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Abstract

Motivation: High-throughput next-generation sequencing can generate huge sequence files, whose analysis
requires alignment algorithms that are typically very demanding in terms of memory and computational resources.
This is a significant issue, especially for machines with limited hardware capabilities. As the redundancy of the
sequences typically increases with coverage, collapsing such files into compact sets of non-redundant reads has the
2-fold advantage of reducing file size and speeding-up the alignment, avoiding to map the same sequence multiple
times.

Method: BioSeqZip generates compact and sorted lists of alignment-ready non-redundant sequences, keeping track
of their occurrences in the raw files as well as of their quality score information. By exploiting a memory-
constrained external sorting algorithm, it can be executed on either single- or multi-sample datasets even on
computers with medium computational capabilities. On request, it can even re-expand the compacted files to their
original state.

Results: Our extensive experiments on RNA-Seq data show that BioSeqZip considerably brings down the computa-
tional costs of a standard sequence analysis pipeline, with particular benefits for the alignment procedures that typ-
ically have the highest requirements in terms of memory and execution time. In our tests, BioSeqZip was able to
compact 2.7 billion of reads into 963 million of unique tags reducing the size of sequence files up to 70% and
speeding-up the alignment by 50% at least.
Availability and implementation: BioSeqZip is available at https://github.com/bioinformatics-polito/BioSeqZip.
Contact: gianvito.urgese@polito.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In ultra-high-throughput sequencing, as many as 500 k sequencing-
by-synthesis operations may be run in parallel, allowing the deep
sequencing of DNA and RNA molecules in short time and produc-
ing a massive amount of data to be analyzed. With the ever-
increasing production of new sequence data, and the continuous ne-
cessity of re-elaborating old data to extract hidden knowledge, new
paradigms for data storage and analysis are becoming more and
more critical (Muir et al., 2016).

DNA and RNA reads are collected in the form of formatted files
whose size can exceed a terabyte, typically storing two main types of
information, both encoded by ASCII strings: (i) sequences, repre-
senting the bases of the biological molecules (RNA/DNA) and (ii)
quality scores, representing the reliability level of each sequenced
nucleotide.

The analysis of such RNA/DNA sequences starts with prelimin-
ary steps that consist of filtering the reads based on quality thresh-
olds. Then, the high-quality reads are trimmed from the adapters
and either aligned on a known reference database or assembled to
construct new unknown genomes.

To have a more in-depth overview of the analysis flow, we can
consider the example of RNA-Seq experiments. RNA-Seq reads, in
either single-end (SE) or paired-end (PE) form, are first filtered based
on their quality scores and trimmed from the adapters. Then, the
most reliable reads (i.e. the ones with highest quality scores) are ana-
lyzed by applying one of three main strategies, as described by
Conesa et al. (2016): (i) if a reference genome is available, reads are
aligned to the genome with a gaped aligner. This approach allows
the identification and quantification of known transcripts as well as
the discovery of novel ones. (ii) If no novel transcript discovery is
needed, reads can be mapped to the reference transcriptome by using
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an ungapped aligner. (iii) When no genome is available, reads are
usually first assembled into transcripts. Then, reads are mapped
back to the assembled reference transcriptome for quantification
and annotation.

As far as the alignment problem is concerned, several tools are
available (Mazzoni and Kadarmideen, 2016), mostly making use of
suffix arrays to provide faster alignment compared to traditional
Dynamic Programming methods (Smith and Waterman, 1981;
Urgese et al., 2014). Among the most representative: BWA (Li and
Durbin, 2009), Bowtie2 (Langmead and Salzberg, 2012), STAR
(Dobin et al., 2013), Rail-RNA (Nellore et al., 2017) and Yara
(Siragusa, 2015). Even though the computational time of the align-
ment is greatly reduced compared to classic algorithms, it still
remains prohibitive for most of the medium–low computational sys-
tems, like the work-stations that are commonly used in most bio-
labs.

A possible solution to this problem is collapsing all the repeated
reads into a single one, reducing the number of reads that need to be
analyzed, and hence the size of the read file. The advantage of this
solution is 2-fold: (i) the memory required for the storage can be
reduced and (ii) more efficiently, the alignment algorithms can map
each unique read to the reference only once, instead of multiple
times.

To the best of our knowledge, there exist in the literature a few
tools that already provide a collapsing option, but with several sig-
nificant limitations. First of all, none of the tools to date allows con-
trolling memory consumption. This is a critical lack, as it may make
impossible to execute the collapsing programs on mid-low end plat-
forms. Most of the tools are also limited in the type of data that can
be processed. SeqCluster (SC) (Pantano et al., 2011) can only col-
lapse SE reads from small RNA-Seq datasets, while FastUniq (FU)
(Xu et al., 2012) can only deal with PE reads. However, the popular
FASTX-Toolkit (FXT) (Gordon and Hannon, 2010) provides a sim-
ple function to collapse identical reads but does not keep any trace
of the quality scores provided in the input files. On top of that, it
cannot deal with PE samples. Super Deduper (SD) (Petersen et al.,
2015) is an interesting tool for PCR duplicate removal, as it exam-
ines only a small portion of each reads (called key) and automatical-
ly discards data containing unknown nucleotides (Ns). However, it
is not able to solve the exact read collapsing problem. ParDRe
(PDR) (González-Domı́nguez and Schmidt, 2016) has a reasonable
run-time, but a significant memory consumption.

The full list of the literature tools, with collapsing functionality,
is reported in Table 1, together with a summary of their respective
features. In the order: the possibility to deal with SE and PE sequen-
ces, the way the quality score of the input sequences is processed
(i.e. AVG: by averaging the quality scores of the redundant reads per
nucleotide, HIGH: by retaining the best score per nucleotide, SUM:
by summing up base qualities scores), the possibility to set a user-
defined memory bound to the alignment, the supported file formats.
As it can be easily gathered from the table, none of the tools pro-
vides a fully functional collapsing option, as they all lack some es-
sential features.

Collapsing procedures are widely adopted as a preliminary step
for the alignment of sRNA-Seq on miRNA and other small non-
coding RNA databases such as miRBase (Griffiths-Jones et al.,
2006), miRGeneDB (Fromm et al., 2015, 2020) and piRBase
(Zhang et al., 2014). Tools designed to quantify miRNA expression

levels such as isomiR-SEA (Urgese et al., 2016), SeqBuster (Pantano
et al., 2010), sRNAbench (Barturen et al., 2014) miRDeep2
(Friedländer et al., 2012) and others (Desvignes et al., 2019) take a
simple file (defined as Tag file) as input, with the unique sequence in
the first column and its number of occurrences in the second col-
umn, to minimize the number of calls to a computationally expen-
sive alignment procedure. In our work, we leverage this concept and
take it to a higher level.

In this paper, we propose BioSeqZip; a new approach to collapse
redundant reads generated by next-generation sequencing (NGS)
machines. The functionality of our proposed solution is 3-fold: (i) a
read collapsing technique based on the external sorting algorithm
allows limiting memory usage (Knuth, 1998). External sorting is
required when the data being sorted do not fit into the RAM of a
computing device and instead they must reside in the slower external
memory (HDD or SSD). In our implementation, we use a hybrid
sort-merge strategy. In the sorting phase, chunks of data small
enough to fit in main memory are read, sorted and written out to a
temporary file. In the merge phase, the sorted sub-files are combined
into a single larger file. Thus, making the tool suitable not only to
cluster computers, but even to medium systems with limited hard-
ware capabilities. (ii) A multilevel collapsing procedure can be
applied to compress even further the read files. Recurrent reads
from different samples will be collapsed into a single file, where
unique reads will occur only once. (iii) An integrated expansion pro-
cedure enables an easy restore of the read aligned files produced by
mapping tools.

As it can be gathered from Table 1, our proposed solution
addresses the lack of functionalities of the collapsing tools available
to date (see the last row of the table). BioSeqZip generates compact
files of unique reads storing the number of collapsed sequences, so
that the number of detected molecules can be considered in the
alignment algorithms, as well as their quality score information. On
top of that, it supports seven different file formats, allowing easy in-
tegration to several classes of alignment, mapping and assembly
algorithms.

To demonstrate the quality of our solutions, we tested the
BioSeqZip compression module on 32 RNA-Seq samples from the
Human BodyMap 2.0 dataset, collecting 2.34 billion of SE and PE
reads. We assessed BioSeqZip performance in terms of run-time,
memory consumption, reduction of reads number as well as of col-
lapsed files size and compared our tool against five alternative tools
in terms of both performance and usability. On top of that, we com-
pared the performance of four different alignment algorithms on
collapsed and raw/uncollapsed input files, respectively, with either
SE or PE datasets.

2 Materials and methods

We propose BioSeqZip as a solution to the extensive computational
time and memory requirements of NGS data analysis flows involv-
ing sequences, such as transcriptome/genome mapping and small
RNA-Seq analysis. A common trait of these tasks is that they need
to process all the reads of the sequenced samples multiple times be-
fore moving to the next steps of the analysis. Hence, these tasks are
majorly benefited by the removal of redundant reads.

BioSeqZip is a read collapser that groups and counts the occur-
rence of the identical reads in the input sequence file, producing a
minimal sorted list of unique reads (and the corresponding occur-
rence counts) ready for the alignment to a reference. The read col-
lapsing can be obtained at two different levels: (i) at single-sample
(SS) level, BioSeqZip collapses the redundant reads stored in a single
file, producing a compacted output file with unique reads. (ii) At
multi-sample (MS) level, BioSeqZip aggregates redundant reads
from a dataset containing multiple sample files, allowing a supple-
mentary level of aggregation.

In both cases, if the input files provide quality information about
the reads, BioSeqZip returns the collapsed sequences with a quality
score, that is computed as the average consensus quality of the corre-
sponding collapsed reads. On top of that, BioSeqZip allows to
choose the format of the collapsed file (either Fastq, Fasta, Tagq or

Table 1. Features of the available collapsing tools, with our pro-

posed tool BioSeqZip in the last row

Tool SE PE Quality Memory bound File formats

FU No Yes High No .fa.fq

FXT Yes No No No .fa

PDR Yes Yes High-AVG No .fa.fq

SC Yes No AVG No .fa.fq

SD Yes Yes High-sum No .fa.fq

BSZ Yes Yes AVG Yes .fa.fq.sam.bam.tag.tagq
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Tagsee Supplementary Text S1 for the file format description). By
doing so, the user can choose whether to maintain the quality infor-
mation (and hence, bear the corresponding computational costs) or
not, with a pay-for-what-you-use philosophy.

Besides the read collapsing functionality, BioSeqZip implements
also a re-expanding functionality, that is able to recover the original
occurrences of each sequence to update, with the number of read
occurrences, the alignment files generated by mapping algorithms.

The functionalities of BioSeqZip are implemented into two main
modules: a Collapser for compacting the redundant reads and an
Expander for restoring aligned and compacted files. The modules
were developed in Cþþ leveraging several packages of the SeqAn
Cþþ bioinformatics library (Doring et al., 2008; Reinert et al.,
2017). Most of our design choices were explicitly made to optimize
the memory consumption and the computational performance on
systems equipped with medium hardware resources. In the follow-
ing, we describe the main design aspects, functionality and sup-
ported file formats of the Collapser and the Expander modules.

2.1 BioSeqZip_Collapser module
Collapsing the reads is a powerful strategy to reduce the computa-
tional time and complexity of the alignment steps of an RNA-Seq or
DNA-Seq analysis pipeline. Indeed, in files with billion of reads, the
same sequence will likely be analyzed multiple times. The collapser
module collapses and counts the occurrence of redundant reads, that
are detected based on their identical sequence. This new reduced col-
lection of non-redundant sequences can be stored in a much smaller
file and used for optimized alignment analysis. BioSeqZip_Collapser
accepts as input Fasta, Fastq or SAM file formats and generates
compact output with four different file formats: Fasta, Fastq, Tag
and Tagq (Supplementary Text S1.1).

All the input/output file formats can be optionally provided in
compressed form (gzip).

The most straightforward approach to collapsing reads is the
one implemented by the fastx_collapser routine offered in FASTX-
Toolkit (Giardine et al., 2005). This solution requires to first load all
the reads into the main memory, then to sort them, and finally to
collapse them into unique tags, while counting and storing occur-
rence of the redundant reads. However, this approach is hugely
memory-intensive, as it requires to load in memory the entire file
that is typically in the order of tens of GBs.

Indeed, memory issues are always a critical aspect of NGS data
analyses that typically exploit big data. As the dimension of the
NGS files is generally huge, the amount of memory necessary to
load a whole dataset will be overwhelming for medium–small mem-
ory systems such as standard workstations and laptops, leading to
the necessity of leveraging powerful machines such as clusters of
compute nodes and servers. Thus, increasing the costs of the
analysis.

BioSeqZip_Collapser overcomes such limitation by implement-
ing a memory-constrained collapsing functionality. For this purpose,
the user is asked to set the maximum amount of the memory that
can be exploited by the program, based on the capabilities of the
available hardware.

The main steps of BioSeqZip_Collapser are shown in Figure 1.
In the first phase, we pass and check the input parameters: –input

and –max-ram respectively for the input file storing the reads to be
collapsed (either Fasta, Fastq, SAM or BAM) and the maximum
amount of RAM allowed. A set of reads (Tsize) are read from the in-
put file to evaluate their memory occupancy (TRAM). Then, we esti-
mate the maximum number of reads (Csize) that can be loaded at the
same time into memory without exceeding the memory constraint,
set by the user (CRAM), by computing the Equation (1) where a is an
empirical correction factor.

Csize ¼ a � CRAM � Tsize

TRAM
: (1)

The module implements a custom parallel external sorting pro-
cedure (Knuth, 1998) that sorts the reads in chunks and generates M
temporary files of sorted records. For clarity, in Figure 2 we show a
schematic example of the External-Sort-Collapsing procedure. Each
chunk of reads (of size 3, in the example of Fig. 2) is loaded into
RAM, where it is alphabetically sorted by a multi-threaded function.
Then, the sorted set of reads are collapsed and written on a tempor-
ary file on the disk (in dark-gray background). In the phase, the first
Csize=M sequences from all the temporary files are loaded in M buf-
fers. Then, an iterative selection-sort process is started, for identify-
ing the overall occurrences count of each read. At each iteration, the
tool appends a collapsed sequence to the output file, together with
the corresponding occurrences count. Empty chunks are refilled
with a portion of the temporary file from which the collapsed reads
come. At the end of the merge–collapse procedure, the output file
will contain all the collapsed reads and their corresponding occur-
rence count. If requested by the user, in case the input file provided
a quality score per read, the procedure computes the average quality
score of each block of collapsed reads, base-by-base.

Besides the aforementioned, BioSeqZip_Collapser supports two
additional cases: (i) files with PE reads stored with the interleaved
format, where mate 1 is in the even reads and mate 2 in the odd

Fig. 1. BioSeqZip_Collapser flowchart, with external sorting and collapsing steps

highlighted in dashed boxes

Fig. 2. Example of read collapsing based on external sorting
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reads. (ii) Files with joined mates and fixed break-point, where the
two mates are already in the same read.

As far as file formats are concerned, six different input/output com-
binations are available, all optimized to minimize the number of
required operations. More specifically, with Fastq input, the user can
select any of the four output formats. With a Fasta format, however,
the output can be either Tag or Fasta. Optionally, BioSeqZip_Collapser
can be even forced to generate a collection of output files with constant
size set by the user. In this case, the module generates multiple files of
the set dimension, each storing a portion of the collapsed reads sorted
in alphabetical order. This feature is particularly useful in cases where
the read files must be distributed to an High Performance Computing
cluster. For Fasta and Fastq output formats, the read count is appended
to the identifier on the header line. By doing so, the output file can be
easily handled by alignment programs without losing track of the ori-
ginal number of redundant reads before collapsing.

If the input is not a single file, but a folder containing multiple
files, the BioSeqZip_Collapser will implement a MS collapsing strat-
egy. Even in this case, the procedure can generate any of the four
possible output files, with a supplementary table reporting the ID of
collapsed sequence in the first column, the sequence in the second
column and its per-sample occurrence counts in the following col-
umns. The information reported in this table can be eventually lever-
aged by the Expander module to recover the original occurrence of
redundant reads in each sample.

2.2 BioSeqZip_Expander module
The files storing the collapsed reads can be given as input to the
most common RNA-Seq and DNA-Seq analysis pipelines, thereby
considerably reducing demands in terms of storage space and com-
putational time. As already discussed, this is a significant advantage
in case of systems with limited hardware resources that might not be
powerful enough to host the analysis of redundant data.

Especially for mapping and alignment procedures, the best prac-
tice would be to consider the complete available information at the
same time (i.e. sequence, sequence occurrence count and average
quality score). However, standard alignment tools are generally un-
able to leverage the occurrence count field of Fasta/Fastq files.
Hence, the analyst is left with two options: (i) customizing the map-
ping procedure to consider the read counts during the alignment al-
gorithm [We have adapted BWA and Yara aligners to consider the
occurrences stored in the header of each read of the collapsed Fastq
files, and the modified code is provided in two additional GitHub
repositories (links provided in the Supplementary Availability sec-
tion)]. (ii) Align the not-redundant reads and then re-expand the
compact aligned files, exploiting the occurrence counts to replicate
the original entries. The latter functionality is implemented by
BioSeqZip_Expander. This module re-expands the output files of
alignment/mapping tools by replicating each Tag by the occurrence
count of each sample. By doing so, it restores an expanded collection
of redundant sequences and corresponding mapping locations.

Multi-mapped reads can be handled either with a random assig-
nation strategy, as done by BWA (Li and Durbin, 2009), or with a
first position policy, like Yara (Siragusa, 2015), where the additional
locus are listed in a custom field of the SAM file.

BioSeqZip_Expander is meant for re-expanding the output of
any alignment tool, to obtain the same output that would have been
generated by aligning the raw non-collapsed sample. As long as each
SAM record stores the original name of the aligned read,
BioSeqZip_Expander is able to parse it and extract the number of
times the sequence was found by the BioSeqZip_Collapser in the
raw sample. Then, the target SAM record is written that number of
time to the final output file, which represents the expanded align-
ment file. BioSeqZip_Expander can deal with the two most common
file formats for alignment files: SAM and BAM.

In the case of MS collapsing, BioSeqZip_Expander will exploit
the supplementary table generated by the MS collapsing strategy to
restore the correct number of read sequence and originally detected
in each corresponding sample.

3 Results and discussion

We tested BioSeqZip on a set of 32 transcriptomic samples of 16 dif-
ferent human tissues from the Human Body Map 2.0 Project
(ERP000546). This set, characterized by the presence of both SE
and PE reads, was generated with the HiSeq 2000 sequencing tech-
nology (Ogasawara et al., 2006).

To assess our methodology, we evaluated four popular align-
ment tools on both collapsed and not collapsed reads. We decided to
evaluate the quality and computational costs of the alignment, be-
cause it is the fundamental step of any sequencing data analysis.

The experiments were performed on a Linux machine with 2�8
Intel cores clocked at 2.4 GHz (Xeon E5-2630), 128 GB RAM, 16
TB HDD SAS in RAID 6.

In the following, we will show the performance of our read col-
lapsing algorithm and the benefits of using tags representing col-
lapsed sequences for mapping procedures. We collapsed Fastq files,
hence retaining the average quality of the original files. A quality-
agnostic compression would be twice as faster and produce col-
lapsed files of half the size of the case reported here. Thus, the time
and memory reported in our results should be considered as a worst-
case scenario.

3.1 SS and MS collapsing performance
In this experiment, we collapsed reads from 16 SE and 16 PE human
samples (see full list and details in Supplementary Table S1). SE sam-
ples containing 1.26 billion of 75 bp reads, while PE samples com-
prising 1.28 billion of 50*2 bp Illumina reads. Both classes of
samples sequenced with a 20� coverage at a genome size of 3.1 GB.
Each sample contains 80 million of reads on average and occupies
17 GB on the disk for the SE and 26 GB for the PE.

In our test, the raw files were collapsed using
BioSeqZip_Collapser, first with a SS and then with a MS strategy.
Table 2 shows the results of the collapsing procedure, in terms of
the number of reads, the total size of samples and run-time. The first
column of the table makes explicit whether the considered samples
are uncompressed (i.e. RAW), collapsed SS or collapsed MS. The se-
cond column indicates whether the samples are SE or PE reads. The
following two columns report the number of reads and file size.
Concerning RAW and SSs, the sum of the corresponding sizes for
each sample is reported. While for MSs, the results were produced
by the MS collapse procedure. Finally, the last three columns of the
table report the overall collapsing time and the gain [computed with
Equation (2)] of the collapsing, in terms of number of reads to be
aligned and size of the file on the disk.

Gain% ¼ 1� Collapsed

Raw

� �
� 100: (2)

Some interesting observations can be gathered from Table 2.
First of all, SE samples achieved higher collapsing rate than PE sam-
ples. This is due to the exact collapsing algorithm leveraged by
BioSeqZip, that has better performance for shorter sequences,
assuming similar datasets sizes. More specifically, collapsing all the
SE samples with a SS strategy leads to a reduction in the number of
reads to be analyzed of �70%, whereas the storage requirements
are reduced to a quarter. MS collapsing leads to an even better gain
in terms of the number of reads and files size, but it comes at the
cost of higher run-time (30% higher in the worst case). In
Supplementary Section S4.2, we propose a collapsing experiment on
a WGS DNA-Seq sample from Scherer et al. (2019), showing the
benefit of the collapsing strategy on this type of data.

Different values of the memory constraints translate into a differ-
ent number of intermediate files that are generated during the col-
lapsing (the lower the memory limit, the higher the number of disk
operations). To clarify the relation between memory limit and
performance, we run an additional experiment by collapsing three
random files, at 4, 8, 16 and 32 GB limits by using 4 threads. The
run-time in seconds was respectively 1062, 1098, 1172 and 840.
This analysis highlights that the run-time required for collapsing a
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sample increases as the size of the buffer used for storing the sequen-
ces increases, up to the amount of memory that can contain the full
file to be collapsed (more details in Supplementary Section S4.3).

3.2 Alignment performance on collapsed samples
To assess the impact on alignment performance of both SS and MS
collapsing, we proceeded as follows: (i) we performed SS collapsing
of all the samples. Then, each collapsed file was aligned to the
Human transcriptome (Cunningham et al., 2015) using four popular
read mappers: respectively, BWA, Bowtie2, Yara and STAR.
Alongside, the raw uncollapsed files were also aligned using the
same tools, to measure the alignment time on the original number of
reads. (ii) We performed MS collapsing of the whole dataset, meas-
uring both execution time and RAM requirements (always within
the input constraint). Thus, we obtained a single collapsed Fastq
output file and a table of read occurrences for the whole dataset.
Then, we run the mappers on the Fastq file, assessing the execution
time of the alignment as well as the storage size of the mapped
reads.

In both experiments, we did not run the Expander module,
which is conceived as an optional feature in regular downstream
analysis.

The obtained results are plotted in Figure 3, where we show the
gain of aligning collapsed files (either SS or MS) instead of raw ones,
using alignment time as the figure of merit in Equation (2). For the
SS files, the collective gains of the individual samples of the dataset
are reported in the form of a box-plot, while an asterisk represents
the gain of MS. As can be gathered from the plots of Figure 3, the
benefits of collapsing were consistently high for all the mapping
tools. More specifically, the average alignment time speed-up
attested between 50% and 70% in case of SS collapsing and be-
tween 36% and 73% for MS collapsing.

If we take into account the storage requirements, the impact of
collapsing was even more significant, as the mapping file size was
reduced by 71% with SS and up to 80% with MS collapsing, re-
spectively. On top of that, we registered a significant reduction in

the size of the collapsed alignment files. Indeed, for the overall align-
ment files the total disk occupancy of raw files aligned was 4.7 TB
while SS aligned files occupy 1.9 TB with a reduction of 60%.
However, the best size reduction was achieved when aligning MS
collapsed files, obtaining a disk space reduction of 66%.

To estimate the run-time benefits of using collapsed files, in
Figure 4 we show the results obtained by aligning the raw SE and PE
files alongside the SS collapsed. In this plot, to have a complete
view, we took into account even the additional computational time
needed by BioSeqZip to collapse the sequence files (blue portion of
the bars). As it can be gathered from Figure 4, applying BioSeqZip
had a significant impact on the computational time required by
alignment and mapping procedures. The highest impact was for the
tool STAR, for which time reduced from 19 to 7 h for SE and from
27 to 10 h for PE, with reductions attesting between 55% and 63%,
respectively. Collapsing was very advantageous also for BWA and
Bowtie2. The weakest impact was for Yara mapper, for which the
alignment time of samples of the size considered in our tests is al-
ready minimal. Nonetheless, as it is visible from the blue portion of
the stacked bars, the additional computational time required for col-
lapsing the sequence file is always a small fraction of the overall
time needed to execute the alignment on the raw reads (red bars).
Hence, the collapsing is advantageous even in the worst-case
scenario.

To avoid possible inconsistencies, in our tests we verified the co-
herence of the raw and collapsed alignment files, by checking that
the same number of reads where mapped by the tools to the same
genome location of the alignments produced using the raw Fastq
files.

In the last mapping experiment, we analyzed SE samples of
BodyMap with either BioSeqZip_Collapser þ STAR þ
BioSeqZip_Expander (BSZ_CþSTARþBSZ_E) and Rail-RNA alone
and compared the two runs in terms of both execution time and
memory consumption (full analysis in Supplementary Section S4.4).
From this experiment, we obtained that the combination of
BSZ_CþSTARþBSZ_E outperformed Rail-RNA by 68% (15.29
versus 47.37 h). Note that the comparison is limited to time and
memory performance of the two pipelines, without in-depth evalu-
ation of the accuracy and consistency of the provided output.

Table 2. SS and MS collapsing performance

Sample No. of reads (G) Size (GB) Collapse time (s) Gain

Status Type No. of reads (%) Size (%)

RAW PE 1.28 390 0 0 0

SE 1.26 252 0 0 0

SS PE 0.59 141 9633 53.7 63.8

SE 0.39 64 6106 69.4 74.6

MS PE 0.54 134 12 708 57.7 65.6

SE 0.28 47 7763 78.0 81.4

Fig. 3. Gain of aligning collapsed files, using alignment time as the figure of merit

Fig. 4. Alignment performance on raw and collapsed files
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3.3 Comparison with alternative collapsers
For this test, we randomly selected three SE and three PE samples
(listed with blue background in Supplementary Table S3) and used
them to compare the compression performance achieved by
BioSeqZip with other tools available in the literature. The SE sam-
ples (labeled E890, E894 and E902) contain respectively 64, 77 and
82 million of 75 bp reads, with a disk space occupancy of �19, 22
and 24 GB. The PE samples (labeled E873, E882 and E886) are
characterized by 82, 74 and 83 million of 50*2 bp reads, with a disk
space occupancy of 25, 22 and 25 GB.

In our test, the raw files were collapsed using
BioSeqZip_Collapser (BSZ), Fast Unique (FU), FASTX-Toolkit
(FXT), ParDRe (PD), SeqClaster (SC) and Super Deduper (SD), re-
spectively. In case a tool did not support either PE (e.g. FXT and
SC) or SE (e.g. FU), we implemented a specific adapter to convert
SE into PE and vice versa. Indeed, some of the tools considered in
our test match the collapser requirements only partially, because
they were not specifically designed for this task (see Table 1). All the
tools were executed with default parameters, killing the process if
running for more than 5000 s.

Figure 5 reports six groups of bars, one per tool, showing the
performance in terms of total computational time spent for collaps-
ing the three SE and the three PE samples, respectively. As it can be
observed from Figure 5, BioSeqZip was faster than all the other
tools except for Super Deduper. However, Super Deduper collapses
the reads by only looking at the first bases of the sequence. Thus, it
generates over-collapsed files where reads with a different sequence
are often grouped together (more details in Supplementary Fig. S1,
where the collapsing efficiency of each tool is duly reported).
FASTX was close to our tool when dealing with SE samples, but on
the other hand it completely overlooks quality information and gen-
erates only Fasta files as output format. Similarly, ParDRe obtained
a performance comparable to BioSeqZip on PE samples, but even in
this case not all the identical reads were detected and collapsed
(details in Supplementary Fig. S1).

As already pointed out, a major distinguishing point of our im-
plementation is the possibility to impose a maximum limit of mem-
ory that can never be exceeded. In Figure 6, we report the memory
consumption of BioSeqZip with an imposed memory limit of 8 GB
and show the memory consumption of all the other tools for
comparison.The amount of RAM used impacts on the speed of
BioSeqZip. The more RAM we use, the lesser reading/writing opera-
tions we perform on the disk. Since the disk operations are the
bottleneck of our algorithm, reducing the number of these opera-
tions has a positive impact on the overall run-time of the BioSeqZip
collapsing procedure. As can be gathered from Figure 6, three tools
out of six reached peeks of 78 GB when dealing with PE samples.
Only FXT and SD were close to the 8 GB limit, even though, unlike
our solution, there is no specific guarantee that this constraint is al-
ways respected. In our tests, FXT tool reached a peak of RAM con-
sumption close to 13 GB, but without keeping tracks of quality
information. As already discussed, Super Deduper obtained the best
performance only in theory, as it over-collapsed non-identical reads.

In summary, BioSeqZip provides the best advantages in terms of
run-time and memory usage. Moreover, it generates alphabetically

sorted files, which is very useful to reduce the complexity of down-
stream analysis.

3.4 Overall impact of BioSeqZip on alignment
In this last section, we aggregate the outcome of the previous tests to
estimate the overall advantages of BioSeqZip in terms of reduction
of the file size on disk and of computational time spent for the
mapping.

As far as disk usage is concerned, the overall size of the collapsed
files, plus mapped files obtained using collapsed files as input, was
2.1 TB for SS and 1.8 TB for MS, against 5.4 TB of the RAW files.
More specifically, BioSeqZip was able to reduce 2.54 billion of
reads into 980 million of unique tags, in <4.4 h of computations.

In Table 3, we show details about alignment time of BWA,
Bowtie2, Yara and STAR on raw and SS collapsed reads, respective-
ly. The last column of the table reports the gain, using the execution
time of the alignment procedures on raw and SS collapsed files as
the figure of merit in Equation (2). As it can be gathered from the
table, when using Yara on collapsed files we observed a gain of
48%. The alignment time reduction was even more significant for
the other mapping tools: 57% for BWA, 55% for Bowtie2 and 68%
for STAR.

Based on the values of Table 3, we can estimate a total saved
time equal to 57.3 h, which provides the overall figure of merit of
the impact of BioSeqZip on alignment time.

4 Conclusion

In this paper, we presented BioSeqZip, a read collapsing tool that
can reduce the huge sequence files generated by high-throughput
NGS machines to compact sets of non-redundant reads.

Fig. 5. Collapsing performance of different collapsing tools. Total computational

time for collapsing SE and PE samples, respectively

Fig. 6. Memory usage of collapser tools

Table 3. Overall impact of BioSeqZip on the alignment time

Mapper tool Alignment time (h)

Raw read file Collapsed tag file Gain (%)

Yara 9.1 4.7 48

BWA 16.3 7.05 57

Bowtie2 21.2 9.5 55

STAR 47.2 15.2 68

2710 G.Urgese et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/9/2705/5717961 by Politecnico di Torino user on 06 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa051#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa051#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa051#supplementary-data


As we extensively demonstrated in our experiments, BioSeqZip
brings down the computational requirements of sequence analysis
pipelines, with particular benefits for the alignment techniques, that
are typically the ones with the highest computational costs.

In summary, the virtues of our approach are manifold:

• it is hardware-adaptive, as it is able to constrain RAM utilization

based on a user-defined threshold depending on the hardware

capabilities of the system.
• it is flexible, as it supports all the main sequencing file formats,

and operates at either an SS or an MS level.
• it is exhaustive, as it maintains track of read quality information

and read occurrence counts while collapsing the redundant

sequences, allowing easy restoration of the original data.

Besides alignment, we firmly believe that the complete analysis
pipeline will significantly benefit from the application of our collaps-
ing strategy. With minor modifications, mapping and alignment tools
may even directly leverage the occurrence counts information provided
by the compressed files to skip the re-expansion phase and speed-up
the mapping process (BWA and Yara are already available).
Exploiting sorting and merging operations, performed by BioSeqZip
during the collapsing phase, the mapped files (in SAM/BAM formats)
will be ready for further analysis as-is, without needing any supple-
mentary manipulations. Thus, in perspective, the computational costs
of the overall analysis can be reduced even further.

Sure indeed, the collapsing provided by BioSeqZip comes at a
possible cost of losing the read-specific quality. However, in case of
need the original quality value can be easily recovered from the full
uncollapsed Fastq.
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