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BLOW-UP FOR THE POINTWISE NLS IN DIMENSION TWO:

ABSENCE OF CRITICAL POWER

RICCARDO ADAMI, RAFFAELE CARLONE, MICHELE CORREGGI, AND LORENZO TENTARELLI

Abstract. We consider the Schrödinger equation in dimension two with a fixed, pointwise, fo-
cusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features:
first, the energy threshold under which all solutions blow up is strictly negative and coincides with
the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity,
i.e. for every power there exist blow-up solutions. This last property is uncommon among the
conservative Schrödinger equations with local nonlinearity.

1. Introduction

The introduction of concentrated nonlinearities for the Schrödinger equation dates back to the
nineties of the last century [BKB, MA, N]. It was motivated by the need for modeling the effect
of a nonlinear centre on a quantum particle, under the assumption that the size of the centre is
smaller than the wave-length of the particle. In turn, the nonlinear centre was understood as an
effective description, through a suitable scaling limit, of a cluster of a large number of particles
confined in a small region of space [J-LPS].

The issues of well-posedness and globality of solutions were investigated in [AT] for the problem
in one dimension and in [ADFT1, ADFT2] for the one in three dimensions; while the derivation
from the standard NonLinear Schrödinger Equation (NLSE), i.e., the Schrödinger equation with a
nonlinear term of form f(|ψ|)ψ with f real-valued, is due to [CFNT1, CFNT2].

It turned out that the NLSE with pointwise nonlinearity shares some specific features with
the standard NLSE: in particular, conservation of mass and energy holds and the globality of
all solutions in the energy space is guaranteed, provided that the nonlinearity is defocusing. A
blow-up phenomenon emerges in the case of focusing nonlinearity.
More precisely, blow-up solutions can occur only if the growth rate at infinity of the nonlinear
term is not slower than a specific power law, that defines the critical power of the problem.

In the present paper, we show that the parallelism with the standard NLSE breaks for NLSE
with pointwise nonlinearity in dimension two.

Preliminarily, let us recall that the exotic properties of the NLSE in two dimensions with point-
wise nonlinearity had already emerged in the issue of the rigorous set-up of the problem [CCT].
More strikingly, in the present work we show that the blow-up phenomenon does not mimic its
analogue for the standard NLSE under several aspects. The most remarkable is the absence of a
critical power: namely, for every superlinear power growth of the nonlinear focusing term, some
solutions blow up in finite time.
To our knowledge, this is the only known model of NLSE with a local and conservative nonlinearity
that exhibits such behaviour, already observed, on the other hand, for some non-conservative
Schrödinger equations [IW, II1, II2]. Furthermore, like in the standard case, every initial datum
with sufficiently low energy blows up and the energy threshold coincides with the infimum of the
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energy of the stationary solutions; but, contrarily to the standard case, such a threshold turns out
to be strictly negative and finite for every nonlinearity power.

In the present paper we prove all these facts by using the classical virial method due to Glassey
[G]. We show that, if a solution lies below a given energy threshold, then its moment of inertia is
strictly concave and this prevents the solution from existing for an arbitrarily large time.
Of course, the energy threshold gives a sufficient condition only and does not provide information
either on the shape of blow-up solutions or on the blow-up time rate. We do not see any reason
for these to be similar to those discovered for the standard NLS [P, MR1, MR2, MR3], and we
plan to further investigate this problem in a future work.

We recall that a thorough analysis of the blow-up for a one-dimensional NLSE with concentrated
nonlinearity has been carried out in [HL1, HL2], while the interplay between standard nonlinearity
and linear delta potential has been studied in [BV] in the scattering context.
Finally, we mention that recently the issue of the pointwise nonlinearities has been also discussed
in the context of quantum beating [CFN], in that of the fractional Schrödinger equation [CFinT]
and in that of the Dirac equation [CCNP]. On the other hand, some recent works manage more
general singular problems, such as [G-CV, OP, R].

1.1. Organization of the paper. The paper is organized as follows:

(i) in Section 2 we introduce the model of the point interactions in dimension two, fix the
functional setting of the problem (i.e., (2.15)) and present the main results of the paper:

- Theorem 2.1, which provides a sufficient condition for the existence of blow-up solu-
tions,

- Theorem 2.2, which classifies all the standing waves of the problem;
(ii) in Section 3 we show the proof of Theorem 2.2;

(iii) in Section 4 we introduce the moment of inertiaM(t) and present a heuristic justification of
the formulae for its first (Proposition 4.1) and second (Proposition 4.2) derivatives leading
to the proof of Theorem 2.1;

(iv) in Section 5 we exhibit a rigorous proof of the formulae for the first and second derivatives
of the moment of inertia.

Acknowledgements. R.C., M.C. and L.T. acknowledge the support of MIUR through the FIR
grant 2013 “Condensed Matter in Mathematical Physics (Cond-Math)” (code RBFR13WAET).
R.A. acknowledges the project PRIN 2015 “Variational methods with applications to problems in
mathematical physics and geometry”, funded by MIUR.

2. Setting and main results

The evolution problem we aim at studying can be formally introduced as:{
i∂tψt = −∆ψt − β|ψt|2σδ0ψt

ψt=0 = ψ0,
(2.1)

where the nonlinearity power σ is positive and δ0 is a Dirac’s delta potential centred at the origin
of the two-dimensional space. Notice that the nonlinearity is embodied in the coupling of the delta
potential, while the focusing character results from imposing β > 0. Let us point out that in [CCT]
both attractive and repulsive delta potentials are considered and the related term is written as
+β|ψt|2σδ0ψt, with β of either sign.



BLOW-UP FOR 2D NLS WITH CONCENTRATED NONLINEARITY 3

As it is well-known (see e.g. [AGH-KH, CCF]), in eq. (2.1) the delta term cannot be considered
as a perturbation, since the Laplacian cannot control a delta potential. Nevertheless, as shown in
[CCT], it is possible to define a pointwise nonlinear interaction in the following way.

2.1. From linear to nonlinear point interactions. The issue of a rigorous definition of point
interactions arises even in the linear case (i.e., when σ = 0 in (2.1)).
A standard approach [AGH-KH] considers the classifications of all the nontrivial self-adjoint exten-
sions of the hermitian operator −∆|C∞0 (R2\{0}). It turns out that there exists only a one-parameter

family of self adjoint extensions, denoted by Hα, such that: for all α ∈ R, Hα : L2(R2)→ L2(R2)
has domain

dom(Hα) :=

{
ψ ∈ L2(R2) : φλ := ψ−qGλ ∈ H2(R2), q ∈ C, φλ(0) =

(
α+

log
√
λ
2

+γ

2π

)
q

}
(2.2)

and action

(Hα + λ)ψ := (−∆ + λ)φλ, ∀ψ ∈ dom(Hα), (2.3)

where λ > 0, γ is the Euler-Mascheroni constant and Gλ is the Green’s function of −∆ + λ in
dimension two, namely

Gλ(x) = 1
2πK0

(√
λ|x|

)
,

with K0 the MacDonald function of order zero (see, e.g. [AS]). Note that the definition of Hα
is independent of λ since, if φλ ∈ H2(R2), then φλ′ ∈ H2(R2) for every other λ′ > 0, given that

Gλ − Gλ′ ∈ H2(R2). As a consequence, λ is just a mute parameter connected with the several
possible representations of a function of dom(Hα), which plays no relevant role in the following.

Self-adjointness of Hα entails, via Stone theorem, that for every ψ0 ∈ dom(Hα), there exists a
unique function

ψ ∈ C
(
[0, T ]; dom(Hα)

)
∩ C1

(
[0, T ];L2(R2)

)
, ∀T > 0, (2.4)

which solves {
i∂tψt = Hαψt
ψt=0 = ψ0.

(2.5)

Note that (2.4), according to the definition of dom(Hα), implies that at every time t the solution
decomposes as

ψt = φλ,t + q(t)Gλ (2.6)

with q(t) ∈ C, φλ,t ∈ H2(R2) and

φλ,t(0) =

(
α+

log
√
λ

2 + γ

2π

)
q(t). (2.7)

On the other hand, it is well-known that, denoting by U0(t) = eit∆ the free Schrödinger propaga-

tor, with kernel U0(t; |x|) := e−
|x|2
4it

2it (acting by the normalized convolution product (f ∗ g) (x) :=
1

2π

∫
R2 dy f(x− y)g(y)) and by I the Volterra function of order −1 [CCT], i.e.

I(t) :=

∫ ∞
0

dτ
tτ−1

Γ(τ)
,

(Γ is the Euler function), the solution ψt can be written as

ψt(x) := (U0(t)ψ0)(x) +
i

2π

∫ t

0
dτ U0(t− τ ; |x|) q(τ), (2.8)
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where q is the unique solution of the so-called charge equation

q(t) + 4π

∫ t

0
dτ I(t− τ)

(
α+

γ − log 2

2π
− i

8

)
q(τ) = 4π

∫ t

0
dτ I(t− τ)(U0(τ)ψ0)(0). (2.9)

Then, nonlinear point interactions arise as one assumes that the strength of the point interaction
α depends on the wave functions. Specifically, one sets α = −β|q(t)|2σ, so that (2.9) reads

q(t) + 4π

∫ t

0
dτ I(t− τ)

(
θ1(|q(τ)|)− i

8

)
q(τ) = 4π

∫ t

0
dτ I(t− τ)(U0(τ)ψ0)(0). (2.10)

with

θλ(s) :=
(

1
2π log

√
λ

2 + γ
2π − βs

2σ
)
, λ > 0, s > 0. (2.11)

Hence the evolution problem combines (2.10), whose solution is called charge, and (2.8), which is
expected to solves the nonlinear version of (2.5), namely{

i∂tψt = Hα=−β|q|2σψt

ψt=0 = ψ0,
(2.12)

where Hα=−β|q|2σ is the nonlinear map that arises letting α = −β|q|2σ in (2.2)-(2.3).

2.2. Setting of the problem and previous results. As explained in [CCT], the proof of the
well-posedness of (2.12) in a strong sense is still open at the moment, since a proof of a sufficient
regularity for the solution of (2.10) is lacking.
Nevertheless, a weak version of (2.12) has been proved to be well-posed in [CCT]. Indeed, the
weak form of (2.5) is given by {

i ddt〈χ, ψt〉 = Fα[ψt, χ], ∀χ ∈ V,
ψt=0 = ψ0,

(2.13)

where 〈·, ·〉 is the ordinary hermitian product in L2(R2) and, Fα is the sequilinear form associated
with Hα, i.e.

Fα(ψ) := ‖∇φλ‖2L2(R2) + λ
(
‖φλ‖2L2(R2) − ‖ψ‖

2
L2(R2)

)
+

(
α+

log
√
λ

2 + γ

2π

)
|q|2,

with domain

V :=
{
ψ ∈ L2(R2) : φλ := ψ − qGλ ∈ H1(R2), q ∈ C

}
. (2.14)

Note that the form domain V induces the same decomposition of dom(Hα) (i.e., (2.6)), but presents
a weaker regularity requirement on φλ (H1(R2) in place of H2(R2)) and, moreover, no boundary
condition as (2.7) is imposed. Note also that, as well as for Hα, Fα and V do not depend on the
parameter λ.
As a consequence, the nonlinear version of (2.13) is obtained by setting α = −β|q|2σ in (2.13),
thus yielding

{
i ddt〈χ, ψt〉 = 〈∇χλ,∇φλ,t〉+ λ〈χλ, φλ,t〉 − λ〈χ, ψt〉+ θλ(|q(t)|)q∗χq(t), ∀χ ∈ V,
ψt=0 = ψ0,

(2.15)

Concerning (2.15), [CCT] shows the following facts:
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(i) if σ > 1
2 , then for every ψ0 ∈ D , where

D :=
{
ψ ∈ V : (1 + kε) φ̂λ(k) ∈ L1(R2), for some ε > 0

}
(k := |k|), there exists a unique solution ψt ∈ V to problem (2.15), for t ∈ [0, T ) [CCT,
Theorem 1.1]; furthermore, ψt is of the form (2.8) with q(·) the unique solution in C[0, T ] ∩
H1/2(0, T ) of (2.10) [CCT, Propositions 2.2, 2.3 & 2.4];

(ii) for the solution ψt, the following identities hold for all t ∈ [0, T ) [CCT, Theorem 1.2]:
(a) conservation of mass:

M(ψt) := ‖ψt‖L2(R2) = M(ψ0);

(b) conservation of energy:

E(ψt) := ‖∇φλ,t‖2L2(R2,C2) + λ
(
‖φλ,t‖2L2(R2) − ‖ψt‖

2
L2(R)

)
+

+ θλ(|q(t)|)|q(t)|2 +
σβ

σ + 1
|q(t)|2σ+2 = E(ψ0). (2.16)

Remark 2.1 (Energy expression).
The expression of energy differs from the one used in [CCT] in two respects: first, here it is stated
for a generic λ > 0, while in [CCT] it is given for λ = 1. However, this does not actually affects
the value of the energy, which independent of λ. Second, for the sake of obtaining a shorthand
expression in [CCT] the term M2(ψt) is added to the energy, which does not affect the conservation
law. In this paper, we prefer the expression (2.16) since it gives a more straightforward energy
threshold for the blow-up.

2.3. Main results. In the results previously recalled, nothing is said about the possibility of ex-
tending the local solution to arbitrarily large times (this is guaranteed, indeed, by [CCT, Theorem
1.3] only for the defocusing case, i.e., β < 0). In fact, we will show that this is not always the case:
however small the nonlinearity power σ is, there always exist initial data for which the solution
cannot be extended beyond a certain finite time. Let us first give a basic definition:

Definition 2.1 (Blow-up solutions).
A solution ψt to problem (2.15) is said to blow up in finite time and is called a blow-up solution,
if there exists T∗ > 0 such that

lim sup
t→T∗

|q(t)| = +∞.

Remark 2.2 (Blow-up of the regular part).
Note that a pointwise blow-up of the charge q(t) at T∗ implies the explosion at the same time of
the H1 norm of the regular part φλ,t, due to the energy conservation (2.16). On the other hand,
since also the mass is preserved, whenever q(t) blows up at T∗, the L2 norm of the regular part
has to blow up as well.

Also, recall that, according to [CCT, Proposition 1.1], a blow-up alternative holds, namely a
solution to (2.15) cannot be extended to a global one if and only if it blows up in finite time.

The main result of the present paper is the following:

Theorem 2.1 (Sufficient condition for blow-up).
Let σ > 1/2 and let the initial datum

ψ0 ∈ DS :=
{
ψ ∈ D : φλ ∈ S(R2)

}
(2.17)
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(S(R2) denoting the space of Schwartz functions) satisfy the energy condition

E(ψ0) < Λ := − σ

4π(σ + 1)(4πσβ)
1
σ

. (2.18)

Then, the solution ψt to (2.15) blows up in finite time.

As already stressed, the most relevant difference with respect to the 1D and the 3D cases is the
lack of a critical power, namely the existence of a minimum value of σ in order to have blow-up
solutions: for both the one and the three-dimensional case such a value equals one [AT, ADFT2].
Notice that the assumption in Theorem 2.1 about σ is merely technical, as it guarantees local
well-posedness, and is not related to criticality [CCT, Remark 1.4]. The restriction on the choice
of the initial data, on the other hand, could be weakened; nevertheless we chose to keep it not to
make computations too burdensome.

The proof of Theorem 2.1 is quite immediate, provided that one knows the qualitative behavior
of the so-called moment of inertia associated with a solution ψt, i.e.

M(t) :=

∫
R2

dx |x|2 |ψt(x)|2 . (2.19)

The discussion of the behavior of M is the main technical problem of the present paper and will
be extensively addressed in the following sections. However, once the behavior ofM is understood
(Corollary 4.1), the proof of Theorem 2.1 is immediate:

Proof of Theorem 2.1. From Corollary 4.1,

M̈(t) 6 8(E(ψ0)− Λ), ∀t ∈ [0, T∗). (2.20)

Hence, hypothesis (2.18) entails that the moment of inertia is uniformly concave and this would
contradict the positivity of M unless T∗ < +∞. Then, the blow-up alternative implies that ψt
blows up in a finite time. �

The threshold Λ has an interesting connection with the energy of the standing waves of the
problem, that is

Definition 2.2 (Standing waves).
A nontrivial solution ψω(t, x) to (2.15) of the form

ψω(t,x) = eiωtuω(x) (2.21)

is said a standing wave of (2.15).

Precisely, it is possible to completely classify the standing waves of (2.15) and see that the
infimum of their energies equals Λ.

Theorem 2.2 (Standing waves).
Every standing wave of (2.15) is given by

uω(x) = Q(ω)eiηGω(x), (2.22)

where η ∈ R is a constant,

Q(ω) :=

(
log

√
ω

2 + γ

2πβ

) 1
2σ

, (2.23)

and ω ∈ (4e−2γ ,+∞). In addition,

min
ω∈(4e−2γ ,+∞)

E(ψω) = Λ < 0. (2.24)
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Remark 2.3 (Energy threshold).
Given the coincidence of the energy threshold in (2.18) for the blow-up with the lowest energy of
standing waves in (2.24), it is intuitive that the uncommon features of the blow-up, for the pointwise
NLS in dimension two, has to be connected to uncommon features of the standing waves. Hence,
a deeper analysis of the behavior of {uω} will be the subject of our future investigation (and will
be presented in a forthcoming paper).

3. Standing Waves

This section presents the discussion on the standing waves of (2.15), introduced by Definition
2.2. In what follows we will refer both to ψω and to uω as to a standing wave (since it does not
give rise to misunderstandings).

Preliminarily, note that, in view of (2.14) (i.e., the definition of the space V ), given λ > 0, one
has the decomposition

uω = φωλ + qωGλ, (3.1)

with φωλ ∈ H1(R2). Then, we can show, as a first step, that the frequency ω must be positive.

Proposition 3.1 (Standing wave frequency).
Let ψω be a standing wave of (2.15). Then, ω > 0.

Proof. By (2.21), for any λ > 0, equation (2.15) gives

(λ− ω)〈χ, uω〉 = 〈∇χλ,∇φωλ〉+ λ〈χλ, φωλ〉+ θλ (|qω|) q∗χqω. (3.2)

Choosing χ ∈ H1(R2) one has χ = χλ and qχ = 0, so that, using (3.1),

−ω〈χ, φωλ〉+ (λ− ω)qω〈χ,Gλ〉 = 〈∇χ,∇φωλ〉.
Then, by density of H1(R2) in L2(R2),

−∆φωλ = −ωφωλ + (λ− ω)qωGλ,

and, finally, in the Fourier space one gets

(k2 + ω)φ̂ωλ =
(λ− ω)qω

2π(k2 + λ)
.

If ω > 0, then

φ̂ωλ =
(λ− ω)qω

2π(k2 + λ)(k2 + ω)

so that φωλ ∈ H1(R2). If, conversely, ω 6 0, then φ̂ωλ ∈ L2(R2) if and only if qω = 0, and thus
φωλ = 0, which implies that uω cannot be a standing wave. �

Exploiting the previous result, we can now prove Theorem 2.2.

Proof of Theorem 2.2. Since ω > 0, one can choose λ = ω in (3.1), so that (3.2) gives

0 = 〈∇χω,∇φωω〉+ ω〈χω, φωω〉+ θω (|qω|) q∗χqω. (3.3)

First, choose qχ = 0, so that χ = χω. Thus

0 = 〈χ, (−∆ + ω)φωω〉,
for all χ ∈ H1(R2), and hence φωω = 0.

On the other hand, choose χ = Gω. As a consequence χω = 0 and qχ = 1, which entails, from
(3.3), that

θω (|qω|) qω = 0. (3.4)
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Then either qω = 0 or θω (|qω|) = 0. In the first case, we have uω = 0, so it is not a standing wave.
In the second case, θω (|qω|) = 0 implies that |qω| equals the r.h.s. of (2.23). In addition, such a
quantity must be positive, which implies the condition ω > 4e−2γ and then (2.22).

Finally, by direct computation,

E(ψωt ) = −|q
ω|2

4π
+

σβ

σ + 1
|qω|2σ+2,

thus, minimizing in |qω| ∈ (0,+∞), one gets (2.24). �

Remark 3.1 (Parametrization of standing waves).
Notice that by the condition (3.4) there is a one-to-one correspondence between the absolute
value of the charge, i.e. |qω| ∈ (0,+∞), and the frequency ω ∈ (4e−2γ ,+∞) of any standing
wave. Therefore, the standing waves can be equivalently parametrized by ω or by |q| (where the
dependence on ω can be dropped).

4. Moment of Inertia

As we mentioned in the Introduction, the main technical point of the paper is the analysis of
the moment of inertia M(t) associated with the solution ψt, defined by (2.19).

Before presenting the formulae for the time derivatives of M(t), let us stress some basic facts,
which will be useful in the following. First, we recall that, using the Fourier transform in (2.8),
one gets

ψ̂t(k) = e−ik
2tφ̂λ,0(k) +

e−ik
2τq(0)

2π(k2 + λ)
+

i

2π

∫ t

0
dτ e−ik

2(t−τ)q(τ), (4.1)

and then, integrating by parts as in [ADFT2, Eqs. (2.4)-(2.6)] one finds the decomposition

ψ̂t(k) = e−ik
2tφ̂λ,0(k) +

q(t)

2π(k2 + λ)
+ f̂1,λ(t,k) + f̂2,λ(t,k), (4.2)

where f̂1,λ and f̂2,λ are given by

f̂1,λ(t,k) :=
iλ

2π(k2 + λ)

∫ t

0
dτ e−ik

2(t−τ)q(τ),

f̂2,λ(t,k) :=
−λ

2π(k2 + λ)

∫ t

0
dτ e−ik

2(t−τ)q̇(τ).

Note that the well-definition of the last integral is a straightforward consequence of Proposition
5.1, where we will prove absolute continuity of the charge. Furthermore, by the same computations
leading to [CCT, Eq. (2.54)] and following, one has that f1,λ(t) and f2,λ(t) belong to H1(R2) and
that

‖fj,λ‖L∞((0,T ),H1(R2)) 6 C, j = 1, 2, ∀T ∈ (0, T∗), (4.3)

where the constant C depends (possibly) on T .
On the other hand, by direct computation,

∇kf̂1,λ(t,k) =
−iλk

π(k2 + λ)2

∫ t

0
dτ e−ik

2(t−τ)q(τ) +
λk

π(k2 + λ)

∫ t

0
dτ e−ik

2(t−τ)(t− τ)q(τ),

and

∇kf̂2,λ(t,k) =
k

π(k2 + λ)2

∫ t

0
dτ e−ik

2(t−τ)q̇(τ) +
ik

π(k2 + λ)

∫ t

0
dτ e−ik

2(t−τ)(t− τ)q̇(τ), (4.4)
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and, since the action of ∇k is essentially a multiplication by k, (4.3) translates into

‖∇kfj,λ‖L∞((0,T ),L2(R2)) 6 C, j = 1, 2, ∀T ∈ (0, T∗), (4.5)

and
‖k · ∇kfj,λ‖L∞((0,T ),H−1(R2)) 6 C, j = 1, 2, ∀T ∈ (0, T∗). (4.6)

In view of the previous remarks, we can prove that the moment of inertia defined by (2.19) is
finite for all t ∈ [0, T∗).

Lemma 4.1.
Let σ > 1/2 and let ψ0 ∈ DS (with DS defined by (2.17)). Then, M∈ L∞(0, T ) for any T < T∗.

Proof. From (4.2),

∇kψ̂t(k) = −2itke−ik
2tφ̂λ,0(k)+e−ik

2t∇kφ̂λ,0(k)− q(t)k

π(k2 + λ)2
+∇kf̂1,λ(t,k)+∇kf̂2,λ(t,k). (4.7)

Since

M(t) =

∫
R2

dk |∇kψ̂t(k)|2,

one has to prove that the L2-norm of the terms in (4.7) is bounded in [0, T ], for every fixed T < T∗.
For the first three terms this is immediate, while for the last two terms it follows from (4.5). �

4.1. Derivatives of the moment of inertia. Now, we can present the main technical results of
the paper, that is the formulae for the first and the second derivative of the moment of inertia. In
this section, we only mention the statements of the results and show some heuristic computations,
in order to give an intuitive idea of the reasons for which one should expect these formulae. The
rigorous proofs are postponed to Section 5.2. Notice that the results presented below hold true
also in the defocusing case, i.e., if β < 0.

Proposition 4.1 (First derivative of M).
Let the assumptions of Lemma 4.1 be satisfied. Then, M∈ AC[0, T ] for any T < T∗ and

Ṁ(t) = 4 Im

{∫
R2

dk ψ̂t(k) k · ∇kψ̂
∗
t (k)

}
, for a.e. t ∈ [0, T∗). (4.8)

Formula (4.8) is quite classical in the theory of blow-up also for standard NLS equations, and
goes under the name called virial identity. Its formal derivation goes as follows: neglecting any
regularity issues

Ṁ(t) =
d

dt

∫
R2

dx |x|2 |ψt(x)|2 =
d

dt

∫
R2

dk |∇kψ̂t(k)|2 = 2Re

{∫
R2

dk ∂t

(
∇kψ̂t(k)

)
∇kψ̂

∗
t (k)

}
.

Now, since by (4.7),

∂t

(
∇kψ̂t(k)

)
= −2ikψ̂t(k)− i|k|2∇kψ̂t(k), (4.9)

then one gets

Ṁ(t) = 2Re

{∫
R2

dk
(
−2ikψ̂t(k)∇kψ̂t(k)∗ − i|k|2|∇kψ̂t(k)|2

)}

= 4Im

{∫
R2

dk kψ̂t(k)∇kψ̂
∗
t (k)

}
.

On the other hand, exploiting (4.8), it is possible to establish the following formula, which is
the central point of Glassey method.
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Proposition 4.2 (Second derivative of M).
Let the assumptions of Lemma 4.1 be satisfied. Then, M(t) ∈ C2[0, T ] for any T < T∗ and

M̈(t) = 8E(ψ0) + 2

(
1

π
− 4βσ

σ + 1
|q(t)|2σ

)
|q(t)|2, ∀ t ∈ [0, T∗). (4.10)

Proposition 4.2 has an immediate consequence, which is the main tool used in the proof of
Theorem 2.1.

Corollary 4.1 (Threshold Λ and M̈).
Under the assumptions of Lemma 4.1,

M̈(t) 6 8 (E(ψ0)− Λ) , ∀ t ∈ [0, T∗), (4.11)

where Λ is defined by (2.18).

Proof. Notice that, given a solution ψt and denoted by uωt the unique positive standing wave
whose charge equals |q(t)|, the identity (4.10) rewrites as

M̈(t) = 8 (E(ψ0)− E(uωt)) .

Hence, minimizing E(uωt) in |q(t)|, as in the proof of Theorem 2.2, (4.11) follows. �

Remark 4.1 (Concavity of M and critical exponent).
In (4.10) one can see the technical reason for which in the 2D case the problem of the blow-up does
not present any critical exponent for the nonlinearity, unlike in the 1D and 3D cases. Indeed, in
view of (4.10), in order to impose the uniform concavity ofM the exponent σ plays no significant
role. In other words, for any σ (> 1/2) there exists a sufficient condition for the blow-up. On the
contrary, in the 1 or 3D cases the second derivative of the moment of inertia reads [ADFT1, AT]

M̈(t) = 8E(ψ0)− 4β
σ − 1

σ + 1
|q(t)|2σ+2

and thus the role of the exponent σ = 1 is apparent. In addition, in those cases it is possible to
prove that when σ < 1 the solution is global.

As for the first derivative, let us show some heuristic derivation of (4.10): we assume here for
simplicity that ψt is a strong solution of the Cauchy problem (2.15), i.e. at any time t ∈ R, ψt
belongs to the domain of the nonlinear operator appearing on the r.h.s. of (2.15). This simply
implies [CCF] that ψt admits the usual decomposition ψt = φλ,t + q(t)Gλ, with φλ,t ∈ H2(R2) and
q(t) ∈ C satisfying the boundary condition

φλ,t(0) = θλ(|q(t)|)q(t). (4.12)

Under this assumption, using (2.6), with λ = 1 for the sake of simplicity, (4.9) and Divergence
Theorem and differentiating (5.11) (see also (5.24)), we get

M̈(t) = 4 Im

{∫
R2

dk
[
∂tψ̂t(k) + ik2ψ̂t(k)

]
k · ∇kψ̂

∗
t (k)

}
+ 8

∫
R2

dk k2
∣∣ψ̂t(k)

∣∣2
=

2

π
Re

{
q(t)

∫
R2

dk k · ∇kψ̂
∗
t (k)

}
+ 8

∫
R2

dk k2
∣∣ψ̂t(k)

∣∣2
=

2

π
Re

{
q(t)

∫
R2

dk k · ∇kφ̂
∗
λ,t(k)

}
+ 8

∫
R2

dk k2

[∣∣φ̂λ,t(k)
∣∣2 +

1

π
Re

{
q(t)φ̂∗λ,t(k)

k2 + λ

}]
= 8

(
Re
{
q(t)φ∗λ,t(0)

}
+ ‖∇φλ,t‖22 − 2λRe

{
〈φλ,t, q(t)Gλ〉

})
, (4.13)
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where we neglected again any regularity issue. Plugging in the above expression the value of φλ,t(0)
given by the condition (4.12) and recalling the expression (2.16) of the energy E(ψt) = E(ψ0),
(4.10) is recovered.

5. Proofs of Propositions 4.1 and 4.2

This section is completely devoted to the rigorous proof of Propositions 4.1 and 4.2, which make
then rigorous the formal computations presented before.

5.1. Extra-regularity of the charge. The first step to prove (4.8) and (4.10) is that of establish-
ing some further regularity for the charge q(·), with respect to the one obtained by [CCT] (namely,

H1/2(0, T ) ∩ C[0, T ]1), possibly exploiting the more restrictive assumptions on the smoothness of
initial data.

As we will see in the following, the required property is the absolute continuity on closed and
bounded intervals. The proof of such regularity follows exactly the strategy developed by [CCT]

in order to prove H1/2-regularity (precisely, [CCT, Proposition 2.3 & 2.4]). As a consequence, we
discuss here only new technical aspects, referring to [CCT] for those results which do not require
significant modifications.

The first step is to establish Lipschitz continuity of the map f 7→ |f |2σf in W 1,1(0, T ) (which is
the analogue of [CCT, Lemma 2.1]).

Lemma 5.1.
Let σ > 1

2 and T, M > 0. Assume also that f and g are functions satisfying

‖f‖L∞(0,T ) + ‖f‖W 1,1(0,T ) 6M, ‖g‖L∞(0,T ) + ‖g‖W 1,1(0,T ) 6M. (5.1)

Then, there exists a constant C > 0 independent of f, g, M and T , such that∥∥|f |2σf − |g|2σg∥∥
W 1,1(0,T )

6 C max {1, T}M2σ
(
‖f − g‖L∞(0,T ) + ‖f − g‖W 1,1(0,T )

)
. (5.2)

Proof. Denote by ϕ : C→ C the function ϕ(z) = |z|2σz, which belongs to C2(R2;C) as a function
of the real and imaginary parts of z since σ > 1

2 . Arguing as in [CCT, Proof of Lemma 2.1], easy
computations yield

ϕ(f(t))− ϕ(g(t)) = (f(t)− g(t))φ1(t) + (f(t)− g(t))∗ φ2(t), (5.3)

where φj(t) := ψj(f(t), g(t)), j = 1, 2, and

ψ1(z1, z2) :=

∫ 1

0
ds ∂zϕ(z1 + s(z2 − z1)), ψ2(z1, z2) :=

∫ 1

0
ds ∂z∗ϕ(z1 + s(z2 − z1)).

Note also that ψj ∈ C1(R4;C) (now as a function of the real and imaginary parts of z1 and z2).
As a consequence, one can see that

‖ϕ(f(t))− ϕ(g(t))‖W 1,1(0,T ) 6 ‖φ1 · (f − g)‖W 1,1(0,T ) + ‖φ2 · (f − g)‖W 1,1(0,T )

6 C max
{
‖φ1‖L∞(0,T ) + ‖φ2‖L∞(0,T ) , ‖φ1‖W 1,1(0,T ) + ‖φ2‖W 1,1(0,T )

}
×

×
(
‖f − g‖L∞(0,T ) + ‖f − g‖W 1,1(0,T )

)
.

1Actually, in [CCT, Lemma 2.6] is proved the log-Hölder continuity of the charge, but it is not sufficient as well.
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Now, combining (5.1), the definition of φj and the regularity assumptions on ϕ (as in [CCT, Proof
of Lemma 2.1]), one finds

‖φj‖L∞(0,T ) 6 CM
2σ, j = 1, 2, (5.4)

so that it is left to estimate ‖φj‖W 1,1(0,T ) (note that φj ∈ W 1,1(0, T ) since it is a composition of

the absolute continuous functions f, g and ψj(·, ·) which is of class C1). It is immediate that

‖φj‖L1(0,T ) 6 CTM
2σ, j = 1, 2.

On the other hand, from [CCT, Eqs. (2.11)-(2.14)], one has that for a.e. s, t ∈ [0, T ]∣∣∣∣φj(t)− φj(s)t− s

∣∣∣∣ 6 C max {|f(t)|, |f(s)|, |g(t)|, |g(s)|}2σ−1

(∣∣∣∣f(t)− f(s)

t− s

∣∣∣∣+

∣∣∣∣g(t)− g(s)

t− s

∣∣∣∣) ,
which entails ∣∣φ̇j(t)∣∣ 6 CM2σ−1

(∣∣ḟ(t)
∣∣+
∣∣ġ(t)

∣∣) , for a.e. t ∈ [0, T ].

Then, ∥∥φ̇j∥∥L1(0,T )
6 CM2σ−1

(∥∥ḟ∥∥
L1(0,T )

+
∥∥ġ∥∥

L1(0,T )

)
6 CM2σ.

Summing up, one easily obtains (5.2). �

The second step is to show that the action of a translated Volterra function preserves, as integral
kernel, W 1,1-regularity. More precisely, we have

Lemma 5.2.
Let T > 0 and h ∈W 1,1(0, T ). Then

hT (t) :=

∫ T

0
dτ I(t+ T − τ)h(τ)

belongs to W 1,1(0, T̃ ) for any T̃ > 0.

Proof. One can easily see that hT ∈ L1(0, T̃ ) for all T̃ > 0. On the other hand, observing that

hT (t) =

∫ t+T

t
dτ I(τ)h(t+ T − τ),

there results

ḣT (t) = I(t+ T )h(0)− I(t)h(T ) +

∫ T

0
dτ I(t+ T − τ)ḣ(τ).

Since the first two terms are in L1(0, T̃ ) for any T̃ > 0, as functions of t, we must show that

A :=

∫ T̃

0
dt

∫ T

0
dτ I(t+ T − τ)

∣∣ḣ(τ)
∣∣ < +∞.

Using Tonelli theorem and a change of variable, and denoting by N (t) :=
∫ t

0 dτ I(τ) (which is an
increasing and absolutely continuous function, as explained in [CCT, CFioT]), one finds

A =

∫ T

0
dτ
∣∣ḣ(τ)

∣∣ ∫ T̃+T−τ

T−τ
ds I(s) =

∫ T

0
dτ
∣∣ḣ(τ)

∣∣(N (T̃ + T − τ)−N (T − τ)
)

6
∫ T

0
dτ
∣∣ḣ(τ)

∣∣N (T̃ + T − τ) 6 2N (T̃ + T )
∥∥ḣ∥∥

L1(0,T )
<∞,

which concludes the proof. �
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Finally, we have all the ingredients to prove that the solution q of the charge equation (2.10)
belongs to W 1,1(0, T ) for every T ∈ (0, T∗), where we recall that T∗ is the maximal existence time.
To this aim it is convenient to write (2.10) in the following compact form:

q(t) +

∫ t

0
dτ

(
g(t, τ, q(τ)) + κI(t− τ) q(τ)

)
= f(t), (5.5)

where κ := −2
(

log 2− γ + iπ4
)

and g and f are defined respectively by

g(t, τ, q(τ)) := −4πβI(t− τ)|q(τ)|2σq(τ), f(t) := 4π

∫ t

0
dτ I(t− τ)(U0(τ)ψ0)(0).

Moreover, we introduce the notation

(Ig) (t) :=

∫ t

0
dτ I(t− τ)g(τ), t > 0,

and recall that, from2 [CFioT, Theorem 5.3], if g ∈W 1,1(0, T ), then

‖Ig‖W 1,1(0,T ) 6 N (T )
(
|g(0)|+ ‖g‖W 1,1(0,T )

)
. (5.6)

Note that the following result extends straightforwardly to the defocusing case β < 0.

Proposition 5.1 (W 1,1-regularity of q).
Under the assumptions of Lemma 4.1, the solution of (5.5) q ∈W 1,1(0, T ) for any T < T∗.

Remark 5.1 (Initial datum).
In fact, an inspection of the proof of Proposition 5.1 below reveals that it suffices to assume
φλ ∈ H2(R2), in place of φλ ∈ S(R2). In addition, one can see that the assumption φλ ∈ S(R2) (as
well as φλ ∈ H2(R2)) simplifies the proofs of [CCT, Theorems 1.1, 1.2 & 1.3]. Indeed, in [CCT] a
delicate duality pairing argument is used in order to give some meaning to the formal integration
of q̇. On the contrary, in view of Proposition 5.1, a suitable regularity of the initial datum ψ0

entails that all the required integrations of q̇ are well defined in the classical Lebesgue sense (which
makes all the computations easier).

Proof. We split the proof in three steps. We first prove that the forcing term enjoys the W 1,1-
regularity; then we show that the regularity holds true for q as well on short intervals, via a
contraction argument; finally, by gluing together solutions on different time intervals, we prove
that q has the W 1,1-regularity up to the maximal existence time.

Step (i). The first point consists of proving that f ∈W 1,1(0, T ) for all T > 0. We start by fixing
arbitrarily T > 0 and recalling that, from the decomposition of the initial datum ψ0,

4π(U0(τ)ψ0)(0) = 4π (U0(τ)φλ,0) (0)︸ ︷︷ ︸
=:A1(τ)

+ 2q(0)
(
U0(τ)K0

(√
λ| · |

))
(0)︸ ︷︷ ︸

=:A2(τ)

.

Exploiting the Fourier transform and arguing as in [CCT, Proof of Proposition 2.3] one can see
that

‖A1‖2Hν(R) 6 C
∫
R2

dk
(
1 + k4

)ν∣∣φ̂λ,0(k)
∣∣2.

2The result is actually proven there only for real functions but the extension to complex ones is trivial.
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Hence, as φλ,0 ∈ S(R2), A1 belongs to W 1,1(0, T ), so that, by (5.6), IA1 ∈ W 1,1(0, T ). On the
other hand, from (5.29) and (5.30) below,

A2(τ) = q(0) eiλτ (−γ − log(τ))︸ ︷︷ ︸
:=A2,1(τ)

+q(0) e
iλτ

π (−π log λ+Q(λ; τ))︸ ︷︷ ︸
:=A2,2(τ)

.

Now, since Q is a smooth function of τ (see, e.g., [AS] for more details), again by (5.6), there
results IA2,2 ∈W 1,1(0, T ). Finally, using the property that I is a Sonine kernel with complement
(−γ − log(τ)), namely that∫ t

0
dτ I(t− τ)(−γ − log(τ)) =

∫ t

0
dτ I(τ)(−γ − log(t− τ)) = 1, ∀t > 0,

(see [SKM, Lemma 32.1] and [CCT, Eq. (2.29)]), we have

(IA2,1) (t) = 1 +

∫ t

0
dτ I(t− τ)a2,1(τ), a2,1(τ) :=

(
eiλτ − 1

)
(−γ − log(τ)).

Since a2,1 is in W 1,1(0, T ), this entails that IA2,1 ∈W 1,1(0, T ) too, so that f ∈W 1,1(0, T ).
Step (ii). Here we prove that the map

G(q)[t] := f(t)−
∫ t

0
dτ

(
g(t, τ, q(τ)) + κI(t− τ)q(τ)

)
is a contraction in a suitable subset of W 1,1(0, T ), for a sufficiently small T ∈ (0, T ∗), which
immediately implies that the unique solution of (5.5) is of class W 1,1 at least on small intervals.

Consider the set

BT :=
{
q ∈W 1,1(0, T )

∣∣∣ ‖q‖L∞(0,T ) + ‖q‖W 1,1(0,T ) 6 bT

}
,

with bT = 2 max{‖f‖L∞(0,T ) + ‖f‖W 1,1(0,T ), 1}. It is a complete metric space with the norm

‖·‖BT = ‖·‖L∞(0,T ) + ‖·‖W 1,1(0,T ) .

In order to prove that G is a contraction on BT , we first show that G(BT ) ⊂ BT . To this aim, split
the homogenous part of G(q)[t] in two terms:

G1(q)[t] :=

∫ t

0
dτ g(t, τ, q(τ)), G2(q)[t] := κ

∫ t

0
dτ I(t− τ)q(τ).

From (5.6), (5.2) and [CCT, Eq. (2.5)] (i.e., the Lipschitz continuity of the map f 7→ |f |2σf in
L∞(0, T )), one finds

‖G1(q)‖W 1,1(0,T ) 6 CT
∥∥|q|2σq∥∥BT 6 CTb2σ

T ‖q‖BT 6 CTb2σ+1
T ,

where, from now on, CT stands for a generic positive constant such that CT → 0, as T → 0, and
which may vary from line to line. In addition, arguing as in [CCT, Proof of Proposition 2.3], that
is combining [CCT, Eq. (2.20)] (i.e., the contractive property of the operator I in L∞(0, T )) and
again [CCT, Eq. (2.5)], there results

‖G1(q)‖L∞(0,T ) 6 CTb2σ
T ‖q‖L∞(0,T ) 6 CTb2σ+1

T

and thus
‖G1(q)‖BT 6 CTb2σ+1

T .

On the other hand, one can easily find that ‖G2(q)‖BT 6 CT ‖q‖BT 6 CTbT , so that

‖G(q)‖BT 6 bT

[
1

2
+ CT

(
1 + b2σ

T

)]
.
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Consequently, as the term in brackets is equal to 1
2 + o(1) as T → 0, for T sufficiently small,

G(q) ∈ BT .
Therefore, it is left to prove that G is actually a contraction. Given two functions q1, q2 ∈ BT ,

we have
G(q1)− G(q2) = G1(q1)− G1(q2) + G2(q1 − q2).

Arguing as before, one sees that ‖G2(q1 − q2)‖BT 6 CT ‖q1 − q2‖BT , while, using once again (5.2),

[CCT, Eqs. (2.5)&(2.20)] and (5.6),∥∥I (|q1|2σq1 − |q2|2σq2

)∥∥
BT
6 CT

∥∥|q1|2σq1 − |q2|2σq2

∥∥
BT
6 CTb2σ

T ‖q1 − q2‖BT .

Then,
‖G(q1)− G(q2)‖BT 6 CT

(
1 + b2σ

T

)
‖q1 − q2‖BT

and, since CT → 0 as T → 0 and bT is bounded, G is a contraction on BT , provided that T is
small enough.

Step (iii). Let q be the solution of (2.10). From Step (ii), there exists T1 ∈ (0, T∗) such that
q ∈W 1,1(0, T1). Now, consider the equation

q1(t) +

∫ t

0
dτ

(
g(t, τ, q1(τ)) + κI(t− τ) q1(τ)

)
= f1(t), (5.7)

where

f1(t) := f(t+ T1) + 4πβ

∫ T1

0
dτ I(t+ T1 − τ)|q(τ)|2σq(τ)− κ

∫ T1

0
dτ I(t+ T1 − τ)q(τ).

Exploiting Lemma 5.2 with T = T1 and h = −4πβ|q|2σq + κq, one can see that f1 ∈ W 1,1(0, T )
for every T < T∗ − T1 and arguing as before, there exists T ′1 < T∗ − T1 and q1 ∈ W 1,1(0, T ′1)
which solves (5.7). In addition, an easy computation shows that q(t) = q1(t − T1) for every
t ∈ [T1, T1 +T ′1], so that we have found a solution to the charge equation such that q ∈W 1,1(0, T1)
and q ∈ W 1,1(T1, T1 + T ′1), whence q ∈ W 1,1(0, T1 + T ′1). This shows that once the regularity is
proven up to a time T1 ∈ (0, T∗), then it can be extended up to T1 < T ′1 < T∗. A priori this
procedure could stop before T∗ is reached.

Define T̂ := sup{T > 0 : q ∈ W 1,1(0, T )}, which is strictly positive by Step (ii). In order to

conclude, we must prove that T̂ = T∗. Assume, then, by contradiction that T̂ < T∗. Consequently,

q ∈ W 1,1(0, T ) for every T < T̂ and ‖q‖
L∞(0,T̂ )

< +∞. In addition, fix ε > 0 such that N (T̂ −
Tε)
(
‖q‖2σ

L∞(0,T̂ )
+ 1
)
< 1/2C, where Tε := T̂ − ε and C is a fixed constant that will be specified

in the following, and 0 < δ < ε, so that Tδ := T̂ − δ ∈ (Tε, T̂ ). At this point we can estimate
‖q‖W 1,1(Tε,Tδ) by using (5.5). First we note that (letting h be defined as before) for t ∈ (Tε, Tδ)

q(t) = f(t)−
∫ Tε

0
dτ I(t− τ)h(τ)−

∫ t

Tε

dτ I(t− τ)h(τ).

Since f ∈W 1,1(0, T ) for every T > 0, its W 1,1(Tε, Tδ)-norm can be easily estimated independently
of δ. The same can be proved for the second term, arguing as in the proof of Lemma 5.2 and
noting that I(t− τ) = I(t′ + Tε − τ) with t′ ∈ [0, Tδ − Tε]. Summing up,

‖q‖W 1,1(Tε,Tδ)
6 C

T̂ ,Tε
+

∥∥∥∥∫ (·)

Tε

dτ I(· − τ)h(τ)

∥∥∥∥
W 1,1(Tε,Tδ)

(5.8)

(precisely, C
T̂ ,Tε

depends only on ‖q‖
L∞(0,T̂ )

and ‖q‖W 1,1(0,Tε), which are finite quantities). There-

fore, we have to estimate the last term on the r.h.s.. Since the L1 norm can be easily estimated
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independently of δ, it suffices to study the contribution of the derivative term. To this aim we
note that, for every t ∈ (Tε, Tδ),

d

dt

∫ t

Tε

dτ I(t− τ)h(τ) = I(t− Tε)h(Tε) +

∫ t−Tε

0
ds I(s)ḣ(t− s).

First, one has ∣∣∣∣∫ Tδ

Tε

dt I(t− Tε)h(Tε)

∣∣∣∣ 6 N (T̂ − Tε)‖h‖L∞(0,T̂ )
.

On the other hand, using Fubini theorem and some changes of variable,∣∣∣∣∫ Tδ

Tε

dt

∫ t−Tε

0
dsI(s)ḣ(t− s)

∣∣∣∣ 6 N (T̂ − Tε)‖ḣ‖L1(Tε,Tδ).

Now, easy computations show that

‖h‖
L∞(0,T̂ )

6 C
(
‖q‖2σ

L∞(0,T̂ )
+ 1
)
‖q‖

L∞(0,T̂ )

(see, e.g., [CCT, Proof of Proposition 2.4]), while, using [CCT, Eq. (2.9)] and arguing as in the
proof of Lemma 5.1 (namely, combining (5.3) and (5.4)),∥∥ḣ∥∥

L1(Tε,Tδ)
6 C

(
‖q‖2σ

L∞(0,T̂ )
+ 1
)
‖q‖W 1,1(Tε,Tδ)

.

Then, recalling (5.8) and the definition of ε (and possibly redefining C
T̂ ,Tε

), we conclude that

‖q‖W 1,1(Tε,Tδ)
6 C

T̂ ,Tε
+ CN (T − Tε)

(
‖q‖2σ

L∞(0,T̂ )
+ 1
)
‖q‖W 1,1(Tε,Tδ)

6 C
T̂ ,Tε

+ 1
2 ‖q‖W 1,1(Tε,Tδ)

.

Hence, moving the last term to the l.h.s., we see that ‖q‖W 1,1(Tε,Tδ)
can be estimated independently

of δ and thus, letting δ → 0, there results ‖q‖
W 1,1(Tε,T̂ )

< ∞. Summing up, we have that q ∈
W 1,1(0, T̂ ), but, using the first part of Step (iii) with T1 = T̂ , this entails that there exists the

possibility of a contraction argument beyond T̂ , which contradicts the definition of T̂ . Hence, we

proved that T̂ = T∗. �

5.2. First and Second Derivative of M. Now, we have all the ingredients to rigorously prove
(4.8) and (4.10).

It is convenient (for the sake of simplicity) to sketch the line of the proof of Proposition 4.1 in
advance. First, we introduce the truncated moment of inertia, i.e.

MR(t) :=

∫
k6R

dk |∇kψ̂t(k)|2, ∀t ∈ [0, T∗). (5.9)

Then, we prove that MR is differentiable in [0, T ∗) (and absolutely continuous in [0, T ], T < T∗),
so that

MR(t) =MR(0) +

∫ t

0
ds ṀR(s), ∀t ∈ (0, T∗),

and, by monotone convergence theorem,

M(t) =M(0) + lim
R→∞

∫ t

0
ds ṀR(s), ∀t ∈ (0, T∗).

We conclude the proof by applying the dominated convergence theorem, that is proving that

M(t) =M(0) +

∫ t

0
lim
R→∞

ds ṀR(s),
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which implies, therefore, that

Ṁ(t) = lim
R→∞

ṀR(t).

Proof of Proposition 4.1. Let us divide the proof in three steps.
Step (i). We start by proving the analogue of (4.8) for the truncated moment of inertia MR

defined in (5.9), i.e.

ṀR(t) = 4 Im

{∫
k6R

dk ψ̂t(k) k · ∇kψ̂
∗
t (k)

}
, ∀t ∈ [0, T∗). (5.10)

Preliminarily, integrating by parts in (4.1), one obtains

ψ̂t(k) = e−ik
2tφ̂λ,0(k) +

q(0) e−ik
2t

2π(k2 + λ)
+
iQ(t)

2π
+
k2

2π

∫ t

0
dτ e−ik

2(t−τ)Q(τ), (5.11)

with

Q(τ) :=

∫ τ

0
ds q(s). (5.12)

Hence,

∇kψ̂t(k) = −2itke−ik
2tφ̂λ,0(k) + e−ik

2t∇kφ̂λ,0(k)− iq(0)tke−ik
2t

π(k2 + λ)
− q(0)ke−ik

2t

π(k2 + λ)2

+
k

π

∫ t

0
dτ e−ik

2(t−τ)Q(τ)− ik2k

π

∫ t

0
dτ e−ik

2(t−τ)(t− τ)Q(τ)

=: Φ1(t,k) + Φ2(t,k) + Φ3(t,k) + Φ4(t,k) + Φ5(t,k) + Φ6(t,k) (5.13)

with Q defined by (5.12), so that one gets

∂t
(
∇kψ̂t(k)

)
= −2i k ψ̂t(k)− ik2 ∇kψ̂t(k), ∀t ∈ [0, T∗), ∀k ∈ R2.

Hence, the identity ∂t

(
|∇kψ̂t(k)|2

)
= 2 Re

{
∇kψ̂t(k) · ∂t∇kψ̂

∗
t (k)

}
yields

∂t

(
|∇kψ̂t(k)|2

)
= 4 Im

{
ψ̂t(k) k · ∇kψ̂

∗
t (k)

}
, ∀t ∈ [0, T∗), ∀k ∈ R2.

In order to bound the difference quotient in t of the integrand of (5.9), we use the trivial estimates∣∣e−ik2(t+h) − e−ik2t
∣∣ 6 hk2, (5.14)∣∣(t+ h)e−ik

2(t+h) − te−ik2t
∣∣ 6 h(h+ t)k2 + h, (5.15)

which entail

1
h |Φ1(t+ h,k)− Φ1(t,k)| 6 C(k3 + 1)

∣∣φ̂λ,0(k)
∣∣,

1
h |Φ2(t+ h,k)− Φ2(t,k)| 6 k2

∣∣∇kφ̂λ,0(k)
∣∣,

1
h |Φ3(t+ h,k)− Φ3(t,k)| 6 C(k + 1) ‖q‖L∞(0,t) ,

1
h |Φ4(t+ h,k)− Φ4(t,k)| 6 C ‖q‖L∞(0,t) ,

1
h |Φ5(t+ h,k)− Φ5(t,k)| 6 C(k3 + 1) ‖q‖L∞(0,t) ,

1
h |Φ6(t+ h,k)− Φ6(t,k)| 6 C(k5 + 1) ‖q‖L∞(0,t) ,

where each finite constant C might depend on t, h and λ. Summing up,

1

h

∣∣∇kψ̂t+h(k)−∇kψ̂t(k)
∣∣ 6 C [(k3 + 1)

∣∣φ̂λ,0(k)
∣∣+ k2

∣∣∇kφ̂λ,0(k)
∣∣+ (k5 + 1) ‖q‖L∞(0,t)

]
(5.16)
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and, since

1

h

∣∣∣∣∣∇kψ̂t+h(k)
∣∣2 − ∣∣∇kψ̂t(k)

∣∣∣2 ∣∣ 6 1

h

∣∣∇kψ̂t+h(k)−∇kψ̂t(k)
∣∣ (∣∣∇kψ̂t+h(k)

∣∣+
∣∣∇kψ̂t(k)

∣∣) ,
combining (5.16) with the fact that ψ0 ∈ DS , one finds that the difference quotient of |∇kψ̂t(k)|2
is estimated by a function which is integrable in k 6 R, and thus, by dominated convergence, one
obtains (5.10).

Step (ii). We now prove that

lim
R→∞

∫ t

0
ds ṀR(s) =

∫ t

0
ds lim

R→∞
ṀR(s). (5.17)

More precisely, we find a constant K > 0, possibly depending on T < T∗ but independent of R,
such that |ṀR(s)| 6 K for all s ∈ (0, T ) and then (5.17) follows by dominated convergence.

To this aim, we consider the integrand as the product of the scalar functions ψ̂s and k · ∇kψ̂
∗
s .

For the first factor, we exploit the structure of the energy space and the well-posedness result in
[CCT], that ensures that the solution ψs belongs to V at any time s, so that it splits as

ψs = φλ,s + q(s)Gλ (5.18)

with φλ,s ∈ H1(R2). For the second factor, by (4.4), we get

k · ∇kψ̂s(k) = −2isk2e−ik
2sφ̂λ,0(k) + e−ik

2sk · ∇kφ̂λ,0(k)

− q(s)k2

π(k2 + λ)2
+ k · ∇kf̂1,λ(s,k) + k · ∇kf̂2,λ(s,k). (5.19)

We first notice that the pairing of φ̂λ,s with k · ∇kψ̂
∗
s is bounded, as the second factor belongs

to H−1(R2), due to (4.6). It is then possible to estimate∣∣∣∣∫
k6R

dk φ̂λ,s(k) k · ∇kψ̂
∗
s(k)

∣∣∣∣ 6 ‖φλ,·‖L∞((0,T ),H1(R2))

∥∥k · ∇kψ̂·
∥∥
L∞((0,T ),H−1(R2))

,

where the first factor is finite due to conservation of the energy. The pairing of the charge term
q(s)Gλ in (5.18) with the term q(s)k2/π(k2 + λ)2 can be understood as a hermitian product in
L2(R2), thus ∣∣∣∣∣

∫
k6R

dk |q(s)|2 k2Ĝλ(k)

(k2 + λ)2

∣∣∣∣∣ 6 C ‖q‖2L∞(0,T ) .

It remains to discuss the pairing of q(s)
k2+λ

with k ·∇kf̂
∗
j,λ(s). Let us consider j = 2 only, which gives

the most singular term. By (4.4)

k ·∇kf̂2,λ(s,k) =
k2

π(k2 + λ)2

∫ s

0
dτ e−ik

2(s−τ)q̇(τ)+
ik2

π(k2 + λ)

∫ s

0
dτ e−ik

2(s−τ)(s−τ)q̇(τ). (5.20)

Owing to the fact that q̇ belongs to L1(0, T ), one immediately has that the first term in (5.20) is
square integrable, so we are left to discuss the second one only. To this aim, we must estimate the
integral ∫

k6R
dk

k2

(k2 + λ)3

∫ s

0
dτ e−ik

2(s−τ)(s− τ)q̇(τ)
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by a constant independent of R. Using Fubini’s theorem and then introducing the variable u = k2,
the previous integral reads∫ s

0
dτ (s− τ)q̇(τ)

∫ R2

0
du

u

(u+ λ)2
e−iu(s−τ) = i

∫ s

0
dτ q̇(τ)

∫ R2

0
du

u

(u+ λ)2

d

du
e−iu(s−τ)

= i

∫ s

0
dτ q̇(τ)

{
R2e−iR

2(s−τ)

(R2 + λ)2
−
∫ R2

0
du

λ− u
(λ+ u)3

e−iu(s−τ)

}
6 C ‖q̇‖L1(0,T ) .

We can then conclude that every term involved in the integral (5.17) can be estimated by a
constant, so that (5.17) is proved.

Step (iii). By showing that for any finite t > 0

lim
R→∞

∫ t

0
ds ṀR(s) = 4Im

∫ t

0
ds

∫
R2

dk ψ̂s(k)k · ∇kψ̂
∗
s(k),

we complete the proof of the result. From (5.10), one has to show that

lim
R→∞

∫
k6R

dk ψ̂s(k)k · ∇kψ̂
∗
s(k)

exists. As in Step (ii), we decompose the integrand into the terms induced by formulae (5.18) and

(5.19), for the two factors ψ̂s(k) and k · ∇kψ̂
∗
s(k), respectively.

Now, we first observe that∫
R2

dk
∣∣φ̂λ,s(k) k · ∇kψ̂

∗
s(k)

∣∣ 6 ‖φλ,s‖H1(R2)

∥∥k · ∇kψ̂s
∥∥
H−1(R2)

so that, by monotone convergence, one can conclude that

lim
R→∞

∫
k6R

dk φ̂λ,s(k)k · ∇kψ̂
∗
s(k) =

∫
R2

dk φλ,s(k)k · ∇kψ̂
∗
s(k).

Analogously, since ∫
k6R

dk
k2Ĝλ(k)

π(k2 + λ)2
6 ‖Gλ‖L2(R2)

∥∥∥∥ k2

π(k2 + λ)2

∥∥∥∥
L2(R2)

,

again by monotone convergence, one gets

lim
R→∞

|q(s)|2
∫
k6R

dk
k2Ĝλ(k)

π(k2 + λ)2
= |q(s)|2

∫
R2

dk
k2Ĝλ(k)

π(k2 + λ)2
.

We are thus left to discuss the two terms∫
k6R

dk
q∗(s)

k2 + λ
k · ∇kf̂j,λ(k), j = 1, 2.

Like in Step (ii), we limit ourselves to the term with j = 2, that is the most singular. From Step
(ii), we know that

lim
R→∞

∫
k6R

dk
k2

(k2 + λ)3

∫ s

0
dτ e−ik

2(s−τ)(s− τ)q̇(τ)

= i

∫ s

0
dτ q̇(τ)

{
R2e−iR

2(s−τ)

(R2 + λ)2
−
∫ R2

0
du

λ− u
(λ+ u)3

e−iu(s−τ)

}
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and it is immediately seen that the quantity in brackets can be estimated by a constant, so that,
by dominated convergence, the limit exists and, by definition of improper integral, one finally has

lim
R→∞

∫
k6R

dk
k2

(k2 + λ)3

∫ s

0
dτ e−ik

2(s−τ)(s− τ)q̇(τ)

=

∫
R2

dk
k2

(k2 + λ)3

∫ s

0
dτ e−ik

2(s−τ)(s− τ)q̇(τ)

and this concludes the proof. �

Remark 5.2 (Derivative of M at t = 0).
Along the lines of the proof below, one can also show that the derivative of M at t = 0 is in fact
well defined and

Ṁ(0) = 4 Im

{∫
R2

dk ψ̂0(k) k · ∇kψ̂
∗
0(k)

}
. (5.21)

Indeed, recalling that the regular part of the initial datum ψ0 is a Schwartz function, we can
easily exchange the limit R →∞ with the integral in the expression of ṀR(0): the latter can be
computed using the identity

∇kψ̂0(k) = ∇kφ̂λ,0(k)− q(0)k

π(k2 + λ)2
,

which leads to (note the vanishing of a term because of the imaginary part)

ṀR(0) = 4 Im

{∫
k6R

dk

(
φ̂λ,0(k) +

q(0)

2π(k2 + λ)

)
k · ∇kφ̂

∗
λ,0(k)−

q(0)∗k2φ̂λ,0(k)

π(k2 + λ)2

}
,

and all the terms are uniformly bounded in R thanks to the smoothness and decay of φλ,0, which
allows to take the limit R→∞ and recover (5.21).

Before showing the proof of (4.10), it is necessary to recall a property of compactly supported
functions of bounded variation in dimension one.

Lemma 5.3.
Let q ∈ C[0, T ]. Then, if q1[0,T ] ∈ BV (R) for any T < T∗, one has∣∣∣∣ ∫ t

0
dτ eiρτq(τ)

∣∣∣∣ 6 CT
ρ
, ∀t ∈ [0, T ], (5.22)

for ρ large.

Proof. The result is quite classical, but we show the proof for the sake of completeness. First, note
that (5.22) can be rewritten as∣∣∣∣f̂t(−ρ) :=

∫
R

dτ e−i(−ρ)τft(τ)

∣∣∣∣ 6 CT
ρ

∀t ∈ [0, T ], (5.23)

where ft := q1[0,t] ∈ BV (R) and is compactly supported. Consider, then, a function φt ∈ C∞0 (R)
such that 0 6 φt 6 1, φt ≡ 1 on [0, t/2] and supp{φt} = [−1, t + 1]. Subsequently, define
φt,ρ ∈ C∞0 (R) as

φt,ρ(τ) :=


φt(τ), if τ 6 t/2,

1, if t/2 < τ 6 tρ,

φt(τ + t/2− tρ), if τ > tρ,
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where tρ = (t+ ρ)/2. Now,

F (ρ, t) := iρ

∫
R

dτ eiρτft(τ) = iρ

∫
R

dτ eiρτft(τ)φt,ρ(τ)

+ iρ

∫
R

dτ eiρτft(τ) (1− φt,ρ(τ)) =

∫
R

dτ ft(τ)
d

dτ

(
eiρτφt,ρ(τ))︸ ︷︷ ︸

=:I1(ρ,t)

−
∫
R

dτ ft(τ)
(
eiρτ φ̇t,ρ(τ)

)
︸ ︷︷ ︸

=:I2(ρ,t)

+ iρ

∫
R

dτ eiρτft(τ)(1− φt,ρ(τ))︸ ︷︷ ︸
=:I3(ρ,t)

.

One easily sees that

|I3(ρ, t)| 6 ‖ft‖L∞(0,t) ρ

∫ t

0
dτ |1− φt,ρ(τ)| −−−→

ρ→∞
0

and that

|I2(ρ, t)| 6 ‖ft‖L1(0,t)

∥∥φ̇t∥∥C0(R)
.

On the other hand, as eiρτφt,ρ ∈ C∞0 (R) with sup norm smaller than or equal to one, by the
definition bounded variation, one obtains that |I1(ρ, t)| 6 Ct. Since the procedure above does not
depend on the choice of t ∈ [0, T ] one sees that (5.23) is satisfied. �

Finally, we can present the proof of Proposition 4.2.

Proof of Proposition 4.2. Analogously to the proof of Proposition 4.1, we first verify the identity
on the truncated moment of inertia MR(t) (recall its definition (5.9)) and then we show that the
cut-off can be removed. Note that the fact that M ∈ C2[0, T ] follows from the continuity of the
r.h.s. of (4.10), once the identity is proven.

Step (i). First, we compute the partial derivative w.r.t. time of the integrand on the r.h.s. of
(5.10). Setting

B(t,k) := Im
{

4 ψ̂t(k) k · ∇kψ̂
∗
t (k)

}
,

we have

∂tB(t,k) = 4 Im

{[
∂tψ̂t(k) + ik2ψ̂t(k)

]
︸ ︷︷ ︸

=:A(t)

k · ∇kψ̂
∗
t (k)

}
+ 8 k2

∣∣ψ̂t(k)
∣∣2.

Therefore, (let λ = 1 throughout) differentiating (5.11) with respect to time, one sees that A(t) =
iq(t)
2π , so that

∂tB(t,k) =
2

π
Re
{
q(t) k · ∇kψ̂

∗
t (k)

}
+ 8 k2

∣∣ψ̂t(k)
∣∣2. (5.24)

Since

ṀR(t) =

∫
k6R

dkB(t,k),
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it is just left to prove that dominated convergence applies. First, one easily sees that

D :=
1

h

∣∣ψ̂t+h(k) k · ∇kψ̂
∗
t+h(k)− ψ̂t(k) k · ∇kψ̂

∗
t (k)

∣∣
6 k

∣∣∇kψ̂t+h(k)
∣∣︸ ︷︷ ︸

=:A1(t,h)

1

h

∣∣ψ̂t+h(k)− ψ̂t(k)
∣∣︸ ︷︷ ︸

=:A2(t,h)

+ k
∣∣ψ̂t(k)

∣∣︸ ︷︷ ︸
=:A3(t)

1

h

∣∣∇kψ̂t+h(k)−∇kψ̂t(k)
∣∣︸ ︷︷ ︸

=:A4(t,h)

.

Arguing as in the proof of Proposition 4.1 and using (5.11), (5.13), (5.14) and (5.15), one obtains

A1(t, h) 6 Ck2
∣∣φ̂1,0(k)

∣∣+ k
∣∣∇kφ̂1,0(k)

∣∣+ C(k4 + 1) ‖q‖L∞(0,t) ,

A2(t, h) 6 k2
∣∣φ̂1,0(k)

∣∣+ C(k4 + 1) ‖q‖L∞(0,t) ,

A3(t) 6 k
∣∣φ̂1,0(k)

∣∣+ C(k3 + 1) ‖q‖L∞(0,t)

(A4 is already estimated by (5.16)). Hence, since ψ0 ∈ DS , D is estimated by a function which is
Lebesgue integrable and independent of h. Thus dominated convergence applies and, combining
with (5.24), one has

M̈R(t) =
2

π
Re

{
q(t)

∫
k6R

dk k · ∇kψ̂
∗
t (k)

}
+ 8

∫
k6R

dk k2|ψ̂t(k)|2. (5.25)

Step (ii). Now, it is necessary to find a version of (5.25), which makes easier the passage to the
limit as R→∞. First we see that, from the divergence theorem,∫

k6R
dk k · ∇kψ̂

∗
t (k) =

∫
k=R

dΣ kψ̂∗t (k)− 2

∫
k6R

dk ψ̂∗t (k).

On the other hand,

8

∫
k6R

dk k2|ψ̂t(k)|2 = 8

∫
k6R

dk k2
∣∣φ̂1,t(k)

∣∣2 +
8

π
Re

{
q(t)

∫
k6R

dk
k2φ̂∗1,t(k)

k2 + 1

}

+
2|q(t)|2

π2

∫
k6R

dk
k2

(k2 + 1)2

and, combining with (5.25), we find that

M̈R(t) =
2

π
Re

{
q(t)

∫
k=R

dΣ kψ̂∗t (k)

}
− 4

π
Re

{
q(t)

∫
k6R

dk ψ̂∗t (k)

}
+ 8

∫
k6R

dk k2|φ̂∗1,t(k)|2 +
8

π
Re

{
q(t)

∫
k6R

dk
k2φ̂∗1,t(k)

k2 + 1

}
+

2|q(t)|2

π2

∫
k6R

dk
k2

(k2 + 1)2
.

Furthermore, since ψt ∈ V , easy computations yield

M̈R(t) = 8(CR(t)−M2
R(t)) +

4

π
Re

{
q(t)

∫
k6R

dk ψ̂∗t (k)

}
− 2|q(t)|2

π2
log(R2 + 1)

+
2

π
Re

{
q(t)

∫
k=R

dΣ kψ̂∗t (k)

}
, (5.26)

where

CR(t) :=

∫
k6R

dk (1 + k2)
∣∣φ̂1,t(k)

∣∣2, M2
R(t) :=

∫
k6R

dk
∣∣ψ̂∗t (k)

∣∣2.
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However, one can see that ∫
k6R

dk ψ̂t(k) = JR(t) +
q(t)

2
log(R2 + 1),

where

JR(t) :=

∫
k6R

dk e−ik
2tψ̂0(k)− q(0)

2π

∫
k6R

dk
e−ik

2t

k2 + 1

− 1

2π

∫
k6R

dk
1

k2 + 1

∫ t

0
dτ e−ik

2(t−τ)(q̇(τ)− iq(τ)) =: J1,R(t) + J2,R(t) + J3,R(t)

and, consequently, (5.26) reads

M̈R(t) = 8(CR(t)−M2
R(t)) +

4

π
Re{q∗(t)JR(t)}+

2

π
Re

{
q(t)

∫
k=R

dΣ kψ̂∗t (k)

}
=: Φ1,R(t) + Φ2,R(t) + Φ3,R(t). (5.27)

Step (iii). To complete the proof, we have to take the limit R→∞. First, combining monotone

convergence with the facts that M̈R is bounded and hence Lebesgue integrable on [0, t] and that

ṀR(0)→ Ṁ(0), there results

M(t) =M(0) + tṀ(0) + lim
R→∞

∫ t

0
ds

∫ s

0
dτ M̈R(τ).

Notice that at this level we do not need to know thatM is C1 but only the convergence of ṀR(0)
(see Remark 5.2). Furthermore, if there exists a continuous function g(τ) such that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ M̈R(τ) =

∫ t

0
ds

∫ s

0
dτ g(τ), (5.28)

then M̈(t) = g(t). Consequently, the goal is to compute the l.h.s. of (5.28), using the decomposi-
tion provided by (5.27).

We immediately see, from monotone convergence, that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Φ1,R(τ) =

∫ t

0
ds

∫ s

0
dτ
(
‖φ1,τ‖2H1(R2) −M

2(τ)
)
.

On the contrary, the computation of

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Φ2,R(τ)

requires some further efforts. First, we recall that from [CCT, Eq. (2.33)] (in view of [GR, Eqs.
3.722.1 & 3.722.3]), one has∫

R2

dk
e−ik

2t

k2 + λ
= −πeiλt

[
ci(λt)− isi(λt)

]
= −πeiλt

(
γ + log λ+ log t− 1

πQ(λ; t)
)

(5.29)

for every λ, t > 0, where si(·) and ci(·) are the sine and cosine integral functions (defined by [AS,
Eqs. 5.2.1 & 5.2.2]) and

Q(λ; t) := −π
( ∞∑
n=1

(−t2λ2)n

2n(2n)!
− isi(λt)

)
(5.30)
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(see, e.g., [AS, Eq. 5.2.16]). Hence, we see that, for every τ ∈ [0, t],

J1,R(τ) −→
R→∞

J1,∞(τ) := 2π(U0(τ)ψ0)(0)

and

J2,R(τ) −→
R→∞

J2,∞(τ) :=
q(0)eiτ

2

(
γ + log τ − 1

πQ(1; τ)
)
,

by definition. In addition, arguing as in the proof of Proposition 4.1, one finds that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)J`,R(τ)} =

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)J`,∞(τ)}, ` = 1, 2.

Concerning the third term, we have to prove that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)J3,R(τ)} =

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)J3,∞(τ)}, (5.31)

with

J3,∞(τ) :=
1

2

∫ τ

0
dη ei(τ−η)(q̇(η)− iq(η))

(
γ + log(τ − η)− 1

πQ(1; τ − η)
)
.

Preliminarily, we observe that by easy computations

J3,∞(τ) = −q(0)eiτ

2
(ci(τ)− isi(τ))− i

2

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)− 1

πQ(1; τ − η)
)

+
1

2

d

dτ

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)− 1

πQ(1; τ − η)
)
. (5.32)

On the other hand, using integration by parts, Fubini theorem and the definitions of ci and si [AS,
Eqs. 5.2.1 & 5.2.2], we obtain that

J3,R(τ) = −q(0)eiτ

2

(
ci(τ)− isi(τ)

)
+
q(0)eiτ

2

(
ci(τ(R2 + 1))− isi(τ(R2 + 1))

)
− q(τ)

2
log(R2 + 1)− 1

2

∫ τ

0
dη q(η)

e−iR
2(τ−η) − 1

τ − η
. (5.33)

Now, exploiting (5.29) and (5.30), we deduce that

d

dy
Q(1; y) = −πe

−iy − 1

y
.

Consequently,

−1

2

∫ τ

0
dη q(η)

e−iR
2(τ−η) − 1

τ − η
=
iπq(τ)

4
+

1

2

d

dτ

∫ τ

0
dη q(η) 1

πQ(1;R2(τ − η))
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and combining with (5.33) and (again) with (5.29) and (5.30), there results

J3,R(τ) = −q(0)eiτ

2

(
ci(τ)− isi(τ)

)
︸ ︷︷ ︸

=:Γ1,R(τ)

+
q(0)eiτ

2

(
ci(τ(R2 + 1))− isi(τ(R2 + 1))

)
︸ ︷︷ ︸

=:Γ2,R(τ)

+
iπq(τ)

4︸ ︷︷ ︸
=:Γ3,R(τ)

−q(τ)

2
log

(
R2 + 1

R2

)
︸ ︷︷ ︸

=:Γ4,R(τ)

+
1

2

d

dτ

∫ τ

0
dη q(η)

(
− ci(R2(τ − η)) + isi(R2(τ − η))

)
︸ ︷︷ ︸

=:Γ5,R(τ)

+
1

2

d

dτ

∫ τ

0
dη q(η)

(
γ + log(τ − η)

)
︸ ︷︷ ︸

=:Γ6,R(τ)

. (5.34)

In view of (5.34), we can finally compute the limit of the r.h.s. of (5.31). As Γ1,R does not actually
depend on R, it remains in the limit as R→∞, while

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)(Γ2,R(τ) + Γ3,R(τ) + Γ4,R(τ))} = 0.

In addition, only using integration by parts and again the properties of Q(1; ·), we see that

Γ6,R(τ) =
1

2

d

dτ

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
− i

2

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
+

1

2π

∫ τ

0
dη q(η)ei(τ−η) d

dη
Q(1; τ − η)

=
1

2

d

dτ

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
− i

2

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
+
iπq(τ)

4
− eiτ

2π

d

dτ

∫ τ

0
dη q(η)e−iηQ(1; τ − η)

=
1

2

d

dτ

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
− i

2

∫ τ

0
dη q(η)ei(τ−η)

(
γ + log(τ − η)

)
+
iπq(τ)

4
− 1

2π

d

dτ

∫ τ

0
dη q(η)ei(τ−η)Q(1; τ − η) +

ieiτ

2π

∫ τ

0
dη q(η)e−iηQ(1; τ − η).

Thus, a comparison with (5.32) yields that, if one can show that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Re{q∗(τ)Γ5,R(τ)} = 0, (5.35)

then there results that (5.31) is proved. Now, from an easy computation we find that∫ t

0
ds

∫ s

0
dτ q∗(τ)Γ5,R(τ) =

∫ t

0
ds q(s)

∫ s

0
dτ q∗(τ)

(
− ci(R2(s− τ))− isi(R2(s− τ))

)
+

∫ t

0
ds

∫ s

0
dτ q̇(τ)

∫ τ

0
dη q∗(η)

(
− ci(R2(τ − η))− isi(R2(τ − η))

)
︸ ︷︷ ︸

=:fR(τ)

.

Since the former term can be immediately proved to converge to zero as R→∞, we only focus on
the latter one. However, exploiting (5.29), (5.30), [AS, Eqs. 5.2.1 & 5.2.2] and [GR, Eqs. 3.722.1
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& 2.722.3], one can check that (for R large)∣∣si(R2(τ − η))
∣∣ 6 C, ∣∣ci(R2(τ − η))

∣∣ 6 C(1 + log(τ − η)), ∀η ∈ [0, τ).

Hence, from a repeated use of dominated convergence there results that fR → 0 pointwise and it
can be estimated by a bounded function independent of R. Since q̇ is integrable by Proposition
5.1, this implies that (5.35) holds true.

Summing up, we have proved that, setting J∞(τ) := J1,∞(τ) + J2,∞(τ) + J3,∞(τ),

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Φ2,R(τ) =

4

π
Re

{∫ t

0
ds

∫ s

0
dτ q∗(τ)J∞(τ)

}
.

Now, recalling [CCT, Eq. (2.59)],

(U0(t)ψ0) (0) =

(
−β|q(t)|2σ +

γ − log 2

2π

)
q(t)− iq(t)

8
+
q(0)

4π
(−γ − log t)

+
1

4π

∫ t

0
dτ (−γ − log(t− τ))q̇(τ)

and arguing as in [CCT, Proof of Theorem 1.2] (precisely, as in Part 2.), long and boring compu-
tations show that in fact

J∞(t) = −2πβ|q(t)|2σq(t) + (γ − log 2)q(t).

Consequently,

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Φ2,R(τ) = −8

∫ t

0
ds

∫ s

0
dτ

(
β

σ + 1
|q(τ)|2σ +

γ − log 2

2π

)
|q(τ)|2

− 8βσ

σ + 1

∫ t

0
ds

∫ s

0
dτ |q(τ)|2σ+2.

Finally, one has to show that

lim
R→∞

∫ t

0
ds

∫ s

0
dτ Φ3,R(τ) =

2

π

∫ t

0
ds

∫ s

0
dτ |q(τ)|2. (5.36)

First, observe that from (4.1)∫
k=R

dΣ kψ̂τ (k) = Re−iR
2τ

∫
∂k6R

dΣ φ̂1,0(k)︸ ︷︷ ︸
=:A1,R(τ)

+
R2e−iR

2τq(0)

R2 + 1︸ ︷︷ ︸
=:A2,R(τ)

+ iR2

∫ τ

0
dη q(η)e−iR

2(τ−η)︸ ︷︷ ︸
=:A3,R(τ)

,

so that ∫ t

0
ds

∫ s

0
dτ Φ3,R(τ) =

2

π
Re

{∫ t

0
ds

∫ s

0
dτ q∗(τ)

(
A1,R(τ) +A2,R(τ) +A3,R(τ)

)}
.
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Now, a simple integration by parts of the term involving A3,R(τ) yields∫ t

0
ds

∫ s

0
dτ q∗(τ)

(
A1,R(τ) +A2,R(τ) +A3,R(τ)

)
=

∫ t

0
ds

∫ s

0
dτ |q(τ)|2 +R2

(∫
k=R

dΣ φ̂1,0(k)

)∫ t

0
ds

∫ s

0
dτ e−iR

2τq∗(τ)︸ ︷︷ ︸
=:B1,R(t)

+
q(0)

R2 + 1

∫ t

0
ds

∫ s

0
dτ e−iR

2τq∗(τ)︸ ︷︷ ︸
=:B2,R(t)

−
∫ t

0
ds

∫ s

0
dτ q∗(τ)

∫ τ

0
dη e−iR

2(τ−η)q̇(η)︸ ︷︷ ︸
=:B3,R(t)

.

Hence, if one can prove that Bj,R(t)→ 0, as R→∞, then (5.36) is proved. However, it is easy to
see that B1,R(t), B2,R(t)→ 0 (for B2,R(t)→ 0 one uses that fact that φ1,0 is a Schwartz function),
whereas

B3,R(t) =

∫ t

0
dτ e−iR

2τq∗(τ)(t− τ)

∫ τ

0
dη eiR

2η q̇(η),

require some further effort. Nevertheless, if∣∣∣∣ ∫ τ

0
dη eiR

2η q̇(η)

∣∣∣∣ 6 Ct, ∀τ ∈ [0, t],

or, equivalently, if ∣∣∣∣ ∫ τ

0
dη eiR

2ηq(η)

∣∣∣∣ 6 Ct
R2

, ∀τ ∈ [0, t], (5.37)

as R → ∞, then B3,R(t) vanishes by Riemann-Lebesgue lemma. Now, as shown in Lemma 5.3
(set ρ = R2), a sufficient condition for (5.37) is that q1[0,T ] ∈ BV (R) for every T < T∗, but this is

immediate since q ∈W 1,1(0, T ) for every T ∈ (0, T∗), by Proposition 5.1.
Therefore, (5.36) is true and, summing up,

M̈(t) = 8‖φ1,t‖2H1(R2) − 8M2(t) + 8

(
−β|q(t)|2σ +

2γ − 2 log 2 + 1

4π

)
|q(t)|2,

so that, exploiting the definition of the energy for λ = 1, suitably rearranging terms and using
(2.16), one finds (4.10). �

Remark 5.3. We highlight that the main technical point in proof of the formula of the second
derivative of the moment of inertia is the fact that one cannot use the boundary condition (4.12)
in the computations, since it is an open issue whether ψt is a strong solution of the problem or
not.
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