi
energy (EF ) of the graphene sheet [21]; a positive voltage
shifts downEF in the valence band thereby leading to a p-type
doping of the graphene region on top of the gate, whereas a
negative voltage shiftsEF up in the conductance band leading
to n-type doping. When opposite voltages are concurrently
applied onS and U , i.e., V (S)=±V and V (U)=∓V , the
device implements the p-n junction. As described in [21],
under such configuration the transmission of carriers from
the p-region towards the n-region follows the probability
T (θ) = cos2(θ)e−πkFD sin2(θ); θ is the angle between the
electron’s wave vectorkF and the normal of the junction (45◦

Fig. 2. Graphene p-n junction, (a) 3-D view, (b) top view, (c) bottom view.

as imposed by the triangular shape of the back-gates, Figure 2-
c), andD is the width of the metal gap between the back-gates,
assumed to be18nm [22]. It is worth noticing thatT (θ)=1
(i.e. 100% of carrier transmitted) when voltages applied at the
back-gates are concordant, i.e.,V (S)=V (U) (n-n doping when
V (U)=−V , p-p dopingV (U)=V ).
Figure 3 depicts the electrical model of the p-n junction.
The two resistorsRC connected to pinsA and Z are the
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Fig. 3. Graphene p-n junction electrical model.

parasitic resistance of metal-to-graphene contacts. The resistor
RAZ represents theA-to-Z resistive path across the layer
of graphene; its analytical expression isRAZ = R0

NchT (θ) ,

whereR0 = h
4q2 is the quantum resistance per propagating

mode,Nch is the number of excited propagating modes [21],
andT (θ) is the transmission probability. As reported in [22],
values ofRAZ ranges fromRON = 300Ω, (under n-n or p-p
configuration), toROFF = 107Ω (p-n or n-p configuration).
The model also integrates the coupling capacitanceCC be-
tween the two adjacent regions; the two lumped capacitors
connected to the back-gatesS andU , namely,CgS andCgU ,
consist of the series of the oxide capacitance and the quantum
capacitance of the graphene sheet1.
The electrical model of the p-n junction was implemented
in Verilog-A and validated with accurate Spice simulations.
Figure 4 shows the variation of the junction resistance as
function of the voltage at the back-gates. The plot shows two
curves: the first one (square markers) describes the resistance
when the back-gateU is polarized through a positive voltage
+Vdd/2; whereas the second one (circle markers) represents

1For an exhaustive discussion on the p-n junction and its electrical model, interested
readers can refer to [22].
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Fig. 5. Reconfigurable SiNW transistor. Schematic view (a), lithographic
images (b), transfer characteristics for p-FET, red marker, and n-FET, blue
marker (c) and band diagrams (d). Image credits due to [23].

the resistance when the back-gateU is polarized through
a negative voltage−Vdd/2. Let us consider the positively-
polarized curve (square markers) whenS is driven by a voltage
ranging from−Vdd/2 to +Vdd/2; the junction resistance is
high at V (S)=−Vdd/2, while it gets smaller whenV (S)
approaches+Vdd/2, few hundred ohms. It is therefore clear
that the p-n junction is ON (low resistance) when the two
back-gates have same polarity.

B. Silicon NanoWires

Reconfigurable SiNWs FET transistors (RFET), schematically
represented in Figure 5-a and depicted in Figure 5-b, represent
another class of dual-gate polarity controlled devices. The two
gates are used to control charge carrier injection over Schottky
barriers. The first one, called program gate (PG), is in charge
of suppressing the injection of one type of charge carrier; the
control gate (CG) modulates the injection of the other type of
charge carrier [23].
The transfer characteristic (Figure 5-c) and the band diagrams
(Figure 5-d) show that the p-type region is achieved by driving
the programmable gate withVPG = −3V andVDS = −1V .
With such configuration the obtained barrier at the drain side
prevents the injection of electrons (states 1 to 3) [23]. As the
VCG potential increases, the bending reduces until it reaches

a flat-band (state 2). WhenVGC is high enough, the energy
barrier prevents injection of holes. Tuning the polarity ofVDS

andVPG prevents the injection of holes, thus configuring the
RFET to an n-type region.
RFETs can be implemented with low band-gap semiconductor
materials. Small threshold voltages and high drive currents, in
both p- and n-type configurations, leads to enhanced device
characteristics: (i) lower transfer curve in the Schottky region
with respect to conventional FETs; (ii) low OFF currents; (iii)
high ON-OFF ratio due to drive current limited by tunneling
through the Schottky barrier [23], [24].

III. EXNOR-BASED PASS-GATE LOGIC

A. Pass-EXNOR Gate (PXG)

As depicted in Figure 6, a PXG is a transmission gate
enhanced with a built-in EXNOR switching function. It has
two logic pins which are fed by the input logic signals (x
andy) and twotransmission pinsthat work as source (S) and
drain (D) of an evaluation signal, e.g., a ramp or a sinusoidal
signal. The switching function evaluates the Boolean EXNOR
between the logic inputs, i.e.x⊕̄y; when TRUE, the PXG is
ON (low resistance path fromS to D); when FALSE, the PXG
is OFF (high-impedance path fromS to D). Different embod-
iments of the PXG are possible depending on the technology.
Figure 6 reports those for graphene p-n junctions and SiNW
RFETs, the target of this work. The SiNW implementation
is borrowed by previous works [18], [17], which make use
of two parallel devices in order to account for the threshold-
voltage effect. This is not required for graphene p-n junctions,
as they behave as pure passive resistors. To notice that a PXG
shows higher expressive power if compared to CMOS gates
(one device for graphene and two for SiNW with respect to
twelve of a CMOS gate).
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Fig. 6. PXG: abstract view and circuit implementation with SiNWsand
Graphene.

The waveforms collected through the electrical Spice simu-
lation of a graphene PXG are shown in Figure 7. The input
pulse injected intoS passes through the PXG and reachesD
wheneverx=y.

B. Unate Boolean Functions using PXGs

The EXNOR operator (hereafter indicated as⊕̄ or ⊙) is not
functionally complete per sé, and other unate logic primitives
are needed to describe all possible logic functions. Figure 8
shows the network topologies that implement theAND/OR
primitives, the logicalidentity and thecomplement.
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Fig. 7. Functionality of the Pass-EXNOR logic gate.

Series connections of PXGs implement the logicAND (sym-
bol ∧). In the example reported in Figure 8 (topmost left),
the input pulse propagates to the outputiff both PXGs are
ON , namely, when(x1⊕̄x2)∧ (x3⊕̄x4). Parallel connections
of PXGs, instead, implement the logicOR (∨). In the example
reported in Figure 8 (right), the input pulse propagates to
the output whenat least oneof the two parallel PXGs is
ON , namely, when(x1⊕̄x2) ∨ (x3⊕̄x4). Finally, connecting
one of the control gate to ’1’ or ’0’ implements the logical
identityor thecomplement. In the examples reported in Figure
8 (bottom left), the input pulse propagates toward the output
whenx1 = 1 if the back-gate is fed with ’1’, whenx1 = 0 if
the back-gate is fed with ’0’.
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Fig. 8. Unate Boolean function using Pass-EXNOR gates.

C. Pass-XNOR Logic (PXL)

A PXL circuit [13] consists of a network of PXGs, Figure 9.
Series connections of PXGs form a logic path; logic paths
are connected in parallel from the root of the circuit (fed
by a clocked-power signal) to the sink (the main output).
The clocked-power signal works as an evaluation signal that
eventually reaches the output when a logic path is ON; in this
case the logic function is evaluated as TRUE, i.e.,1-logic.
When all the logic paths are OFF, the propagation is inhibited
and the logic function is evaluated as FALSE, i.e.,0-logic2.

2More details on the integration of PXL networks can be found in [13]

An efficient mapping of generic Boolean functions onto PXL
networks requiresad-hoc tools for abstract modeling, proper
EXNOR decomposition, and efficient optimization. These is-
sues are discussed in the next section.
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Fig. 9. Abstract view of a PXL network.

D. Quasi-Adiabatic Computing through PXL

The dynamic power consumption of a PXL circuit is the
sum of two main contributions:(i) Pin, which is the power
consumed by primary inputs when charging/discharging the
input capacitance of the PXGs’ control gate;(ii) Peval, which
is the power consumed due to the propagation of the evaluation
signal through the PXGs. The former term (Pin) is similar to
the input power consumed by CMOS gates; the latter (Peval)
follows the adiabatic charging principle.
During the evaluation-phase, the PXL network reduces to
an equivalent lumped resistorReq [25], [26]. The Req is
calculated as series/parallel connections of the in-to-out re-
sistance of the PXGs; each of them can assume the value
RON or ROFF depending on the input pattern. Without loss
of generality, let’s consider as an evaluation signal an ideal
ramp having a rise/fall-timeTrf . The power consumed across
Req can be calculated asPeval(t) = Reqi

2
Cl
(t), with iCl

the
current injected intoCl, the output load capacitance driven
by the PXL network. Spice-level simulations can be used to
estimateReq and iCl

(t) under different input patterns.
The energy dissipated acrossReq is thereby obtained by
integrating the evaluation powerPeval over Trf :

E =

∫ Trf

0

Reqi
2
Cl
(t)dt =

∫ Trf

0

Req

C2
l V

2
dd

T 2
fr

dt =
ReqCl

Trf

ClV
2
dd

(1)
The larger theTrf , the smaller the energy;Trf=2ReqCl is the
break-even point at which the consumed energy equals that
obtained by using an ideal step as the evaluation signal. With
Trf→ ∞ the consumed energy approaches zero, that is the
adiabatic charging.
While a detailed discussion on the energy savings brought by
adiabatic computing on PXL can be found in [12], [13], what
is paramount to note here is that adiabaticity is a peculiar
property of the pass-gate logic topology. Indeed, in a PXL
circuit the clocked-power is forced to flow through resistive
paths (S-to-D paths across PXGs) never bumping into metal-
oxide gate connections; the same is not for CMOS or other
static logic families. As it will be discussed in Section IV,
the logic synthesis of PXL networks has to meet specific
constraints to preserve this feature.
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E. Signal integrity in PXL circuits

Since PXL circuits are resistive nets with negative gain,
complex topologies might suffer from signal integrity. For
instance, deep chains of cascading gates may induce a non-
negligible voltage degradation; similarly, a PXG with a too
high fan-out won’t be able to propagate the evaluation signal.
To provide a clearer picture on these effects, we describe
a parametric analysis conducted on a graphene-based PXL
circuit. For what concerns voltage degradation, we set up the
following simulation:

• the evaluation signal (i.e. the clocked power) is a square
wave with a period of 1ns and amplitude of 1.1V;

• the evaluation signal is fed as input to a CMOS buffer
which serves as the driver cell; the buffer, taken from a
commercial 45nm technology library, is minimum-sized;

• the output load capacitance of the PXG chain is set to
0.6fF, which is the equivalent input capacitance of a
minimum sized CMOS buffer gate (the same kind of
buffer used as driver);

• all the PXGs in the chain are configured as transparent
gates, i.e., both input signals at the back-gates have the
same polarity (refer to the highlighted path in Figure 9
for a pictorial representation);

• the output signal integrity is measured for different depths
of the PXG chain.
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Fig. 10. Signal integrity analysis. Cascading gates (left),and fan-out (right)
effects in PXL circuits.

Figure 10 (left plot) reports the obtained results. Numbers
suggest that even very deep chains (e.g. 500) guarantee an
effective propagation of the evaluation signal.
For what concerns the assessment of fan-out capabilities, the
topology of the simulated PXL circuit is the following:

• a single transparent PXG driven by a minimum size 45nm
CMOS buffer, we refer to the PXG as the root PXG;

• the root PXG drives other parallel branches, each one
made up of a single PXG (the number of branchesB
defines the fan-out).

• B ranges from 2 up to 100.

Two different experiments were conducted.
Analysis 1: only one branch overB allows the propagation of
the evaluation signal. Collected results show that the sampled
output signal is about 1.099V for all configurations, namely
signal integrity is preserved.
Analysis 2: all the branchesB are active at the same time.

This represents a worst-case scenario that arises whenever
a branch of a PXL circuit is shared among different output
cones. Obtained results are reported in Figure 10 (right plot).
Signal integrity is retained up to fan-out 50 (degradation
< 10%·Vdd); a larger fan-out (e.g. 100 active gates) introduces
a non negligible signal degradation (33%). To overcome this
issue, a simple and effective solution could be introducing
an upper limit on the maximum number of fan-out PXGs;
whenever such a limit is reached, branches are merged in
different clusters. Thereby, signal integrity would be preserved
with a minimum impact on circuit size. It is worth to notice
that the same countermeasure is also adopted for BDD-based
synthesis of PTL circuits [14].

IV. PREVIOUS WORK ON EX(N)OR-BASED EXPANSION

During the last decades, research on optimal logic func-
tions representation and simplification using binate operators,
EXOR in particular, has been extensively investigated as an
answer to the growing complexity of logic circuits. Neverthe-
less, such techniques didn’t find much room in commercial
applications. The reason is that EXOR CMOS gates show a
number of transistors much larger than AND-OR gates. Things
are changing with the growth of emerging ambipolar devices
which may revive those methods.
In 1990, a pioneering work by Sasao et al. [27] introduced an
algorithm for the expansion of logic functions using EXOR-
AND products, i.e., Exclusive-Sum of Products (ESOPs). The
same was later improved by [28] which introduced a more
complex method that makes use of EXOR-AND-OR products,
i.e., Exclusive-Sum of two Sum-of-Products. As reported
in [28], area savings with respect to classical Sum-Of-Product
(SOP) representations are in the order of 40%.
Unfortunately, such methods (and their extensions) do not fit
PXL circuits, since all of them look for a possible insertion
of EXOR operators between SOP clauses. However, a PXL
network is in the form ofSum-of-Products of Exclusive-Sums,
where the inner part, i.e., the first primitive used during
decomposition, is the EXNOR, and not the AND-OR like
in [27], [28]. In other words, in a PXL circuit the constraint
is that every EXNOR should work on the primary inputs.
Preserving such topological characteristic is paramount to
(i) exploit the expressive power of the PXGs and (ii) keep
adiabaticity alive.
As an example, let’s consider the Boolean function
f=x1x2⊕̄x3x4, which is expressed in the form of Exclusive-
Sum of Products (ESOP) [29]. The corresponding PXL im-
plementation would be the one reported in Fig. 11.

! " #

$ %

!(''(
!)'(

!*'(

-.''='/!(!)) " /!*!+)

!+'(

Fig. 11. Example ofintra-layer connections
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As one can observe, the expressive power of PXGs is un-
derutilized as all of them have one logic input stacked at
a fixed value. Moreover, the circuit shows a break on the
resistive path across the PXGs; this topology prevents the
adiabatic charging of the output capacitance. As a conse-
quence, power consumption increases. Moreover, fabricating
intra-layer connections on monolithic graphene sheets may
result dramatically complex, hence, too costly.
Only recently, the work by Bernasconi et al. [30] demonstrated
a Boolean decomposition in the form ofSum-of-Products
of Exclusive-Sumsthat works as follows. Given a generic
function f(x1, x2, ..., xN ), whereS = (x1, x2, ..., xN ) is the
support-set of cardinalityN , f can be expanded according to
the (xi − p) paradigm as shown below:

f(x1, x2, ..., xN ) = (x1⊕̄x2)f |x1=x2
∨ (x̄1⊕̄x2)f |x1 6=x2

(2)

Unlike a Shannon’s decomposition that considers the expan-
sion with respect to a single variablexi forced to be ’0’ or
’1’, here the co-factoring is obtained imposing the equality
between two variablesxi and xj , i.e. xi = xj or x1 6= x2;
each co-factor is then AND-ed with the EXOR/EXNOR of
the two variables. Equation (2) can be recursively applied
until the function reduces to one variable. In this case, the
(xi− p) decomposition applies the equalityxi = 1 or xi = 0,
which is the Shannon’s decomposition. As per the Shannon’s
expansion, also the(xi − p) expansion is ruled by a pre-fixed
global variable sequence (G-VS) used during the co-factoring
process.
The above theory inspired a new abstract model for logic rep-
resentation, i.e., the Bi-conditional Binary Decision Diagrams
(BBDD) [17], a tree-based structure that extends BDDs [15]
by using nodes with two EXOR-ed control variables. The
following example gives a synthetic description of BBDDs.

Example IV.1. Given the Boolean functionf(S), with S =
(x1, x2, x3), described as:

f(S) = (x1 ∧ x2) ∨ (x̄2 ∧ x3) ∨ (x2 ∧ x̄3). (3)

Assuming a global variable sequence G-VS=(x1, x2, x3,1),
the (xi − p) representation off is given by (4).

f(S)(xi−p) = (x1⊕̄x2) ∧ (x2⊕̄x3) ∧ x3

∨ (x1⊕̄x2) ∧ (x̄2⊕̄x3)

∨ (x̄1⊕̄x2) ∧ (x̄2⊕̄x3)

(4)

Figure 12 shows the BBDD representation off after the
(xi − p)-expansion. The graph is composed of a root node
through which the evaluation signal is injected into the net-
work, two terminal nodes indicating the value assumed by
the function, and four internal nodes that work as switches.
More in detail, as depicted in the enlargement, each internal
node evaluates the EXNOR-switch on the two primary inputs
associated to the node: if true, i.e. signals have the same value,
the left branch (solid line in the graph) is activated, the right
branch (dotted line) is active otherwise. Like classical BDDs,
the selected global variable sequence has a direct effect on
the BBDD structure and its complexity. Indeed, each level
is associated to two adjacent primary inputs in the G-VS
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Fig. 12. Biconditional BDD representation of (4).

set, and different sequences do result into different branch
organizations.

It is worth emphasizing that BBDDs could be adapted to
represent any PXL circuit implemented as shown in Figure 9.
In such a case, each branch ending on the logic ‘0’ sink would
be omitted thus to save one device in the resulting circuit, e.g.
the false branch of node(x3, 1) in Figure 12. However, as it
will be shown later in the simulation section, the new abstract
model proposed in this work fits better with PXL circuits and it
outperforms BBDDs when considering incompletely-specified
Boolean functions.

V. THE PXL EXPANSION

Let us consider the Boolean functionF (S) in Example IV.1.
By following the Boolean decomposition principle,f can be
rewritten as in (5), beingf1(S1) = x1∧x2, f2(S2) = x̄2∧x3,
f3(S3) = x2 ∧ x̄3, andS1, S2, S3 ∈ S their support-set.

F (S) = f1(S1) ∨ f2(S2) ∨ f3(S3) (5)

Eachfk function is a chain of products between primary inputs
that can be manipulated with the Boolean rule described in (6),
wheren represents the number of literals in the support set
Sk for eachfk. The result is an EXNOR-expanded function.

fk(Sk) =x1 ∧ x2 ∧ x3 · · · ∧ xn

=(x1⊕̄x2) ∧ (x2⊕̄x3) ∧ . . . (xn−1⊕̄xn) ∧ xn

(6)

It is thereby possible to convert eachfk as in (7).

f1(S1) = (x1⊕̄x2) ∧ x2

f2(S2) = (x̄2⊕̄x3) ∧ x3

f3(S3) = (x2⊕̄x̄3) ∧ x̄3

(7)

To be noted that eachSk in (7) retains the same subset of
literals with respect toS. For instance, beingS1 = {x1, x2},
the sequence(x1, x2) represents thelocal variable sequence
(L-VS) for decomposingf1, wherex3 is discarded since it is
not part ofS1. In other words, each product term described
with (6) neglects, by construction, don’t care variables. As
a consequence, eachfk is always represented in the form
of product-of-EXNOR over the minimum number of input
literals. Also, the L-VS may change for eachfk.
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The original functionF (S) is then obtained by substituting
(7) in (5) thus to obtain:

F (S) = (x1⊕̄x2) ∧ x2 ∨ (x̄2⊕̄x3) ∧ x3 ∨ (x̄2⊕̄x3) ∧ x̄3 (8)

Equation (8) matches the PXL topology, namely,Sum-of-
Products of EXNOR.
A more formal description of the PXL-expansion paradigm is
given as follows:A generic Boolean functionF (S) in the form
of Sum-of-Products (SOP) is PXL-expanded by evaluating
each single product termfp(xp1, ..., xpN , 1) independently;
each fp, defined over its support set(xp1, ..., xpN ) ∈ S, is
decomposed in the form of products-of-EXNOR by following
a local variable sequence (L-VSfp ) along which unspecified
literals are dropped;F (S) is finally reconstructed by OR-ing
the products-of-EXNOR.

VI. ONE-PASS PXL SYNTHESIS

A PXL design can be synthesized using aOne-Pass Synthesis
(OPS) flow. In OPS both logic optimization and technology
mapping are run over a common model that represents both the
logic behavior and the physical structure of the circuit. This
section describes anad-hocabstract model for PXL synthesis,
the Pass Diagram(PD), along with the algorithms for its
building and optimization. All routines are part of a software
package written in the C++ programming language, where
built-in data structures and standard libraries are exploited to
achieve optimal performance.

A. Pass Diagrams (PDs)

Given a generic Boolean functionF (S), its corresponding PD
is a rooted and directed acyclic graph defined asG=(Φ∪V ∪
Θ ∪ A). The internal vertexesvi ∈ V are labeled with a
function g(x, y), with {x, y} ∈ S as the input literals and
function g as theEXNOR. Each node has one outgoing
edge a ∈ A which identifies a logical AND between the
predecessor and the successor node. Terminal nodesθ ∈ Θ
with out-degree0 represent the output value assumed byF ;
whereas root nodesφ ∈ Φ with in-degree0 represent the
input for the evaluation signal. Each root-to-sink path in a PD
represents one product among EXNORs, i.e., the subfunctions
fk described in SectionV; parallel paths form the OR among
subfunctionsfk. Figure 13-a depicts the PD ofF (S) in
Equation 8. It is also worth noticing that the PD structure
can be mapped directly in Pass-EXNOR logic by replacing
each node with a dedicated PXG.

B. The PD build function

PDs are built using as starting point the implicant table of
the functionF (S), also known asPLA table in the Espresso
environment [31].
As an example, Table I collects the implicants of the logic
function (3). The value of the input literals are listed in their
respective columns, whereas the output of the logic function
is reported in columnF . For the sake of clarity, we also report
the implicants of F(S) in 3 (first column).
Algorithm (1) reports the pseudo code of thebuild procedure.
It takes as an input the PLA tableT and the global variable
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Fig. 13. Pass Diagram representation of the function in (8) before reduction
rules (a), after Merge (b), and after Delete (c).

TABLE I
PLA TABLE OF (3)

x1 x2 x3 F
f1 1 1 - 1
f2 - 0 1 1
f3 - 1 0 1

sequence G-VS. The latter, unless otherwise specified, is
assumed to be the order of the input variables as they appear
in T , left to right. At the end of the building process, the
algorithm returns the finalPD.
The algorithm generates the PD structure branch-wise, thus
processes the tableT row-by-row. For each row, it first
generates the correspondinglocal variable sequenceL-VS.
Differently from the G-VS introduced earlier, theL-VS rep-
resents the sequence of primary inputs involved in the PXL
expansion of each branchfR of the PD structure. For instance,
using Table I asT and a default global variable sequence G-
VS= {x1, x2, x3, 1}, the local variable sequenceL-VS of the
first row f1 returned byGenerateLVS is L-VS={x1, x2, 1}
asx3 is a don’t care.
Within each row, the algorithm does a comparison among pairs
of adjacent literals inL-VS; if polarity is the same, i.e. 1-1 or
0-0, the operation between the two is an EXNOR, otherwise
the first variable gets complemented. Resorting to the previous
example, the first pair inf1 is {x1, x2} which results into the
EXNOR betweenx1 andx2; the second pair is{x2, 1}, hence,
the EXNOR betweenx2 and1. Forf2, the first pair is{x̄2, x3}
which results into the EXNOR between̄x2 andx3.
Each EXNOR term forms a new node that is appended to the
current pathfR. Once all literals in theL-VSare processed, the
branchfR is added to the PD. Figure 13-a shows the resulting
PD for the function (8), which is composed of six nodes (six
PXGs).
For a PLA table withN implicants andM literals, the
complexity of the proposedbuild function isO(N ·M).

C. Reduced Pass Diagrams

As proposed in the past for BDDs, several reduction rules
based on structural matching can also be applied to PDs. What
follows is the description of two of them tailored on the PD
structure:MergeandDelete.
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Algorithm 1: Pass Diagram build function
Input: PLA Table T , Global Variable SequenceG-VS
Output: Pass DiagramPD

1 PD ← ∅
2 foreach row R ∈ T do
3 fR ← ∅
4 L− V SR = GenerateLVS(R, G-VS)
5 foreach pair of primary inputs (vi, vk) ∈ L− V SR do
6 if polarity(vi) == polarity(v i+1) then
7 newGate← EXNOR(vi, vk)
8 else
9 newGate← EXNOR(v̄i, vk)

10 end
11 fR ← AddGate(newGate)
12 end
13 PD ← AddPath(fR)
14 end

Algorithm 2: Pass Diagram reduction algorithm
Input: Pass DiagramPD
Output: Reduced Pass DiagramRPD

1 foreach branchB ∈ PD do
2 foreach branchG ∈ PD, whereG 6= B do
3 if CheckSimilarGates(B,G) 6= 0 then
4 Q← MergeGates(B, G)
5 if CommonNodesAreTautology(Q) then
6 Q← DeleteCommonNodes(Q)
7 end
8 PD ← UpdateNetwork(Q)
9 end

10 end
11 end
12 RPD = PD

Rule #1 - Merge:If a nodevn ∈ V in a pathfi has the same
parent nodes of a nodevp ∈ V in a path fj , the common
nodes offi and fj can be merged.
For the PD shown in Figure 13-a, nodes{x3, 1} and{x̄3, 1}
on the two rightmost paths have same parent{x̄2, x3}; the
latter can be merged thus to achieve the reduced PD shown in
Figure 13-b. This topological transformation results into the
Boolean simplification described in (9).

fPXL
2 ∨ fPXL

3 =((x̄2⊕̄x3) ∧ (x3⊕̄1)) ∨ ((x̄2⊕̄x3) ∧ (x̄3⊕̄1))

=(x̄2⊕̄x3) ∧ ((x3⊕̄1) ∨ (x̄3⊕̄1))
(9)

This operation resembles an algebraic factorization and can be
applied on multiple nodes/branches simultaneously.
Rule #2 - Delete:Two or more nodes(vn, . . . , vp) ∈ V with
the same parent node can be deleted if, and only if, they
represent a tautology.
This operation is often enabled by Rule #1. For instance, after
the merge operation on the PD in Figure 13-b, it results that
(x3⊕̄1)∨ (x̄3⊕̄1) is a tautology; the PD is thereby simplified
as depicted in Figure 13-c. To notice that the sequence of the
two reduction rules brings to 50% cardinality reduction from
the original PD.
Algorithm 2 gives the pseudo-code of the optimization loop
that appliesMergeandDeletefor redundancy removal; it takes
as an input the PD generated from thebuild function and
returns a reduced PD structure (RPD).
For each branch of the original PD, the algorithm searches for
other branches that share one, or more, common nodes. As
soon as such common nodes are identified, selected pathsB
andG are merged according to Rule #1 (Merge). Thereafter,

a structural tautology check is run over non-merged nodes
belonging to the two branchesB and G; if positive, the
nodes gets pruned according to Rule #2 (Delete) and the
structure updated. The final graph is then returned to the
calling function.

D. Reduced and Ordered Pass Diagrams

Let us consider a Boolean functiong(x1, x2, x3) whose im-
plicant table is reported in Table II.

TABLE II
PLA TABLE OF (10).

x1 x2 x3 F
f1 0 - 0 1
f2 1 1 1 1
f3 1 - 1 1

TABLE III
SORTED PLA TABLE OF (10).

x1 x3 x2 F
f1 0 0 - 1
f2 1 1 1 1
f3 1 1 - 1

The build function returns the Boolean expression described
in (10).

g = (x1⊕̄x3) ∧ (x̄3⊕̄1)

∨ (x1⊕̄x2) ∧ (x2⊕̄x3) ∧ (x3⊕̄1)

∨ (x1⊕̄x3) ∧ (x3⊕̄1)

(10)

The reduced version afterMergeandDelete(between the first
and the last product terms) is described in (11).

g = (x1⊕̄x3)

∨ (x1⊕̄x2) ∧ (x2⊕̄x3) ∧ (x3⊕̄1)
(11)

Let’s now start from a different, yet equivalent, table where
columnsx2 andx3 are swapped, Table III. Thebuild function
made run over the new table returns a different PD, hence, a
different Boolean representation which is described in (12).

g = (x1⊕̄x3) ∧ (x̄3⊕̄1)

∨ (x1⊕̄x3) ∧ (x3⊕̄x2) ∧ (x2⊕̄1)

∨ (x1⊕̄x3) ∧ (x3⊕̄1)

(12)

TheMergeandDeleteoperations (applied on the first and last
product terms) generates the expression in 13

g = (x1⊕̄x3)

∨ (x1⊕̄x3) ∧ (x3⊕̄x2) ∧ (x2⊕̄1)
(13)

which can be further minimized by a second round of op-
timization using the sameMerge and Delete (on the two
rightmost terms). The resulting Boolean representation is given
in (14)

g = (x1⊕̄x3) (14)

A comparison between (11) and (14) suggests the existence
of an optimal variable sequence that minimizes the vertex-
set cardinality of the PD (similar to BDDs). Finding such
an optimum would require an exhaustive exploration of the
search space. In order to address this issue, we introduce two
heuristics that can be eventually chained in a two-stage flow.

Predictive sorting

An accurate analysis on PLA tables reveals the following
rule of thumb: given two columns, the larger the number
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Algorithm 3: Predictive sorting algorithm
Input: PLA Table T
Output: Global Variable Sequence G-VS

1 G-VS = ∅
2 foreach columnxk ∈ T do
3 #DC = 0
4 S = 0
5 foreach row r ∈ xk do
6 if r is don’t carethen
7 #DC = #DC + 1
8 end
9 end

10 Sxk
= #DC

#rows

11 end
12 G-VS = SortBySparsity(S)

of adjacent literals with a specified value, either 0 or 1, the
higher the probability to find common nodes among parallel
logic paths; common nodes open toMerge optimization,
hence, more savings. In other words, the larger the number
of EXNOR operations over the same literal pairs, the larger
the probability to find nodes with a common parent. Ideally,
all rows should be processed with the sameG-VS; however,
since don’t care literals alter theL-VS(they are dropped during
expansion), their presence is the main source of irregularity
among logic paths.
The basic idea behind predictive sorting is to arrange the
implicant table keeping in mind the observation on the position
of don’t cares. We thereby define a metric used for column
sorting. That’s thecolumn sparsity (Sxk

), defined as follows:
Given aN ×M implicant table, definedxk as thek-th input
literal, Sxk

=
#DCxk

N
, with #DCxk

the number of don’t cares
in the k-th column.
Intuitively, to increase the effectiveness of a sorting algo-
rithm, columns with similar sparsities should be clustered.
In other words, low-sparsity columns, e.g., columns with
Sxk

≈ 0, should be separated by high-sparsity columns
(Sxk

≈ 1). The proposed sorting, calledPredictive sorting,
arranges columns with ascending sparsity order. For instance,
in Table II, columnsx1 andx3 have the same sparsity index
Sx1

= Sx3
= 0, whereasSx2

= 2/3; the default G-
VS={x1, x2, x3} becomes{x1, x3, x2}, which, as shown in
(14), gets to a smaller PD.
Algorithm 3 reports the pseudo-code of the implemented
routine; it takes the PLA tableT as an input and returns the
Sxk

-ordered table.
It is also worth emphasizing thatPredictive sortingdoes not
guarantee an optimal solution, but it could be rather used as
a lightweight strategy when CPU-time is the priority.

Genetic sorting

The Predictive sortingcan’t always get improvements with
respect to the originalG-VS. Indeed, theMerge and Delete
rules are subject not only to the sparsity of the primary inputs,
but also to the actual polarity of the input literals. Finding the
optimalG-VSis therefore a complex task that can be processed
using some meta-heuristic, e.g., genetic algorithms (GAs) [32],
a well known class of optimization techniques emulating the
rules of natural selection.
We propose the use of a genetic search to find the global
variable sequence that minimizes the vertex-set cardinality of

Fig. 14. Pictorial representation of crossover (a), mutation(b), and inversion
(c) mechanisms adopted in the proposed genetic sorting algorithm. Different
colors/textures represent genes that belong to the same individual, as in (a),
or different genes of the same individual, as in (b) and (c).

a PD generated with the proposedbuild procedure. The GA
is defined through the following parameters:

• genes: the atomic object that describes an individual, in
our case each input literal is a gene;

• individuals: possible solutions to the problem, in our case
a given G-VS is an individual;

• generation: the set of individuals of a given population.

A GA repeatedly modifies a population of individual solutions.
At each step it selects the best individuals from the current
population and uses them as parents to generate children
belonging to the next generation, i.e., an improved population.
From generation to generation, individuals evolve to preserve
the kind, namely, the algorithm evolves toward an optimal
solution. An efficient GA requires proper evolution rules that
bring to convergence; we rely on the following three criteria:

• Crossover: two selected individuals are split at a ran-
dom gene and then crossed with each other. Figure 14-
a depicts an abstract crossover operation between two
individuals. It is important to underline that individuals
with repeating genes are not allowed in our solution.
Therefore, crossover is appliediff obtained individuals
do not contain repeated items. Due to such limitation,
crossover results to be the least effective rule for gener-
ating best individuals.

• Mutation: alter the value of a gene of the best individuals.
In our formulation, a gene is altered by swapping two
randomly selected genes, as depicted in Figure 14-b.

• Inversion: line the individual’s gene footprint in reverse
order (refer to Figure 14-c). This criteria is randomly
applied to all genes of an individual, or just to a subset
of those.

Best individuals, those used as parents, are recognized by
means of a min-cost function we described asmin(|D|), with
D as the vertex-set cardinality of the resulting PD.
The pseudo code of the proposed GA is reported in Algo-
rithm 4.
Additional details of the GA algorithms are given below.
First generation: As a first step, a new population is generated;
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Algorithm 4: Genetic sorting algorithm
Input: PLA Table T , Original Global Variable Sequence G-VS, Generations

MAX GEN , IndividualsI MAX, Survival rateSr
Output: Optimal Global Variable Sequence OG-VS

1 G = InitGeneration(G-VS)
2 OG-VS =∅
3 repeat
4 Fitness =∅
5 foreach individual I ∈ G do
6 Fitness[I] = Build(T , I)
7 end
8 BestIndividuals ← SelectBest(Fitness,Sr)
9 G = NextGeneration(BestIndividuals)

10 OG-VS =BestIndividuals[0]
11 until until generation < MAX GEN ;

given the maximum number of allowed individuals (IMAX)
the first generation is obtained by randomly scrambling the
original G-VS. At the beginning, the G-VS can be assumed
to be the variable order as it appears in the original PLA
table description or, alternatively, the one that comes after the
Predictive sorting.
Fitness function & best individuals: The PD structure for each
individual of a given generationG is obtained with thebuild
function (please refer to Algorithm 1). The fitness index, which
describes the distance between the current individual and the
best solution achieved so far, is represented by the total number
of nodes of the PD. TheSelectBest sub-routine takes
those individuals with a fitness value close to the best one;
the parameterSr, also calledsurvival rate, is assumed to be
an upper bound to the fitness index, e.g., ifSr = 0.1 then
only the best 10% individuals will be selected.
Local best & next generation: The best individual is selected
to represent the optimal solution found in the current gen-
eration. The next generation is then obtained by applying
crossover, mutation and inversion transformation till reaching
I MAX individuals.
The process stops when the maximum number of generations
MAX GEN is reached; here’s where the optimal resultOG-
VS is returned.

VII. S IMULATION RESULTS

A. Experimental Setup

In order to validate the proposed OPS flow and quantify the
savings with respect to state-of-art synthesis methods, this
section presents a comparison among three different design
implementation frameworks:
PXL + Pass Diagram: The method presented in this paper.
Each benchmark, originally described using the Espresso PLA
format, is processed with the proposed OPS flow; the latter
returns a Spice netlist where each node of the reduced &
ordered PD is mapped as shown in Figure 15-(a).
Tree-of-MUXs (T-MUX) + BBDD : A T-MUX circuit can be
seen as a pass-gate circuit with a tree-structure implemented by
MUXes; as for the PXL, an evaluation signal flows through the
PXG paths eventually reaching the output. Due to its topology,
a T-MUX circuit is well modeled by a BBDD. Indeed, each
node in the BBDD represents a MUX driven by an EXOR
operator between two primary inputs. Such nodes are mapped
with two p-n junctions or with four Si-NWs, as described

Fig. 15. Technology mapping for PXL and T-MUX implementations.

in Figure 15-(b). The adopted synthesis flow consists of a
first stage where each benchmark is processed with the ABC
tool [33]; the resulting Verilog description is then processed
using the BBDD-package [34] in order to obtain a reduced
& ordered BBDD structure with a single leaf node. Finally,
a dedicated TCL script parses the BBDD and generates the
Spice netlist. This flow represents the state-of-art for Pass-
Transistor-Logic (PTL) circuits.
Multi-level (ML) + AIG : a standard multi-level design flow
for CMOS gate libraries. The And-Inverter Graph (AIG) is
the abstract model through which both open-source logic
optimizers ABC and commercial synthesis tools operate. It
is worth emphasizing that AIG-based flows cannot be used
for pass-gate logic circuits; indeed, the output is a multi-level
generic netlist for standard gates. Each standard cells is then
“virtually” implemented with both graphene p-n junctions and
SiNWs RFETs. We introduce AIGs solely as a benchmark to
quantify how close to commercial CMOS tools the proposed
synthesis flow is. Indeed, as discussed in the first section of
the paper, implementing CMOS-like gates results to be quite
inefficient.
Other packages for logic synthesis tailored on SiNW tech-
nologies are available. Most notably, theMIGthy synthesis
tool relies on majority-inverter graphs (MIGs) mapping and
optimizations strategies [35]. However, we decided to not
include MIGthy circuits in our experimental comparison for
two reasons: (i) the MIG data-structure is derived from
classical AIG circuit representations, therefore they can be
considered as a sub-class of ML circuits; (ii) each node in
a MIG is represented by a 3-input majority gate, where inputs
connections are not primary inputs but intermediate results
computed in some previous logic levels. As discussed in
Section V, methods for multi-level logic decomposition do
not apply to PXL circuits.
The experiments have been run on a set of open-source bench-
marks from the LGSynth91 suite [36]. Within each circuit, in-
to-out and register-to-register combinational logic cones are
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TABLE IV
SYNTHESIS RESULTS OBTAINED WITH THE PROPOSED TECHNIQUE.

HIGHLIGHTED NUMBERS REPRESENT SELECTED RESULTS.

PI PO PT
Build & Opt. Predictive Genetic

w/o opt. w/ opt Nodes Savings (%) Nodes Savings (%)
misex1 8 7 32 122 68 64 5.88 56 17.65
o64 130 1 65 130 130 130 - 130 -
misex2 25 18 29 188 152 151 0.66 123 19.08
s298 17 20 70 250 187 ≥187 - 177 5.35
s510 25 13 112 485 370 274 25.95 244 34.05
s820 23 24 127 854 666 575 13.66 545 18.17
s400 24 27 167 913 673 ≥673 - 574 14.71
s1488 split 14 25 283 1634 1171 1018 13.07 883 24.59
s1494 14 25 283 1634 1191 1046 12.17 942 20.91
s953 45 52 235 1750 1190 ≥1190 - 1021 14.20
apex3 54 50 642 4602 3352 3112 7.16 2582 22.97
table5 17 15 554 6372 4989 ≥4989 - 4070 18.42
k2 45 45 936 7114 4053 ≥4053 - 3939 2.81
apex1 45 45 940 7124 4138 ≥4138 - 4054 2.03
apex5 117 88 1221 7202 5568 ≥5568 - 4852 12.86
s713 54 42 912 7540 5677 ≥5677 - 4917 13.39
s1196 32 32 1120 9603 7805 7298 6.50 6560 15.95
too large 38 3 1069 14782 11540≥11540 - 9736 15.63
seq 41 35 1462 17839 14352 13761 4.12 11519 19.74
bigkey 486 421 6151 34885 25229 24316 3.62 22633 10.29
s13207.1 700 790 10992 103381 86134 83740 2.78 80005 7.12

Total 228404 178635 173500 2.87159562 10.68

extracted and synthesized. The netlists obtained through the
three implementation frameworks are then built with minimum
and equally sized PXGs; this gives us the opportunity to
use the number of devices (graphene p-n junctions or SiNW
transistors) as a metric for area comparison. Both PDs and
BBDDs models involved in the logic synthesis are reduced
and ordered using the techniques illustrated in Section VI-C
for PXL, or the optimizations provided in the official BBDD
package.

B. On the efficiency of PXL synthesis

Table IV reports an overview of the benchmarks; columns
PI and PO collect the total number of primary inputs and
primary outputs, whereas columnP reports the total number
of implicants, i.e., the rows of the PLA table.
The first analysis concerns the efficiency of the OPS flow
for PXL circuits. For the sake of clarity, Table IV shows the
vertex-set cardinality of the PD at each stage of the synthesis
flow. The columnBuild & Opt. refers to Algorithm 1 (column
w/o opt) and Algorithm 2 (columnw/ opt); columnPredictive
sorting shows the results after Algorithm 3; columnGenetic
sorting after Algorithm 4. Reported savings are computed
with respect to optimized PXL circuits (columnw/ opt). Total
savings for each optimization step represent the effectiveness
of each algorithm. Numbers in bold highlight the final outcome
of the optimization process. Indeed, the GA might be by-
passed in order to save CPU time using a straightforward
policy: if Predictive sorting brings to some optimization, then
annotate the netlist; run Genetic sorting otherwise.Other
elaborate policies might result more efficient.
As can be seen from columnBuild & Opt., the optimization
routines (Mergeand Delete) give substantial savings: 21.7%
on the total number of gates. Only the benchmarko64 gets
no improvement. It represents a specific class of circuits for
which the proposed rules show weaker; indeed, its PLA table
consists of a diagonal of 1s (one entry per row). This singular
distribution prevents any reduction (bothMergeandDelete).

Concerning the CPU usage, Figure 16 shows a comparison
between execution times for the synthesis of PXL (circle)
and T-MUX (triangular) circuits. It is important to note that
a fair comparison between the two would require applying
the same sorting technique for both implementations, which
is unpractical as BBDDs do not have such a feature. For
that reason, only the build&reduce steps are accounted here.
Numbers are normalized with respect to the fastest benchmark,
misex1 (2.4 ms). The generation of PXL algorithms requires
18× less time (on average); significant achievements are
obtained with the largest circuit, namely thes13207.1: 22×
CPU-time reduction. This proves the scalability of the process.
Indeed the execution time of the proposed algorithms does not
scale with circuit complexity, but it is rather affected by the
amount of don’t care states; the higher the number of don’t
cares in the circuit description, the faster the computational
time. This characteristic is peculiar of the proposed method
and does not apply to other synthesis strategies based on
decision diagrams.
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Fig. 16. Normalized CPU time required for building & optimize.

As described earlier, the effectiveness of the sorting algorithms
have been quantified and selected with the following rationale:
in the first place, Predictive sorting is applied; if it is able to
reduce the cardinality of the PD then the network is annotated.
Otherwise, the Genetic sorting algorithm is applied. The moti-
vation lies in the fact that it is high likely that Predictive sorting
will be able to perform a reasonable amount of reduction with
an effortless computation, thus drastically reducing execution
times. Experimental results show that predictive sorting suc-
ceeds for 11 benchmarks over 21 (highlighted numbers in
column Predictive), with an average improvement of about
2.87% (average over the bold numbers in columnPredictive
of table IV). However, there are benchmarks for which the
Predictive sorting fails, e.g.table5 andapex1. This is when
the Genetic sorting comes into play. Parameters like population
dimensions and maximum generations are empirically defined
in order to achieve a reasonable trade-off between savings and
execution time. For benchmarks with less than ten thousand
PXGs (refer to columnPD in Table V) the use of a population
of 40 individuals with the maximum number of generation set
to 50 has proven to be effective; for larger benchmarks, best
results are obtained with 20 individuals that evolve over a
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maximum of 20 generations. Collected numbers clearly show
that the proposed GA substantially reduces each circuit with
a total gate count saving of about 11%. The only exception
is o64 which, as previously described, cannot be optimized
by construction, whereas the maximum yield is for thes510
benchmark (about 34%). Clearly, such level of optimization
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Fig. 17. CPU time: Predictive sorting vs. Genetic sorting.

comes at a CPU time cost. Figure 17 reports the execution
times required to perform both Predictive (square mark) and
Genetic (circle mark) sorting per benchmark. Over the entire
set of experiments, the heuristic approach performs best,
achieving a 255×speedup. However, if we neglect largest
circuits, i.e.,bigkey and s13207.1, the ratio falls to a
50× factor. If, on the one hand, those results demonstrate
that Predictive sorting is an affordable solution to PD reduc-
tion, on the other hand they suggest that there is room for
an improvement of the Genetic algorithm. Intuitively, larger
circuit descriptions require higher computational efforts when
applying reduction rules. Therefore, a possible enhancement
lies in the exploitation of massive parallel computations where
each pool of processes explores a limited portion of the
solution space.

C. Comparison to SoA synthesis flows

Table V shows a comparison between PXL, T-MUX, and ML
circuits mapped onto graphene PXGs and Si-NWs RFETs;
PXL circuits are those obtained with the sorting rationale
described in Section VII-B.
The PXL implementations show 8.5× less devices with respect
to the T-MUX counterparts. The best results are achieved
by circuits whose implicant table contains a larger number
of don’t cares. ColumnS reports the percentage of don’t
cares over all the PLA entries; circuits withS → 1 show
the largest savings (e.g.,bigkey with S = 0.988 leads to
17× less devices with respect to T-MUX), while those with
S → 0 results in unchanged or worse performance (e.g.,
too_large with S = 0.636 requires about 5×more devices
than its T-MUX implementation). Those results are due to
the higher expressive power of the PXL-expansion which
allows to efficiently represent incompletely-specified Boolean
functions with fewer EXNOR gates, especially those with a

TABLE V
SYNTHESIS RESULTS COMPARISON BETWEENPXL, T-MUX, AND ML

DESIGN FLOWS. REPORTED NUMBERS REFER TO THE TOTAL AMOUNT OF

DEVICES NEEDED FOR EACH BENCHMARK.

S Graphene Si-NWs Transistors
PD T-MUX ML PD T-MUX ML

misex1 0.523 64 126 122 128 252 122
o64 0.984 130 644 196 260 1288 196
misex2 0.74 151 350 154 302 700 154
s298 0.789 177 596 238 354 1192 238
s510 0.826 274 1250 468 548 2500 468
s820 0.707 575 1266 522 1150 2532 522
s400 0.772 574 556 270 1148 1112 270
s1488 split 0.587 1018 1204 1130 2036 2408 1130
s1494 0.587 1046 1204 1130 2092 2408 1130
s953 0.834 1021 2222 872 2042 4444 872
apex3 0.867 3112 11166 2976 6224 22332 2976
table5 0.323 4070 1866 2640 8140 3732 2640
k2 0.831 3939 9664 3822 7878 19328 3822
apex1 0.831 4054 10696 3862 8108 21392 3862
apex5 0.949 4852 40620 1842 9704 81240 1842
s713 0.846 4917 6364 752 9834 12728 752
s1196 0.732 7298 6664 2014 14596 13328 2014
too large 0.636 9736 1950 606 19472 3900 606
seq 0.702 13761 12380 3710 27522 24760 3710
bigkey 0.988 24316 420874 12096 48632 841748 12096
s13207.1 0.986 83740 912446 8024 167480 1824892 8024

Total 168825 1444108 47440 337650 2888216 47440

high number of don’t cares. On the other hand, ML circuits
result to be more efficient than both PXL and T-MUX due to
the possibility of cascading common sub-expressions. Indeed,
higher differences are recorded with benchmarks having more
that one thousand cells, whereas for smaller circuits PXL is
capable to match, if not improve, the ML outcomes, e.g.,the
s510 design. However, the proposed PXL+PD synthesis gets
close to ML much more than T-MUX+BBDD does (please
refer to rowTotal in Table V).
Figure 18 shows the maximum circuit depth for the obtained
networks. PXL networks are, on average, about 8× shallower
than T-MUX networks; this translates into lower propagation
delays and thus improved performance. This characteristic
is correlated to the structure of the two implementations.
Indeed, it is well-known that depth of tree-like structures
grows linearly with the number of input variables, whereas
PXL structures use the minimum number of PXG gates for
each branch, thus dropping unnecessary inputs. Although ML
circuits are clearly shallower than T-MUX ones, PXL networks
outperform multi-level circuits with a 23% smaller depth. This
underlines once again that there are margins to improve the
logic synthesis when dealing with other classes of circuits, e.g.,
the pass-gate logic, for which depth is a key design metric.
As discussed in Section III-E, the maximum fan-out represents
an important aspect for the reliability of PXL networks. The
synthesized circuits have a maximum fan-out of 6.87 (average
over all the benchmarks), where thes13207.1 reaches the
highest value, 19. Given the signal integrity analysis shown
in Figure 10, we can state that all the graphene-based PXL
circuits operate within the safe region (fan-out< 50).

D. Performance analysis

Although the effectiveness of the adiabatic charging principle
has been demonstrated in other previous works [37], [13], in
this section we briefly discuss the power gains brought by the
proposed synthesis algorithm. Due to the lack of a free and
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open-source SiNW device model, we focus our investigation
on PXL circuits composed of graphene-based PXGs. The
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Fig. 19. Power-delay product of considered benchmarks.

plot of Figure 19 shows the power-delay product (PDP) for
PXL (darker bars) and T-MUX circuits (lighter bars); numbers
refer to the average over all the benchmarks reported in
TableV (columnGraphene). The PDP is measured through
Spice-level simulations using the Verilog-A model introduced
in [26]. The clocked-power is a ramp signal with a varying
rise/fall transition timeTr, as to simulate different working
conditions (refer to Section III for additional details).
On average, PXL circuits have about 12×lower PDP with
respect to T-MUX counterparts (best case is 15.3×at Tr =
20ps). In terms of power, PXL circuits show 1.3×lower
consumption that T-MUX circuits; the largest savings are
observed for benchmarks298 (7.5×), whereastoo_large
and s953 have shown smaller savings (74.5% and 56.8%
respectively). For what concerns the propagation delays, PXL
circuits are 2.18×faster than T-MUX circuits; that’s another
advantage of the synthesis algorithm which produces more
regular and less deep topologies (please refer to the bar chart
reported in Figure 18).

VIII. C ONCLUSIONS

In this paper we described a novel synthesis and optimiza-
tion flow for pass-logic devices tailored on emerging device
technologies, graphene p-n junctions and SiNWs in particular.
Experimental results demonstrate that the proposed methodol-
ogy is capable to outperform state-of-art synthesis tools when
dealing with incompletely-specified Boolean functions. As a
final remark, this work enables the logic synthesis of a new
class of complex devices built with cutting-edge emerging
technologies.
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