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Growth and remodelling from the perspective of Noether’s Theorem
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aDepartment of Mathematical Sciences “G.L. Lagrange”, ‘Dipartimento di Eccellenza 2018-2022’, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10124, Torino, Italy

bDepartment of Mechanical and Manufacturing Engineering, The University of Calgary
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Abstract

Starting from the observation that the growth of a body breaks the time translation symmetry of the body’s dynamics, we determine a
scalar field, called internal time, that defines an indicator of the intrinsic time scale of the growth-related body’s structural evolution.
By recasting the theory of growth for monophasic media within a variational framework, we obtain the internal time as the solution
of a partial differential equation descending from Noether’s Theorem. We do this by considering two approaches, one formulated
in terms of internal variables and one adopting the concept of augmented kinematics.
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1. Introduction1

The mechanics of volumetric growth studies the variation2

of mass and the concomitant structural evolution of biological3

tissues [1, 2, 3]. Such processes are often conceived as anelastic,4

and are described by a generally non-integrable tensor field, Q,5

referred to as growth tensor.6

The role of Q in the modelling of growth is not unique,7

and its interpretation depends on the theory within which it is8

introduced. To the best of our knowledge, there exist at least two9

ways of interpreting Q: it can be viewed either as an internal10

variable (see e.g. [3]) or as a kinematic variable (see e.g. [4]).11

The conceptual difference between these two approaches affects12

all the relations governing the dynamics of a body, especially13

the one representing the evolution of its internal structure.14

The way in which the dissipation is studied in [3] and [4]15

plays a major role in this work. In the sequel, indeed, we employ16

the dissipation inequality to show that a growing body possesses17

an intrinsic time scale, defined by the chosen theory. To this end,18

we take inspiration from Vakulenko’s concept of “endochronic19

thermodynamics” [5, 6], and we demonstrate that the body’s20

intrinsic time scale is related to a generalised force, hereafter21

denoted by F0 and termed time-like inhomogeneity force [7].22

In our framework, F0 plays a role similar to that played by the23

material inhomogeneity forces in Eshelby’s theory of inclusions24

[8] and, more generally, in the mechanics of materials with25

inhomogeneities [7], as is the case of growing media [3].26

Vakulenko’s theory addresses the thermodynamics of anelas-27

tic processes [5, 6], and is said to be “endochronic” since it as-28

sociates a given anelastic process with a scalar-valued function,29

the “thermodynamic time”, defined from the outset as the time30

integral of a suitable function of the entropy production [6].31
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Quite differently, in our work we identify the internal time 32

of growth of a body, hereafter denoted by g, with the solution 33

of the partial differential equation [9] 34

N0 (g) := H ¤g − (ZTv) Grad g − F0 g = 0, (1)

where H is the body’s total energy density, Z is the first Piola- 35

Kirchhoff stress tensor and v is the Lagrangian velocity field. 36

Equation (1)was deduced in [9] as a consequence ofNoether’s 37

Theorem, and g was defined as a deformation of time depend- 38

ing on material points and on time itself. More specifically, g 39

was introduced to highlight how the occurrence of growth in 40

a body is a symmetry breaking, spoiling the invariance of the 41

body’s dynamics under time translations and yielding the fail- 42

ure of the conservation of energy [9]. This symmetry breaking 43

results in the arising of F0 and manifests itself as the loss of the 44

homogeneity of time. 45

In this work, we deeply reformulate themathematical frame- 46

work of [9] and, after polishing it from some formal impre- 47

cisions, we propose the following novelties: (a) we retrieve 48

Equation (1) within the two different pictures of growth given 49

in [3] and [4], respectively; (b) for both pictures, we compute 50

explicitly the internal time, g, and we show that the quantity 51

gc := 1 − g/g0, where g0 is a reference value, is analogous 52

to endochronic time in that it increases monotonically in time 53

and may thus represent an intrinsic time-scale associated with 54

growth; (c) within the formulation presented in [4], we describe 55

mechanotransduction through the conceptually systematic ap- 56

proach of Theoretical Mechanics. Our results also apply to 57

remodelling. 58

2. An overview on growth mechanics 59

We consider the simplest possible formulation of the volu- 60

metric growth of a body. In particular, we assume the body to 61
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be hyperelastic and we employ the Bilby-Kröner-Lee decompo-62

sition of the deformation gradient tensor, i.e., L = �Q, so that63

the body’s material response is described by the strain energy64

density function65

Ψ(-, C) = Ψ̂(L(-, C), Q (-, C)) = �Q Ψ̂a (�(-, C)), (2)

where� := LQ−1 is the elastic part of the deformation gradient66

tensor, Ψ̂a is the strain energy density expressed per unit volume67

of the body in its stress-free state, and �Q := det Q > 0.68

In local form, and with respect to the body’s reference con-69

figuration, ℬ, the mass balance law is given by ¤rR = Π, where70

rR is the mass density of the body per unit volume of ℬ, the71

superimposed dot denotes partial differentiation with respect to72

time, and Π is the source or sink of mass that describes growth.73

As in [3, 10], we write rR = �Q ra , where ra is the mass density74

of the body in its stress-free state, and we require the conditions75

¤�Q
�Q

= tr(Q−1 ¤Q) = 1
2 tr( ¤IQI

−1
Q ) =

Π

�Q ra
=: Γ, (3)

where IQ := QT.Q is the metric tensor induced by Q, Γ mea-76

sures the relative variation of rR, and ra is regarded as a time77

independent field specified from the outset.78

Within the quasi-static limit, and neglecting all inertial and79

long-range body forces, such as gravity, the local form of the80

momentum balance law reads81

DivZ = 0, (4a)

Z =
mΨ̂

mL
◦ (L, Q) = �Q

[
mΨ̂a

m�
◦�

]
Q−T, (4b)

where Div is the material divergence operator and Z is the first82

Piola-Kirchhoff stress tensor. The balance law (4a) should be83

regarded as an equation for the motion of the body, j, whose84

partial derivatives define the components of L. To determine85

Q, an additional, independent equation is needed.86

2.1. Tensor K viewed as internal variable87

The tensor field Q shares several formal analogies with the88

inverse of the tensor field referred to as “uniformity mapping”89

in [3]. Hence, if Q is regarded as an internal variable, the theory90

exposed in [3] can be employed to develop a criterion for de-91

termining an admissible evolution law for Q. In particular, by92

invoking the representation theorem for tensor-valued functions93

[11], it can be shown that, in the case of isotropy, Q satisfies94

sym[IQ�] =
2∑
==0
(�Q )−=V=N=IQ , (5)

where � := Q−1 ¤Q, N is Eshelby’s stress tensor,95

N := ΨOT − LTZ ≡ QT
(
mΨ̂

mQ
◦ (L, Q)

)
, (6)

and {V=}2==0 are to be expressed constitutively through func-96

tions of �Q , Ψ, the three principal invariants of N, and other97

quantities, possibly required by phenomenology.98

In Equation (5), the convention N0 = OT is used, where OT
99

is the transpose of the material identity tensor, O. Moreover, 100

because of isotropy, NIQ is symmetric, and so is also N2IQ = 101

NIQN
T [12]. Finally, the functions {V=}2==0 have to comply 102

with the dissipation inequality 103

DIV = Ψ tr(�) − N : � +Dnc ≥ 0. (7)

Here, Dnc is said to be the “non-compliant” contribution to 104

the dissipation [13] and is attributed to processes accompanying 105

growth but not explicitly accounted for in the model. Moreover, 106

the subscript “IV” inDIV stands for “internal variable” to remark 107

that in Equation (7) Q is viewed as an internal variable. 108

In order to model the material inhomogeneities associated 109

with growth, Epstein and Maugin [3] introduce a Lagrangian 110

density function, L, whose constitutive representation depends 111

on material points and time through Q. Hence, within the quasi- 112

static limit, in which the identification L = −Ψ applies, and by 113

mimicking the theory of material uniformity [3], we can write 114

L = Ľ ◦ (L,X, T) = L̂ ◦ (L, Q) = −Ψ̂ ◦ (L, Q), (8)

where X : ℬ×R→ℬ and T : ℬ×R→ R are auxiliary func- 115

tions defined by X(-, C) = - and T(-, C) = C, and introduced to 116

account for the explicit dependence of Ľ on material points and 117

time [14], i.e., 118

L(-, C) = Ľ(L(-, C), -, C) = −Ψ̂(L(-, C), Q (-, C)). (9)

Equations (8) and (9) permit to determine the time-like inhomo- 119

geneity force, F0 (see also [15], where it is referred to as “energy 120

release rate”), which, recalling the definition� := Q−1 ¤Q, reads 121

F0 :=
mĽ

mT
◦ (L,X, T) = −

(
mΨ̂

mQ
◦ (L, Q)

)
: ¤Q

= − N : � = DIV −Dnc −Ψ tr(�). (10)

Thus, g is determined by Equation (1) with H = Ψ. 122

2.2. Tensor K viewed as kinematic variable 123

A different approach to the mechanics of growth is provided 124

in [4], where the structural transformation of a body corresponds 125

to the activation of structural degrees of freedom describing 126

the body’s internal kinematics. From this perspective, Q and 127

¤Q acquire the meaning of tensor-valued kinematic descriptors 128

that, together with j, v = ¤j and Grad v = ¤L, define the overall 129

kinematics of the body. 130

Restricting our considerations to a material of first grade in 131

j and zeroth grade in Q [4], it is natural to define the body’s 132

configuration manifold as a suitable set of pairs (j, Q) describ- 133

ing the overall evolution of the body. Accordingly, the bundle 134

of the body’s virtual velocities is given by the set of triples 135

(v,Grad v, `) that represent all the admissible realisations of 136

the generalised velocities associated with the “standard” mo- 137

tion, i.e., v and Grad v, and with the structural evolution, `, 138

respectively. 139
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By duality, it is natural to introduce the generalised forces140

expending virtual power on v, Grad v, and `. Hence, the Princi-141

ple of Virtual Powers, specialised here to the case of no external142

forces dual to v (i.e., neither inertial nor body forces), reads143 ∫
ℬ

{Z : Grad v + Q−T_ i : `} =
∫
ℬ

Q−T_e : `, (11)

where_ i and_e are an internal and an external generalised force144

dual to Q−1`, respectively, and ` is the virtual counterpart of145

¤Q. The strong form of (11) consists of the force balances146

DivZ = 0, (12a)
_ i = _e. (12b)

To close themodel, we prescribe_ i constitutively, in compliance147

with the dissipation inequality148

DKV = −N : � + _ i : � = _ id : � ≥ 0, (13)

where_ id := _ i−N is said to be the dissipative part of_ i [16, 4]149

and the subscript “KV” reminds that Equation (13) is obtained150

by regarding Q as a kinematic variable.151

In the sequel, we admit that_ id depends constitutively on L,152

Q and ¤Q, and, because of isotropy, we express such dependence153

as a function _̄ id of L, IQ and ¤IQ , i.e., _ id = _̄ id ◦ (L,IQ , ¤IQ ).154

Thus, we rewrite (12b) as155

_e − _̄ id ◦ (L,IQ , ¤IQ ) = N, (14)

thereby obtaining the equation of “motion” for Q. To supply156

an explicit expression for _̄ id, we rewrite it as a function of �,157

i.e., _̄ id ◦ (L,IQ , ¤IQ ) = _̌ id ◦ (L, Q,�), and we notice that,158

because of isotropy, the tensor _e − _ id in Equation (14) must159

have the same symmetry property as N, i.e., I−1
Q (_e − _ id) =160

(_T
e − _T

id)I
−1
Q . Here, without much loss of generality, we161

hypothesise that such property holds, independently, both for162

_ id and for _e, and, by further assuming _̌ id to be linear in �,163

we prescribe (cf. e.g. [17, 18] and references therein)164

I−1
Q [_̌ id ◦ (L, Q,�)] = D : sym(IQ�), (15)

where D is a fourth-order tensor function given by165

D = 3�Q 3vK
♯ + 2�Q 3mM

♯ . (16)

Here, 3v and 3m are scalar constitutive functions to be speci-166

fied, K♯ and M♯ are defined as (analogous operators have been167

introduced in [19, 17])168

K♯ = 1
3I
−1
Q ⊗ I−1

Q , (17a)

M♯ = 1
2 [I

−1
Q ⊗I

−1
Q + I

−1
Q ⊗I

−1
Q ] − K

♯, (17b)

and the tensor products “⊗” and “⊗” are defined in [20]. By169

using the identity sym(IQ�) = 1
2
¤IQ , we find (cf. [21])170

D : 1
2
¤IQ = I−1

Q [_e − N], (18)

thereby supplying six independent differential equations in the 171

six independent components of IQ . Moreover, we split Equa- 172

tion (18) into the two independent equations 173

�Q 3vtr
(

1
2
¤IQI

−1
Q

)
= 1

3 tr_e − 1
3 tr N, (19a)

2�Q 3mdev
(

1
2
¤IQI

−1
Q

)
= dev_e − dev N. (19b)

Once the external force _e is identified, and IQ is computed by 174

solving (18), the termΓ in themass balance law (3) is determined 175

by Γ = tr� = 1
2 tr( ¤IQI

−1
Q ). Finally, F0 becomes 176

F0 = −N : � = (_ id − _e) : �, (20)

and the equation for g takes on the form 177

Ψ ¤g − (ZTv) Grad g + [(_e − _ id) : �]g = 0. (21)

Before proceeding, we remark that Equation (15) is not the 178

most general constitutive law relating _ id with �, or ¤IQ . The 179

main property of (15) is that, being invertible, if � is null, 180

then _ id is null too, thereby implying _e = N. Moreover, due 181

to invertibility, it is true that, when _ id is null, also � has to 182

vanish, which means that the balance between _e and N leads 183

to a stop of the growth process. However, in the case of a tumour, 184

this last result need not be true (see e.g. [10]), as it may well 185

happen that, if no nutrients are available for the tumour cells, 186

� vanishes also when _ id is not null, a situation that, according 187

to Equation (19a), requires 3v to diverge for finite values of 188

_ id := _e − N. 189

3. A Noether-like framework 190

Equation (1) can be obtained by framing growth within a 191

Noether-like approach. To show this, we introduce the action 192

A :=
∫
ℬ×ℐ

L,

where ℐ ⊆ [0, +∞[ is an interval of time, and the notation 193∫
ℬ×ℐ 5 ≡

∫
ℐ

{∫
ℬ
5 d+

}
dC applies. 194

3.1. K considered as internal variable: internal time 195

When Q is regarded as an internal variable, the Lagrangian 196

density function is defined in Equation (9), and the first-order 197

total variation of the action reads 198

�A =

∫
ℬ×ℐ

[
Eh + Div(−NT] − ZTu)

]
, (22)

where] is a vector field, valued in the tangent bundle ofℬ, that 199

at each time C maps the points - of ℬ into -̃ = - + Y] (-, C), 200

with Y being a real smallness parameter, h is the vector field 201

describing the variation of j when the points - are held fixed, 202

u := h+L] is the vector field representing the total variation of 203

j, and Eh = E0ℎ
0 is the contraction of the co-vector field E := 204

DivZ with h (see [14] for a derivation in a notation similar to 205

that adopted here). In addition, we denote by J := −NT]−ZTu 206
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Noether’s current density, which is the sum of a fully material207

current density, J(m) = −NT], and a “spatial” current density,208

J(s) = −ZTu (note that, although J(s) is a material field too, we209

call it “spatial” because it is generated by the spatial vector field210

u).211

Upon setting ] = 0 in ℬ and h |mℬ = u |mℬ = 0 for all212

times, Hamilton’s Principle of Stationary Action [22] requires213

�A = 0, which leads to E = DivZ = 0 in ℬ and Z.T = 0214

on m#ℬ, where T is the field of unit vectors normal to the215

Neumann boundary of ℬ, m#ℬ.216

For j and Q satisfying E = 0, we look at Equation (22)217

under the light shed by Noether’s Theorem [23]. Hence, we218

search for conservation laws, and we obtain [9]219

DivJ(s) = −Z : Grad u, (23a)

DivJ(m) = F] − N : Grad] =: N(]), (23b)

where F := mĽ
mX
◦ (L,X, T) = −[ mΨ̂

mQ ◦ (L, Q)] : Grad Q is220

referred to as “material inhomogeneity force” [24, 25, 7] and221

F] = F�,
�. We remark that, more generally, the integrand in222

Equation (22) should feature a summand consisting of the diver-223

gence of a vector field independent of L, and descending from224

the so-called “divergence transformation” of the Lagrangian225

density function [23, 7, 14]. However, as in [23], this summand226

can be omitted for the type of symmetries addressed here.227

In Equation (23a), Z : Grad u vanishes identically in three228

cases: when u is null, when u represents a uniform translation,229

or when u takes on the form u = g−18[j − G0], where 8 is a230

uniform skew-symmetric tensor, G0 is a fixed point of space and231

g−1 is the inverse of the spatial metric tensor, g. The second232

case is consistent with the fact that Ľ is independent of j, so233

that the system is invariant under translations in space and, thus,234

linear momentum is conserved. The third case, instead, stems235

from the symmetry of g−1ZLT, which ensures Z : Grad u =236

(g−1ZLT) : 8 = 0 and is equivalent to the conservation of237

angular momentum. In conclusion, for the mentioned choices238

of u, DivJ(s) is zero, which implies that J(s) is conserved.239

We turn now to Equation (23b), and we notice that it is ob-240

tained by using the relation −Div N = F. This result follows241

from the computation of the divergence of N, and characterises242

the fully material force balance describing the “inverse dynam-243

ics” of the body [7, 3]. It stipulates that the “spatial” part of the244

body’s energy-momentum tensor, −N, is not conserved. This245

is a manifestation of the symmetry breaking due to the material246

inhomogeneity of the body, reflected by N(]). This quantity247

plays the role of an effective source term for J(m) [9] and is such248

that the variation of the action becomes �A =
∫
ℬ×ℐ N(]).249

Therefore, in order to search for the class of fields ] such that250

J(m) is conserved and the action is invariant, i.e., �A = 0, one251

has to impose [9]252

N(]) = −N : Grad] +F]
= −N :

[
Grad] + (Q−1Grad Q)]

]
= 0. (24)

We remark that relations of the type (24) are sometimes referred253

to as “Noetherian identities” [26].254

Apart from the trivial solution] = 0, a uniformfield] does 255

not generally satisfy Equation (24) and, thus, the action is not 256

invariant under uniform translations of the material points. This 257

result is another evidence of the symmetry breaking emerging 258

because of F. Clearly, if Q is uniform, so that Grad Q = 0, 259

then ] can be uniform too. When this occurs, F vanishes 260

identically and, in the jargon of [7], one obtains the conservation 261

of “canonical pseudo-momentum”. Let us now look at the 262

identity 263

¤Ψ − Div(ZTv) = −F0, (25)

which is the non-conservation of energy for H = Ψ = −L 264

(i.e., in the quasi-static limit), and let us multiply Equation (25) 265

by a scalar field g : ℬ × ℐ → R describing a point- and 266

time-dependent deformation of time [9]. Then, recalling the 267

definition of F0 given in (10), we find (cf. [7]) 268

¤
Ψg + Div(−ZTvg)
= Ψ ¤g − (ZTv) Grad g + (N : �)g =: N0 (g). (26)

By analogy with Equation (23b), we callN0 (g) effective source 269

of Noether’s energy current density, defined by the time-like 270

componentΨg and the flux vector−ZTvg. As noticed forN(]), 271

the presence ofF0 = −N : � implies thatN0 (g) does not vanish 272

for nonzero constant fields g. Hence, to conserve Noether’s 273

energy current density, we enforce the condition anticipated by 274

Equation (1), i.e., 275

N0 (g) = Ψ ¤g − (ZTv)Grad g + (N : �)g = 0, (27)

in which N : � is now regarded as the generator of g. 276

3.2. K considered as a kinematic variable: internal time 277

Equations (6), (8) and (14) allow to rephrase the force bal- 278

ances (12a) and (12b) as 279

DivZ ≡ −Div

(
mL̂

mL
◦ (L, Q)

)
= 0, (28a)

−N ≡ QT

(
mL̂

mQ
◦ (L, Q)

)
= _ id − _e. (28b)

Looking at (28b), we notice that a relevant case occurs when 280

there exists a potential U = Û ◦ (L, Q) such that 281

mÛ

mL
◦ (L, Q) = 0,

mÛ

mQ
◦ (L, Q) = Q−T_e, (29)

where the first requirement of Equation (29) prevents Û from 282

introducing an unphysical contribution to Z. Thus, Eqs. (28a) 283

and (28b) become 284

−Div

(
mL̂eff
mL

◦ (L, Q)
)
= 0, (30a)

QT

(
mL̂eff
mQ

◦ (L, Q)
)
= _ id, (30b)

4



with Leff := L + U being referred to as effective Lagrangian285

density function. Note that, although Equation (29) may be too286

restrictive for biologically meaningful situations, it is possible287

to think of _e as the sum of an integrable and a non-integrable288

force, with the former one admitting a potential like Û. For289

this reason, in this work we concentrate on the limiting case in290

which _e is integrable.291

By defining the effective action, Aeff =
∫
ℬ×ℐ Leff , the first-292

order total variation of Aeff is given by293

�Aeff =

∫
ℬ×ℐ

[
Q−T_ id : � + Div(J(s) + J(m)eff )

]
, (31)

with J(s) = −ZTu, J(m)eff = −NT
eff], the effective Eshelby stress294

tensor Neff = −(Leff O
T + LTZ) and � being the variation of Q295

when the points - are “held fixed”.296

Upon taking DivJ(s) = 0, as done in Section 3.1, a direct297

calculation yields298

DivJ(m)eff = Feff] − Neff : Grad], (32)

where we call Feff :=
(
Q−T_ id : Grad Q

)
effective inhomogene-299

ity force, and Equation (31) reduces to300

�Aeff =

∫
ℬ×ℐ
[Q−T_ id : W − Neff : Grad]], (33)

with W := � + (GradQ)] being the total variation of Q. If we301

set ] = 0, Equation (33) returns Rayleigh-Hamilton Principle302

[22, 27], which states that the first-order variation of the action303

is equal to the integral of the work Q−T_ id : W. Thus, if we304

reinterpret Equation (33) on the basis of this result, we find that305

the class of fields ] satisfying �Aeff =
∫
ℬ×ℐ Q−T_ id : W is306

given by all the solutions of the equation307

−Neff : Grad] = 0. (34)

In contrast to (24), Equation (34) is satisfied by nontrivial uni-308

form fields ]. To see the implications of this result, let us309

consider the situation in which _ id is null. Hence, it follows310

that N = _e, DivJ(m)eff = −Neff : Grad], and Equation (33)311

becomes �Aeff =
∫
ℬ×ℐ [−Neff : Grad]]. In this case, uni-312

form fields ] leave the action invariant, i.e., �Aeff = 0, and313

represent symmetry transformations. This constitutes a symme-314

try restoration and is due to the fact that, since _ id is null, N is315

entirely “balanced” by_e, which plays the role of compensating316

field. In fact, this results follows from Equation (30b), which,317

for _ id = 0, implies Feff :=
(
mL̂eff
mQ ◦ (L, Q)

)
: Grad Q = 0 even318

though it holds that F = −N : Q−1Grad Q ≠ 0.319

As done in Section 3.1, we consider the identity320

¤Ψeff − Div(ZTv) = −_ id : � = −DKV, (35)

where Ψeff := −Leff denotes the effective energy density asso-321

ciated with the body and, by multiplying (35) by g, we obtain322

¤
Ψeffg + Div(−ZTvg)
= Ψeff ¤g − (ZTv) Grad g −DKV g =: N0eff (g). (36)

Equation (35) describes the non-conservation of Ψeff , while 323

Equation (36) definesN0eff (g) as the effective source ofNoether’s 324

energy current density with time-like component Ψeffg and flux 325

vector −ZTvg. Hence, to conserve Noether’s energy current 326

density, the condition 327

N0eff (g) = Ψeff ¤g − (ZTv) Grad g −DKV g = 0 (37)

has to be imposed. Equation (37) prescribes that DKV is the 328

generator of g. Therefore,DKV can be thought of as an effective 329

time-like inhomogeneity force, i.e., F0eff := DKV, which van- 330

ishes in the non-dissipative limit. If this is the case, a constant 331

field g satisfies N0eff (g) = 0 and, consequently, Eq. (36) and 332

(37) is satisfied as a conservation law. This is a crucial differ- 333

ence with Equations (21) and (27), in which the generator of g 334

is given by −F0 = _e − _ id = N : � and need not vanish even 335

when the dissipation is zero. 336

4. A proof of concept 337

To supply a proof of concept of the theory discussed so 338

far, we take a benchmark problem from [10]. Specifically, we 339

study a tumour modelled as a monophasic, isotropic, solid body 340

of cylindric shape, confined by an undeformable lateral wall, 341

and allowed to expand uniformly along its axial direction, with 342

traction-free terminal cross sections. Moreover, we assume the 343

growth tensor, Q, to be spherical. By using cylindrical coordi- 344

nates, these hypotheses imply that the only nonzero component 345

of the velocity, v, is the axial one, EI , and that L, Q, � = Q−1 ¤Q, 346

Z and N admit the diagonal matrix representations 347

[�] = diag{1, 1, f}, (38a)
[ ] = : diag{1, 1, 1}, (38b)

[Λ] = :−1 ¤: diag{1, 1, 1}, (38c)
[)] = diag{) '

A , ) Φ
i , )

/
I }, (38d)

[�] = diag{Ψ − ) '
A ,Ψ − ) Φ

i ,Ψ − f) /
I }. (38e)

We remark that, since DivZ = 0 reduces to m) /
I /m/ = 0, and 348

the terminal cross sections of the body are free of tractions [10], 349

) /
I is zero at all the points of the tumour. This implies that 350

the energy flux ZTv vanishes identically, i.e., ZTv = ) /
I EI = 0. 351

Moreover, as in [10], we adopt theBlatz-Ko strain energy density 352

Ψ = �Q
1
2 `

[
(�1 − 3) − 1

@/2 (�
@/2

3 − 1)
]
, (39)

with �1 = tr(II−1
Q ), �3 = �−2

Q detI and material constants ` > 0 353

and @ < 0. Due to Equation (39), the constitutive expression of 354

) /
I is such that [10] 355

) /
I = `

:3

f

[
f2

:2 −
(
f

:3

)@]
= 0 ⇒ f = :

2−3@
2−@ . (40)

Therefore, any constitutive function of f and : can be rephrased 356

as a function of : alone. For, example, in the case of Eshelby 357

stress, one has N = N̂(f, :) ≡ H(:) and 358

ℌ(:) := 1
3 trH(:) = Ψ − 1

3 ()
'
A + ) Φ

i ) = 1
3 tr N. (41)
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First, we consider the case in which Q is an internal vari-359

able [3] and we refer to this model as “IV Model”. We notice360

that, in order to recover the growth law proposed in [10] from361

Equation (5), we have to set V= = 0, for = ≠ 0, thereby obtaining362

¤: = V0:, V0 =
1
3Γ, (42)

where, in general, V0 depends on mechanical stress through the363

principal invariants of N. However, if V0 is assumed to be a364

positive constant, and if the initial distribution of : , denoted by365

: in, is independent of material points, : is uniform and increases366

exponentially in time [10], i.e., : (C) = : in exp(V0C) (see the line367

marked with triangles, and referred to as “IVModel”, in Fig. 1).368

Moreover, according to Equation (40), also f is independent of369

material points. In the case under study, the material inhomo-370

geneity force F is null, so that uniform fields ] = ]0 satisfy371

Equation (24) and, since the identity N : � = ¤Ψ holds true,372

Equation (27) becomes373

N0 (g) = Ψ ¤g + ¤Ψg = ¤Ψg = 0. (43)

Coherently with Equation (26), this result implies that the time-374

like component of Noether’s current density, Ψg, is conserved,375

and the internal time is given by376

Ψ(C)g(C) = Ψ0g0 ⇒ g(C) = g0Ψ0
Ψ(C) , (44)

where Ψ0 and g0 are reference constant values, and Ψ(C) is377

rescaled so that Ψ(0) = Ψ0. The trend of g is reported in Fig. 2378

and corresponds to the solid line marked with triangles and379

referred to as “g/g0 IV Model”. The product Ψ0g0 defines the380

negative of a reference value of the action, i.e., A0 := −Ψ0g0,381

which is invariant.382

Now, we regard Q as a kinematic variable [4] and we call383

this model “KVModel”. In this case, the evolution of : is given384

by Equations (19a) and (19b), which yield385

¤:
:
=

1
3:33v

[.e − ℌ(:)] , (45)

with.e := 1
3 tr_e and dev_e = 0. Within the present variational386

setting, we choose a constant .e, so that it can be obtained by387

differentiation of the potential Û ◦ (L, Q) = .e ln(det Q), and388

the numerical solution of Equation (45), obtained for constant389

3v, is reported in Fig. 1 (see the solid line marked with open390

circles and referred to as “KV Model - Linear Case”).391

Since it holds true that ZTv = 0, Equation (35) prescribes392

DKV = − ¤Ψeff and, consequently, Equation (37) becomes393

N0eff = Ψeff ¤g + ¤Ψeffg =
¤

Ψeffg = 0. (46)

Therefore, the internal time, g, is given by394

Ψeff (C)g(C) = Ψeff0g0 ⇒ g(C) = g0Ψeff0
Ψeff (C)

, (47)

with g0 andΨeff0 being reference constants, andΨeff (C) rescaled395

so that Ψeff (0) = Ψeff0. In spite of the similarity with Equa-396

tion (44), in the present case g(C) depends on .e. Its evolution397

is shown in Fig. 2 and corresponds to the solid line marked with398

open circles.399

5. Discussion 400

In the IV Model, the coefficient V0 in Equation (42) is as- 401

sumed to be constant. Although this choice may be too restric- 402

tive, it describes the limit case in which, to activate growth, it 403

is sufficient that the nutrient substances in the tumour exceed a 404

certain threshold. Clearly, more general models, which include 405

the feedback of stress on growth (mechanotransduction), can be 406

obtained by considering Equation (5) in full, or by expressing 407

V0 as a phenomenological function of the stress. 408

In the KVModel, which descends from Equation (15), (19a) 409

and (45), : is coupledwith.id := 1
3 tr_ id = .e−ℌ(:), rather than 410

with stress alone, and this coupling may appear both directly, 411

i.e., in the right-hand-side of Equation (45), and indirectly, i.e., 412

through the coefficient 3v, which can be taken as a function of the 413

principal invariants of_ id. To the best of our understanding, this 414

could be a possible interpretation of the “Eshelbian coupling” 415

mentioned in [4]. In this respect, we also notice that, evenwithin 416

our variational setting, mechanotransduction can be accounted 417

for by suitably interpreting .e. This can be achieved by relating 418

¤:/: to a term of the type [28, 29] 419

" (�) := 1 − 20�

20.e + �
= 1 − �

.e
+ >

(
�

.e

)
, (48)

where 20 ∈ ]0, 1[ is a model parameter and � := 1
3 tr N = ℌ(:). 420

By setting "lin (�) := 1−�/.e, Equation (45) can be rewritten 421

as ¤:/: = "lin (�)/3:3ḡ, where ḡ is a characteristic time scale 422

and 3v ≡ ḡ.e. The solution to this equation, or, equivalently, 423

to Equation (45), corresponds to the solid line marked with 424

open circles in Fig. 1, where it is compared with the solution 425

to the equation ¤:/: = " (�)/3:3ḡ. The latter is represented 426

by the solid line marked with triangles in Fig. 1, and refers to 427

a phenomenological model in which the mechanotransduction 428

term, " (�), is not linearised. Looking at the magnified inset 429

in Fig. 1, we notice that a constant and integrable .e, although 430

being restrictive, leads to reasonable results for the first days in 431

which the tumour grows, i.e., as long as the ratio �/.e remains 432

sufficiently small. For longer times, however, the solution to 433

Equation (45) ceases to be acceptable. Indeed, it tends towards 434

a stationary value, corresponding to the force balance.e = ℌ(:), 435

which contradicts the hypothesis �/.e → 0. The solution of 436

the nonlinear model, instead, keeps increasing in time, and is 437

qualitatively closer to the dashed curvemarkedwith open circles 438

that describes the trend of : in the case of a reference model 439

available in the literature [29]. 440

Themain result of thiswork is the introduction of the internal 441

time, g, that, for the considered benchmark problem, is obtained 442

by solving Equation (44) for the IVModel and Equation (47) for 443

the KV Model. The solutions, expressed in terms of the ratio 444

g/g0, are reported in Fig. 2 and correspond to the solid lines 445

marked with asterisks and open circles, respectively. We notice 446

that, since bothΨ andΨeff increase with : , and since : increases 447

with time, g/g0 decreases monotonically for both models. In 448

particular, since : is computed by solving Equation (45), which 449

admits a stationary solution, g/g0 reaches a plateau for long 450

times, and the solution predicted by the IV Model tends to con- 451

verge to the one supplied by the KV Model. Finally, we notice 452
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that the function gc = 1 − g(C)/g0 is monotonically increasing,453

and might thus be taken as a natural characteristic time scale of454

growth, just as the endochronic time in Plasticity [6].455

6. Conclusions456

In thiswork, we have studied a problemof volumetric growth457

in a continuum body within the quasi-static limit. In doing this,458

we have followed two paths: the one that views the growth ten-459

sor, Q, as an internal variable, and the one that defines Q as a460

kinematic variable. We have cast the problem in a variational461

setting and we have employed the framework of Noether’s The-462

orem in order to reveal some subtle implications of the two the-463

ories of growth exploited in the manuscript, especially in terms464

of material inhomogeneities and conservation laws. Hence, we465

have shown that Noether’s current is not conserved, in general,466

for the classes of transformations that would represent mate-467

rial symmetries if the body were homogeneous. This has been468

reflected, in fact, by the condition N(]) = 0, imposed to anni-469

hilate the effective source of Noether’s current [9].470

We have focussed on the non-conservation of energy. This471

has led us to adopt the conditions N0 (g) = 0 and N0eff (g) = 0,472

respectively, to search for transformations capable of defining a473

characteristic time scale for growth, termed internal time.474

Figure 1: Time evolution of :. The model parameters are Γ = 2.68 · 10−2 s−1,
for the IV-model, and 20 = 0.7138, .e = 2.159 kPa and ḡ = 106 s, for the
KV-model. For both models, we set ` = 1.999 kPa, @ = −1, :in = 1.
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