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Abstract

The paper investigates the fatigue feature sensitivity, considering the two stan-
dard cases of a center-through thickness sharp crack and a circular notch by the
coupled criterion of Finite Fracture Mechanics (FFM). Similarly to other crite-
ria based on a critical distance, the FFM approach involves two parameters: the
plain specimen fatigue limit, and the threshold value of the stress intensity factor
range for fatigue crack growth. On the contrary, the novelty of FFM is that the
crack advance becomes a structural parameter, dependent on the geometry of the
mechanical component. The accuracy of FFM is checked by considering exper-
imental data available in the Literature, showing the potentiality of the coupled
approach to predict size effects.

Keywords: Finite Fracture Mechanics, fatigue limit, crack, defect sensitivity,
hole, notch sensitivity

1. Introduction

Cracks and notches represent the most common source of stress raisers in
mechanical elements. At the design and inspection stages, an engineer must al-
ways be able to catch which size flaw can be tolerated and how a post-processing
defect can reduce the fatigue strength of structural components. In this frame-
work, the fatigue failure mechanisms of elements containing cracks or notches
were traditionally treated by two different approaches. On one hand, the fatigue
strength of cracked structures was generally addressed by Linear Elastic Fracture
Mechanics (LEFM), involving the well-known concept of stress intensity factor
(SIF) KI (the analysis being here restricted to mode I loading conditions, for the
sake of simplicity), whose effectiveness is unquestionable for sufficiently large
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features. Nevertheless, the LEFM approach has some limitations: i) it is not able
to catch the transition from long to short cracks, overestimating the related fatigue
strength: in the limit case of a plain specimen, an infinite strength is predicted;
ii) it is unsuitable to deal with blunt notches, and their related stress capacity. On
the other hand, the load carrying reduction of notched structural components was
faced by some stress-based approaches, such as the local peak stress criterion,
involving the stress concentration factor Kt . Of course, such approaches are not
able to deal neither with flaws (i.e., small notches) nor with cracks, providing in
the latter case a vanishing failure load.

Several attempts were made in the literature to link the linear elastic fracture
mechanics and the notch mechanics, starting from the pioneering investigations
carried out by Frost [1], Frost et al. [2] and Smith and Miller [3], which re-
sulted in the Frost-Miller diagram reported in Fig. 1. The diagram consists in
two curves and reports the fatigue limit of notched specimens ∆σ f , expressed in
terms of stress range referred to the gross-section. The considered notches are
characterized by a constant depth a, while the notch tip radius ρ and therefore
the gross-section stress concentration factor Ktg = σmax/σ are varied. The two
curves intersect at a particular value of Ktg named K∗tg, which acts as a break point
between the notch mechanics and the linear elastic fracture mechanics:

• for a notch with Ktg < K∗tg the fatigue limit is the critical stress for crack
initiation and it can be estimated by the range of the peak stress at the notch
tip Ktg∆σ f = ∆σ0, where ∆σ0 is the fatigue limit of the plain material;

• for a notch with Ktg > K∗tg, the fatigue limit is no longer governed by the
crack initiation phenomenon, but it is the threshold stress at which a small
crack, previously initiated at the notch tip, stops to propagate. A small non-
propagating crack existing at the notch tip, the notch is equivalent to a crack
characterized by the same size of the notch and, therefore, the fatigue limit
can be estimated from the LEFM by applying the SIF-equality ∆KI = ∆Kth,
where ∆Kth is the threshold value of the SIF range for long cracks.

It is worth noting that Frost-Miller diagram in Fig. 1 rules out (i) short cracks,
since LEFM overestimates their threshold stress, and (ii) sharp open V-notches,
since their stress singularity is different from the square root valid for cracks, so
that their fatigue behaviour cannot be described by an equivalent crack with the
same depth of the notch.

Later on, a generalized diagram was proposed by Atzori and Lazzarin [4].
The diagram reported in Fig. 2 was obtained by analyzing the fatigue limit of
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centrally U-notched infinite plates under pure tensile loading, the notches having
different sizes a, but constant acuity ζ = a/ρ and therefore also constant stress
concentration factor Ktg.

The diagram of Fig. 2 consists of three curves illustrating the scale effect in
the notch fatigue behaviour:

• For a sufficiently large notch size a also the notch tip radius ρ is large (the
notch acuity ζ = a/ρ being constant), therefore the fatigue limit ∆σ f can be
estimated by the range of the peak stress at the notch tip, i.e. Ktg∆σ f = ∆σ0.
Accordingly, the material is fully notch sensitive.

• By reducing the notch size a (and the notch tip radius ρ as well), when
a < a∗ the notch is equivalent to a crack of the same size, in agreement with
the Frost-Miller diagram of Fig. 1. Precisely, when a0 < a < a∗ the notch is
equivalent to a long crack of the same size and, therefore, the fatigue limit
is dictated by the SIF-equality ∆KI = ∆Kth. It should be noted that a0 is the
well-known El Haddad-Smith-Topper parameter [5] a0 = 1/π(∆Kth/∆σ0)

2

, while a∗ = K2
tga0 .

• When a < a0, the short crack (or defect) does not affect the plain material
fatigue limit, so that the fatigue limit is given by ∆σ f = ∆σ0.

The diagram of Fig. 2 can be thought of as an extension of the well-known
Kitagawa and Takahashi diagram [6]. The Atzori-Lazzarin diagram was validated
in [7] by means of a large bulk of experimental results taken from the literature
and relevant to different materials, notch geometries and loading conditions. The
extension to open V-shaped notched was performed subsequently by Atzori et
al. [8]. Furthermore, the method has been recently coupled with finite element
simulation using coarse meshes [9]. It is worth noting that the fatigue behaviour
of real components is smooth at the transition lengths a = a0 and a = a∗, where
the material exhibits the sensitivity to defects and to notches, respectively. Dealing
with the defect-sensitivity region, El Haddad et al. [5] proposed to modify the SIF
expression as ∆KI = ∆σ

√
π(a+a0) to catch the behavior of short cracks.

The Theory of Critical Distances (TCD) by Taylor [10], see also the precur-
sory work by Tanaka [11] who put forward a model based on LEFM concepts,
allowed as well to encompass the two distinct areas of cracks and notches by us-
ing a unifying theoretical model accounting at the same time for size effects in
damaged structures. The most simple criterion in the framework of TCD is the
point stress one formalized by Taylor [10], also referred to as Point Method (PM).
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Accordingly, the fatigue limit conditions are achieved when the range of the maxi-
mum principal stress at a distance lc = 1/(2π)(∆Kth/∆σ0)

2 = a0/2 from the notch
tip equals the plain fatigue limit ∆σ0. By referring to the frame of reference in Fig.
3, the PM criterion can be expressed as:

∆σy(x = a+ lc) = ∆σ0 (1)

The other common stress criterion is the line stress one, also termed as Line
Method (LM). It requires that the average stress upon the crack advance lc =
2/π(∆Kth/∆σ0)

2 = 2a0 is higher than ∆σ0. In formulae:

1
lc

∫ a+lc

a
∆σy(x)dx = ∆σ0 (2)

Several studies have been carried out to establish which criterion between (1)
and (2) provides the most accurate predictions [12, 13, 14, 15]. Indeed, the sit-
uation varies from case to case, and the best criterion depends on the particular
geometry [16, 17, 18].

Stress based approaches have however some drawbacks, related to the fact
that the critical distance lc results a material constant: for very low structural sizes
approaching lc, the criteria fail in providing reasonable estimates. This is the case,
for instance, of a trivial three point bending test on an un-notched element: if
the height of the sample approaches lc, the LM provides an infinite failure load
since the stress resultant is zero. This is one of the reasons according to which
the coupled FFM approaches by Leguillon [19] and Cornetti et al. [20] were
introduced in the static framework.

The FFM criterion by Cornetti et al. [20] assumes a simultaneous fulfilment of
two conditions. The former is the stress condition expressed by Eq. (2). The latter
is the energy balance, and it provides the relationship between the average crack
driving force and the fracture energy [21]. Under linear elastic assumptions, the
discrete energy balance can be generalized to fatigue through the J-integral range
formalism:

1
lc

∫ a+lc

a
∆J(c)dc = ∆Jth (3)

where lc is the length of a crack stemming from the feature tip. Recasting Eq.(3)
in terms of the SIF range and the threshold value [22], yields:

1
lc

∫ a+lc

a
∆K2

I (c)dc = ∆K2
th (4)
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At fatigue limit, the approach is thus expressed by a system of two equations,
(2) and (4), in two unknowns: the critical crack advance lc (which is no longer a
mere material function) and the fatigue strength ∆σ f , implicitly embedded in the
integrand functions in Eqs. (2) and (4). FFM has recently been proved to provide
nearly identical predictions to the cohesive zone model for different geometries
[23, 24]. By considering generic cohesive laws of power law type, even the trend
of the crack advance is similar to that of the process zone [25]. Note that FFM
has been recently applied to assess the fatigue behavior of notched structures
independently both in [26] and in [27]. Nevertheless, the expression of the
energy condition through Eq. (3) represents a novelty to the authors’ best
knowledge.

Finally, although not considered in the present work, it is worthwhile to men-
tion the Strain Energy Density (SED) approach by Lazzarin and Zambardi [28],
which assumes as a critical parameter the strain energy in a small region around
the notch tip, and which has been proved to provide accurate results in different
fatigue contexts [29, 30].

The aims of the present paper are essentially two: (i) to estimate the fatigue
limit of a center-through thickness sharp crack and a circular notch by applying the
coupled criterion of Finite Fracture Mechanics. In this framework, a will denote
both the half crack length and the hole radius, without loss of generality; (ii) to
verify the accuracy of Finite Fracture Mechanics by comparison with experimen-
tal fatigue limits taken from the literature. It is worth noting that fatigue failures
of metallic materials have been observed well beyond 107 loading cycles in recent
giga-cycle fatigue investigations [31, 32] when a stress range lower than the con-
ventional fatigue limit was applied to the tested component, so demonstrating that
the classical concept of fatigue limit might be questionable and some limitations
and exceptions do exist. However, the fatigue limit still remains a useful material
parameter for engineers engaged in the fatigue design of structural components.

2. Crack and notch sensitivity

Let us start by considering the case of a Griffith crack of length 2a in an infinite
plate subjected to a remote uniaxial tension ∆σ (Fig. 3).

The stress field ahead of the crack tip, according to Westergaard’s solution,
writes:

∆σy(x) =
x√

x2−a2
∆σ (5)
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whereas the SIF range can be expressed as

∆KI(a) = ∆σ
√

πa (6)

Substituting Eqs.(5) and (6) into Eqs. (2) and (4), respectively, yields the same
result:

∆σ f

∆σ0
=

1√
1+π(a/lth)

(7)

where lth = (∆Kth/∆σ0)
2 = πa0. This means that the fulfilment of the stress

condition (2) implies automatically the fulfilment of the energy requirement
(4), and viceversa. Thus, in this case, there is no difference from the simple
LM, and also the critical distance is the same, namely lc = 2/π(lth). Results
on the failure limit are reported in Fig.4, together with LEFM predictions: FFM
allows to describe the behavior of short cracks, predicting a fatigue strength ap-
proaching the plain one as the crack length vanishes, and of long cracks, providing
results converging to the LEFM asymptotic limit.

As concerns the case of a circular hole with radius a in an infinite plate sub-
jected to a remote uniaxial tension (Fig. 3), the stress field is equal to [33]:

∆σy(x) =
∆σ

2

(
2+

a2

x2 +3
a4

x4

)
(8)

whereas the SIF can be expressed as

∆KI(c) = ∆σ
√

πcF(s) (9)

c being the length of a crack stemming from the hole edge. By considering a
symmetrical crack propagation [34], the following relationship was proposed by
Bowie [35]

F = 0.5(3− s)[1+1.243(1− s)3] (10)

and
s =

c
c+a

(11)

The error introduced by Eqs. (10) and (11) was estimated to be less than 1% by
Tada et al. [36].

Upon substitution of the stress field (8) into the stress condition (2), one gets:

∆σ f

∆σ0
=

2[1+(lc/a)]3

2(lc/a)3 +8(lc/a)2 +11lc/a+6
(12)
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On the other hand, inserting the SIF (9) into Eq. (4) (0 and lc being now the
integration extremes) yields

∆σ f

∆σ0
=

√
lthlc/a2[3.447+

π

4
(

0.2207
(1+ lc/a)7 +

0.7725
(1+ lc/a)6 −

0.9235
(1+ lc/a)4 +

+
2.486

(1+ lc/a)3 −
0.8944
1+ lc/a

+2(1+ lc/a)2−3Log(1+ lc/a))]−0.5 (13)

FFM predictions are obtained by equaling the right-hand sides of Eqs. (12) and
(13) to get the dimensionless crack advance. This value should then be inserted
into either Eq. (12) or Eq. (13) to obtain the dimensionless fatigue limit.

Results are presented in Fig. 4. As can be seen, FFM satisfies the two asymp-
totic limits of a vanishing radius (∆σ f /∆σ0 → 1), and a sufficiently large hole
when the strength is governed by the concentration factor Ktg = 3 (∆σ f /∆σ0→
1/3). Furthermore, by introducing the notation ã = a/lth, a more detailed compar-
ison between cracks and notches can be developed. Three ranges can be identified,
as previously highlighted in the Atzori-Lazzarin diagram [4, 7]:

• ã ≥ ã2: in this case, the structure is feature sensitive: the differences of a
notch from a crack are consistent, and they increase as the size increases.
As a matter of fact, for sufficiently large crack lengths, the failure behavior
of cracked elements is fully assessed by LEFM.

• ã1 < ã < ã2: in this case, the structure can be supposed to be feature shape
insensitive: the strength is affected by the presence of a flaw, but regardless
its type. In other words, a notch can be treated as a crack of the same size.

• ã ≤ ã1: in this case, the structure is feature insensitive: the fatigue limit
is not affected by the presence of a feature, whatever this is, and which of
course can be neglected.

By considering the cases in exam, i.e. a sharp crack and a circular hole, and
fixing an engineering tolerance of 5%, the following estimations can be provided:
ã1 ' 0.04 and ã2 ' 1.19. The two cases presented above refer to a sharp defect
(i.e., the crack), and a blunt one (i.e, the circular hole); concerning sharp and blunt
V-notches, a theoretical model based on non-conventional extensions of the LEFM
is available in [8]. Furthermore, note that the present results refer to an infinite
geometry and a central feature: in case of an edge one or of finite size geometries,
the threshold values of ã1 and ã2 will be slightly different incorporating the shape
factors adopted in LEFM studies [7].
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Finally, it is important to underline that FFM predictions are very close to
those provided by the following expression:

∆σ f

∆σ0
= 4

√
1

K4
tg
+

(
a0

a+a0

)2

(14)

Equation (14) was proposed by Atzori et al. [8], and it also reverts to Eq. (7) in
case of a Griffith crack.

3. Comparison with experimental data

In order to verify the applicability of FFM in the fatigue framework a com-
parison with experimental data is invoked. The mechanical properties of the con-
sidered materials necessary for the FFM implementation are reported in Table 1
from the corresponding references. Note that the loading ratio R affects the values
of both ∆Kth and ∆σ0, thus implicitly influencing the FFM analysis.

Data related to circular notches are firstly considered by referring to the ex-
perimental tests carried out in [37, 38, 39, 40]. By looking at the geometry of the
samples (Ktg ≈ 3), the size of the notch with respect to that of the sample is such
to justify the use of the features of Eqs. (12) and (13). Results are presented in
Fig.5, together with predictions by the PM (Eq.(1)). The FFM accuracy is rela-
tively good (indeed, some data show a not negligible uncertainty, as observed in
[10]), and the criterion is in tune with the PM: it is hard to say which criterion
is the most accurate, depending the answer on the particular size a/lth. By com-
paring Figs. 4 and 5 it should be observed, however, that almost all the data fall
in the range ã1 < ã < ã2, where the behavior at failure is insensitive to the notch
shape. A more interesting analysis would be that to consider data falling in the
range ã > ã2, as recently performed in the static case by testing PMMA samples
[34].

As concerns the case of center through thickness cracks, the experimental data
reported in [5] are taken into account and the comparison is shown in Fig. 6. As
already observed, FFM predictions coincide with those by the LM and they reveal
to be extremely accurate, whereas the PM generally tends to overestimate the
results.

Another kind of notch geometry is now considered, for the sake of complete-
ness: the case of edge cracks of length a with a semi-circular crack front (see
Fig.7), which were extensively studied experimentally in the past by [6, 39, 41].
In order to implement FFM, Eqs. (5) and (6) are obviously no longer valid.
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Despite a complete precise investigation would require a 3D analysis, a sim-
plifying approach is here considered. As concerns the stress field ahead of the
crack tip, it can be approximated as follows:{

∆σy = ∆KI/
√

2π(x−a) x/a≤ 1+Y 2/2
∆σy = ∆σ x/a > 1+Y 2/2

(15)

whereas the SIF can be expressed as

∆KI(a) = Y ∆σ
√

πa (16)

with Y ≈ 0.73 [16]. This value represents the maximum of the SIF, which varies
along the crack front [42].

Inserting Eqs. (15) and (16) into Eqs. (2) and (4), respectively, yields:
∆σ f

∆σ0
=

1
Y

√
lc
2a

lc/a≤ 1+Y 2/2

∆σ f

∆σ0
=

(
1+

Y 2a
2lc

)−1

lc/a > 1+Y 2/2
(17)

and

∆σ f

∆σ0
=

√
2/π

Y
√

lc/lth(1+2a/lc)
(18)

Equations (17) and (18) represent the system to be solved to get the FFM solution.
FFM predictions on the fatigue limit and experimental data are reported in Fig.
(7), showing an excellent agreement.

Finally, the FFM crack advance for circular holes, center and surface cracks
are reported in Fig. 8. In the first case, lc/lth varies between 2/π (un-notched
samples) and 2/(π1.122) (very large radii). For center cracks, lc/lth = 2/π . In the
latter case, lc/lth changes from 1.19 to 2/π as the crack length increases.

4. Conclusions

The coupled criterion of FFM, already established in the framework of static
fracture [21, 34], was applied to assess the fatigue limit of structures presenting
defects and subjected to mode I loading conditions. The analysis was focused on
the extreme cases of a sharp crack and a blunt notch, the effects of which decrease
with the size. The shape of a feature does not affect the plain fatigue limit below
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a certain size ã2, but it is just below a lower value ã1 that the structure becomes
feature insensitive. FFM estimations for ã1 and ã2 are provided, by presenting
simple (semi-)analytical relationships. The present study constitutes a first im-
portant effort towards the FFM implementation to fatigue fracture: the following
steps will include the investigation of welded joints [43] and other important fa-
tigue defects, as well as fatigue time life of mechanical components on the basis
of the idea presented by [44] (see also [45, 46]).
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Material Loading ∆Kth ∆σ0 lth
ratio R (MPa

√
m) (MPa) (mm)

G40.11 steel [5] -1 16 550 0.85
Steel [6] 0 5.5 549 0.10
2.25 Cr-1 Mo steel [37] -1 12 440 0.74
Copper [37] -1 5.0 146 1.20
SAE1045 steel [38] 0 6.9 448 0.24
2.25 Cr-1 Mo steel [39] -1 10 500 0.40
SAE1010 steel, CR 22 [40] -1 10 410 0.59
SAE945X steel, CR 61 [40] -1 12 630 0.36
2.25 Cr-1 Mo steel [41] 0 5.7 340 0.28

Table 1: Mechanical properties of the considered materials.
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Figure 1: Frost-Miller diagram: fatigue limit in terms of nominal gross-section stress range ∆σ f
as a function of the theoretical stress concentration factor Ktg for notches of constant depth a.
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Figure 2: Atzori-Lazzarin diagram: scale effect in the fatigue behaviour of a crack or a U-notch.
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Figure 3: Infinite tensile plate: center crack of length 2a and a circular hole with radius a.
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Figure 4: FFM size effects on the fatigue limit related to cracks (thick black line) and notch-
like-holes (gray line). The two horizontal asymptotes for small and large sizes, and the LEFM
prediction (with the typical slope equal to 1/2) are also depicted. The dotted line refers to results
by Eq. (14).
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Figure 5: Fatigue limit for elements containing a circular notch: predictions by FFM, PM, and
experimental data.
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Figure 6: Fatigue limit for elements containing a center through thickness crack: predictions by
FFM, PM, and experimental data.
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Figure 7: Fatigue limit for elements containing semi-circular surface cracks: FFM predictions and
experimental data.
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Figure 8: FFM crack advance for a central through thickness crack (dotted line), a circular notch
(continuous line) and a semicircular surface crack (dashed line).
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