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Summary

Efficient energy management is a key necessity for the future generation networks.
In line with this, the 5G-Infrastructure Public-Private Partnership (PPP) has
set the following requirements as Key Performance Indicators (KPIs) for energy
management: (i) energy efficiency improvement by at least a factor of 3 and (ii)
reduction of energy cost per bit by a factor of 10. Virtualization plays a key role
in energy management, wherein efficient utilization of storage and computation
resources and network infrastructure is made possible. In this thesis, we address
the issue of improving energy efficiency by formulating optimal routing strategies in
SDN based 5G backhaul networks. Moreover, we investigate different virtualization
technologies in order to establish how well they perform in terms of different
performance measures: resource usage and energy consumption. In addition,
we analyze IoT traffic, which is characterized by long inactivity times and then
quasi-synchronous transmissions, to model the Evolved Packet Core (EPC) and
to effectively scale the EPC components to real-time resource requirements of the
peculiar IoT traffic.

First, we consider optimization of energy expenditure in the backhaul network,
one of the main areas where efficient resource usage in 5G wireless networks can
contribute to a tremendous amount of energy saving. We contribute to this aspect
by developing an Energy Management and Monitoring Application (EMMA) that
runs on top of a Software Defined Network (SDN) controller. This application is
able to control the state of links and routing nodes according to the traffic load,
resulting in the activation of minimal number of links and nodes. EMMA tries
to route incoming traffic requests through already active links. It activates new
links and/or nodes, whenever the already available links and nodes can no longer
meet the QoS requirements for all flows. On the contrary, EMMA turns off links
and nodes whenever they become underutilized. Before turning off links and nodes,
the application reroutes the flows passing through these links and nodes to a path
that can support them. We compare our energy efficient routing strategy, EMMA,
against the optimal routing strategy and No-Power Saving Strategy to have insight
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into the amount of energy saved with EMMA in place as a routing application.

Next, we study the performance of virtualization environments where Virtual
Network Functions (VNFs) are deployed, in the context of Multi-access Edge
Computing (MEC). To this end, we carry out a wide range of experiments on two
representative virtualization technologies: light-weight containerization technology
and traditional virtualization technology. We profile and study the resource usage
and energy consumption, in this virtualization environments, of different applications
with unique requirements for system resources. For our experiments, we chose
VirtualBox and Docker from traditional virtualization technology and light-weight
containerization technology, respectively. We study the performance of a number of
virtualized synthetic and real-world applications in both of the above mentioned
virtualization environments.

Finally, we consider Massive-Internet-of-Things (MIoT), one of the main cases
in which 5G is used, to characterize the Cellular MME by analyzing its delay and
control traffic overhead in serving requests from Massive IoT devices. We study the
traffic arrival analytically and Evolved Packet Core (EPC) components through the
profiling of real-world EPC implementation from OpenAirInterface, which reveal
Mobility Management Entity (MME) is the bottleneck among the EPC components.
Then, we use the results of the analytical and practical studies to model the MME
as M/D/1-PS queue. We use the MME model to obtain a closed form expression
of the delay at which bearer requests are served. In order to verify the analytical
results, we perform several simulations on the 3GPP IoT traffic model and on real
traffic traces. Finally, we exploit our model for proper scaling of the assigned EPC
system resources to match the traffic requirements.
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Chapter 1

Introduction

Energy efficiency is considered one of the necessities of the future generation
wireless network. In fact, the 5G-Infrastructure Public-Private Partnership (PPP)
has set the following Key Performance Indicators for energy management: (i) to
reduce the energy consumption, i.e., joule/bit, by a factor of 10 and (ii) to improve
energy efficiency by at least a factor of 3 [1, 2]. The reduction in energy consumption
is intended to be achieved by a combination of approaches implemented both in the
radio network and core network of 5G [3]. These approaches include implementing
5G New Radio to reduce signaling, using efficient caching techniques to reduce the
frequency of access to the internet and even to the backhaul, and deploying cell,
node and link switch off techniques whereby network switches and links are switched
off and turned back on as needed. Implementing these collective approaches will
result in saving network and computational resources, which in turn leads to a
reduction in the energy consumption of the network.

A huge shift in the networking paradigm is needed to achieve the above mentioned
KPIs for energy management, with Network Function Virtualization (NFV), Software
Defined Networking (SDN) and Multi-access Edge Computing (MEC) being at the
forefront of this change. NFV decouples the network functions from the hardware,
thereby creating Virtual Network Functions (VNFs). VNFs are (network) functions
implemented in software and deployed in a server or in an isolated virtualization
environment within a server. As opposed to (network) functions implemented in
proprietary hardware, VNFs come with the ability to be deployed in a general
purpose high capacity compute machine in parallel with other functions. SDN, on
the other hand, is a new paradigm to networking which decouples the control and
the data forwarding functions [4]. SDN makes the forwarding decision on a logically
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1 – Introduction

centralized control plane, while the network switches are used to merely forward
packets based on the forwarding rules decided by the control plane. The other new
paradigm, MEC, places frequently required and latency constrained computational
functions and data close to the user [5], thereby reducing backhaul traffic and
latency.

In this thesis, we first adopt SDN to develop energy aware traffic routing using
the Open Network Operating System (ONOS) [6] for the SDN controller and using
the Mininet data layer network [7]. Then, we study the performance of different
real-world and synthetic applications in different virtualization environments in
terms of energy and resource usage in the context of MEC scenarios. We finally
use a real-world 4G software implementation for the purpose of characterizing the
control traffic of Massive-IoT devices and developing a model that can be used to
scale dynamically the resources assigned to EPC components in order to satisfy the
traffic requirements.

In the rest of this chapter, we will present an overview of 5G, SDN, NFV, MEC
and IoT.

1.1 An Overview of 5G Networks

The future generation cellular network, i.e., 5G, consists of radio network and
core network. The radio network known as New Generation Radio Access Network
(NG-RAN) consists of a set of base stations known as next generation Node-Bs
(gNBs). The 5G Core network consists of the following main elements: User Plane
Functions (UPF), Access and Mobility Management Function (AMF), Session
Management Function (SMF), Policy Control Function (PCF) and User Data
Management (UDM).

5G is architectured so that it is capable of supporting different requirements from
different vertical industries [8]. These include fulfilling the high density requirements
of massive Machine Type Communications (MTC), meeting the low latency and
high reliability requirements of applications like autonomous driving, and keeping
up with high bandwidth requirements.

5G’s potential to support these diversified requirements of consumer, service and
business applications relies heavily on the SDN paradigm and Network Function
Virtualization (NFV) [4]. SDN decouples the control layer from the data layer,
introducing more flexibility in implementation of network control functions such
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1.1 – An Overview of 5G Networks

Figure 1.1: Schematic Diagram of Next Generation 5G Wireless Networks.

as routing protocols. Contrary to the traditional networking paradigm, which uses
a distributed control plane embedded in each forwarding or routing device, SDN
uses a centralized controller to make routing decisions, thereby leading to the use of
simple forwarding devices which are directed by the controller. 5G leverages this
virtue of SDN to easily manage the network and provide abstraction of the physical
network to the applications running on the application layer of the SDN controller.
On the other hand, NFV deploys network functions on general purpose machines,
decoupling them from proprietary devices. Moreover, virtualization technologies are
leveraged to deploy a number of network functions on high compute machines in
the cloud to achieve more efficient use of resources [9]. The introduction of these
paradigms into the mobile network decreases the development and implementation
of new network applications, eases the management of network devices and decreases
investment and running costs. In addition, 5G is enabled by Massive-MIMO, Device
to Device Communication, millimeter wave, beam forming and small cells.

It is greatly anticipated that 5G will provide support to Enhanced Mobile
Broadband (MBB) (supporting up to 10Gbps), Ultra-reliable and Low-latency
Communications (ULC) (1ms) and Massive Machine Type Communications
(MMTC) (10 thousand devices per km2) [8]. Different network slices are created on
top of the same physical network using SDN and NFV to support the requirements
of MBB, ULC and MMTC applications. In this way, services can be automatically
generated to serve specific requirements, maintained or terminated. This results in
a significant reduction of subsequent operating expenditure.
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1 – Introduction

5G introduces computing capability into the edge network with the new paradigm
referred to as Multi-access Edge Computing. Network functions and services are
deployed at the edge of the network on MEC servers located at the base stations.
MEC paradigm is introduced into 5G with the purpose of reducing the latency
in the network by hosting application near to where the user is located [5]. This
is a critical requirement for latency constrained applications such as autonomous
driving.

In this thesis, we contribute to the realization of one of the KPIs of 5G for
energy management, i.e., reducing the energy cost (joule/bit) by a factor of 10, set
by 5G-PPP. In this regard, we explore a variety of techniques that can be used to
optimize the energy usage of 5G network. These techniques include optimization of
routing applications, carrying out a range of experimental measurements in testbeds
to understand and model virtualization environments in MEC scenarios and to
understand and model the core network with respect to IoT traffic.

1.2 Software Defined Networking

Software Defined Networking is an emerging networking paradigm which is
revolutionizing the way networks operate. SDN provides flexibility to the network
enabling it to address varying requirements of different industries. SDN separates
the control logic from the forwarding logic, thus making the switches forwarding
protocols to be directly programmable from a centralized controller [10]. In SDN
paradigm, the routing decision for each flow is made by a centralized SDN controller,
which has the global view of the network.

The centralized routing approach of SDN abandons the traditional networking,
where routing decisions are made in distributed manner. Instead, it adopts a routing
approach which is based on the computation of the flow paths centrally by an
SDN controller. Such approach highly improves the ease of network control and
deployment of new network services. When a new flow enters into the network, the
node encountering the flow checks if it has a forwarding rule in its forwarding table.
Whenever a flow rule is not found in the forwarding table, the node forwards the
flow directly to the SDN controller asking for a forwarding rule. Having received a
request for a flow path, the SDN controller computes the end to end path based on
the routing application in use. Then, the SDN controller forwards the packet to its
next hop based on the path it just computed. Meanwhile, the forwarding rule is
sent to every node which is on this path computed for the new flow.
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1.3 – Energy Efficient Routing with SDN Paradigm

Shifting from traditional networking into SDN enables providers for better and
efficient management of their network. SDN is deemed vital, specially in managing
the ever increasing role of virtualization in networks . Moreover, SDN enables
efficient and reliable traffic routing, which is one of the main topics we consider in
this thesis.

SDN controllers have northbound and southbound APIs. Northbound APIs are
used to communicate with the the application layer and provide abstraction of the
physical network to the applications. On the other hand, southbound APIs are used
to interact with physical devices in the network: install flow rules in the devices
and communicate control messages and statistics between the controller and the
data layer.

SDN together with NFV is deemed to define future network and radically change
the way networks operate. With SDN paradigm, switching devices are used to
just forward data, leaving the control logic to be implemented in a centralized
controller device. Taking the control protocol out of individual routing devices and
implementing it at a different upper layer paves the way for the network to be
easily managed. Moreover, SDN makes it easier to deploy new services. This will
be possible by running applications on top of the SDN controller which will have a
global view of the network. 5G will leverage this virtue of SDN to easily manage
network devices, orchestrate applications deployed with NFV and to create network
slices from the same physical network. With NFV, which goes hand in hand with
SDN, it is possible to deploy, undepoly and migrate multiple applications across
nodes in the network.

1.3 Energy Efficient Routing with SDN
Paradigm

In SDN paradigm, applications run on top of the SDN controller. An SDN
controller, which has a global view of the physical network, provides applications
running on top of it, abstraction of the network entities, hiding the complexity
therein. A routing application is one of such applications deployed on the application
layer of the SDN controller; a routing application decides as to which next node
in the network, packets from a given flow, should be forwarded. The decision is
made centrally for all flows, and the forwarding rules are installed to the switches
comprising the paths. We develop an energy efficient routing application to run on
top of an SDN controller assuming SDN links and nodes as capable of being turned
on and off as needed by the SDN controller southbound APIs.
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We make use of SDN controllers to implement a routing protocol which finds
shortest path for the flow in an already active part of the network. In implementing
this protocol we try to minimize the number of active nodes and links, therefore
minimizing the energy required to operate the network.

1.4 Network Function Virtualization

Network functions and services, which were used to be implemented in
proprietary hardware devices, are massively being implemented as a software. Such
softwarization of network functions provides flexibility to deploy these applications
on general purpose hardware. These applications are not usually run directly on
the machines, instead they are run in an isolated virtualization environment [9, 11].
Running a software in an isolated virtualization environment enables the hardware
to run multiple instances of one application or different applications while keeping
them isolated from each other. In addition, running applications in this way enables
one to control the resource usage and the state (active or inactive) through NFV
Orchestrator (NFVO).

In this regard, we study the performance of several synthetic and real-world
applications, when run in different virtualization environments; we undertake this
study in order to identify a better virtualization technology in terms of energy
consumption. Moreover, we will model the power consumption as a function of the
resource usage based on data obtained from the profiling of synthetic applications.
These models can be a tool to estimate power consumption of real-world applications.
The study of the performance of virtualized applications is deemed very important
in MEC scenarios where such applications are started and ended as per the user
request.

1.5 Massive Internet of Things

Provisioning Massive Internet of Things is one of the intended goals of 5G [12].
Due to the peculiarity of IoT traffic, with long inactivity time and quasi-synchronous
transmissions, 3GPP has introduced a new protocol for connection establishment
and data delivery from IoT devices. This new protocol enables the core network
to establish a connection for IoT devices and deliver the data therein right away
through the Mobility Management Entity (MME) which in 5G correspond to the
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AMF. The AMF/MME receives all connection and session related information
from the User Equipment (UE) (N1/N2) as shown in 1.1 but is responsible only
for handling connection and mobility management tasks. All messages related to
session management are forwarded over the N11 interface to the SMF. We focus our
attention into the protocol introduced in 5G for IoT devices connectivity and model
the MME based on the traffic arrival process from IoT devices and use this model to
scale the resources of the MME according to the number of connection requests. In
this work, my contribution mainly consisted in performing the experimental study,
which was used to show some fundamental aspects of the system behavior and was
essential to the development of the theoretical analysis.

1.6 Structure of the Thesis

In Chapter 2, we present the energy efficient routing strategy in SDN based
backhaul network. In this chapter, we first present the formulation of the
problem. Then, we present a heuristic algorithm that approximates the optimization
problem. Thereafter, the chapter discusses the Energy Management and Monitoring
Application (EMMA), developed in Java to run on the application layer of an SDN
platform called Open Network Operating System (ONOS). This chapter ends with
the analysis of simulation and optimization results. Chapter 3, deals with the
performance measurements and modelling resource usage of applications deployed
in virtualization environments. It starts by describing the methodology used and
proceeds into describing numerical results and models. This chapter then presents a
related work overview and finally concludes with a summary of the main observations.
In Chapter 4, we first discuss the mathematical analysis of the model for the traffic
arrival rate and delay characterization. Then we present simulation and emulation
results obtained from real-world 4G implementation to back up our analytical model.
In Chapter 5, we present concluding remarks.

7



8



Chapter 2

Energy Efficiency in 5G Backhaul
Routing

The work in this chapter has been published in:

• Senay Semu Tadesse, Carla Fabiana Chiasserini, Claudio Ettore Casetti, Giada
Landi, “Energy-efficient Traffic Allocation in SDN-based Backhaul Networks:
Theory and Implementation”. In: IEEE Consumer Communications and
Networking Conference (CCNC). 2017

2.1 Motivation

5G networks are expected to be highly energy efficient, with a 10 times lower
energy consumption than today’s systems. This requires for an efficient use of the
network infrastructure among other things. A part of the network infrastructure
to act on to achieve more energy efficiency is the backhaul network. Controlling
the allocation of traffic flows and the nodes operational state on the backhaul
network can lead to a significant amount of energy saving. Controlling of the nodes
operational states can be made easier to achieve with the adoption of Software
Defined Networking (SDN); SDN also provides more flexible, manageable and
resource efficient traffic allocation.

The 5G-Infrastructure-PPP (Public-Private Partnership), created to design and
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deliver architectures, technologies and standards for 5G communication, has set
the following KPIs (Key Performance Indicators) for energy management [1, 2]:
(i) energy efficiency improvement by at least a factor of 3 and (ii) reduction of
energy cost per bit by a factor of 10. Of course, no single solution can achieve such
ambitious goals. Instead, they should be achieved through orchestrated actions,
involving a fully-unified, automated control and management plane, that oversees
radio resources as well as computation and transport resources in the fronthaul
and backhaul network. A key role is played by Software-Defined Networking and
Network Functions Virtualization (NFV), tasked with the control and coordination
of hundreds of nodes that need to be reconfigured on the fly in order to optimize
utilization and QoS, in view of rapidly changing traffic flows. Among the coordinated
actions that can be taken are the de-activation or decommissioning of scarcely used
network portions, including links and switches, and the flexible re-routing of existing
flows so as to jointly address energy saving and QoE requirements.

In this chapter, we address the latter action, by designing and evaluating an
Energy Monitoring and Management Application (EMMA), that can minimize
energy consumption of the backhaul network. We used Mininet [7] network emulator
to test EMMA. Consistently with the pervasive use of SDN solutions expected in
5G networks, EMMA natively interacts with the Northbound interface of ONOS [6],
a popular carrier-grade network operating system, which uses OpenFlow protocol as
its southbound interface to control and program flow tables of OpenFlow switches
that we used in our emulated Mininet network.

Figure 2.1: Schematic Diagram of SDN in 5G Wireless Networks.
The design of EMMA hinges upon heuristic algorithms for the dynamic routing

of flows and the management of the resulting link and switch activity. These
algorithms represent a heuristic solution to a non-linear integer problem that aims
at minimizing the instantaneous power consumption of nodes and links. With the
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former action, the heuristic algorithm tries to consolidate flows in to minimum
number of links and switches while with the later action, the heuristic algorithm
turns of links and subsequently switches that are idle or turns on links and/or nodes
whenever the active network can no longer support the QoS requirements of flows.
Performance evaluation has been done by comparing the optimum obtained through
the above optimization formulation, with practical results derived by implementing
the algorithms in an SDN network emulation environment.

We summarize our main novel contributions as follows:

• Analytical formulation: We formulate energy efficient flow routing on the
backhaul network as an optimization problem;

• Heuristic Algorithm: In light of the above optimization problem complexity,
which impairs the solution in large-scale scenarios, we then propose a heuristic
approach. Our scheme, named EMMA, aims to both turn off idle nodes and
concentrate traffic on the smallest possible set of links, which in its turn
increases the number of idle nodes;

• Implementation and Results: We implement EMMA on top of Open Network
Operating System (ONOS), a carrier grade SDN controller. And derive
experimental results by emulating the network through Mininet.

Our results show that EMMA provides excellent energy saving performance,
which closely approaches the optimum. In larger network scenarios, the gain in
energy consumption that EMMA provides with respect to the simple benchmark
where all nodes are active, is extremely high, reaching almost 1 under medium-low
traffic load.

The rest of the chapter is organized as follows. We begin by briefly discussing
the project to which this work was a part of in Section 2.2. Then, in Section 2.3,
we introduce the power model for OpenFlow switches that we adopt and formalize
the problem under study. In Section 2.4, we will present the heuristic scheme for
EMMA. In Section 2.5, we will introduce the SDN paradigm on which EMMA’s
implementation is based. EMMA’s implementation on top of ONOS, as well as the
required interactions between ONOS and the underlying network, are described
in Section 2.6. Emulation results and the comparison between EMMA and the
optimum solution are presented in Section 2.7. A detailed discussion of previous
work and of our novel contribution with respect to that, is provided in Section 2.8.
Finally, Section 2.9 draws some conclusions.
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2.2 5G-Crosshaul Project

The work in this chapter is done as part of 5G-Crosshaul European Project [13].
5G-Crosshaul project is planned to provide fronthaul (RAN) and backhaul (packet
core) solutions for the ever increasing traffic volume and more diversified traffic
requirements in a cost-efficient manner.

5G-Crosshaul project is intended to develop a 5G integrated backhaul and
fronthaul transport network enabling a flexible and software-defined reconfiguration
of all networking elements in a multi-tenant and service-oriented unified management
environment. The 5G-Crosshaul transport network envisioned consists of high-
capacity switches and heterogeneous transmission links (e.g., fiber or wireless optics,
high-capacity copper, mmWave) interconnecting Remote Radio Heads, 5GPoAs
(e.g., macro and small cells), cloud-processing units (mini data centers), and points-
of-presence of the core networks of one or multiple service providers. This transport
network will flexibly interconnect distributed 5G radio access and core network
functions, hosted on in-network cloud nodes, through the implementation of:

• a control infrastructure using a unified, abstract network model for control
plane integration (Crosshaul Control Infrastructure, XCI);

• a unified data plane encompassing innovative high-capacity transmission
technologies and novel deterministic-latency switch architectures (Crosshaul
Packet Forwarding Element, XFE).

2.3 System Model and Problem Formulation

Energy consumption of the backhaul network can be minimized by limiting
the number of active links and nodes, i.e., by (i) turning off link drivers whenever
possible, resulting in proportional (possibly non-linear) changes, and (ii) turning off
those nodes whose links are inactive.

Both approaches can be studied by building a directed network graph whose
vertices represent the network core switches, and edges correspond to links connecting
the switches. Let us then consider that the network includes N core switches and
L links and denote by N and L the set of switches and links, respectively. Let a
link (i, j) ∈ L, with i, j ∈ N , have a capacity C(i, j) bits/s. Let F(t) denote the
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set of flows at time t, with each flow, fαω ∈ F(t), characterized by the pair of end1

core switches α and ω, and by QoS constraints that in our case correspond to the
required data rate R(fαω).

Table 2.1: Model notations

N , L No. of nodes and links N , L Set of nodes and links
(i, j) ∈ L Link from node i to

node j
C(i, j) Capacity of link (i, j)

F(t) Set of active traffic
flows at time t

f sd ∈ F(t) Active flow between
source s and
destination d

R(f sd) Rate requirement for
flow f sd

π Generic path as an
ordered sequence of
links

Pidle Power consumption of
an idle node

P (i, j, t) Power consumption
associated with link
(i, j) at t

xij(t) Takes 1 if link (i, j) is
on at t, 0 else

yi(t) Takes 1 if node i is on
at t, 0 else

zπ,fsd(t) Takes 1 if f sd is routed
through path π at t, 0
else

τij(t) Traffic flowing over
link (i, j) at t

Let xij(t) be a binary variable indicating whether link (i, j) ∈ L is “on” (xij(t) =
1) or “off” (xij(t) = 0), at time t. Likewise, yi(t) is a binary variable indicating
whether node i ∈ N is active at time t (yi(t) = 1) or not (yi(t) = 0). Also, let a
path π be an ordered sequence of links. We indicate by the binary variable zπ,fαω(t)
whether flow fαω ∈ F(t) is routed through path π at time t (zπ,fαω(t) = 1) or not
(zπ,fαω(t) = 0).

We consider that the generic core switch i has zero power consumption when
“off”, and Pidle when “on” but idle. The power consumption associated with a link,
(i, j), at time t linearly depends on the traffic that flows over the link. It follows
that the total power consumption of an active core switch i is given by:

1Since we do not consider edge switches, the end core switches are those where the flow,
respectively, starts and ends in the backhaul.
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P (i, t) = Pidle + Esw

∑︂
j∈N ,j /=i

τij(t) (2.3.1)

where the second term on the right hand side of the above equation represents
the power consumption at i due to traffic switching. In particular, Esw is the energy
consumption per bit due to traffic switching and τij(t) is the total traffic (expressed
in bit/s) flowing over link (i, j) at time t. We have:

τij(t) =
∑︂

fαω∈F(t)

∑︂
π:(i,j)∈π

R(fαω)zπ,fαω(t) (2.3.2)

where R(fαω) is rate requirement for flow fαω and zπ,fαω(t) is a binary variable
to determine whether flow fαω is passes through path π at time t.

Note that in Eq. (2.3.1) we accounted only for outgoing links since we consider
core switches, which cannot be source or destination of traffic flows. Furthermore,
incoming traffic equals outgoing traffic and only one of them should be considered
since the switch processes that traffic only once.

Below, we first present the power consumption model we adopt in order to
determine realistic values for Pidle and Esw, for OpenFlow switches. Then, we
formalize the problem under study by using standard optimization.

2.3.1 Power Model

The power consumption of an IP router or an Ethernet switch that is “on” is the
sum of the power consumed by its three major subsystems [14]: Pctr + Pevn + Pdata,
where Pctr accounts for the power needed to manage the switch and the routing
functions, Pevn is the power consumption of the environmental units (such as fans),
and Pdata indicates the data plane power consumption. The latter can be decomposed
into (i) a constant baseline component, and (ii) a traffic load dependent component.
In other words, when a switch is powered on but it does not carry any data traffic, it
consumes a constant baseline power. When a device is carrying traffic, it consumes
additional load-dependent power for header processing, as well as for storing and
forwarding the payload across the switch fabric. Combining the power model in [14]
with that for OpenFlow switches in [15], we can write Pidle as the sum of Pctr, Pevn

and the base line component of Pdata, while the load-dependent component of Pdata

is given by:
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P (i, j, t) = (Elookup + Erx + Exfer + Etx)τij(t) .

In the above expression,

• Elookup is the energy consumed per bit in the lookup stage of a switch, which
involves searching the Ternary Content-Addressable Memory (TCAM) for the
received flow-key and retrieving the forwarding instructions;

• Erx is the energy consumed per bit in the reception stage, which involves
receiving a packet from the physical media, extracting important fields to
build a flow-key and streaming the packet into the input memory system;

• Exfer is the energy consumed per bit in the xfer stage, which involves reading
a packet from the inbound memory, all of the logic required to initiate a
transfer across the fabric, driving the fabric connections and crossbar, as well
as writing the packet into the remote outbound memory;

• Etx is the energy consumed per bit in the transmission stage, which involves
reading a packet from the outbound memory and transmitting it on the
physical media.

In the following, we set: Erx = Etx = 0.2 nJ/bit, Exfer = 0.21 nJ/bit, Elookup =
0.034 nJ/bit, and Pidle = 90 W [16].

2.3.2 Minimum-energy Flow Routing

The problem of energy-efficient flow allocation can be modeled similarly to what
done in [17, 18]. However, we stress that, using the accurate power model introduced
above, optimal flow routing becomes a non-linear integer problem (see our discussion
at the end of this section). Furthermore, in order to achieve the minimum energy
expenditure, we aim at minimizing the instantaneous power consumption of the
network, i.e., the flow routing problem should be solved whenever a new flow starts
or an existing flow ends. Typically, this is impractical in real-world networks but
our goal here is to set the best performance that could be achieved. We report
below the formulation of the optimization problem adapted to our scenario.

Objective. The goal is to minimize the instantaneous power consumption,
which is the sum of the power consumption due to the nodes being “on” and to
active link drivers:
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min
∑︂
i∈N

yi(t)Pidle +
∑︂

(i,j)∈L
xij(t)P (i, j, t) , (2.3.3)

where recall that P (i, j, t) linearly depends on τij(t), which in its turn depends
on the binary variable zπ,fsd(t), as reported in Eq. (2.3.2).

Constraints.

• Flow conservation constraint, for any j ∈ N :∑︂
i∈N ,i /=j

τij(t)xij(t)−
∑︂

k∈N ,k /=j

τjk(t)xjk(t)

=
∑︂

fsd∈F(t):j=d

R(f sd)−
∑︂

fsd∈F(t):j=s

R(f sd) . (2.3.4)

• The total traffic flowing on a link must not exceed the link capacity:

τij(t) ≤ Cij , ∀(i, j) ∈ L . (2.3.5)

• A link between two nodes, i and j, can be active only if i and j are both
active:

∑︂
j∈N ,j /=i

[xij(t) + xji(t)] ≤Myi(t) , ∀i ∈ N (2.3.6)

where M is an arbitrary constant s.t. M ≥ 2(N − 1).

The input parameters of the above problem are the set of nodes, links and
traffic flows, along with their characteristics, while the decision variables are: xij(t),
yi(t), and zπ,fsd(t). Thus, the problem is an integer non-linear problem, due to
the product of xij(t)’s and zπ,fsd(t)’s in the objective function and in the flow-
conservation constraints, which appears when P (i, j, t) is expressed as a function
of τij(t), hence, of zπ,fsd(t) (see Eq. (2.3.2)). Also, it is akin to the bin packing
problem2, which is a combinatorial NP-hard problem. Thus, obtaining the optimal
problem solution in large-scale scenarios is not viable. Below we propose a heuristic
algorithm that has low computational complexity and whose performance results to
be very close to the optimum.

2In the bin packing problem, objects of different volumes must be packed into a finite number
of bins, each of a given capacity, in a way that the number of used bins is minimized.
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2.4 EMMA: A Heuristic Approach

In order to design an efficient algorithm to solve the above problem, we first
observe that an efficient heuristic for the solution of the bin packing problem is the
First Fit algorithm [19, 20]. Given the set of items to be inserted into the bins, the
First Fit algorithm processes an item at a time in arbitrary order and attempts to
place the item in the first bin that can accommodate it. If no bin is found, it opens
a new bin and puts the item in the new bin.

We use the First Fit algorithm and design a heuristic scheme, named Energy
Monitoring and Management Application (EMMA), which: (i) monitors the network
status, (ii) efficiently allocates traffic flows as they come, and (iii) re-routes the
existing flows when necessary and possible. Flows are (re-)routed by EMMA with
the aim to minimize the length of the flow path and the energy consumption of
the overall network. In particular, upon the arrival of a new flow, EMMA first
tries to fit the flow into the current “active network” while meeting the flow traffic
requirements. It then turns on other links and/or nodes only if no suitable path
is found. Every time a new link and/or node are added to the active network,
EMMA looks for a better alternative path for flows that have been (re-)allocated
long enough (more than half their expected duration) ago. If a more energy-efficient
allocation is found, then a flow is diverted on the new path, provided that its traffic
requirements are still met. Note that EMMA differs from the First Fit algorithm
since it tries to find a better path for already allocated flows whenever any change
in the active topology occurs.

Algorithm 1 New flow allocation
Require: Topology, new flow, network power state, traffic load
1: for each new flow do
2: Compute all shortest paths across active topology
3: if suitable path is found then
4: % if more than one, select one at random
5: Allocate the flow
6: else
7: Compute shortest paths considering the whole network
8: if suitable path is found then
9: % if more than one, select one at random

10: Turn on the selected links and nodes that are off
11: Allocate the flow
12: installation_time ← current_time
13: Run Algorithm 2
14: % It moves previous flows to a better path if any
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More in detail, the EMMA scheme is composed of two algorithms. Algorithm 1
presents the sequence of actions to be taken whenever a new flow is activated in the
network. Input to the algorithm is the network topology and the information on
the new flow to be allocated, the power state of the network devices and the traffic
crossing every link. Initially, the computation of the possible paths for the incoming
flow is done considering the nodes and links that are currently active (namely, the
active network) (line 2). Then if there exists a path that meets the flow traffic
requirements, the flow can be successfully allocated (lines 3-5). Otherwise, the whole
network should be considered and the search for a suitable path repeated (lines 6-7).
If a path is found, the links and nodes that need to be added are activated (lines
8-11).

The active topology can approach to the whole topology in high traffic times.
Moreover, a path might not be found in this active topology. Due to these
possibilities, in the worst case, the flow allocation procedure in EMMA has a
complexity of twice that of the shortest path computation complexity. The flow
re-routing procedure increases the complexity.

Algorithm 2 states the steps followed during re-routing of existing traffic. This
algorithm is run whenever there is a change in the active network topology, i.e., if
nodes and/or links become active while finding a path for a new flow. Input to
the algorithm are the network topology and the information on the current flows.
The algorithm selects all flows that have started or re-allocated at least Ta time
ago (line 1). For each flow satisfying the time hysteresis, it computes a path on the
current topology starting with the flows with higher rate requirements (lines 2-4). If
the cost of the computed path is less than that of the flow current path, it diverts
the flow to the new path and updates the flow installation time (lines 5-7). If the
process of moving flows to a different path results in some links and/ or nodes being
idle, those links and/or nodes are turned off (lines 8-9).

Algorithm 2 Move flows to a better path
Require: Topology, information on current flows
1: S ← {flows s.t. installation_time ≥ Ta}
2: Order flows in S with decreasing rate requirements
3: for each flow in S do
4: Search a path on the active topology
5: if suitable path exists ∧ (new path cost < old path cost) then
6: Move flow from old to new path
7: installation_time ← current_time
8: if there are links and/or nodes no longer carrying traffic then
9: Turn them off

In addition to (re-)allocating paths to flows, EMMA also keeps track of the
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power usage in the network by computing the power at the FLOW_ADDED and
FLOW_REMOVED events sent from nodes. In case of FLOW_REMOVED event
generated due to finishing of a flow, nodes and links which are idle will be switched
off to save energy.

In the next section we will briefly present the paradigm of SDN, that we will
eventually use as a platform to develop and deploy EMMA.

2.5 Software Defined Networking for 5G Mobile
Networks

5G is being designed to support huge volume of traffic, a tremendous number of
devices and various service categories. On top of these requirements, 5G is expected
to improve the energy efficiency by 10 fold. These goals can only be achieved by
employing a set of strategies and technologies: SDN being one of the technologies
in the forefront. SDN together with NFV are redefining the network architecture to
sustainably support this ever growing traffic volume and newly e merging service
demands.

Software Defined Networking separates the control logic from data forwarding
functions. Moreover, SDN creates a centralized controller which will be in charge of
dictating the routing policies to the switches. The switches, on the other hand, take
forwarding rules from the controller and forward traffic according to these rules.
This approach will open up the network for more flexible management, maintenance
and for new protocols and services to be deployed easily and promptly.

Figure 2.2: Software Defined Networking Architecture.
Figure 2.2 shows a high level architecture of SDN. The SDN controller lies

between applications and network devices. The SDN controller has southbound
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interface to interact with the physical network infrastructure and northbound
interface to interact with the applications.

Through its southbound interface, the controller dictates the devices in the
physical network infrastructure the policies coming from the applications. The
southbound interface is also used to provide the controller with the abstraction
model of the physical network. The information provided to the controller include:
available links, the functions provided by the device and interface states. Through its
northbound interface, the controller learns from the application layer what services
the network should provide, and the controller presents the state of the network
capability to the applications.

The re-designing of the network architecture with SDN and Network Function
Virtualization (NFV) makes the network easily programmable, capable of being
shared between different operators by virtualizing the network resources. Moreover,
in SDN the control logic is not deployed in a vendor-specific hardware but is
made fitting to be deployed on any general purpose hardware. Consequently,
the implementation and deployment of routing and other functionalities into the
network infrastructure will be easier and faster. We leverage this behavior of the
SDN controller in developing our energy-efficient routing application.

In SDN paradigm when a new flow enters into the network, the node encountering
the flow checks if it has already a forwarding rule in its forwarding table. If a flow
rule is not found, it forwards the flow directly to the SDN controller requesting a
path for this flow. The SDN controller computes the path based on the routing
application in use. Then, the SDN controller having found the path for this flow,
forwards the packet to its next hop based on the path it just computed. Meanwhile,
the forwarding rule is sent to every node which is on this path computed for the new
flow. It is worth mentioning here that flow rules can also be installed proactively as
we will discuss in Section 2.6.

Software Defined Networking makes it possible to manage the entire network
through intelligent orchestration and provisioning systems, allowing resources to be
allocated on demand. Our energy efficient application is developed based on the
premise that the network is easily manageable with SDN to direct new/existing
flows on a path the application decides. The routing application is designed in such
a way that it uses a minimal number of links and switching nodes to carry the
traffic. The links or nodes that are not carrying a traffic will be switched off by the
controller to save energy. This is based on an assumption that the controller is able
to change the operational state of the network devices.

In our work, we used Open Network Operating System (ONOS) SDN controller.
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ONOS [6] is one of the main controllers for software defined networking. It is an
open source controller; enables providers to build their network solutions with SDN
and NFV paradigms. It is distributed control designed to address scalability. The
ONOS controller manages network components, with software programs so as to
provide end users and neighboring networks with resources.

2.6 EMMA Implementation in ONOS

We consider a system architecture including:

• a network of OpenFlow switches and links interconnecting them;

• an SDN controller;

• an application on top of the SDN controller that implements EMMA.

The system has to:

• keep track of the set of active network elements, and the set of current traffic
flow routes;

• route traffic (i.e., check routing paths for traffic flows and push routes into
the network);

• monitor and toggle the power state of the network elements.

In SDN, traffic forwarding rules are created by the controller and are installed
into the switches. The flow rule installation could be either proactive, e.g., flows
rules are installed into the switches prior to the actual flow arrival, or reactive, e.g.,
flows rules are created upon every new flow coming into the switches, as discussed
in 2.5. In the latter case, the switches at the network edge will need to be always
active, in order to receive the traffic that a host may generate. When an edge
switch receives a packet for which it has no rule, it directly sends the packet to the
controller. Then the controller gets a path from EMMA for such kind of packets
and installs a flow rule into the switches. Afterwards, all packets of that kind will
be forwarded based on the flow rule just installed.

In the implementation of our algorithms, we followed a reactive approach. The
algorithms are tested using the Mininet SDN network emulation environment [7]
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as forwarding plane, and a controller whose functions are supported by the Open
Network Operating System (ONOS) [6]. The algorithm is developed based on ONOS
built-in Reactive Forwarding application, which uses the shortest path to route
incoming traffic. However, we recall that the topology considered for the shortest
path search is not always the whole topology. Indeed, EMMA first tries to find a
path on the nodes or links which are already carrying traffic. In this way, EMMA
concentrates all the traffic in the active infrastructure whenever possible. If no path
is found using the active network, EMMA considers the whole network to route the
traffic.

It is worth mentioning that EMMA implements the PacketProcessor interface of
ONOS, running below it in the architecture, in order to process packets, i.e., we
replicated the processing function at the PacketProcessor interface of ONOS within
EMMA. In this way, EMMA can distinguish between traffic and control packets, as
well as between unicast and multicast packets, thus further processing only unicast
traffic packets.

Finally, we consider that all network nodes and links are initially “on” and that
ONOS provides EMMA with the whole network topology. Specifically, EMMA gets
the network topology via the TopologyService application of ONOS, to which EMMA
has registered. EMMA can then use the network topology for path computation
and flow provisioning. If there are idle core switches, EMMA will instruct ONOS to
turn them off.

Figure 2.3: Interaction between EMMA and ONOS, and between ONOS and Mininet.
The interactions are labeled with numbers corresponding to the sequence of events
described in the text.

Figure 2.3 highlights the main components, chain of events and interactions in
the implemented system. The description of the set of actions taken by EMMA and
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the list of events happening in the network are detailed below (the labels associated
with the arrows in the figure correspond to the numbers of the listed events or
actions).

1. Whenever a switch receives a packet for which it does not have a forwarding
rule, it sends the packet of the flow directly to ONOS. EMMA intercepts
the packet using the requestPacket method of the PacketService interface of
ONOS.

2. EMMA processes the packet and, if it carries unicast traffic, it computes a
flow path according to Algorithm 1. Then it creates a forwarding rule using
a set of ONOS applications. Initially, it uses TrafficSelector.builder, to form
the part of the rule specifying the pair of source and destination IP addresses
to be matched when processing the packet at the switch. It then resorts
to TrafficTreatment.builder in order to express a set of instructions, namely,
forwarding the packet toward the intended output port and decrementing
the packet TTL. Finally, it invokes ForwardingObjective.Builder to create the
forwarding rule based on the TrafficSelector and TrafficTreatment outputs.

3. The ONOS application FlowObjectiveService is used to send the rule and
install it in the switch.

4. A FLOW_ADDED event will be generated by the switch after the flow rule
has been installed. Following the blueprint of the FlowRuleListener interface
of ONOS, we built a FlowListener interface within EMMA. Such an interface
allows EMMA to detect a FLOW_ADDED event, after which EMMA starts
accounting for the power consumption due to the newly added flow.

5. A FLOW_REMOVED event will be generated by a switch whenever a flow
finishes, or the application removes a flow from a switch when a better path
is found. As for the FLOW_ADDED event, EMMA is able to detect a
flow removal through the FlowListener interface we developed and, hence,
to correctly compute the energy consumption of the active network. Note
that when a FLOW_REMOVED event corresponds to a flow termination
(i.e., it has not been triggered by an EMMA re-routing action), EMMA will
check whether existing flows can be re-routed, according to Algorithm 2, thus
performing a further step similar to step 2).

EMMA will be able to get events related to the topology and flow rules using the
topologyListner interface and FlowListner which implements the FlowRuleListener
interface. Events, when they are generated in the network will be sent to the
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Manager residing in core. Then EMMA which is registered to topology and flow
events listener will intercept the events.

We conclude this section by remarking that in our implementation, EMMA
computes the active network power consumption based on the packet size and
the flow rate, as explained in Section 2.3.1. Such values are obtained as the ratio
of, respectively, the number of bytes to the number of packets, and the number
of packets to the flow duration. The number of packets, number of bytes and
flow duration are provided to EMMA by ONOS. Specifically, EMMA exploits the
getDevice method of DeviceService in ONOS to get the list of available switches, and
the getFlowEntries method of the FlowRuleService of ONOS to get information (i.e.,
number of bytes, number of packets and flow duration) about each flow handled by
a given switch.

Table 2.2: Default settings

Parameter Value
Flow arrival rate 0.1 flows/s
Average flow duration 20 s
Number of core switches 12
Number of edge switches half the no. of core switches
Link Capacity 10 MB/s
Hysteresis(Ta) 10 s
Pidle 90 W [16]
P (i, j, t) 0.644 · τi,j(t) nW [16]
Number of hosts per edge switch 10
Link prob. b/w switches 0.5
Packet size 1500 bytes
Experiment duration 500 s

2.7 Experimental Results

We evaluated the EMMA performance against the optimal solution, as well
as versus the simple case where no power saving strategy is adopted and the
whole network is always active (hereinafter referred to as No Power Saving). The
performance of EMMA and of the No Power Saving schemes are obtained by
emulation, in the system we implemented and that is described above. The solution
of the optimization problem in Eq. (2.3.3) is instead obtained using the Gurobi
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solver, considering the same network as that emulated in our experiments with
Mininet.
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Figure 2.4: Comparing EMMA against the optimum and the No Power Saving
scheme: Average power consumption per flow as a function of the flow arrival rate
(no. core switches = 12).

We derived the results assuming a default number of core and edge switches
equal to 12 and 6, respectively; 10 hosts are connected to each edge switch. Links
between any two core switches are set with probability 0.5 and the link capacity
is set to 10 Mbytes/s. TCP traffic flows are generated using the Iperf tool, using
1500-byte packets. For each traffic flow, source and destination are selected at
random among all possible hosts. Note that this is a worst case assumption for
EMMA, while it favours the No Power Saving strategy. The inter-arrival time of
newly generated flows follows a negative exponential distribution with a default
mean arrival rate of 0.1 flows/s. The traffic flow duration is also exponentially
distributed with mean equal to 20 s. The complete list of default values that we
adopted for the system parameters is reported in Table 2.2.

In the following figures, we show the average power consumption per flow, as
the flow arrival rate and the number of network switches vary. The results have
been obtained by averaging over 20 experiments. Note also that power consumption
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is computed based on traffic statistics and nodes operational states, consistently in
all cases.
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Figure 2.5: Average power consumption per flow vs. number of core switches:
comparison between EMMA and No Power Saving (flow arrival rate = 0.1)

Figure 2.4 compares the performance of EMMA to the optimum as well as to
that of the No Power Saving scheme, as the flow arrival rate varies and for the
default number of core switches (namely, 12). Observe that EMMA matches the
optimum very closely, for any value of flow arrival rate. The power saving it provides
with respect to the case where all network switches are always on is very noticeable.
Clearly, the power gain tends to shrink when many flows have to be allocated (high
flow arrival rate), i.e., as an increasing number of switches and links have to be
used.

The behavior of EMMA compared to the No Power Saving scheme, as the
network size varies, is presented in Figure 2.5. Here we do not show the optimum
performance, as we could not solve the optimization problem for a number of core
switches significantly larger than the default value. All results are therefore derived
by emulation, under a flow arrival rate equal to 0.1. The plot confirms the excellent
performance of EMMA: it reduces the power consumption per flow by a factor
ranging from 2 (for 10 core switches) to 8 (for 40 core switches). As noted before, a
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Figure 2.6: Gain in average power consumption per flow (derived by emulation)
provided by EMMA with respect to No Power Saving, as the number of core switches
and the flow arrival rate vary.

smaller improvement is obtained only when the network size is small compared to
the flow arrival rate (e.g.,for 4-5 core switches).

Finally, Figure 2.6 depicts the gain that we can achieve with EMMA with respect
to the No Power Saving strategy, as a function of the number of core switches and for
a flow arrival rate equal to 0.05, 0.1, 0.5, 1. The gain is computed as the difference in
power consumption between No Power Saving and EMMA, normalized to the power
consumption of the former scheme. As expected, the gain that EMMA provides is
higher for a lower value of flow arrival rate and a larger network size, since it is
possible to aggregate more flows on the same links and there are more idle switches
that can be turned off. Interestingly, the gain we obtain is always quite high, with
peak values that approximate 1. 3

3We would like to note that the energy savings obtained by turning of the nodes is significantly
larger than the power saving obtained by turning of link drivers.
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2.8 Related Work

Energy-efficient traffic routing in wired networks has been largely addressed in
the literature. Here, we limit our discussion to the studies that are most relevant to
ours. In particular, at the end of the section we highlight our major contributions
with respect to those that are closest to our study.

One of the first works to investigate energy-efficient management of nodes and
links in backbone networks, can be found in [17]. The optimization problem they
present to obtain an energy-efficient traffic allocation is an integer linear problem
ILP, thus a heuristic is proposed too. Their algorithm first turns off nodes with the
smallest traffic load and re-routes traffic consequently, then it tries to de-activate
links. An opposite approach with respect to [17] is adopted in [21, 22], where the
least congested links are turned off first.

In [19], both Virtual Machine (VM) placement and traffic flow routing are
optimized so as to turn off as many unneeded network elements as possible. In
particular, the authors use traffic-aware VM grouping to partition VMs into a set
of VM-groups so that the overall inter-group traffic volume is minimized while the
overall intra-group traffic volume is maximized. An approach based on the greedy
bin-packing algorithm is proposed to route the traffic, and to put as many network
elements as possible into sleep mode. A similar approach is adopted in [23], which
focuses on the case where a sudden surge in traffic occurs after an off-peak period,
during which most of the nodes have been turned off. The work tries to minimize
the number of nodes/links that have to be activated and to reduce service disruption
by avoiding turning off links that are critical to guaranteeing network connectivity.
In [24], an application called OptiLoop is designed considering the hybrid nature of
nodes, i.e., nodes that are enabled with forwarding and computational capabilities
and the fact that traffic changes across processing steps in 5G networks. The
Application communicates with SDN controller and NFV Orechesterator (NFVO) to
control the states of the network node, physical and virtual, and to route traffic. The
authors have provided an optimization problem for traffic assignment and activation
and deactivation of backhaul and fronthaul nodes to minimize energy consumption
of the network whose integer relaxation is implemented in Java.

Relevant to our work are also the studies in [25, 18], which minimize the power
consumption of a data center network. In particular, [25] considers a hierarchical
topology and proposes a hierarchical energy optimization technique: all edge switches
connecting to any source or destination server in the traffic matrix must be “on”.
Also, the network is divided into several pod-level subnetworks and a core-level
subnetwork, and traffic is reorganized accordingly. [18] instead assumes that each
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traffic flow can be split over different paths. Interestingly, they have used OpenFlow
to collect the flow matrix and port counters, which are used as input to their
routing scheme. The work in [26] extends [18] by introducing a monitoring module
that collects statistics, such as switch state, link state, active topology and traffic
utilization.

Finally, physical characteristics of the links are accounted for in [27, 28]. The
former considers network routers connected by multiple physical cables forming
one logical bundled link, and it aims at turning off the cables within such links.
The problem [27] poses accounts for the bundle size, besides the network topology
and the traffic matrix, and it consists in maximizing the spare network capacity by
minimizing the sum of loads over all links. Instead, in [28] the focus is on optical
links and the minimum-energy traffic allocation is solved taking into account their
peculiarities.

We remark that [17, 19] are the closest works to ours, nevertheless the study we
present significantly differs from them. In particular, we recall that our problem
formulation resembles that in [17], but it accounts for the instantaneous power
consumption and for a more realistic model of the nodes power consumption, which
changes the nature of the optimization. As far as our heuristic is concerned, we
leverage [19] but design an algorithm that, unlike [19], aims to find a better route
for all existing flows whenever there is a change in the active topology. In addition,
our focus is on the implementation of energy-efficient flow routing: our algorithms
are implemented on ONOS, we define and implement the interactions that our
application requires between ONOS and the network emulated through Mininet,
and we derive emulation results by letting ONOS and Mininet interact.

2.9 Summary

We addressed energy-efficient flow allocation in the 5G backhaul where traffic
forwarding rules are created by an SDN controller, which can also turn switches
on or off. The adoption of SDN in our solution is also due to its ability to provide
global view of the network infrastructure, therefore, enabling easier control of the
network and flow (re-)allocation. We first formalized flow allocation by formulating
an optimization problem whose complexity, however, results to be unbearable in
large-scale scenarios. We therefore used a heuristic approach and developed an
application, named EMMA. We implemented EMMA on top of ONOS and derived
experimental results by emulating the network through Mininet. The comparison
between EMMA and the optimal solution (obtained in a small-scale scenario) showed
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that the EMMA performance is very close to the optimum. Also, in larger scale
scenarios, emulation results highlighted that EMMA can provide a dramatic energy
improvement with respect to our benchmark where switches are always on.
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Chapter 3

Energy Efficient Virtualization of
5G Edge Network

The work in this chapter has been published in:

• Senay Semu Tadesse, Carla Fabiana Chiasserini, and Francesco Malandrino,
“Energy Consumption Measurements in Docker”. In: IEEE Computers,
Software, and Applications Conference (COMPSAC). 2017.

• Senay Semu Tadesse Senay Semu Tadesse, Carla Fabiana Chiasserini, and
Francesco Malandrino, “Assessing the Power Cost of Virtualization Through
Real-world Workloads”. In: IEEE International Symposium on Local and
Metropolitan Area Networks (IEEE LANMAN). 2018.

• Senay Semu Tadesse, Carla Fabiana Chiasserini, and Francesco Malandrino,
“Characterizing the power cost of virtualization environments”. In:
Transactions on Emerging Telecommunication Technologies (ETT) (2018).

3.1 Motivation

Network Function Virtualization (NFV) is a key enabler of next-generation
mobile networks. NFV decouples the network functions from proprietary hardware
and runs them as a software on computation capable network nodes. These
functions, referred to as Virtualized Network Functions (VNFs), are often deployed on
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virtualization platforms. The virtualization platforms can take two main categories:
traditional virtual machines and lighter-weight containers. Virtualization platforms
are leveraged to efficiently utilize servers in the edge network.

Figure 3.1: High-level architecture of virtual machine-based virtualization (left) and
container-based virtualization (right).

One of the most notable differences between next-generation (“5G”) mobile
networks and present-day ones is the former’s ability to serve user request within the
network itself. Instead of traveling all the way to an Internet-based server, requests
will be processed at computation-capable nodes belonging to the backhaul network
itself. This paradigm is known as multi-access edge computing (MEC). Virtualization
is a key enabling technology of MEC, as it allows general-purpose network hardware
to process requests of any type. At the same time, it is associated with an overhead
in terms of CPU usage and memory occupation; such overhead in turn translates into
additional power consumption. Power consumption is an increasingly important key
performance indicator (KPI) for all types of networks, as it affects their profitability
as well as their environmental sustainability. In this context, it is important
that the virtualization technique is chosen accounting for the associated power
consumption. The traditional approach is virtual machine (VM)-based virtualization:
as summarized in Figure 3.1(left), a hypervisor software emulates a whole virtual
machine, running the guest operating system and applications. The main advantage
of VM-based virtualization is the high level of separation between guests and host:
guest machines can have different architecture (e.g., x86 and ARM) and different
operating system (e.g., Windows or Linux) from their host; furthermore, the same
host can run multiple guests with different architectures and operating systems at
the same time. On the negative side, the tasks of emulating guest hardware and
running the guest operating system translate into a significant CPU and memory
overhead. More recently, container-based virtualization has emerged as a lighter-
weight alternative to VMs. As shown in Figure 3.1(right), both the hardware and the
operating system kernel are shared between host and guest applications. Isolation is
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obtained through operating system-level primitives such as namespaces and cgroups,
controlling the parts of the execution environment (running processes, daemons...)
and system resources visible to guest applications running within containers. The
main advantage of container-based virtualization is its lower overhead compared
to VMs. Main drawbacks include a lower level of isolation between host and
guests (which can lead to security issues) and the impossibility of emulating a guest
operating system different from the host one.

In this chapter, we undertake the twofold task of (i) measuring the power
consumption associated with VM- and container-based virtualization under a variety
of workloads, and (ii) modeling how such consumption depends upon the workload
at hand. By fulfilling the first task, we can check to which extent the lower overhead
touted by containers translates into lower power consumption. Perhaps more
importantly, studying the link between workload, chosen virtualization technique
and power consumption allows us to estimate the power consumption associated
with a generic workload, beyond those we directly test.

The following are the main novel contributions of our work in this chapter:

• We perform a large set of real-world resource usage and energy consumption
measurements, running both synthetic workloads and real-world applications;

• Thereafter, we use these measurements to model the relationship between the
resource usage of the hosted application and the power consumption of both
virtual machines and containers hosting it;

• We find that containers incur in substantially lower power consumption than
virtual machines. Moreover the power consumption for containers increases
more slowly than that of virtual machines with the application load.

The rest of this chapter is organized as follows. First we briefly discuss Multi-
access Edge Computing and Network Function Virtual in Sections 3.2 and 3.3,
respectively. Then, we describe our methodology in Section 3.4, including our
testbed and the workloads we use. Then, in Sections 3.5 and 3.6 we summarize the
results we obtain from synthetic and real-world workloads respectively. In 3.7, we
present the related works and we conclude the chapter in Section 3.8.
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3.2 Multi-access Edge Computing

Several services require ultra-low latency and real-time access to radio networks.
It has become impossible to satisfy these requirements with the current network
architecture where most of the processing is done in the central cloud data centers.
Serving all requests of users in the cloud creates two main challenges. First, the
delay will be very large to support some service’s requirements, and second, it
creates congestion in the core of the network.

Multi-access Edge Computing paradigm alleviates this problem by relocating
the storage and compute resources near to the user, typically on the base stations.
With MEC in place, in addition to the radio processing capability, the base stations
are equipped with servers that may act as a cloud in the edge. The server integrated
within the base station is a Commercial-of-the-Shelf(COTS) server, providing user
applications with computing resources and storage. This will help realize many
latency constrained applications.

MEC, in essence, is a highly distributed cloud which is placed in close proximity
to the end users. Usually a service requested by a user is composed of multiple
functionalities. The functionalities are served in the edge or in the cloud depending
on the latency requirements. Moreover, MEC is very useful to ease the load on
devices by offloading tasks to the (edge) cloud. Particularly, this is very important
for mobile devices characterized by limited storage, power and computation capacity.

MEC servers can be made scalable with the use of virtualization technology. With
virtualization, MEC is also made dynamic in its resource usage, i.e., resources can be
scaled up or down according to the applications requirements. The dynamic resource
usage eventually leads to a better resource management and energy efficiency. The
following section briefly discusses Network Function Virtualization, also known as
Network Softwarization.

3.3 Network Function Virtualization

Network Function Virtualization (NFV) is making use of virtualization technology
to softwarize network functions; so they can be deployed on COTS hardware.
Network Function Virtualization creates flexibility in the assignment of resources of
the network and servers. NFV is a complementary technology to SDN; it facilitates
the network resources to be managed flexibly by SDN controller. With NFV and
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Figure 3.2: Multi-access edge computing

SDN, any network function can be softwarized and deployed in a virtual environment.
These network functions can be chained to provide the same service provided by
legacy networks. The ability to run the network functions on a virtualization
environment with a general purpose hardware reduces operational and investment
costs. It reduces deployment time of new services and makes it possible to consolidate
various network functions to run in non-proprietary hardware. An example of such
network functions, which can benefit from NFV, is the Evolved Packet Core (EPC).
The EPC components can be softwarized, as we can see in Chapter 4, and be
deployed in virtualization environments.

This flexibility opens up the network for better management. Choosing the
node in the network used to deploy the the network functions would no more be
constrained by the position of a specific hardware. Indeed, NFVs can be deployed
any where in the network where there is a server with the needed computation
capability. Moreover, NFVs can be moved from one server to the other to provide
optimal service to the end users. In this way, VNFs can be placed near to the end
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user to reduce latency, or it can be put in the cloud, or may be relocated to stay near
to users as the users navigate to different cell sites. Moreover, using NFV has the
potential to make the network more energy efficient. This stems from the possibility
of assigning resources dynamically according to the applications’ requirements and
service requests from users.

There are different virtualization technologies to deploy NFVs. In this work, we
study the performance of different virtualization technologies in terms of the energy
cost they incur, their resource utilization and latency.

3.4 Methodologies Used to Characterize Energy
Consumption of Virtualization Technologies

In order to characterize virtualization environments, we measure the power
consumption associated with virtualization through a small-scale testbed. Whenever
possible, we use commodity hardware and open-source software, so as to make our
results as easy to reproduce as possible. In this section, we describe the hardware
(3.4.1) and software (3.4.2) we use in our testbed. We will also describe in detail
the workloads we take into account, both synthetic and real (3.4.3).

3.4.1 Hardware

The host machine we use for both containers and virtual machines is a HP
EliteBook 820 G3 laptop, equipped with a Intel Core i5-6200U processor (two
cores, 2.3 GHz, 3 MByte cache) and 8 GByte of RAM. When testing client-server
applications, we run the servers (within containers or virtual machines) on the laptop,
and the clients on a separate computer, namely, a ThinkCenter M93p desktop. By
doing so, we prevent client and server applications from interfering with one another,
e.g., triggering thread preemption.

The laptop and desktop are connected through a portable Gigabit Ethernet
switch, and that switch is not shared with other computers. This ensures that the
connection between clients and servers is consistently fast, and never represents a
bottleneck for the application running.

Finally, we measure the power consumed by the laptop through a RCE PM600
power meter, displaying the total power the laptop draws from the grid. By using a
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power meter instead of estimates from the operating system, we obtain very precise
and reliable measurements. However, this also means that special care is needed to
tell the power consumption due to the workload apart from other contributions, e.g.,
the power consumed by the host operating system. To account for this discrepancy:

• we measure the idle power consumption of the computer, before running any
workload;

• we subtract such value from the power consumption measured with each
workload.

Additionally, we remove the battery from the laptop to ensure that no power is
drawn to charge it.

3.4.2 Software

There are two main decisions we need to make concerning the software to use
in our testbed: the operating system to use, and which VM- and container-based
virtualization solutions to adopt.

The natural choice for the operating system is Linux, due to its broad support for
all virtualization technologies. Among Linux distributions we chose Ubuntu, which
offers the best balance between up-to-date packages, documentation, and overall
system stability; specifically, we use the 16.10 LTS version, with kernel version
4.8.0-46-generic. As both the i5 processor and this kernel support hyper-threading,
four threads can be run at the same time.

VM-based virtualization is a mature technology, with several available options,
both commercial and open-source. We choose VirtualBox, on the grounds that
it is the most popular among open-source ones. Both commercial (most notably,
VMWare) and open-source (namely, QEMU) alternatives are sometimes reported
to be marginally faster than VirtualBox; however, VirtualBox is more universally
available than both (VMWare requires a license, and QEMU which is branded a
“processor emulator”, is suited for narrower set of scenarios).

Choosing the reference container-based solution is the easiest. Docker is indeed
the de facto standard, and arguably the primary reason why container-based
virtualization attained its current level of popularity. It is an open-source application,
and Linux support is its primary (though not exclusive) focus.
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3.4.3 Workloads

We measure the power consumption under the following categories of workloads:

• no workloads, idle virtualization environments;

• synthetic workloads, consuming a predetermined amount of CPU resources,
memory, storage, or network capacity;

• real-world applications, whose servers we run into VMs or containers.

By testing the virtualization environments with no workloads, we study how
the idle VMs or containers behave as we increase the number of VMs or containers
and their impact on the associated overhead. Through synthetic workloads, we
are able to establish which among CPU usage, memory and storage consumption,
and network traffic has the highest impact on power consumption. Real-world
workloads, on the other hand, allow us to get a glimpse of how popular, present-day
applications would fare in a virtualized environment, and the power consumption
we can expect from them.

Synthetic workloads

Synthetic workloads aim at stressing a specific component of the system, e.g.,
CPU or memory, while using as little as possible of the other resources. As an
example, a good CPU test will consume a predictable and configurable amount of
CPU, while at the same time occupying a negligible amount of memory, storing no
data on the hard disk, and generating no network traffic. Whenever possible, we
use existing, off-the-shelf test applications as our workloads, as described next.

CPU test. We use the Sysbench application, simulating a high CPU load
by testing prime numbers. Prime number testing is a CPU-intensive task, which
requires little memory and no reading/writing from disk or network. This implies
that the Sysbench process will almost never be put to sleep pending I/O operations,
thus using (unless preempted by other processes) virtually 100% of a (logical) CPU
core. Since Sysbench is a single-threaded application, it will not use multiple cores
even if they are available.

Memory test. Our objective here is to read and write a significant amount of
memory, while at the same time using the CPU as little as possible. To this end,
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we write a customized Java application that allocates and then copies a large array,
without initializing or writing anything into it.

Network test. We use the iperf program to generate a predetermined quantity
of TCP traffic from servers (running within VMs or containers) and clients, running
on the host laptop. We keep the clients on the same machine as the servers in order
not to use any networking hardware, and only measure the power consumption due
to the processing at the hypervisor and kernel.

Disk test. We use the Flexible IO (FIO) application to transfer a 10-GByte
file using a configurable block size. By doing so, we are able to adjust the number
of disk operations needed for the transfer, where the number of disk operations is
inversely related to the block size, and thus estimate their impact on the power
consumption.

Real-world workloads

For real-world workloads, we select two types of application that are expected
to dominate the traffic of next-generation networks – and, indeed, are regarded to
as their very motivation: video streaming and on-line gaming.

Figure 3.3: Testbed setup for real-world workloads).
Video steaming. We employ the FFServer open-source streaming server, and

the VLC free client. A varying number of servers, each running in its own VM or
container, stream a video to a varying number of clients, running on the desktop
computer as stand alone applications. This setup, depicted in Figure 3.3, allows us
to assess how both the number of servers and the number of clients per server affect
the power consumption.

On-line gaming. We select the popular on-line game Minecraft, as it offers an
open-source server. In selecting the client, we need to ensure that (i) it can run
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on a headless machine, i.e., without graphical interface, and (ii) we can reproduce
multiple times the same input, i.e., the same game. To this end, we combine the
Java-based Minecraft client with the xdtool keystroke emulator, both running on
the desktop computer.

3.5 Results and Models: Synthetic Workloads

In this section we will discuss the performance of various synthetic workloads.

3.5.1 No Workload

Before we apply any workload, we measure the idle power consumption associated
with VirtualBox and Docker. To this end, we create several VMs or containers,
leave them idle, and measure the subsequent increase in CPU usage and power
consumption.

The results are summarized in Figures 3.4 and 3.5 , and already point at a
fundamental difference between VMs and containers. Not only Docker is associated
with a lower CPU usage, and thus a lower power consumption, than VirtualBox, but
its overhead remains constant as the number of containers increases. The overhead
associated with VirtualBox, on the other hand, grows with the number of idle
VMs we create: we can identify an offset, due to running the hypervisor, and a
linear growth as the number of VMs (and thus the quantity of virtual hardware
to emulate) increases. Intuitively, Figures 3.4 and 3.5 also suggests that there is a
penalty associated with creating a VM and then leaving it unused, while containers
only consume system resources if the application they host is active.

3.5.2 CPU- and Memory-intensive Workloads

We now move to the CPU-intensive workload and show how the number of
Sysbench processes we start influences the power consumption.

Figure 3.6 shows that the amount of CPU usage grows linearly with the number
of Sysbench processes we start. Recall that Sysbench is a single-threaded application,
so if (for example) we launch two Sysbench processes then exactly two CPU cores
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Figure 3.4: No workload: CPU usage as a function of the number of VMs/containers
created, for VirtualBox (red lines) and Docker (black lines).
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Figure 3.5: Power consumption as a function of the number of VMs/containers
created, for VirtualBox (red lines) and Docker (black lines)

will be used. Figure 3.7, more interestingly, shows that the power consumption also
grows linearly with the CPU usage, which suggests that CPU usage is the dominant
component in this process. One might be surprised to see almost no difference
between VirtualBox and Docker curves in Figures 3.6 and 3.7. We observed from
Figures 3.4 and 3.5 that Docker has a lower overhead than VirtualBox, so we could
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expect a lower CPU usage in Figure 3.6 and thus a lower power consumption in
Figure 3.7.
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Figure 3.6: CPU-intensive workload: CPU usage as a function of the number of
Sysbench processes, for VirtualBox (red lines) and Docker (black lines).)
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Figure 3.7: CPU-intensive workload: power consumption as a function of the number
of Sysbench processes, for VirtualBox (red lines) and Docker (black lines))

The explanation to this apparent paradox is available in Figure 3.7, showing the
quantity of work made by Sysbench, i.e., how many numbers it can check: using
Docker instead of VirtualBox means that Sysbench is able to do more work in the
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Figure 3.8: CPU-intensive workload: work performed as a function of the number
of Sysbench processes, for VirtualBox (red lines) and Docker (black lines))

same time. In summary, the Sysbench test uses the same amount of CPU when
VirtualBox and Docker are used; however, in the VirtualBox case, a higher fraction
of that CPU is consumed by virtualization overhead, which results in less CPU
available for actual work.

Figure 3.9 depicts the power consumption resulting from our Java-based memory
test. We can clearly see that the quantity of memory we copy has almost no impact
on the total power consumption. Indeed, memory operations require very little
intervention from the CPU; Figure 3.9 also confirms our intuition that CPU usage
is the main contribution to the total power consumption.

Linear fitting

We use the data summarized in Figure 3.7 to extrapolate a linear model linking
CPU usage with power consumption. The fitted relationship for VirtualBox is the
following:

P[W ] = 0.0175c[cores] + 4.9091 (3.5.1)

For Docker, we have the following:
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Figure 3.9: Memory-intensive workload: Power consumption as a function of the
quantity of memory copied, for VirtualBox (red lines) and Docker (black lines).

P[W ] = 0.0166c[cores] + 5.0444 (3.5.2)

In Equations (3.5.1) and (3.5.2), P is the power consumption (in watt), and c
represents the CPU usage in cores. The average fitting error is very low, as little as
0.18% for VirtualBox and 0.04% for Docker. This confirms our intuition that CPU
usage is the main driver of power consumption, and the link between them is as
simple as a linear relationship.

3.5.3 Network-intensive Workloads

We now use iperf to create a network-intensive workload. Specifically, we use a
single server (running in a container or VM) and a single client (running directly on
the laptop), and change the offered data rate between 0.01 and 0.9 GBit/s.

Figure 3.10 depicts the power consumption as a function of the offered traffic,
and highlights several very important facts. First, VirtualBox exhibits a higher
power consumption than Docker, consistently with what we observed earlier. Even
more importantly, such power consumption grows much faster for VirtualBox than
for Docker, suggesting that containers have not only a better efficiency than virtual
machines, but also a better scalability.
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Figure 3.10: Network-intensive workload with one client and one server: power
consumption as a function of the offered traffic, for VirtualBox (red lines) and
Docker (black lines).
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Figure 3.11: Network-intensive workload with one client and one server: CPU usage
(b) as a function of the offered traffic, for VirtualBox (red lines) and Docker (black
lines).

The reason for this difference lies in the operations needed to transfer packets
between the iperf client and server. In Docker, all that is needed is that packets
traverse the networking stack of the host operating system’s kernel. In VirtualBox,
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packets need to traverse the host kernel, the hypervisor, and then the guest kernel.
As shown in Figure 3.11, all these operations take a substantial toll on the CPU
usage, which in turn translates into the higher power consumption we observed in
Figure 3.10.

3.5.4 Disk-intensive Workloads

As described earlier, our disk-intensive workload consists in copying a 10-GByte
file with different block sizes; the smaller the block size, the larger the number of
I/O operations that are required. Figure 3.12 summarizes the power consumption
resulting from such workload for different block sizes. We can observe that containers
always exhibit a low power consumption, consistently with previous tests. More
importantly, the power consumption of Docker is almost constant with respect to
the block size, while the one of VirtualBox exhibits a steep increase as the block
size drops below 32 kByte. The reason is similar to the one discussed for the
network-intensive workload: a disk operation in VirtualBox requires the hypervisor
to simulate the behavior of the hardware, which implies substantial CPU overhead
and thus higher power consumption.
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Figure 3.12: Disk-intensive workload: power consumption as a function of the block
size, for VirtualBox (red lines) and Docker (black lines).

Figure 3.13 shows time elapsed while performing the disk transfer. We can
observe that, for both Docker and VMs, smaller block sizes translate into higher
transfer times. However, transfer times with Docker are consistently shorter than
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Figure 3.13: Disk-intensive workload: transfer time as a function of the block size,
for VirtualBox (red lines) and Docker (black lines).

transfer times with VirtualBox: the higher overhead incurred by virtual machine
translates not only in higher power consumption but also in longer transfer times.

Exponential Fitting

We use the data summarized in Figure 3.12 to extrapolate an exponential model
linking block size with power consumption. The fitted relationship for VirtualBox
is the following:

P[W ] = 4.81 ∗ exp(−0.1014 ∗ b) + 2.848 ∗ exp(0.00072 ∗ b)kByte (3.5.3)

For Docker, we have the following:

P[W ] = 1.857 ∗ exp(0.0009083 ∗ b)kByte (3.5.4)

In Equations (3.5.3) and (3.5.4), P is the power consumption (in watt), and b
represents the block size kilobytes. The average fitting error is 11.4% for VirtualBox
and 13.9% for Docker. Such figures are higher than those for the linear model
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described in 3.5; this suggests a fairly complex relationship between block size and
power consumption.

3.6 Results: Real-world Workloads

We now move to the real-word workloads described in Subsection 3.4.3, i.e., the
FFServer streaming application and the Minecraft game. As depicted in Figure 3.3,
we run the servers on our laptop, each in its own VM or container, and the clients
on a separate desktop computer.

3.6.1 Video Streaming: FFServer
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Figure 3.14: FFServer, single-server setup: power consumption as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

In our first test, we deploy one FFServer server on our laptop (running within a
VM or container) and use it to stream the same video to a varying number of VLC
clients. It is important to highlight that we are modeling on demand streaming (à
la YouTube) as opposed to real-time streaming (à la AceStream): each client plays
an independent stream, and all traffic is unicast.

None the less, as we can see from Figure 3.14, the number of clients only has a
small impact on the resources consumed by the server; indeed, neither the CPU usage
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Figure 3.15: FFServer, single-server setup: CPU usage as a function of the number
of clients, for VirtualBox (red lines) and Docker (black lines).
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Figure 3.16: FFServer, single-server setup: memory usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

(Figure 3.15) nor the memory consumption (Figure 3.16)) substantially increases
with the number of clients. As a consequence, the power consumption (Figure 3.14)
is essentially always the same. This effect is due in large part to FFServer’s own
scalability. Additionally, the native coding of the video (namely, H.264) was also
supported by the client, and therefore no transcoding which is a CPU-intensive
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operation, was necessary in our case.
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Figure 3.17: FFServer, multiple-server setup: power consumption as a function of
the number of clients, for VirtualBox (red lines) and Docker (black lines).
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Figure 3.18: FFServer, multiple-server setup: CPU usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

We now study the effect of having multiple servers running in parallel on the
laptop, each in its VM or container, and each serving one client. This is relevant,
for example, in MEC scenarios, where virtual (network) functions belonging to
different services are often run separately, even if they perform the same task. The
corresponding resource consumption is shown in Figures 3.17, 3.18 and 3.19.
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Figure 3.19: FFServer, multiple-server setup: memory usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

Once more, we observe differences between Docker and VirtualBox that are not
only quantitative, but qualitative. With Docker, five servers serving five clients
consume approximately the same amount of CPU (Figure 3.18) and power (Figure
3.17) of one server serving five clients; only the memory usage shown in Figure 3.19
grows with the number of servers. Using VirtualBox, on the other hand, means
that CPU usage and power consumption grow linearly with the number of servers:
this behavior stems from the need to emulate separate virtual hardware and run
separate operating systems for each server instance.

We can conclude that the overhead incurred by container-based solutions like
Docker is not only lower than that of VMs, but also grows more slowly with
the number of containers being run. Such a scalability justifies the interest that
container-based virtualization has attracted as a key technology of MEC, and indeed,
one of its enablers.

3.6.2 Gaming: Minecraft

We now move to the Minecraft game. To create the same world for all tests we
have set the level-seed option in the server.properties file on the Minecraft server to
a constant. We have chosen a seed that enables the game to last more than five
minutes before any player dies. This helps us to collect enough samples of CPU,
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Figure 3.20: Minecraft, single-server setup: power consumption as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).
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Figure 3.21: Minecraft, single-server setup: CPU usage as a function of the number
of clients, for VirtualBox (red lines) and Docker (black lines).

memory and power consumption of the Minecraft server.

Figures 3.20, 3.21 and 3.22 refer to the setup with one server and a varying
number of clients, similar to single-server experiment of the video streaming. We
can observe a steep increase in the utilization of resources as the number of clients
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Figure 3.22: Minecraft, single-server setup: memory usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

increases, for both Docker and VirtualBox; this is due to the different nature of the
application being run. Indeed, unlike video servers like FFServer, game servers like
Minecraft have to:

• keep a detailed description of the world users are set in, and update it according
to the user’s actions;

• compute view of the world to serve to the user as it moves;

• transfer the updated view to the user’s client.

The two tasks above imply a higher consumption of (respectively) memory and
CPU compared to the FFServer case, and therefore a higher power consumption.

As far as the difference between VirtualBox and Docker is concerned, Docker
still exhibits a substantially lower power consumption, (Figure 3.20), CPU usage
(3.21), and memory usage (Figure 3.22). It is also interesting to notice, from Figure
3.21, how the CPU overhead due to virtualization is higher than the load from the
game server itself, intensive as it is.

Figures 3.23, 3.24 and 3.25 summarizes the resource consumption in the multi-
server setup, when each user is served by its own server. Similar to multiple-server
video streaming tests , we can see a higher resource consumption than in the
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Figure 3.23: Minecraft, multiple-server setup: power consumption as a function of
the number of clients, for VirtualBox (red lines) and Docker (black lines).
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Figure 3.24: Minecraft, multiple-server setup: CPU usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

single-server setup; furthermore, the qualitative behavior is now the same for both
VirtualBox and Docker. The latter has, however, a much lower overhead than the
former, suggesting that the scalability advantage of container-based virtualization
is present under all types of workloads.
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Figure 3.25: Minecraft, multiple-server setup: memory usage as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

3.7 Related Work

Measuring the power consumption of virtualization environments and
applications running on them is the subject of several existing works. Kansal
et al.[29] have developed Joulemeter, a tool to measure the energy consumption of a
virtual machine and break it down as the sum of the individual power consumptions
of CPU, memory and disk. Krishnan et al. [30] have modeled the power consumption
of virtual machines as a linear function of the number of CPU instructions and the
number of Last Level Cache (LLC) memory misses.

Another VM power modelling technique is VMeter by Ata E et al. [31] , which
is based on online monitoring of CPU, cache, disk and RAM. The model predicts
instantaneous power consumption of an individual VM hosted on a physical node
in addition to the full system power consumption. Yet another tool to measure
power consumption of virtualized applications are presented by Maxime et al. [32].
A fine-grained monitoring middleware is presented in [32], which automatically
learns an application-agnostic power model, which can be used to estimate the
power consumption of applications. BITWATTS instances use high-throughput
communication channels to spread the power consumption across the VM levels and
between machines.

Dhiman et al. [33] present a system for online power prediction in virtualized
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environments based on Gaussian mixture models that use architectural metrics of the
physical and virtual machines (VM) collected dynamically by our system to predict
both the physical machine and per VM level power consumption. Bertran [34]
proposed a system based on CPU and memory power models, relying on Performance
Monitoring Counters (PMCs), to perform energy accounting in virtualized systems.
Morabito [35] has presented an empirical investigation of different virtualization
technologies (including containers) from the viewpoint of power consumption.

Kritwara et al. [36] investigated power consumption and performance issues
concerning memory and disk I/O in Xen and KVM vitualization environments.
Avino et al. [37] addressed the suitability of Docker in MEC scenarios by quantifying
the CPU consumed by Docker when running two different containerized services:
multi-player gaming and video streaming. They carried out tests by varying the
number of clients and servers for both services. For the gaming service, the overhead
logged by Docker increased only with the number of servers; conversely, for the
video streaming case, the overhead is not affected by the number of either clients
or servers. Fan et al. [19] proposed the Energy driven AvataR migration (EARN)
scheme to reduce the total on-grid energy consumption of GCN by considering the
energy consumption of Avatar migrations.

3.8 Summary

In this chapter, we set out to assess the additional power consumption due to
VM- and container-based virtualization. To this end, we performed an extensive set
of real-world measurements, using VirtualBox and Docker as reference technologies
and a wide set of workloads, both synthetic and real-world.

Through our measurements, we found that CPU usage is the main driver of the
global power consumption, and the extra power consumption of container-based
virtualization is not only lower than that of VM-based virtualization, but also
grows more slowly as the workload increases. This suggests that container-based
virtualization is an attractive technology for MEC scenarios, when large numbers of
virtualized applications run on the same physical hardware.
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Chapter 4

5G Core Network with IoT
Support: Characterization of
Control Traffic and Delay

The work in this chapter has been published in:

• Christian Vitale, Carla Fabiana Chiasserini, Francesco Malandrino, and Senay
Semu Tadesse, “Characterizing Delay and Control Traffic of Cellular MME with
IoT Support”. In: IEEE/ACM MobiHoc. 2019.

• Christian Vitale, Carla Fabiana Chiasserini, Francesco Malandrino, and Senay
Semu Tadesse, “Characterizing Delay and Control Traffic of Cellular MME with
IoT Support”, IEEE Transactions on Mobile Computing (outcome of 1st editorial
round: Major revision).

4.1 Motivation

The support of massive Internet-of-things (MIoT) represents one of the main
use cases of 5G networks, and, due to its peculiar patterns, IoT traffic is given
special treatment in the cellular core network. In particular, the bearer instantiation
procedure is simplified, and the Mobility Management Entity (MME) serves both
control and data traffic. It follows that the performance of the MME is especially
critical, and properly scaling its computational capability can determine the ability
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of the whole network to tackle IoT traffic effectively. This demands for a careful
characterization of the MME performance as the IoT traffic load changes, considering
virtualized networks and the need for an efficient allocation of computing resources
to handle the peculiarity of MIoT traffic.

Massive Internet-of-things (MIoT) is an umbrella term for a fairly diverse set
of applications, including smart factory, cloud robotics, automotive leveraging
smart city sensors, and surveillance/security; as such, it represents one of the main
motivations behind 5G [38]. For all these applications, service latency is a critical
constraint, even more so than sheer network throughput. Also, IoT applications
are characterized by a very high density of devices, up to 10,000 devices/km2 [38,
p. 6], and peculiar traffic patterns: devices may be inactive for a long time, and
then multiple devices may transmit data in a (almost) synchronized manner.

Such traffic patterns are a poor match for the default procedures followed
by the Evolved Packet Core (EPC) entities of the cellular network, and such a
mismatch may jeopardize the application latency requirements. Indeed, before a
terminal has to transmit data packets toward the cellular infrastructure, typically the
following operations are required: authentication, identity verification, and bearer
establishment. If the terminal remains silent longer than a timeout, the bearer
is released and the whole procedure has to be performed again. Thus, for MIoT
traffic, bearer instantiation (including bearer establishment and release) is one of
the most critical tasks: using the default procedures would result in an exceedingly
high latency and control overhead, compared to the data traffic generated by an
MIoT device.

To cope with that, 3GPP has introduced a new standard [39], called Control
Plane Cellular IoT Evolved Packet System (CIoT) optimization, which is already
available in off-the-shelf products [40]. Such a standard (i) simplifies the procedures,
roughly halving the associated overhead, (ii) uses the EPC Mobility Management
Entity (MME) to forward user-plane traffic, and (iii) limits the involvement of MIoT
sources in bearer establishment procedures, hence reducing the power consumption.
Importantly, since under the CIoT optimization the MME is in charge of both
control- and user-plane processing, it bears the brunt of MIoT traffic, thus becoming
the pivotal component of the EPC. It follows that the MME performance and the
associated delay determine the ability of the network as a whole to support MIoT
traffic.

Ensuring that the MME has sufficient computational capability to efficiently
process the traffic load generated by MIoT sources becomes even more sensitive
in the context of network softwarization. Such a paradigm refers to a global trend
towards replacing special-purpose network equipment, including EPC entities [41],
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with virtualized network functions (VNFs) running on general-purpose hardware. In
virtual EPC (vEPC) scenarios, the number of MME instances and their computation
capability can be scaled to adapt to the variations in the current and expected MIoT
traffic they must process. In particular, in the case of the MME, effective scaling
requires:

• characterizing the relation between the number of MIoT sources and the arrival
rate of bearer requests at the MME;

• modeling the impact of the MME capacity on the delay introduced by the bearer
establishment procedure.

In this chapter, we study both the above aspects with reference to the case
where a network operating according to the CIoT optimization serves MIoT traffic.
Specifically, our main contributions are as follows:

• We begin by characterizing the time between consecutive bearer instantiation
requests coming from MIoT sources, finding that it is well described by an
exponential distribution;

• Leveraging this key observation, we build an M/D/1-PS queuing model of the MME
and study how the bearer instantiation time depends on (a) the traffic load, i.e.,
the arrival rate of bearer requests, and (b) the computational capability assigned
to the MME itself. Importantly, we obtain closed-form expressions as a result of
our analysis;

• By running and profiling the components of a real-world EPC implementation, we
make some fundamental observations on the system that we then exploit to develop
our analytical model;

• We validate our analysis through large-scale simulations using both a synthetic traffic
model based on the 3GPP standard, and a real-world scenario including topology
and mobility information from the city of Monte Carlo, Monaco. Furthermore, we
show that the results we obtain represent a powerful tool to drive real-time scaling
decisions in softwarized cellular networks.

In this work, my contribution mainly consisted in performing the experimental
study, which was used to show some fundamental aspects of the system behavior
and was essential to the development of the theoretical analysis, which is included
in the following for sake of completeness.
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The remainder of the chapter is organized as follows. After introducing our
system model in Section 4.2, we describe our main results and provide a roadmap
of our analytical derivations in Section 4.3. We present our analysis and a closed-
form expression for the characterization of the bearer request arrival process in
Section 4.4. Then, in Section 4.5, we run some experiments and make some handful
observations to develop our analytical model of the EPC, and we derive the EPC
delay performance. Through detailed simulations using both synthetic and real-
world traffic, in Section 4.6 we show how our analysis can be used to effectively
tune the computational capability of a vEPC. Finally, we review related work in
Section 4.7 and conclude the chapter in Section 4.8.

4.2 System Model and Preliminaries

Here, we describe how the EPC serves MIoT traffic when implementing the
CIoT bearer instantiation procedure [39]. After introducing the EPC architecture
(Subsection 4.2.1), we present in detail the CIoT bearer instantiation procedure
and its relevance to the NB-IoT standard (Subsection 4.2.2). Finally, we introduce
the model we adopt for the IoT traffic (Subsection 4.2.3).

4.2.1 Evolved Packet Core Network

IoT cellular traffic has to traverse the EPC network, which includes four main
components, as depicted in Figure 4.1:

• the Serving Gateway (S-GW) mainly routes data traffic and acts as anchor point
when User Equipments (UEs) move from one eNB to another;

• the Packet Data Network (PDN) Gateway (P-GW) acts as ingress and egress point
of the mobile access network; it is also the responsible for policy enforcement;

• the Mobility Management Entity (MME) is the termination point of UE
control channels. The MME authenticates and tracks registered UEs and, most
importantly, it handles bearer activation, i.e., it is the MME that creates a data
path between the UEs and the P-GW. When CIoT optimization is in place, the
data path between the UE and the P-GW includes the MME itself, since the
MME is also responsible for relaying the traffic of the MIoT sources to the correct
S-GW (see Figure 4.1);
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• the Home Subscriber Server (HSS) is a central database where UE-related
information is stored. The HSS assists the MME in UE authentication.

Figure 4.1: EPC architecture.

Note that the MME is connected to the S-GWs for bearer establishment and,
under the CIoT optimization, it also performs packet decryption/forwarding, while
the P-GW handles the data traffic to/from several S-GWs. Importantly, in the
case of a vEPC, the MME, P-GW, and S-GW typically run on different (virtual)
machines whose number and capability can be adjusted as needed.

4.2.2 CIoT Bearer Instantiation Procedure

Exactly as any other cellular transmitter, an MIoT source sends or receives data
traffic only if a logical connection with the corresponding P-GW is in place, i.e.,
if the MME has completed the bearer instantiation procedure. However, unlike
the ordinary procedure, the CIoT optimization foresees that bearers are released
immediately after packet transmission/reception, unless an MIoT source explicitly
signals the presence of imminent traffic. As a consequence, an established bearer
lasts for quite a short time and no handover procedure is typically required for
MIoT traffic at the MME level. In the following, we therefore focus only on the
performance of the MME when handling bearer instantiation procedures.
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Figure 4.2: CIoT bearer instantiation procedure and uplink data transmission.

As depicted in Figure 4.2, each time an MIoT source has to transmit a packet,
five operations are performed: (i) authentication, (ii) identity verification, (iii)
bearer establishment, (iv) forwarding (after data decryption and integrity check) of
the data packets piggybacked by the MIoT source in the Radio Resource Control
(RRC) Early Data Request message, and (v) bearer release. Specifically, hereinafter
bearer establishment will refer to the set of operations comprised between step 1
and step 6 (included) in Figure 4.2. We remark that such a procedure is a crucial
part of data forwarding latency, and it cannot be overlooked in the MIoT data
delay computation. Indeed, the time needed to complete a bearer establishment
also accounts to the delay incurred by the data transfer within the EPC.
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Finally, it is worth remarking that CIoT well pairs up with the Narrowband
IoT (NB-IoT) standard, both being specifically designed to support massive IoT
traffic, taking, respectively, the core network side and the radio access perspective.
Indeed, NB-IoT is a IoT system built from existing LTE functionalities, which aims
to support over 50,000 low-data rate stationary devices within a cell-site sector [42].
Beside defining an energy-efficient and robust physical layer for enhanced indoor
coverage, NB-IoT also effectively addresses cell search, synchronization, and random
access for initial link establishment. Specifically, according to NB-IoT, the RRC
establishment on the top-right of Figure 4.2 summarizes the following steps [43]: (a)
the UE transmits a random access preamble; (b) the eNB replies with a random
access response including a timing advance command and which uplink resources
are assigned the UE to perform (c); (c) the UE transmits its identity; (d) the eNB
transmits a message to resolve any contention due to multiple UEs accessing the
channel (in step (a)) using the same preamble.

4.2.3 IoT Traffic Model

As mentioned above, after data transmission/reception, the MIoT source’s bearer
is released and a new bearer has to be established if later on the MIoT source has
some more traffic to send/receive. Intuitively, depending on the IoT traffic pattern,
the time between subsequent data packets may vary significantly, and so does the
rate of bearer instantiation requests of an MIoT source. In order to characterize
the arrival process of bearer requests, in the following we consider the traffic model
described by the 3GPP standard [44] for MTC.

In [44], MIoT sources are organized in groups. Reflecting real-world operation
conditions, [44] envisions quasi-synchronous packet transmissions within a group.
This represents, for example, a group of sensors monitoring a geographical area,
programmed to raise an alarm when a specific event occurs. After the occurrence
of the event of interest, e.g., a gas leak, the closest sensors to the event raise the
alarm. Sensors neighbouring the area where the event occurred react to the event
subsequently, with a delay due to the propagation of the phenomenon. Such an
effect triggers alarms from all the sensors belonging to the group, with a peak of
alarms (hence, of traffic) roughly at the center of a period and an aggregate traffic
distribution over time that follows a Beta(3,4). In [44], the events, and the related
group transmissions, occur in subsequent periods of duration T , each of which with
an aggregate traffic distribution over time following a Beta(3,4).

Notice that this model is quite general, and setting the group size to 1 allows us
to represent MIoT sources behaving independently from each other. Furthermore,
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as we explain later in Section 4.4, the model can be easily adapted to include
data aggregators (a.k.a. gateways) that, as often envisioned in sensor network
applications, collect and forward the data packets generated within groups of MIoT
devices.

The traffic model specified by the 3GPP standard represents the aggregate
behavior of a set of MIoT sources. However, we are interested in characterizing the
latency of the data transfers by individual sources, each of which requires a bearer
instantiation. In order to address this issue, we leverage the data generation model
for an individual IoT device presented in [45], which results in an aggregate group
traffic that still fits the Beta(3,4) distribution of the 3GPP standard.

In [45], each MIoT source is modeled as a Markov chain including two states,
named regular operation and alarm, and hereinafter denoted with R and A,
respectively. The period T of the IoT traffic pattern is divided into an arbitrary
number N of slots, each of duration δ. In state A, the MIoT source sends packets
according to a Poisson process with mean λA=1 packet/slot, i.e., it transmits at least
one data packet with probability (1− e−1). In state R, instead, the MIoT source
transmits packets following a Poisson process with mean λR=0.0005 · δ packet/slot.
Thus, in state R an MIoT source transmits on average 0.0005 packet/s, representing,
e.g., keep-alive or synchronization messages.

In each slot n within a period (n = 1, ..., N), the MIoT source may move from
one state to the other. When in A, the source moves to R in the next time slot with
probability 1. When in R, the source moves to A in time slot n with probability
mass function (pmf)1 fb(n), which depends on the considered slot in the period. As
shown in [45], fb(n) can be obtained from the sampling of the Beta(3,4) shape2, as
follows:

fb(n) = Beta
(︄
nδ

T

)︄
δ

T
= 60

(︄
nδ

T

)︄2 (︄
1−nδ

T

)︄3
δ

T
. (4.2.1)

In summary, given the above IoT traffic model, on average an MIoT source visits
state A once every T seconds (with T of the order of seconds [44]), and therein
it transmits a packet with probability (1 − e−1). Instead, when an MIoT source
sojourns in state R, it transmits a packet every 2,000 seconds; for this reason, the
global number of transmissions in state R is roughly three orders of magnitude lower

1The pmf of a discrete random variable x at n will be denoted by fx(n). The evaluation at n
of the pmf of x conditioned to the random variable y, when y = m, will be denoted by fx(n|y=m).
Also, we will indicate with P(X) the probability of a specific event X. The probability density
function (pdf) and the cumulative density function (CDF) of a continuous random variable x will
be denoted by fx(y) and Fx(y), respectively.

2Note that the Beta(3,4) distribution is only defined in [0, T ].
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than the number of packets transmitted in state A. Therefore, in the following, we
neglect occurrences of a packet transmission in state R.

4.3 Roadmap of the Analysis and Main Results

To evaluate the delay performance of the MME when the CIoT optimization is
supported, we proceed as follows.

• We first prove that the arrival process of the bearer instantiation requests at
the MME follows a Poisson distribution (Section 4.4). To this end, we need
to characterize the distribution of the time interval between subsequent bearer
instantiations. Recall that, under the CIoT optimization, every time an MIoT
source has a new packet to transmit, the MME has to establish a new bearer
and forward the packet to the right S-GW. Thus, the time interval between
subsequent bearer instantiations by the MME corresponds to the time interval
between packet transmissions by any of the MIoT sources served by the MME.
To compute the distribution of the inter-arrival time between bearer instantiation
requests, we first derive the distribution of the time interval between a packet
transmission by any source in the system and the subsequent visit to state A
by any, potentially different, MIoT source. For δ → 0, we prove that such a
distribution does not depend on the time of the last transmission in the system
and turns out to be exponential. Furthermore, the result holds also for the time
interval between subsequent packet transmissions, i.e., the inter-arrival time of
bearer requests at the MME.

• Then, through experimental measurements, we reveal three important findings:
(i) the MME is the main bottleneck in the control plane of the EPC, thus
dominating the latency introduced by the EPC; (ii) each bearer establishment
procedure takes a fixed and deterministic amount of processing at the EPC
entities; (iii) it is fair to assume that the MME uses a Processor Sharing (PS)
serving policy.

• Using our analytical and experimental results, we model the MME as an M/D/1-
PS queue and obtain the distribution of the latency of bearer instantiation and
of data forwarding at the MME (Section 4.5.2). We also characterize the control
overhead at the MME, again under CIoT optimization. We remark that, as
shown in Section 4.6, all our findings are demonstrated through an experimental
testbed and validated through simulations using real-world data traces.
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The notations we use in the following analysis are summarized in Table 4.1; we
also highlight that we often use the term “packet transmission” interchangeably
with “bearer request”.

Table 4.1: Table of notations

Symbol Variable
δ slot duration
T time between events monitored by MIoT groups
N number of slots in a period T
Q number of MIoT sources served by the EPC

fb(n) (fb(n)) probability of transition from R
to A in slot n (time t)

β time between bearer requests at the EPC
s slot (time) of the last bearer request
sq slot (time) of the last bearer request by source q
α time between the last bearer request and

the next transition to A by any source
αq time between the last bearer request and

the next transition to A by source q
ωq offset of the time reference of source q

with respect to source 0
E(z, λα) Erlang CDF with shape z and rate λα

λx rate of the exponential random variable x
OX number of CPU operations per bearer

procedure for EPC entity X
CX capacity, in CPU operations/s, of entity X
d time between a bearer request and its completion,
v delay due to the MME of the

bearer establishment procedure
K constant delay due to all EPC entities, other

than the MME, in bearer establishment

4.4 IoT Control Traffic Characterization

To derive Fβ(·), i.e., the cumulative distribution function (CDF) of the time
interval between subsequent bearer instantiation requests at the MME, we consider
Q MIoT sources served by the same MME, generating traffic according to the 3GPP
model described in Section 4.2.3.
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As the first step, we fix to k the time slot at which the last transmission in the
system occurred and we compute fα(m|s=k), i.e., the probability density function
(pdf) of the time interval between k and the slot in which the first device, among
the Q MIoT sources, moves to state A.

It is easy to see that fα(m|s=k) can be written as the minimum over the time
intervals between k and the first visit to A of the Q MIoT sources, i.e.,

fα(m|s=k) = fmin(αq)(m|s=k) . (4.4.1)

In the above expression, αq is the time interval between k and the transition to state
A of the MIoT source q, and fmin(αq)(·) is the pdf of the minimum over the αq’s.

Using (4.4.1) and considering the minimum among random variables, the CDF,
Fα(m|s=k), can be obtained as:

Fα(m|s=k) = 1−
Q∏︂

q=1

(︂
1−Fαq(m|s=k)

)︂
. (4.4.2)

From (4.2.1), we observe that an MIoT source moves from state R to state A with
a probability that depends neither on the past, nor on the activity of other MIoT
sources (not even those belonging to the same IoT group). It follows that the
IoT traffic model in [44] is memory-less, which greatly simplifies the subsequent
derivations. As a first consequence, in the proposition below we prove that (4.4.2)
can be computed as if all MIoT sources transmitted a packet in k, i.e., denoting
with sq the slot of the last packet transmission by q, Fαq(m|s=k) = Fαq(m|sq=k),
∀q.

Proposition 1. Denote with s the variable representing the slot in which the last
packet transmission in the system by any of the MIoT sources occurred, and with
αq the time interval between slot s and the subsequent transition of the q-th MIoT
source to state A. Since the IoT traffic is memory-less, αq can be computed as if
the last packet transmission in the system was by q. Denoted with sq the slot of the
last packet transmission by q, for a sufficiently small δ, we get:

Fα(m|s=k) = 1−
Q∏︂

q=1

(︂
1−Fαq(m|sq=k)

)︂
. (4.4.3)

Proof. The probability fαq(m|s=k) that source q visits state A, m slots after k can
be computed as the multiplication of the probabilities of the following events:

• no transition into state A for m−1 slots;
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• a transition into state A, exactly m slots after k.

If instead the last packet in the system was transmitted by q itself, fαq(m|s=k)
can be computed as the sum of the probabilities of the following events:

• a transition from A to R (with probability 1) in slot k + 1;

• no transition into state A for m−2 slots;

• a transition into state A, exactly m slots after k.

The difference in the two cases is only the transition from R to A in slot k+1.
Such a difference can be neglected if δ is small, since in this case the number of
slots between a packet transmission in the system and the subsequent transition to
A by any MIoT source is very large. Then, passing to the CDF, we get:

Fα(m|s=k) = 1−
Q∏︂

q=1

(︂
1−Fαq(m|s=k)

)︂

= 1−
Q∏︂

q=1

(︂
1−Fαq(m|sq=k)

)︂
.

The above proposition tells us that Fα(m|s=k) can be derived by analyzing the
dynamics of the individual MIoT sources separately, i.e., through the CDF of the
time interval between the last transmission by q and the subsequent visit to state A
of q itself, which is significantly easier to compute than using Fαq(m|s=k).

Next, we rewrite Fαq(m|sq=k) accounting for the time reference of source q.
To this end, we recall that each source belongs to a specific group and it is quasi-
synchronized only with the IoT sources belonging to that group, while different
groups may exhibit a temporal offset with respect to each other 3. By taking as
global reference the time of source 0, we denote with ωq ∈ {0, ..., N−1} the time
offset between source 0 and the q-th source (q = 1, . . . , Q− 1). Then (4.4.3) can be
rewritten as:

Fα(m|s=k) = 1−
Q∏︂

q=1

(︂
1−Fαq(m|sq(k, ωq))

)︂
, (4.4.4)

3Sources belonging to the same group have zero offset relatively to each other.
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where sq(k, ωq)=mod(k+ωq, N) and

Fαq(m|sq(k, ωq)) =
m∑︂

x=1
fb(mod(sq(k, ωq)+x,N)) ·

sq(k,ωq)+x−1∏︂
y=sq(k,ωq)+1

[1−fb(mod(y,N))] , (4.4.5)

with fb(n) being the transition probability from R to A given in (4.2.1). In (4.4.5),
Fαq(m|sq(k, ωq)) has been derived considering the probability that the following
sequence of events takes place: no transition into state A for m−1 slots, and a
transition into state A, exactly m slots after sq(k, ωq).

We now switch to continuous time and evaluate the system dynamics when the
slot duration δ tends to 0. Let us denote with t the reference time of MIoT source
0, with sq(t, ωq) the time instant of MIoT source q in its period corresponding to
t, i.e., sq(t, ωq)=mod(t+ωq, T ), and with τ representing the interval from the last
transmission in the system to the time of the first transition from R to A by any of
the MIoT sources.

First, for δ → 0, we rewrite (4.4.4) and (4.4.5), respectively, as,

Fα(τ |s=t) = 1−
Q∏︂

q=1

(︂
1−Fαq(τ |sq(t, ωq))

)︂
(4.4.6)

and

Fαq(τ |sq(t, ωq)) =
∫︂ τ

0
fb (mod(sq(t, ωq)+x, T )) ·

sq(t,ωq)+x∏︂
y=sq(t,ωq)

(1−fb(mod(y, T )) dx, (4.4.7)

where fb(x) can be obtained directly from (4.2.1) as,

fb(x) =
60
(︂

x
T

)︂2 (︂
1− x

T

)︂3

T
(4.4.8)

Looking at (4.4.6), one can see that, when the number of MIoT sources in the
system grows, the time interval between a packet transmission and the subsequent
visit to state A by any MIoT source decreases dramatically, since the minimum over
a large number of positive random variables should be considered. Consequently,
it is enough to provide an expression for Fαq(τ |sq(t, ωq)) that is accurate for small
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values of τ ; given that, we can assume: sq(t, ωq)+τ < T,∀ sq(t, ωq) ∈ [0, ..., T ]. Then
a good approximation of Fαq(τ |sq(t, ωq)) for Q large, hence τ small, is given by:

Fαq(τ |sq(t, ωq)) =
∫︂ τ

0
fb(sq(t, ωq)+x)

sq(t,ωq)+x∏︂
y=sq(t,ωq)

(1−fb(y)) dx . (4.4.9)

Interestingly, the product form in (4.4.9) is the Volterra’s product integral. Using
such an integral expression in (4.4.9), we obtain:

Fαq(τ |sq(t, ωq)) =
∫︂ τ

0
fb (sq(t, ωq)+x) e

∫︂ sq(t,ωq)+x

sq(t,ωq)
−fb(y)dy

dx. (4.4.10)

Replacing (4.4.8) in (4.4.10) and solving both integrals, we get:

Fαq(τ |sq(t, ωq)) = 1− e
− τ

T

(︃
60
(︂

sq(t,ωq)
T

)︂2(︂
1− sq(t,ωq)

T

)︂3
)︃

· eo(τ2)

(a)
≈ 1− e−fb(sq(t,ωq))τ , (4.4.11)

where (a) holds for τ small. As a result, for Q large, Fαq(τ |sq(t, ωq)) follows an
exponential distribution with rate parameter fb(sq(t, ωq)). Substituting (4.4.11) in
(4.4.6), we obtain:

Fα(τ |s=t) = 1− exp
⎛⎝− Q∑︂

q=1
fb(sq(t, ωq))τ

⎞⎠
= 1−e−λα|tτ , (4.4.12)

which states that, when Q grows large, Fα(τ |s=t) follows an exponential distribution
with rate λα|t = ∑︁Q

q=1 fb(sq(t, ωq)).

Interestingly, under the above conditions, we can write:

λα|t ≈ Q
∫︂ T

0
P(sq(t, ωq))fb(sq(t, ωq))dωq

= Q
∫︂ T

0

fb(sq(t, ωq))
T

dωq

= Q

T
≜ λα , (4.4.13)

where we considered that:
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• for high values of Q, also the number of IoT groups served by the MME grows
large, hence the offsets ωq can be assumed to be random variables uniformly
distributed in [0, T ];

• such an observation holds also for sq(t, ωq), ∀t, since, by definition, sq(t, ωq) =
mod(t+ωq, T );

• exploiting the law of large numbers, λα|t can be approximated accurately by
its average value. From (4.4.13), it follows that Fα(τ |s=t) not only follows an
exponential distribution, but such a distribution does not depend on t, i.e.,
Fα(τ |s=t)=Fα(τ).

We now use this result to compute the CDF of the inter-arrival time between
subsequent bearer instantiation requests at the MME, i.e., Fβ(τ). We account for
the fact that not all transitions to state A by an MIoT source lead to a packet
transmission: after a transition in state A by an MIoT source, the probability of
transmitting at least a packet is equal to 1−e−1. As a consequence, we can compute
Fβ(τ) as a sequence of z i.i.d. exponential time intervals, i.e., an Erlang(z, λα)
distribution, weighted by the probability that two subsequent transmissions in the
system are separated by z − 1 transitions to state A without any transmission.
Denoting the Erlang(z, λα) distribution with E(z, λα), we write:

Fβ(τ) =
∞∑︂

z=1
FE(z,λα)(τ)(1− e−1)(e−1)z−1. (4.4.14)

Using the above results, we can prove the theorem below.
Theorem 1. When the IoT group offsets are independent of each other and Q
grows large, Fβ(τ) is given by:

Fβ(τ)=1−e−λβτ (4.4.15)

with rate parameter λβ = Q(1−e−1)
T

.

Proof. First, we substitute in (4.4.14) the CDF of the Erlang distribution, thus
obtaining:

Fβ(τ) =
∞∑︂

z=1

⎡⎣1−
z−1∑︂
j=0

e−λατ

j! (−λατ)j

⎤⎦ (1− e−1)(e−1)z−1

=
∞∑︂

z=1
(1− e−1)(e−1)z−1 +

−
∞∑︂

z=1

z−1∑︂
j=0

e−λατ

j! (−λατ)j(1− e−1)(e−1)z−1
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where λα = Q/T . We now solve the first summation, and invert the order of the
two summations in the second term by exploiting the fact that 0 ≤ j ≤ z−1 <∞:

Fβ(τ) = 1−
∞∑︂

j=0

∞∑︂
z=j+1

e−λατ

j! (−λατ)j(1− e−1)(e−1)z−1. (4.4.16)

Next, we isolate and solve the summation over the index z:

Fβ(τ) = 1−
∞∑︂

j=0

e−λατ

j! (−λατ)j(1− e−1) (e−1)j

(1− e−1)

= 1−
∞∑︂

j=0

e−λατ

j! (−λατe
−1)j .

Solving the summation over index j, allows us to prove the theorem, i.e.,
Fβ(τ) = 1−e−λατeλατe−1 = 1−e−λα(1−e−1)τ .

The above result states that the inter-arrival time between bearer establishment
requests at the MME follows an exponential distribution, which implies that the
number of requests that the MME, hence the EPC, receives in a time interval follows
a Poisson distribution. This is a key result that allows us to characterize first the
control overhead due to bearer establishment and forwarding, and then the delay
performance of the EPC. Note that the above result holds also in more general
scenarios where there are aggregators relaying the data packets generated by the
MIoT sources toward the MME.

4.5 EPC Model and Analysis

In this section, we begin by showing the results of our experimental study, which
highlight the following facts: (i) the bearer establishment takes a deterministic
amount of processing, (ii) the variation in the delay of EPC entities other than the
MME is negligible, (iii) a PS well mimics the MME serving policy. To perform our
validation, we run and profile the components of a real-world EPC implementation
called OpenAirInterface (OAI) [46], as described in Section 4.5.1. Then, based on
the above key observations, we analytically characterize the EPC control overhead
and, using a M/D/1-PS model, we derive an expression for the delay experienced
by the MIoT traffic within the EPC.
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4.5.1 Understanding the EPC through the
OpenAirInterface

The OAI EPC is a software implementation of the cellular core network where
the MME and the HSS are implemented as separate entities, while the S-GW and
the P-GW are implemented as a single unit (called SPGW). To investigate the
interaction between the EPC and the IoT sources, we connected the OAI EPC to a
software simulator of the Radio Access Network (RAN), called Open Air Interface
Simulator (OAISIM). Herein, UEs and eNBs communicate with the OAI EPC
through an Ethernet cable, sending and receiving control messages as if a real RAN
was in place.

Setup for OAI EPC Experiments:

The setup for this experiment is depicted in Figure 4.3. It shows the EPC
components running in one machine connected to the OAISIM, where the UEs and
eNB are run. In the experiment, we use Callgrind which is part of Valgrind tool
suit to collect the CPU utilization (instruction fetch) for all components of the EPC
(HSS, MME and SPGW). It is worth mentioning that the process of connection
between OpenAirInterface EPC and OAISIM starts by attaching the eNB to the
MME; then it goes on to process the connection requests of UEs via this eNB. Since,
in our tests, we need to account only for the statistics of the performance counters
that pertain to the handshake procedure for establishing connection to the UEs, we
customized the source code to achieve this. To only collect the instructions fetch
due to the connection establishment process of UEs, in each entity (HSS, MME and
SPGW), we modified the source code of OpenAirInterface; we inserted a code in each
entity to dump and clear the performance counters of the processes. This is done at
two points in each of these processes. The first dump is done at the encounter of the
first message sent to the entity in the connection establishment process. This clears
the counters. The second dump is done after the entity sends the last message. In
this way the number of instruction fetch obtained from the second dump will only
account for the instructions fetch due to the handshake procedure messages sent,
received and/or processed by the respective entity. In order for this process to be
valid also for multiple UEs, we introduced global counters in the source code. The
counters are used to keep track of the number of UEs processing the message we
are interested in. In tests involving multiple UEs, the first dump is done for the
first message from the first UE while the second dump is done for the last message
from the last UE.
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Figure 4.3: OpenAirInterface: Experiment setup.

The number of instructions fetch of the MME accounts for the CPU instructions
between receiving the UE attach request message and the end of the bearer
establishment; the bearer establishment ends after the MME has received and
processed the Modify_Bearer_Response message from the SPGW. The number
of instruction of the SPGW accounts for those instructions fetch between the
receiving of the Create_Session_Request message from the MME and sending of
the Modify_Bearer_Response message to the MME. Number of instructions fetch
for the HSS accounts for those instructions between the establishment of connection
between the MME and the HSS and just before the Update_Location_Answer
message is sent to the MME.

The OAI EPC implements the standard bearer establishment procedure, which
includes a superset of the messages exchanged between the EPC entities during
the CIoT bearer instantiation procedure. However, below we report the results
considering only the messages included in the CIoT procedure, as depicted in
Figure 4.2. We subtracted from the total instructions fetch the instructions fetch
due to the messages not part of the CIoT procedure.

Results of OAI EPC Experiments:

The total number of CPU operations for each EPC entity, obtained by profiling
the OAI EPC with the Callgrind tool from the Valgrind tool suite [47], is depicted
in Figure 4.4. Therein, the number of users attached to the EPC varies from 1 to 3
(the maximum number of users that OAISIM can support in our setting), and each
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data point has been obtained using 20 runs, resulting in a 95% confidence interval
of up to ±0.7% of the plotted percentile values. Note also that, in each run, every
UE performs one bearer establishment.
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Figure 4.4: Number of CPU operations required by bearer establishment vs. number
of UEs.

Figure 4.4 demonstrates that the job size associated with a bearer establishment
procedure is fixed and deterministic. This is shown by two facts: (1) the number
of operations required for a bearer establishment procedure grows linearly with
the number of bearer instantiation requests, and (2) the variation of the number
of CPU operations required by the EPC entities across different runs is negligible.
The former is further highlighted in the plot by the excellent match between the
solid line, showing the experimental values, and the dotted line, which represents a
linear fit whose slope is forced to the average number of CPU operations required
by a single bearer instantiation. The latter fact, instead, can be observed from
the boxplots in Figure 4.4, representing the 10-th and 90-th percentile of the CPU
operations distribution: the variance is very small in all analyzed cases and for any
of the EPC entities in the system.

The second important observation we can make by looking at Figure 4.4 is that
the MME is the dominant component of the performance for the EPC: the number
of operations required by any other entity is at most the 13% of those needed by
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Table 4.2: Bearer Establishment Time. 1 UE vs. 2 UEs

1 UE Bearer Time 2 UEs Bearer Time 2 UEs Bearer Time
Average 1st User - Avg. 1st User - PS Avg.

0.84± 0.02 s 1.63± 0.03 s 0.87± 0.02 s

the MME. Given the fact that typical EPC implementations include entities with
similar computational capability [48], as the traffic load changes, it is fair to neglect
the variations in the delay introduced by entities of the EPC other than the MME.

Finally, we performed dedicated experiments to grasp some insights on the policy
used by the OAI EPC implementation to serve packets that are simultaneously
queued at the different entities. In this set of experiments, in order to avoid
interference, we isolate MME, SPGW, and HSS, assigning to each entity a dedicated
core of the PC acting as EPC. Note that all the UEs emulated through OAISIM
make a bearer request almost simultaneously and it is not possible to determine
beforehand their time of attachment. Therefore, users contend for the same resources
during nearly the whole duration of the bearer establishment.

The first and second column of Table 4.2 show the average (over 20 runs) and
the standard deviation of the time elapsing between the first and the last packet
processed by the MME with one UE and two UEs, respectively. In the case of two
UEs, we only consider the data relative to the bearer establishment of the first UE.
In the third column, we demonstrate that it is fair to assume that a PS policy is in
place. Indeed, considering the time in the second column, and halving the time in
which the procedures of the two UEs overlap, we obtain a value that is very close to
the one in the first column. Note that such an observation is consistent with the
fact the PS policy closely emulates the behavior of a multi-threaded application
running on a virtual machine instantiated on commodity hardware.

In addition, we tried to validate the analytical results we obtained for the delay
experienced with OAI. This effort was not successful because of the absence in
OAISIM for an option to configure and schedule the instantiation of a connection
request for UEs in predetermined times.

4.5.2 Control Overhead and EPC Delay Characterization

As discussed above, the bearer establishment procedure in Figure 4.2 requires
a deterministic number of CPU operations. Then, at every entity X involved in
the procedure, each bearer instantiation is characterized by a fixed number of CPU
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operations OX , which is the sum of the CPU operations required by the messages
in Figure 4.2. It follows that the mean number of CPU operations per second that
entity X has to perform is given by: E[µX ] = λβOX .

Next, we derive the pdf, fd(τ), of the interval between a bearer request and its
completion, i.e., the time passing from the first to the last message in Figure 4.2.
To this end, we exploit the fact that the inter-arrival time of bearer requests at the
MME follows an exponential distribution, as well as the observations set out below.

(a) The MME is the main bottleneck of the control plane. As shown experimentally
in Section 4.5.1, the computational load requested to the MME for a single
bearer implementation is roughly one order of magnitude larger than the
computational load requested to any other entity. This implies that the CPU
utilization of entities other than the MME is very low and variations of the
control message processing times can be neglected, i.e., they can be considered
as constant.

(b) It is fair to assume that the duration of a bearer instantiation procedure is very
short compared to the timescale at which the MME load varies. Thus, each
message within the same bearer instantiation sees a constant load at the MME.
As a consequence, each bearer request can be considered as a single job, even if
composed of multiple subsequent messages, with a computational load equal to
OMME.

(c) As shown above, the MME serving policy can be modeled through a PS
discipline.

Given the above observations and the result in Theorem 1, we model the MME as
an M/D/1-PS queue, where the deterministic service time depends on the capability
of the MME, while the rate of arrivals of the bearer instantiation requests is equal
to λβ, as reported in Theorem 1. Then fd(τ) can be written as,

fd(τ) = fv(τ) +K, (4.5.1)

where:

• fv(τ) is the pdf of the time spent by a bearer instantiation at the MME, i.e., the
sojourn time of a job in the M/D/1-PS queue;

• K is the constant delay due to entities other than the MME (see our observation
(a) above), which can be computed as:

K = OUE

CUE

+ OeNB

CeNB

+ OHSS

CHSS

+ OS−GW

CS−GW

+ OP −GW

CP −GW

, (4.5.2)
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where OX is the total number of CPU operations that entity X has to perform
for each bearer establishment, while CX is the computational capability of entity
X, expressed in CPU operations per second.

To derive fv(t), we leverage the results in [49], which, owing to the complexity of
computing such a distribution, provides the following approximation for the CDF:

Fv(τ) ≈ ψe−γτ . (4.5.3)
In the above equation, ψ is given by [49]:

ψ = (1− ρ)(λβ − γ)
2λβ(1− ρ)− γρ(2− ρ) , (4.5.4)

where ρ = λβ/D is the control traffic load at the MME, with D = OMME

CMME
being the

deterministic service time of the bearer instantiation at the MME, and γ is the only
positive solution of [49, Eq. (3.2)].

We remark that, given the pdf of the time interval between a bearer instantiation
request and its completion (i.e., fd(τ)), we can compute the pdf of the delay that the
control plane introduces in handling data packet forwarding at the MME when the
CIoT optimization is supported. The derivation of the latter pdf implies considering
only the messages in Figure 4.2 that are exchanged till the data packet transmission
is completed. Then, based on our earlier observation (b) and given the number
of CPU operations required by each message, we can obtain the pdf of the MIoT
traffic latency by properly scaling fd(τ).

4.6 Model Validation and Exploitation

In the following, we show how the behaviors – inter-arrival times and bearer
instantiation delays – predicted by our analysis match those yielded by extensive
simulations, using both synthetic traffic models [39] (Section 4.6.1) and real-world
mobility traces (Section 4.6.2). Furthermore, we demonstrate how our model can be
leveraged in the dimensioning and management of vEPC networks handling MIoT
traffic.

4.6.1 3GPP synthetic traffic

We developed a Matlab simulator that accurately implements the 3GPP traffic
model described in Section 4.2.3. The parameters we used are as follows: T = 10 s
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(as specified in [39]), δ = 10µs, and group size equal to 50 MIoT sources.

Model validation. Here we validate the approximations introduced in our
analysis as well as our main result in Section 4.4 (i.e., the inter-arrival time of
bearer requests is exponentially distributed). To compare Fβ(τ), computed as in
Theorem 1, to the CDF of the inter-arrival time of bearer requests at the MME in
simulation, we performed extensive experiments, varying the number of groups in
the scenario and the offsets ωq. In Figure 4.5, we present the results obtained with a
specific set of offsets, as the number of groups served by the MME varies; however,
similar results have been also obtained changing the ωq values.
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Figure 4.5: Inter-arrival time distribution of bearer requests: analysis vs. simulation
using the 3GPP traffic model.

With as few as 10 groups served by the MME, Figure 4.5 highlights that
simulation and analytical results closely match, thus showing that the exponential
Fβ(τ) captures very well the behavior of the 3GPP traffic model presented in Section
4.2.3. Furthermore, as expected, the match between the two curves improves as the
number of groups served by the MME grows.

We now validate our delay model presented in Section 4.5.2. We first remark
that, for the analytical derivation of fd(τ), we neglected the load due to the integrity
check and decryption, at the MME. Indeed, while a single control message requires
(roughly) one million floating-point operations [50], studies on commodity processors
show that nowadays a 50-byte packet (as in the case of IoT applications) requires
few hundreds of floating-point operations for encryption/decryption [51]. In our
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simulations, instead, we account for data encryption/decryption as well as integrity
check at the MME. Second, to compute the constant delay component of the delay
distribution, K, in (4.5.2), we proceed as follows:

• we obtained the number of CPU operations, OX , required at the EPC entities
by a bearer establishment through our experimental measurements described in
Section 4.5.1, and

• we leveraged the work in [48], which provides the computational capability of
the EPC entities, CX , based on real-world data from a large mobile network
operator.

Finally, in order to validate the analytical expression of fd(τ), we extended our
Matlab simulator to perform the whole procedure in Figure 4.2, starting from the
S1-AP Initial Message sent by the eNB. In our setup, all MIoT sources belonging to
the same group, each containing 50 MIoT sources, are attached to the same eNB.
Several eNBs may be attached to the same S-GW, while all S-GWs are attached to
the same P-GW. Except for the RRC connection closing message sent by the eNB to
the UE, all messages belonging to the same bearer instantiation travel sequentially
between the involved entities. Each entity is implemented as a PS server whose
service rate matches the processing capability provided in [48].

Figure 4.6 shows the analytical and experimental Fd(τ) in different scenarios.
Specifically, we present the results of the CIoT optimization for two different values
of traffic load, i.e., with Q = 10,000 and Q = 15,000. In the latter case, we also
study two different configurations of the EPC to check whether changing the number
of eNBs/S-GWs in the system has an impact on Fd(τ) or not.

First, we observe that the CDF of the bearer instantiation delay computed
through (4.5.1)-(4.5.3) closely matches the experimental delay obtained via
simulation – a fact that is especially evident looking at the tail of the CDFs.
This result proves that considering the whole bearer establishment handshake as a
single job at the MME, plus a constant delay due to the other entities, is a valid
approximation. Small differences between the analytical and experimental CDFs
for low values of delay, are mainly due to the model in [49], used to approximate
the sojourn time in an M/D/1-PS queue. Indeed, due to the complexity of the
M/D/1-PS characterization, [49] explicitly aims at modeling with higher accuracy
the tail of the sojourn time CDF, which is what most matters in delay sensitive
applications. Second, for Q = 15,000 the simulation results highlight that the two
configurations with a different number of S-GWs provide exactly the same delay
CDF, which validates our finding: Fd(τ) depends only on the number of MIoT
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Figure 4.6: Delay distribution: analytical vs. simulation results, using the 3GPP
traffic model.

sources in the scenario, and it is not affected by variations in the number of eNBs
and S-GWs. This confirms that the MME delay component dominates that of the
other EPC entities.

Model exploitation. We now show how our model can be used to develop
efficient scaling algorithms for EPC networks serving MIoT traffic. Let us consider
the following case, reflecting, e.g., a smart factory or cloud robotics application
[52], where the delay introduced by the EPC should be less than 0.1 s with 0.99
probability. Since the delay performance depends on the number of MIoT sources
served by the EPC and on the capability of the EPC entities, we need an algorithm
that, given the IoT traffic, scales the capability of the EPC entities according to
the number of MIoT sources in the system. Such an algorithm can leverage the
analytical expression of Fd(τ) we obtained.

As an example, we considered a simple threshold-based algorithm, which, as the
number of active IoT sources grows, increases the computation capability of the EPC
entities by 30%, and then by 130%, with respect to the initial value, depending on
the MME delay predicted by our model. (Note that increasing the EPC capability
by 130% can be realized by creating a new instance of its components.) As shown in
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Figure 4.7, such an algorithm meets the target performance. The figure also reports
the delay corresponding to the cases when the capability values CX are fixed to the
initial value provided in [48], and to such a value increased by 30% or by 130%.
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Figure 4.7: Analysis exploitation: 99−th percentile of the bearer instantiation delay
vs. number of MIoT sources. Performance obtained with: the initial computational
capability (CX) of the EPC entities set to the value provided in [48] (blue line),
capability increased by 30% (red line), capability increased by 130% (yellow line),
and capability determined through the scaling algorithm (green line). Dashed,
purple line: target value of the 99−th percentile.

Although more advanced scaling algorithms may be designed, we remark that,
thanks to our model, even a simple threshold-based algorithm is able to meet the
target delays and that our analysis, coupled with off-the-shelf virtualization tools
like OpenStack, can be a key enabler to the support of IoT applications with delay
guarantees.

4.6.2 Real-world trace

We now consider a real-world setting and leverage a large-scale mobility trace
generated accounting for the MoST scenario [53]. The MoST scenario is a highly
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detailed representation of the mobility in the Monte Carlo urban area, including:
(i) a multi-layered road topology, with tunnel and bridges; (ii) multi-modal mobility,
e.g., users driving to a parking lot and riding public transportation thence; (iii)
multiple types of coexisting users, e.g., commuters and tourists. The scenario models
the mobility of a total of 27,967 users throughout an 8-hour period from 5 AM to
1 PM, and includes a total of 607 tagged points of interest (POIs) such as offices,
restaurants, and tourist attractions. We assume that every time a user visits or
stops at one of the POIs, a sensor, e.g., an identity-recognizing device, is triggered,
resulting in a packet transmission, hence, a bearer instantiation request towards the
MME serving the area.

Model validation. Our first objective is to establish whether the inter-arrival
time between bearer requests obtained experimentally matches the exponential
distribution Fβ(τ) obtained through our analysis. To this end, we divided the time
into 8 periods of one hour each, and computed the empirical distribution of the
inter-arrival time of bearer instantiation requests in the MoST trace in every time
period. The average arrival rates of bearer requests in the various periods are very
different, reflecting the daily fluctuations in mobility. Nevertheless, as exemplified
in Figure 4.8, the match between the analytical and the empirical distribution is
excellent for all the time periods, proving that the inter-arrival time of the bearer
requests obtained from the MoST trace follows an exponential distribution as well.
This confirms that our analysis holds also for applications that do not follow the
3GPP traffic model described in Section 4.2.3.

Figure 4.8: MIoT trace: Comparison between analytical and empirical distribution
of the inter-arrival time of bearer requests at the MME, for two representative time
periods.

Then we used the bearer requests obtained from the MoST trace to evaluate if
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the delay distribution of the bearer request procedures can be approximated with
fd(τ) (as in (4.5.1)) also in this realistic IoT scenario. We fed to the previously
mentioned Matlab simulator the time instants of the bearer requests by sensors in
the MoST trace and, since the number of bearer requests is rather small even in
the rush hour, we reduced the EPC entities capability of one order of magnitude.
The analytical and simulation results for the rush hour are compared in Figure 4.9,
where the bearer establishment procedure delay is normalized by K (with K given
in (4.5.2)).
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Figure 4.9: Delay distribution of sensor traffic: Analysis vs. simulation, using the
MoST trace.

Given the fact that the largest difference between the two CDFs (which happens
for low values of delay) is very small, we can conclude that our analysis well
approximates the behavior of the EPC when serving MIoT sources, also in the case
of a realistic scenario as the one of the MoST trace.

Model exploitation. We now present how our analytical results can be
exploited under the MoST scenario. Figure 4.10 shows the time evolution of the
99−th percentile of the bearer instantiation delay, for different values of capability
CX . Considering a target performance of 0.1 s, we observe that the simple scaling
algorithm employed when deriving Figure 4.7 (and which exploits our analytical
results) successfully meets the delay requirement even under a sudden and very
significant surge in the bearer request rate (see the black line in Figure 4.10).
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Figure 4.10: Analysis exploitation: 99−th percentile of the bearer instantiation delay
vs. time, when the MoST trace is used. Black line: bearer request arrival rate from
the trace; dashed, purple line: target value of the 99−th percentile. Performance
obtained with: the initial computational capability of the EPC entities (blue line),
capability increased by 30% (red line), capability determined through the scaling
algorithm (green line).

4.7 Related Work

IoT support through cellular networks has recently attracted significant attention
by both the scientific community and the standardization fora.

A first body of works deal with the requirements posed by IoT scenarios, and
how 5G networks can cope with them. As an example, [54] quantifies the latency
and capability requirements for the main IoT scenarios, from factory automation to
parking machines, and discusses the improvement needed to both the radio access
and core networks. The CIoT optimization and the role of MME are, however, not
accounted for in [54], which mainly focuses on the SGW/PGW gateways. [52] has a
narrower focus, namely, cloud robotics, and presents a working prototype; however,
the latency introduced by the core networks and the entities therein is not taken
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into account.

Among the works that do account for the core network, most, including [56, 55],
envision a softwarized network, where network functions are implemented through
VNFs. Unlike our work, [56] does not specifically target EPC or any of its entities.
The authors of [55], focusing on multicast traffic in IoT scenarios, specifically study
the MME delay. Their proposed solution is to endow the SGW with some of the
MME tasks, the opposite of the CIoT optimization we consider in our study.

The use of NFV and SDN, for the implementation of the EPC under massive
IoT traffic conditions, has been discussed in [57], while enhancements to the
standard EPC can be found, e.g., in [58]. That work introduces new entities
in the network architecture, which are specifically devoted to the IoT support.
Importantly, although such solutions yield a remarkable performance improvement,
they inevitably involve significant changes to the standard.

Analytical models of IoT systems have been developed for specific application
use cases, like management [59], opportunistic crowd sensing in vehicular scenarios
[60], or ambient backscatter devices [61]. Other works have presented theoretical
models for the study of networking aspects such as the performance of middleware
protocols [62], implemented between the application and the transport layer, or of
the random access procedure in Narrow Band (NB) IoT [64, 63]. Note, however, that
none of the above works investigates the critical role of the EPC control plane in
IoT-based systems; indeed few studies exist on the characterization of the overhead
and service delay when the EPC handles massive IoT data traffic. In this context,
the studies that are the most relevant to ours are [48] and its extension [65], which
present a scheme for aggregating multiple IoT bearers and analyze the gain that is
obtained with respect to the standard procedure. Such works, however, are based on
deterministic inter-packet transmission time for MIoT sources and do not address
the most recent and efficient 3GPP specifications for IoT support. Likewise, the
study in [50] analytically evaluates the EPC control procedures (non specific for
CIoT optimization) under a simple traffic model. A more comprehensive study on
EPC control procedures has been presented [66], which, however, does not address
any delay analysis.

To the best of our knowledge, our work is the first one deriving an exponential
inter-arrival time for MIoT bearer establishments at the MME. It is important to
stress, however, that exponential inter-arrival times are not an assumption, but the
result of the analysis in Section 4.4, which is based on the 3GPP MIoT traffic model
[44] and has been validated in Section 4.6. Finally, we remark that the goal of our
work differs significantly from that of [45], which presents the Markov Modulated
Poisson Process (MMPP) model for individual IoT sources that we adopt to develop
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our analysis and that is in accordance with the 3GPP traffic model for IoT. Indeed,
[45] investigates large-scale IoT scenarios via simulation only: it does not present
any analytical model of the EPC or of its control procedures under IoT traffic
support.

4.8 Summary

Many massive Internet-of-things applications have stringent delay requirements,
and effective dimensioning of EPC entities is crucial in order to meet them. In
our study, we have identified the MME as the main source of control-plane latency,
and sought to characterize the delay it introduces. Specifically, we have developed
closed-form expressions linking the number of IoT sources to the inter-arrival times
of bearer requests, and the latter to the MME latency. We have modeled the MME
itself as an M/D/1-PS queue, where the processing time required by each individual
bearer requests is deterministic.

We have confirmed the correctness of our model through a two-pronged study,
including:

• measuring and profiling the performance of a real-world EPC implementation so
as to characterize the actual behavior of the EPC entities;

• leveraging both the 3GPP traffic model and a real-world, large-scale mobility
trace to verify that simulation results on the distribution of request inter-arrival
times and of EPC delays agree with our analytical, closed-form expressions.

We further demonstrated how our model can be exploited in order to adapt the
computation capabilities of the vEPC entities to the variations of incoming traffic.
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Chapter 5

Conclusion

In this thesis, we proposed quite a few techniques to improve the energy efficiency,
one of the Key Performance Indicators (KPIs) set by 3GPP for energy management,
of the future generation mobile networks. We leveraged the flexibility provided by
Software Defined Networking (SDN), and Network Function Virtualization (NFV),
also referred to as network softwarization, to optimize resource usage in different
parts of the mobile network. Specifically, we proposed the implementation, on top of
an SDN controller, of an energy efficient routing algorithm in the backhaul network
in Chapter 2, identified a virtualization environment in the context of Mobile-accesss
Edge Computing, which entails lesser system resource overhead and thus power
consumption in Chapter 3, and characterized control traffic and delay of IoT traffic
and exploit this to scale resources according to traffic load in Chapter 4.

In Chapter 2, we addressed energy-efficient flow allocation in the 5G backhaul
network. We first formalized flow allocation by formulating an optimization problem
akin to a bin packing problem. However, the complexity of this formulation is
unbearable in large-scale scenarios. We therefore resorted to a heuristic approach and
developed an algorithm based on bin packing optimization problem. We specifically
formulated a first fit bin packing heuristic algorithm implementation is deployed on
an SDN platform.

In the energy efficient routing application, EMMA, presented in Chapter 2,
traffic forwarding rules are created by an SDN controller. This application controls
the operational states of the OpenFlow switches in addition to the (re-)allocation of
traffic. We implemented EMMA on top of the Open Network Operating System
(ONOS) SDN controller and derived experimental results by emulating the network
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through Mininet. The comparison between EMMA and the optimal solution
(obtained in a small-scale scenario) showed that the EMMA performance is very close
to the optimum. Also, in larger scale scenarios, emulation results highlighted that
EMMA can provide a dramatic energy improvement with respect to our benchmark
where switches are always on. The work in this chapter can be further investigated
by considering the effect of the EMMA mechanism on flow QoS.

In Chapter 3, We set out to assess the additional power consumption due to VM-
and container-based virtualization in MEC scenarios. Using VirtualBox and Docker,
respectively from VMs and Containers, as reference technologies, we performed an
extensive set of real-world measurements. The measurements are done for a wide
set of synthetic and real-world workloads. The measurements involved recording
of system resource usage, i.e., CPU, memory, disk and network as well as the
response time for disk io operations. In all measurements the corresponding power
consumption is also recorded. Through our measurements, we found that CPU
usage is the main driver of the global power consumption, and the extra power
consumption of container-based virtualization is not only lower than that of VM-
based virtualization, but also grows more slowly as the workload increases. As it is
evident from the results, container-based virtualization is an attractive technology
for MEC scenarios, when large numbers of virtualized applications run on the same
physical hardware.

In chapter 4, we analytically characterized the IoT control traffic and delay
incurred by the EPC. Then we developed a simulation and run various tests with
different setups. Moreover we proved the assumptions we made while driving the
analytical results with a real software implementation of 4G radio and core network
by OpenAirInterface.

Many massive Internet-of-things applications have stringent delay requirements,
and effective dimensioning of EPC entities is crucial in order to meet them. In
our study, we have identified the MME as the main source of control-plane latency,
and sought to characterize the delay it introduces. Specifically, we have developed
closed-form expressions linking the number of IoT sources to the inter-arrival times
of bearer requests, and the latter to the MME latency. We have modeled the MME
itself as an M/D/1-PS queue, where the processing time required by each individual
bearer requests is deterministic.

We have confirmed the correctness of our model by (i) measuring and profiling
the performance of a real-world EPC implementation to check that our assumptions
reflect the actual behavior of the EPC entities, and (ii) leveraging both the 3GPP
traffic model and a real-world, large-scale mobility trace to verify that simulation
results on the distribution of request inter-arrival times and of EPC delays agree with
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our analytical, closed-form expressions. We further demonstrated how our model
can be exploited in order to adapt the computation capabilities of the virtualized
EPC entities to the variations of incoming traffic. The work in this chapter can be
extended to verify the analytical and simulation results for the delay characterization
using real world implementation of the EPC.

In summary, we proposed a set of techniques and approaches to be applied to
the backhaul network, the edge network and the core network of 5G that could lead
to an efficient use of the network infrastructure and resources, and therefore to a
more efficient energy utilization.
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