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BLOW-UP FOR THE POINTWISE NLS IN DIMENSION TWO:
ABSENCE OF CRITICAL POWER

RICCARDO ADAMI, RAFFAELE CARLONE, MICHELE CORREGGI, AND LORENZO TENTARELLI

ABSTRACT. We consider the Schrédinger equation in dimension two with a fixed, pointwise, fo-
cusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features:
first, the energy threshold under which all solutions blow up is strictly negative and coincides with
the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity,
i.e. for every power there exist blow-up solutions. This last property is uncommon among the
conservative Schrodinger equations with local nonlinearity.

1. INTRODUCTION

The introduction of concentrated nonlinearities for the Schrédinger equation dates back to the
nineties of the last century [BKB, MA, N]. It was motivated by the need for modeling the effect
of a nonlinear centre on a quantum particle, under the assumption that the size of the centre is
smaller than the wave-length of the particle. In turn, the nonlinear centre was understood as an
effective description, through a suitable scaling limit, of a cluster of a large number of particles
confined in a small region of space [J-LPS].

The issues of well-posedness and globality of solutions were investigated in [AT] for the problem
in one dimension and in [ADFT1, ADFT?2] for the one in three dimensions; while the derivation
from the standard NonLinear Schrodinger Equation (NLSE), i.e., the Schrodinger equation with a
nonlinear term of form f(|¢)|)y with f real-valued, is due to [CFNT1, CFNT?2].

It turned out that the NLSE with pointwise nonlinearity shares some specific features with
the standard NLSE: in particular, conservation of mass and energy holds and the globality of
all solutions in the energy space is guaranteed, provided that the nonlinearity is defocusing. A
blow-up phenomenon emerges in the case of focusing nonlinearity.

More precisely, blow-up solutions can occur only if the growth rate at infinity of the nonlinear
term is not slower than a specific power law, that defines the critical power of the problem.

In the present paper, we show that the parallelism with the standard NLSE breaks for NLSE
with pointwise nonlinearity in dimension two.

Preliminarily, let us recall that the exotic properties of the NLSE in two dimensions with point-
wise nonlinearity had already emerged in the issue of the rigorous set-up of the problem [CCT].
More strikingly, in the present work we show that the blow-up phenomenon does not mimic its
analogue for the standard NLSE under several aspects. The most remarkable is the absence of a
critical power: namely, for every superlinear power growth of the nonlinear focusing term, some
solutions blow up in finite time.

To our knowledge, this is the only known model of NLSE with a local and conservative nonlinearity
that exhibits such behaviour, already observed, on the other hand, for some non-conservative
Schrodinger equations [IW, 111, I12]. Furthermore, like in the standard case, every initial datum
with sufficiently low energy blows up and the energy threshold coincides with the infimum of the
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energy of the stationary solutions; but, contrarily to the standard case, such a threshold turns out
to be strictly negative and finite for every nonlinearity power.

In the present paper we prove all these facts by using the classical virial method due to Glassey

[G]. We show that, if a solution lies below a given energy threshold, then its moment of inertia is
strictly concave and this prevents the solution from existing for an arbitrarily large time.
Of course, the energy threshold gives a sufficient condition only and does not provide information
either on the shape of blow-up solutions or on the blow-up time rate. We do not see any reason
for these to be similar to those discovered for the standard NLS [P, MR1, MR2, MR3]|, and we
plan to further investigate this problem in a future work.

We recall that a thorough analysis of the blow-up for a one-dimensional NLSE with concentrated

nonlinearity has been carried out in [HL1, HL2], while the interplay between standard nonlinearity
and linear delta potential has been studied in [BV] in the scattering context.
Finally, we mention that recently the issue of the pointwise nonlinearities has been also discussed
in the context of quantum beating [CFN], in that of the fractional Schrédinger equation [CFinT]
and in that of the Dirac equation [CCNP]. On the other hand, some recent works manage more
general singular problems, such as [G-CV, OP, R].

1.1. Organization of the paper. The paper is organized as follows:

(i) in Section 2 we introduce the model of the point interactions in dimension two, fix the
functional setting of the problem (i.e., (2.15)) and present the main results of the paper:
- Theorem 2.1, which provides a sufficient condition for the existence of blow-up solu-
tions,
- Theorem 2.2, which classifies all the standing waves of the problem;
(ii) in Section 3 we show the proof of Theorem 2.2;
(iii) in Section 4 we introduce the moment of inertia M (t) and present a heuristic justification of
the formulae for its first (Proposition 4.1) and second (Proposition 4.2) derivatives leading
to the proof of Theorem 2.1;
(iv) in Section 5 we exhibit a rigorous proof of the formulae for the first and second derivatives
of the moment of inertia.

Acknowledgements. R.C.; M.C. and L.T. acknowledge the support of MIUR through the FIR
grant 2013 “Condensed Matter in Mathematical Physics (Cond-Math)” (code RBFR13WAET).
R.A. acknowledges the project PRIN 2015 “Variational methods with applications to problems in
mathematical physics and geometry”, funded by MIUR.

2. SETTING AND MAIN RESULTS
The evolution problem we aim at studying can be formally introduced as:
{ 10 = =Dy — Blye*7 ot
Yr=0 = Yo,

where the nonlinearity power o is positive and dq is a Dirac’s delta potential centred at the origin
of the two-dimensional space. Notice that the nonlinearity is embodied in the coupling of the delta
potential, while the focusing character results from imposing 8 > 0. Let us point out that in [CCT]

both attractive and repulsive delta potentials are considered and the related term is written as
+B1¢ |27 d1br, with B of either sign.

(2.1)
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As it is well-known (see e.g. [AGH-KH, CCF]), in eq. (2.1) the delta term cannot be considered
as a perturbation, since the Laplacian cannot control a delta potential. Nevertheless, as shown in
[CCT], it is possible to define a pointwise nonlinear interaction in the following way.

2.1. From linear to nonlinear point interactions. The issue of a rigorous definition of point
interactions arises even in the linear case (i.e., when o =0 in (2.1)).

A standard approach [AGH-KH] considers the classifications of all the nontrivial self-adjoint exten-
sions of the hermitian operator —A\Cgo (r2\{0})- 1t turns out that there exists only a one-parameter

family of self adjoint extensions, denoted by H,, such that: for all a € R, H, : L?(R?) — L%(R?)
has domain

dom(Hs) = {1/; € L2(R?) : ¢ := 9 —qG* € H*(R?), ¢ € C, ¢5(0) = (a+ 1°g;2f+”>q} (2.2)

and action
(Ho + N0 := (—A + X))oy, Vi € dom(Hy), (2.3)

where A > 0, 7 is the Euler-Mascheroni constant and G* is the Green’s function of —A + X in
dimension two, namely
Ga(x) = 3= Ko(VAx]),

with K the MacDonald function of order zero (see, e.g. [AS]). Note that the definition of #,
is independent of \ since, if ¢y € H?(R?), then ¢y € H?(R?) for every other X' > 0, given that
G-~ GN e H 2(R?). As a consequence, A is just a mute parameter connected with the several
possible representations of a function of dom(#,), which plays no relevant role in the following.

Self-adjointness of H, entails, via Stone theorem, that for every ¢y € dom(H,), there exists a
unique function

¥ € C([0,T];dom(Hs)) N CH ([0, T); L*(R?)), VT >0, (2.4)

which solves

{ 10y = Har (2.5)

V=0 = Yo.
Note that (2.4), according to the definition of dom(H,), implies that at every time ¢ the solution
decomposes as

Y = dre +q(t)G? (2.6)
with ¢(t) € C, ¢x+ € H*(R?) and
log YA
3.0(0) = <a + Og227T+7>q(t). (2.7)

On the other hand, it is well-known that, denoting by Up(t) = €2 the free Schrodinger propaga-
_Ix?

tor, with kernel Uy(t; |x|) := S5~ (acting by the normalized convolution product (f * g) (x) :=

5 Joe dy f(x —y)g(y)) and by Z the Volterra function of order —1 [CCT], i.e.

o8] tT*l
Z(t) ::/O dr ek

(T" is the Euler function), the solution 1; can be written as

o) = (Vo0 x) + 5 [ Uile =[x ar), 23
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where ¢ is the unique solution of the so-called charge equation

a(t) + 477/0 dr Tt — 7) <a + V_Tfﬂ _ ;>q(7') _ 47r/0 dr T(t — 7)(Uo(F))(0).  (2.9)

Then, nonlinear point interactions arise as one assumes that the strength of the point interaction
a depends on the wave functions. Specifically, one sets o = —|q(t)|??, so that (2.9) reads
t i t
q(t) + 47r/ drZ(t — 1) (01(|q(7)|) — 8> q(1) = 47‘(’/ dr Z(t — 7)(Uo(7)20)(0). (2.10)
0 0
with
Oy (s) = (% log Y2 + 2 — 5320) . A>0, s>0. (2.11)

Hence the evolution problem combines (2.10), whose solution is called charge, and (2.8), which is
expected to solves the nonlinear version of (2.5), namely

i@tz/)t = /Ha:,mq‘%d)t
wt:O = wo;
where H,__gjy2- is the nonlinear map that arises letting o = —f3]g[** in (2.2)-(2.3).

(2.12)

2.2. Setting of the problem and previous results. As explained in [CCT], the proof of the
well-posedness of (2.12) in a strong sense is still open at the moment, since a proof of a sufficient
regularity for the solution of (2.10) is lacking.

Nevertheless, a weak version of (2.12) has been proved to be well-posed in [CCT]. Indeed, the
weak form of (2.5) is given by

xa =
{ i (G = Falte, x], Vx eV, (2.13)

1/)7&:0 = 1/}07

where (-, -) is the ordinary hermitian product in L?(R?) and, F, is the sequilinear form associated
with H, i.e.

Fulh) = |V a2 A(ldx |22 man — [l log 5 +7Y, 1
a(®) = [Vorllzaey + MloallZ2me) — 101 72e)) + (@ + o lq]",

with domain
Vi={y € L*(R?): ¢) =9 — ¢G* € H'(R?), ¢ € C}. (2.14)

Note that the form domain V' induces the same decomposition of dom(#,,) (i.e., (2.6)), but presents
a weaker regularity requirement on ¢, (H'(R?) in place of H?(R?)) and, moreover, no boundary
condition as (2.7) is imposed. Note also that, as well as for H,, F, and V' do not depend on the
parameter \.
As a consequence, the nonlinear version of (2.13) is obtained by setting o = —f|q|*? in (2.13),
thus yielding

2.15
=0 = o, (2.15)

Concerning (2.15), [CCT] shows the following facts:

{ P0G = (Vo Voag) + A00n, dae) — M, ve) + 0x(Ja(t))aka(t), Yx €V,
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(i) if o > 3, then for every v € 2, where
Z2:={eV:(1+k) or(k) € LY (R?), for some ¢ > 0}

(k := |k]|), there exists a unique solution ¢, € V to problem (2.15), for ¢t € [0,T") [CCT,
Theorem 1.1]; furthermore, 1), is of the form (2.8) with ¢(-) the unique solution in C[0,7] N
H'Y2(0,T) of (2.10) [CCT, Propositions 2.2, 2.3 & 2.4];

(ii) for the solution v, the following identities hold for all ¢ € [0,T) [CCT, Theorem 1.2]:
(a) conservation of mass:

M () == HthLQ(RQ) = M (o);

(b) conservation of energy:
E(Wy) = [Vorllio e c2) + AIorellTo@e) — [10ell7o )+

L or(la®Dla(t) + 22

a7 = B(un). (2.16)

Remark 2.1 (Energy expression).

The expression of energy differs from the one used in [CCT] in two respects: first, here it is stated
for a generic A > 0, while in [CCT] it is given for A = 1. However, this does not actually affects
the value of the energy, which independent of A. Second, for the sake of obtaining a shorthand
expression in [CCT] the term M2 (/) is added to the energy, which does not affect the conservation
law. In this paper, we prefer the expression (2.16) since it gives a more straightforward energy
threshold for the blow-up.

2.3. Main results. In the results previously recalled, nothing is said about the possibility of ex-
tending the local solution to arbitrarily large times (this is guaranteed, indeed, by [CCT, Theorem
1.3] only for the defocusing case, i.e., 8 < 0). In fact, we will show that this is not always the case:
however small the nonlinearity power o is, there always exist initial data for which the solution
cannot be extended beyond a certain finite time. Let us first give a basic definition:

Definition 2.1 (Blow-up solutions).
A solution 1y to problem (2.15) is said to blow up in finite time and is called a blow-up solution,
if there exists Ty > 0 such that

limsup |¢(t)| = +o0.
t—Tx
Remark 2.2 (Blow-up of the regular part).
Note that a pointwise blow-up of the charge ¢(t) at T, implies the explosion at the same time of
the H! norm of the regular part ®x¢, due to the energy conservation (2.16). On the other hand,
since also the mass is preserved, whenever ¢(¢) blows up at T}, the L? norm of the regular part
has to blow up as well.

Also, recall that, according to [CCT, Proposition 1.1], a blow-up alternative holds, namely a
solution to (2.15) cannot be extended to a global one if and only if it blows up in finite time.

The main result of the present paper is the following:

Theorem 2.1 (Sufficient condition for blow-up).
Let 0 > 1/2 and let the initial datum

Yo € s ={Y € D :¢)e SR} (2.17)
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(S(R?) denoting the space of Schwartz functions) satisfy the energy condition

A=— 7 .
Eldo) < Adm(o + 1)(47r0ﬁ)%

Then, the solution 1y to (2.15) blows up in finite time.

(2.18)

As already stressed, the most relevant difference with respect to the 1D and the 3D cases is the
lack of a critical power, namely the existence of a minimum value of ¢ in order to have blow-up
solutions: for both the one and the three-dimensional case such a value equals one [AT, ADFT2].
Notice that the assumption in Theorem 2.1 about ¢ is merely technical, as it guarantees local
well-posedness, and is not related to criticality [CCT, Remark 1.4]. The restriction on the choice
of the initial data, on the other hand, could be weakened; nevertheless we chose to keep it not to
make computations too burdensome.

The proof of Theorem 2.1 is quite immediate, provided that one knows the qualitative behavior
of the so-called moment of inertia associated with a solution v, i.e.

M(t) = /R dx [x[2 [t (%) . (2.19)

The discussion of the behavior of M is the main technical problem of the present paper and will
be extensively addressed in the following sections. However, once the behavior of M is understood
(Corollary 4.1), the proof of Theorem 2.1 is immediate:

Proof of Theorem 2.1. From Corollary 4.1,
M(t) <8(E(po) — A),  Vte[0,T.). (2.20)

Hence, hypothesis (2.18) entails that the moment of inertia is uniformly concave and this would
contradict the positivity of M unless T, < +o0o. Then, the blow-up alternative implies that
blows up in a finite time. O

The threshold A has an interesting connection with the energy of the standing waves of the
problem, that is

Definition 2.2 (Standing waves).
A nontrivial solution ¢ (t,x) to (2.15) of the form

P (t,x) = et (x) (2.21)
is said a standing wave of (2.15).

Precisely, it is possible to completely classify the standing waves of (2.15) and see that the
infimum of their energies equals A.

Theorem 2.2 (Standing waves).
Every standing wave of (2.15) is given by

u¥ (x) = Q(w)eG,(x), (2.22)
where n € R is a constant,
1
log @ +y\*
= — 2.2
Q) ( 2] (2.23)
and w € (4e27,+00). In addition,
min E@*)=A<0. (2.24)

we(4e=27,+00)
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Remark 2.3 (Energy threshold).

Given the coincidence of the energy threshold in (2.18) for the blow-up with the lowest energy of
standing waves in (2.24), it is intuitive that the uncommon features of the blow-up, for the pointwise
NLS in dimension two, has to be connected to uncommon features of the standing waves. Hence,
a deeper analysis of the behavior of {u“} will be the subject of our future investigation (and will
be presented in a forthcoming paper).

3. STANDING WAVES

This section presents the discussion on the standing waves of (2.15), introduced by Definition
2.2. In what follows we will refer both to ¥ and to u“ as to a standing wave (since it does not
give rise to misunderstandings).

Preliminarily, note that, in view of (2.14) (i.e., the definition of the space V'), given A > 0, one
has the decomposition

u’ =@ + ¢*Gx, (3.1)
with ¢f € H'(R?). Then, we can show, as a first step, that the frequency w must be positive.

Proposition 3.1 (Standing wave frequency).
Let y* be a standing wave of (2.15). Then, w > 0.

Proof. By (2.21), for any A > 0, equation (2.15) gives
(A= w)xu”) = (Vxa, Vo) + A0, %) + 0 (14°]) aya”- (3.2)
Choosing x € H'(R?) one has y = x, and ¢, = 0, so that, using (3.1),
—w(x, ¢X) + (A —w)g”(x,Gx) = (Vx, Ve5).
Then, by density of H'(R?) in L?(R?),
—A¢Y = —wof + (A —w)g”Ga,
and, finally, in the Fourier space one gets
" A—w)g®
k2 w o (7
(@)l = om0
If w > 0, then
(gw _ (>‘ - w)qw
AT (B2 4 N (K2 + w)
so that ¢ € H'(R?). If, conversely, w < 0, then gg‘)‘f € L%(R?) if and only if ¢* = 0, and thus
Y = 0, which implies that u* cannot be a standing wave. O

Exploiting the previous result, we can now prove Theorem 2.2.
Proof of Theorem 2.2. Since w > 0, one can choose A = w in (3.1), so that (3.2) gives

0 = (Vxw, Vo) + wXw, ¢5) + 0w (147]) ayq” (3.3)
First, choose ¢, = 0, so that x = x.,. Thus

0 = (¢ (=A+w)ep),

for all y € H'(R?), and hence ¢* = 0.
On the other hand, choose x = G,. As a consequence Y., = 0 and ¢, = 1, which entails, from
(3.3), that

0 (1g°1) ¢* = 0. (3.4)
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Then either ¢ = 0 or 6, (|¢g”]|) = 0. In the first case, we have u* = 0, so it is not a standing wave.
In the second case, 6, (|¢*|) = 0 implies that |¢*| equals the r.h.s. of (2.23). In addition, such a
quantity must be positive, which implies the condition w > 4e~27 and then (2.22).

Finally, by direct computation,

ladl ap 20+2

E w _ _= O w20+

(V1) A + o+ 1 |

thus, minimizing in [¢*| € (0, +00), one gets (2.24). O

Remark 3.1 (Parametrization of standing waves).

Notice that by the condition (3.4) there is a one-to-one correspondence between the absolute
value of the charge, i.e. |¢¥| € (0,+00), and the frequency w € (4e=%7,4+00) of any standing
wave. Therefore, the standing waves can be equivalently parametrized by w or by |¢| (where the
dependence on w can be dropped).

4. MOMENT OF INERTIA

As we mentioned in the Introduction, the main technical point of the paper is the analysis of
the moment of inertia M(t) associated with the solution 1, defined by (2.19).

Before presenting the formulae for the time derivatives of M(t), let us stress some basic facts,
which will be useful in the following. First, we recall that, using the Fourier transform in (2.8),
one gets

fsz
N _ -kt € —ik2(t—T)
Y R e / dr e Ty(r), (1.1
and then, integrating by parts as in [ADFT2, Eqgs. (2. 4) (2.6)] one finds the decomposition
~ o, ~ t) ~ ~
k) = Gy (k) + 1D tk £,k 4.2
Yi(k) = e " hro(k) + 2w (k2 4 N) + fia(t k) + faa(t, k), (4.2)
where fl » and fg A are given by
~ i\ t 1.2
PR - S LR
Fiatk) = g [ ar e 00y,
J?z N —-A /t & e_ikQ(t—'r)q'(T)_
’ ’ 27T(k2 + )\) 0

Note that the well-definition of the last integral is a straightforward consequence of Proposition
5.1, where we will prove absolute continuity of the charge. Furthermore, by the same computations
leading to [CCT, Eq. (2.54)] and following, one has that fi 5(t) and f (¢) belong to H'(R?) and
that

Iiall ooy ey < € 4 =12, VT € (0,T3), (4.3)

where the constant C' depends (possibly) on T
On the other hand, by direct computation,

Vifia(tk) = — 2% / Cdr 0= (1) + —2K__ / "a e MU= — 1)q(r)
k 1,)\ b - ﬂ_(k2 +)\)2 0 T q T W(kQ +)\) 0 T T q T )

and

- k t 'k2 Zk t 1.2
- = —ik=(t—7) 1 = —ik?(t—7) (4 .
Vi fa(t, k) TN /0 dre q(m) + 2 1) /0 dre (t—7)q(r), (4.4)
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and, since the action of Vy is essentially a multiplication by k, (4.3) translates into
IViFiall oo o1y, L2@2)y S C 7=1,2, VT € (0, L), (4.5)

and
|k - kaj)\||Loo((o,T),H—1(R2)) < C, j=12 VT € (0,T,). (4.6)

In view of the previous remarks, we can prove that the moment of inertia defined by (2.19) is
finite for all ¢ € [0, T%).

Lemma 4.1.
Let 0 > 1/2 and let 1o € Ds (with Ds defined by (2.17)). Then, M € L>(0,T) for any T < T.

Proof. From (4.2),

U0k S+ Vicfia(t k) + Viefar(t k). (4.7)

-~ K) — —92itk —ik2t k —ik*t. T k) 2\
kat( ) itke 525)\70( )—1—6’ ngb,\,o( ) 7T(k2+)\>

Since
M(t) = / dk |V () 2,
R

one has to prove that the L?-norm of the terms in (4.7) is bounded in [0, T, for every fixed T' < Ts.
For the first three terms this is immediate, while for the last two terms it follows from (4.5). O

4.1. Derivatives of the moment of inertia. Now, we can present the main technical results of
the paper, that is the formulae for the first and the second derivative of the moment of inertia. In
this section, we only mention the statements of the results and show some heuristic computations,
in order to give an intuitive idea of the reasons for which one should expect these formulae. The
rigorous proofs are postponed to Section 5.2. Notice that the results presented below hold true
also in the defocusing case, i.e., if 5 < 0.

Proposition 4.1 (First derivative of M).
Let the assumptions of Lemma 4.1 be satisfied. Then, M € AC|0,T] for any T < T, and

M(t) = 4Im{ /RQ dk ¢y (k) k - vk@(k)}, for a.e.t €[0,T,). (4.8)

Formula (4.8) is quite classical in the theory of blow-up also for standard NLS equations, and
goes under the name called virial identity. Its formal derivation goes as follows: neglecting any
regularity issues

- d d R R .
M(t) =< /R? e x|? [ (0] = - /R? dk Vit (k)| = 2Re{ /RQ dk & (Vi (K)) vku};‘(k)}.
Now, since by (4.7),

00 (Vach(k) ) = —2ileth () — ik Vit (k). (4.9)

then one gets

w(e) = 2kef. [l (<2009 )~ PV ) |

- 4Im{ /R dickidi(K) Vil (k)}.

On the other hand, exploiting (4.8), it is possible to establish the following formula, which is
the central point of Glassey method.
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Proposition 4.2 (Second derivative of M).
Let the assumptions of Lemma 4.1 be satisfied. Then, M(t) € C?[0,T] for any T < Ty and

. 1 480
w0 =8B +2 (£ - 201 ) aF, vie b (4.10)
™ o+1

Proposition 4.2 has an immediate consequence, which is the main tool used in the proof of
Theorem 2.1.

Corollary 4.1 (Threshold A and M).

Under the assumptions of Lemma 4.1,
M(t) <8(E(y) —A),  Vtel0,Ty), (4.11)
where A is defined by (2.18).

Proof. Notice that, given a solution %; and denoted by u“* the unique positive standing wave
whose charge equals |¢(t)], the identity (4.10) rewrites as

M(t) = 8(E(to) — E(u™)).
Hence, minimizing E(u“*) in |q(t)], as in the proof of Theorem 2.2, (4.11) follows. O

Remark 4.1 (Concavity of M and critical exponent).

In (4.10) one can see the technical reason for which in the 2D case the problem of the blow-up does
not present any critical exponent for the nonlinearity, unlike in the 1D and 3D cases. Indeed, in
view of (4.10), in order to impose the uniform concavity of M the exponent o plays no significant
role. In other words, for any o (> 1/2) there exists a sufficient condition for the blow-up. On the
contrary, in the 1 or 3D cases the second derivative of the moment of inertia reads [ADFT1, AT]

. o—1
M(t) = 8E(thy) — 46— |q(t)|*7 T2

(1) = 8B (do) — 457 1a(0)
and thus the role of the exponent ¢ = 1 is apparent. In addition, in those cases it is possible to

prove that when o < 1 the solution is global.

As for the first derivative, let us show some heuristic derivation of (4.10): we assume here for
simplicity that 1 is a strong solution of the Cauchy problem (2.15), i.e. at any time ¢ € R, 9
belongs to the domain of the nonlinear operator appearing on the r.h.s. of (2.15). This simply
implies [CCF] that 1; admits the usual decomposition 1y = ¢y ¢ + ¢(t)Gy, with ¢y, € H?(R?) and
q(t) € C satisfying the boundary condition

Or(0) = Ox(lg(t)])a(?). (4.12)
Under this assumption, using (2.6), with A = 1 for the sake of simplicity, (4.9) and Divergence
Theorem and differentiating (5.11) (see also (5.24)), we get

M(t) = 4Im{ /RQ dk [atz@(k) +z’k2$t(k)] k- szﬂf(k)} + 8/R2 dk k2| (k)|

2 -~ -
== Re{q(t) /RQ dk k - Vi) (k)} +8/RZ dk kZ\qpt(k)yQ

_ %Re {q(t) /R dkk - Vk@,t(k)} + 8/RQ dk k* [Wt(k)ﬁ * iRe{W}]

= 8 (Re{a(t)93,:(0)} + [ Voril; — 2XRe{ (o1, a()G)} )+ (4:13)
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where we neglected again any regularity issue. Plugging in the above expression the value of ¢ +(0)
given by the condition (4.12) and recalling the expression (2.16) of the energy E(¢;) = E(vy),
(4.10) is recovered.

5. PROOFS OF PROPOSITIONS 4.1 AND 4.2

This section is completely devoted to the rigorous proof of Propositions 4.1 and 4.2, which make
then rigorous the formal computations presented before.

5.1. Extra-regularity of the charge. The first step to prove (4.8) and (4.10) is that of establish-
ing some further regularity for the charge ¢(-), with respect to the one obtained by [CCT] (namely,
H'Y2(0,T) N C[0,T]"), possibly exploiting the more restrictive assumptions on the smoothness of
initial data.

As we will see in the following, the required property is the absolute continuity on closed and
bounded intervals. The proof of such regularity follows exactly the strategy developed by [CCT]
in order to prove H'/2-regularity (precisely, [CCT, Proposition 2.3 & 2.4]). As a consequence, we
discuss here only new technical aspects, referring to [CCT] for those results which do not require
significant modifications.

The first step is to establish Lipschitz continuity of the map f + |f|>° f in WH1(0, T) (which is
the analogue of [CCT, Lemma 2.1]).

Lemma 5.1.
Let o > % and T, M > 0. Assume also that f and g are functions satisfying

£l oo 0,2 + 1 fllwrao,my < M, 19/l oo 0.7y + N9llwra o) < M. (5.1)
Then, there exists a constant C > 0 independent of f, g, M and T, such that
11527 5~ 10l ouzy < Cmax {1, TY M2 (If = gl oy + 1 ~ glwraomy) - (52)

Proof. Denote by ¢ : C — C the function ¢(z) = |2|??z, which belongs to C?(R?;C) as a function
of the real and imaginary parts of z since o > % Arguing as in [CCT, Proof of Lemma 2.1], easy
computations yield

P(F(1) = (g(D) = (F() — g(t)) d1(t) + (F(£) — g(£))" da(d), (5.3)
where ¢;(t) = v;(£(£), g()), j = 1,2, and

1 1
Y1(z1,22) == /0 ds 0,0(z1 + s(z2 — 21)), (21, 29) 1= /0 ds 0.+ p(21 + s(z2 — 21)).

Note also that ¢; € C}(R* C) (now as a function of the real and imaginary parts of z; and 25).
As a consequence, one can see that

le(f (1) = e(g)llwraor < 1d1 (f = Dllwraory + ld2 - (f = Dllwraom
< CmaX{||¢1HLoo(o,T) + 162l oo 0,1y > 11 lwra o,y + ||¢2||W1»1(0,T)} X

% (1 = ollzm o) + 1 = glwrsor)) -

lActually, in [CCT, Lemma 2.6] is proved the log-Hoélder continuity of the charge, but it is not sufficient as well.
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Now, combining (5.1), the definition of ¢; and the regularity assumptions on ¢ (as in [CCT, Proof
of Lemma 2.1]), one finds
”¢jHLoo(o,T) < CMQU; J=12 (5-4)
so that it is left to estimate “¢jHW1’1(O,T) (note that ¢; € WH1(0,T) since it is a composition of
the absolute continuous functions f, g and v;(-, ) which is of class C1). It is immediate that
||¢j||L1(0,T) < CTMQUa Jj=12.

On the other hand, from [CCT, Egs. (2.11)-(2.14)], one has that for a.e. s,t € [0, 7]

O =50 <m0 ) a0y ([LU=LED] 4 |20 290y,
which entails
;0 <em (|f0] +|s@]),  forae. te[0,T].
Then,
16301200y < €M (1l oy + 19030y ) < CM*7-
Summing up, one easily obtains (5.2). O

The second step is to show that the action of a translated Volterra function preserves, as integral
kernel, W l-regularity. More precisely, we have

Lemma 5.2.
Let T >0 and h € WHL(0,T). Then

T
h (1) = / dr T(t + T — 7)h(7)

0
belongs to WHL(0,T) for any T > 0.
Proof. One can easily see that hr € L(0, T ) for all T > 0. On the other hand, observing that

t+T

hp(t) = / dr Z(t)h(t + T — 1),
t
there results T
hy(t) = Z(t + T)h(0) — Z(t)h(T) + / dr Z(t + T — 7)h(7).
0

Since the first two terms are in L'(0, T) for any T> 0, as functions of ¢, we must show that
T T i
A::/ dt/ dr Z(t + T — 7)|h(1)| < +o0.
0 0

Using Tonelli theorem and a change of variable, and denoting by N (t) := fg dr Z(7) (which is an
increasing and absolutely continuous function, as explained in [CCT, CFioT]), one finds
T ) T+T—1 T . ~
A:/ dr |h(7)| dsI(s):/ dr |h(T)|(M(T+T —7) = N(T — 7))
0 0

T—1

T _ _ .
< / dTVL(T)‘N(T‘FT_T)<2N(T+T)HhHL1(OT) < 00,
; :

which concludes the proof. O
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Finally, we have all the ingredients to prove that the solution ¢ of the charge equation (2.10)
belongs to W1(0,T) for every T € (0,T.), where we recall that T} is the maximal existence time.
To this aim it is convenient to write (2.10) in the following compact form:

q(t) +/O dr <g(tmq(T)) +KZ(t —T) Q(T)> = f(t), (5.5)

where K := —2(log 2—v+ z%) and g and f are defined respectively by

g(t,ma(r)) == —4mBI(t — 7)|a(T)[*?q(r),  f(t):= 47?/0 dr Z(t — 7)(Uo(7)t0)(0).

Moreover, we introduce the notation

t
1)) = [ arZt-myglr), >0,
0
and recall that, from? [CFioT, Theorem 5.3], if g € WH1(0,T), then

HIg”lel(O,T) < N(T) <|9(0)| + ”g”lel(O,T)> : (5.6)
Note that the following result extends straightforwardly to the defocusing case 5 < 0.

Proposition 5.1 (W' !-regularity of q).
Under the assumptions of Lemma 4.1, the solution of (5.5) ¢ € WH(0,T) for any T < T.

Remark 5.1 (Initial datum).

In fact, an inspection of the proof of Proposition 5.1 below reveals that it suffices to assume
oy € H?(R?), in place of ¢y € S(R?). In addition, one can see that the assumption ¢y € S(R?) (as
well as ¢, € H?(R?)) simplifies the proofs of [CCT, Theorems 1.1, 1.2 & 1.3]. Indeed, in [CCT] a
delicate duality pairing argument is used in order to give some meaning to the formal integration
of ¢. On the contrary, in view of Proposition 5.1, a suitable regularity of the initial datum g
entails that all the required integrations of ¢ are well defined in the classical Lebesgue sense (which
makes all the computations easier).

Proof. We split the proof in three steps. We first prove that the forcing term enjoys the W1h1-
regularity; then we show that the regularity holds true for ¢ as well on short intervals, via a
contraction argument; finally, by gluing together solutions on different time intervals, we prove
that ¢ has the Wl !-regularity up to the maximal existence time.

Step (i). The first point consists of proving that f € W11(0,T) for all T > 0. We start by fixing
arbitrarily 7' > 0 and recalling that, from the decomposition of the initial datum )y,

A (Uo(r)0)(0) = 4 (Uo(r)éx0) (0) +24(0) (Uo(r) Ko (VAI-1) ) (0).

=:A1(7) —: Ao (7)

Exploiting the Fourier transform and arguing as in [CCT, Proof of Proposition 2.3] one can see
that
~ 2
1AL gy < C/]R2 dk (1+ k%) [éx0(k)]

2The result is actually proven there only for real functions but the extension to complex ones is trivial.
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Hence, as ¢y € S(R?), A; belongs to WH1(0,7), so that, by (5.6), TA; € WH1(0,7). On the
other hand, from (5.29) and (5.30) below,
ei)\‘r

Az (7) = q(0) €7 (—y — log(7)) +q(0) &= (=7 log A + Q(X; 7)) -

5:A;T1 (1) =Az 2(7)

Now, since @ is a smooth function of 7 (see, e.g., [AS] for more details), again by (5.6), there
results [As 5 € WH1(0,T). Finally, using the property that Z is a Sonine kernel with complement
(=~ —log(7)), namely that

/0 dr Z(t — 7)(—y — log(1)) = /0 dr Z(r)(—y — log(t — 7)) =1, Vit
(see [SKM, Lemma 32.1] and [CCT, Eq. (2.29)]), we have
(IA27) (t) =1 —|—/O dr Z(t — 7)ag1 (1), as (1) == (ei/\‘r — 1) (—v — log(7)).

Since ag 1 is in W11(0,7), this entails that TAs, € WH(0,T) too, so that f € WhH1(0,T).
Step (ii). Here we prove that the map

g@thﬂw—A(h<manﬂﬂ»~au—ﬂ«ﬂ)

is a contraction in a suitable subset of W11(0,T), for a sufficiently small T € (0,7*), which
immediately implies that the unique solution of (5.5) is of class W1 at least on small intervals.
Consider the set

Bri={a € W0, T) | gl = oz) + lallwra oy < br}

with by = 2max{|| f|| 1) + I fllwi101), 1} It is a complete metric space with the norm

WV

0,

Iz, = lpee o,y + - lwagor -

In order to prove that G is a contraction on By, we first show that G(Br) C Br. To this aim, split
the homogenous part of G(¢)[t] in two terms:

t t
QK@Wﬁ=A<%9@ﬂQUD, éh@WkZHA<%I@TMU)

From (5.6), (5.2) and [CCT, Eq. (2.5)] (i.e., the Lipschitz continuity of the map f — |f|*?f in
L*>(0,T)), one finds
161@ a0z < Cr [la®all, < Crb3 lalls, < Crb2et,

where, from now on, Cr stands for a generic positive constant such that Cr — 0, as T' — 0, and
which may vary from line to line. In addition, arguing as in [CCT, Proof of Proposition 2.3|, that
is combining [CCT, Eq. (2.20)] (i.e., the contractive property of the operator I in L*°(0,7")) and
again [CCT, Eq. (2.5)], there results

Hgl(q)HLOO(O,T) < CTb%FU ||q||L°°(O,T) < CTbZTU+1
and thus

191(9)ll5,, < CrbyT*.

On the other hand, one can easily find that ||G2(q)5,. < Cr |lgllg, < Crbr, so that

1
Hg(CI)||BT<bT §+CT (1+b%§’) .
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Consequently, as the term in brackets is equal to % +o0(1) as T — 0, for T sufficiently small,
g((]) € Br.
Therefore, it is left to prove that G is actually a contraction. Given two functions g1, ¢ € By,
we have
G(q1) — G(q2) = Gi(q1) — G1(q2) + Ga(q1 — q2).
Arguing as before, one sees that |G2(q1 — ¢2)ll5, < Crll¢1 — @2/l 5., while, using once again (5.2),
[CCT, Egs. (2.5)&(2.20)] and (5.6),

|2¢7 |2cr

1 (|17 a1 = |a2I*" 2) HBT <Cr [l q = la2 Q2HBT < Crby g1 — a2l 5, -

Then,
IG(a1) = G(a2)ll, < Or(1+DbF) llar — az2ll,
and, since Cp — 0 as T' — 0 and by is bounded, G is a contraction on Byp, provided that T is
small enough.
Step (ii1). Let g be the solution of (2.10). From Step (ii), there exists 77 € (0,7%) such that
q € WH(0,Ty). Now, consider the equation

a0+ [ ar (g<t, ra(r) + KI(E - 7) <T>) o (5.7)

her
where . .
filt) == f(t+Ty) +47TB/0 drZ(t+ Ty —T)\q(T)\QUq(T) —K/O dr Z(t + Th — 7)q(7).

Exploiting Lemma 5.2 with 7' = T} and h = —473|q|*? ¢ + kq, one can see that f; € W11(0,T)
for every T' < T, — T} and arguing as before, there exists 7] < T, — T} and ¢ € WH1(0,7TY)
which solves (5.7). In addition, an easy computation shows that ¢(t) = ¢i(t — T1) for every
t € [T1, Ty +T{], so that we have found a solution to the charge equation such that ¢ € W1(0,73)
and ¢ € WH(Ty, Ty + TY), whence ¢ € WH1(0,T1 + T}). This shows that once the regularity is
proven up to a time T; € (0,7%), then it can be extended up to 71 < Ty < Ti. A priori this
procedure could stop before T} is reached.

Define 7 := sup{T > 0 : ¢ € WH1(0,T)}, which is strictly positive by Step (ii). In order to
conclude, we must prove that fA: T,. Assume, then, by contradiction that T <T.. ConsequenAtly,
q € WHY(0,T) for every T < T and HqHLOO(Of) < +o00. In addition, fix £ > 0 such that N (T —

TE)(Hqu‘;(O ) +1) < 1/2C, where T; := T — e and C is a fixed constant that will be specified
in the following, and 0 < § < &, so that Ty := T-6¢ (Tg,f). At this point we can estimate
lgllw1 (1. 75) by using (5.5). First we note that (letting h be defined as before) for t € (T¢, T5)

t

T
q(t) = f(t) — /0 dr Z(t — 7)h(1) — / dr Z(t — 7)h(7).

£

Since f € W1(0,T) for every T' > 0, its W1 (T., Ts)-norm can be easily estimated independently
of §. The same can be proved for the second term, arguing as in the proof of Lemma 5.2 and
noting that Z(t — 7) = Z(t' + T — 7) with ¢’ € [0,Ts — T.]. Summing up,

(5.8)

¢)
Hq||W1,1(TE7T5) < CT\,TE + H / dT I( — T)h('r)
€ Wl’l(Ta7Té)

(precisely, C7 , depends only on ||q|| Loo(0,7) and llq|lw.1(0,7.), Which are finite quantities). There-

fore, we have to estimate the last term on the r.h.s.. Since the L' norm can be easily estimated
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independently of 9, it suffices to study the contribution of the derivative term. To this aim we
note that, for every t € (T¢, Ty),

d [ t—T. '
a /T ArT(t=m)h(r) =T ~TINT) + [ dsT(s)i(e—s).

First, one has

Ts
/ dt Z(t — T )h(T%)

On the other hand, using Fubini theorem and some changes of variable,

/ P /0 T ATyt — )

Now, easy computations show that

< N(f - TE)HhHLoo(O”f‘)'

SN(T =Tl g1 (2 1)-

HhHLoo(of) (Hq, L=(0,T) + 1)”‘]”/;00 0,7)

(see, e.g., [CCT, Proof of Proposition 2.4]), while, using [CCT, Eq. (2.9)] and arguing as in the
proof of Lemma 5.1 (namely, combining (5.3) and (5.4)),

HhHLl(TE,T(;) <||Q|Loo(0T) +1) H‘]HI/Vll(TE Ts) -
Then, recalling (5.8) and the definition of ¢ (and possibly redefining C Ts)’ we conclude that

HqHWLl(TE,Tg) < CﬁTE +CON(T - Te)(HQ\ L(0,T) + 1) HqHWLl(TE,T(;) < CﬁTE + % HQHWWTE,T(;) :

Hence, moving the last term to the L.h.s., we see that HqHWl,l(T&Té) can be estimated independently
of § and thus, letting § — 0, there results [|q||; 1, VB < 00 Summing up, we have that ¢ €

whi(o, IA“) but, using the first part of Step (111) with 71 = T, this entails that there exists the
possibility of a contraction argument beyond T which contradicts the definition of 7. Hence, we
proved that T=T.. O

5.2. First and Second Derivative of M. Now, we have all the ingredients to rigorously prove
(4.8) and (4.10).

It is convenient (for the sake of simplicity) to sketch the line of the proof of Proposition 4.1 in
advance. First, we introduce the truncated moment of inertia, i.e.

Mpg(t) :== / dk [V (K)[?,  Vt e [0,T.). (5.9)
k<R
Then, we prove that Mpg is differentiable in [0,7™*) (and absolutely continuous in [0, 7], T' < T%),
so that .
Ma(t) = M(0) + [ ds Mnls). Vi€ (0.12)
0

and, by monotone convergence theorem,
t

M(t) = M)+ lim [ dsMg(s), Vte (0,T.).
R—o0 0

We conclude the proof by applying the dominated convergence theorem, that is proving that

M(t):M(0)+/OtRIET;O ds Mg(s),
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which implies, therefore, that
M(t) = lim Mpg(t).
R—o0
Proof of Proposition 4.1. Let us divide the proof in three steps.
Step (i). We start by proving the analogue of (4.8) for the truncated moment of inertia Mg
defined in (5.9), i.e.

MR(t):4Im{/ dk&t(k)k.vk@(k)}, vt € [0,T.). (5.10)
k<R
Preliminarily, integrating by parts in (4.1), one obtains
-~ PTIPN 0)e ™t Q@) kX [t e
k) = ik2t k q( / d ik?(t—) 511
1) = 00 + g+ S04 - [Lare i, ey
with .
Q(r) ::/ ds q(s). (5.12)
0
Hence,

b ] n i ~ 20(0)tk —ik%t 0k —ik2t
Vit (k) = —2itke * 1y o(K) + e 'Vih o (k) — iq(0)tke ~ q(0)ke

(k2 +\) (k% + \)?
t . 9 t .
+ k/ dr e_ZkZ(t_T)Q(T) — ik k/ dr e~k (t=7) (t—7)Q(7)
™ Jo ™ Jo

=: Oy(t,k) + Pa(t, k) + P3(t, k) + Py(t, k) + P5(t, k) + Pg(t, k) (5.13)
with Q defined by (5.12), so that one gets
8 (Vichr(k)) = —2i k by (k) — ik? Vit (k), VYt €[0,T.), Vk e R

Hence, the identity 0, (]kazt(kﬂz) =2Re {Vk{b\t(k) . &ngLZf(k)} yields

B, (|Vk$t(k)|2) — 4Tm {Jt(k) k- vqu;‘(k)} . vte[0, 1), VkeR

In order to bound the difference quotient in ¢ of the integrand of (5.9), we use the trivial estimates

‘e—ik‘Q(t—i—h) _ e—ik2t‘ < th’ (5.14)
|(t + h)eFEER et < p(h 4 )k + b, (5.15)
which entail
H®1(t+h k) — @1(t, k)| < CK* +1)|dro(K)],
L1@s(t + h k) — Dot k)| < k| Vidro(k)],
7|23t +h k) = 3t k)| < C(k+1) ldll ooy -
5@t +h k) = 4(t,k)| < Cllgll oo -
i @5t +h k) — @5t k)| < C(k°+1) [lall oy -
i |®o(t+h k) = 6t k)| < Ok +1) [lqll (o)

where each finite constant C' might depend on ¢, A and A. Summing up,

%!Vk%h(k) - Vk@t(kﬂ <C [(kg + 1)|$>\,0(k)’ + k‘QqugA,o(k)‘ + (K° +1) lall oo (oy|  (5-16)
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and, since
% “VklZHh(k)‘Q - Wk@(k)‘Q | < %\VkIZHh(k) — Vit (k)| (‘VkIZtJrh(k)‘ + \Vkth(k)D :

combining (5.16) with the fact that g € Zs, one finds that the difference quotient of \Vk{ﬂ\t(k)]Q
is estimated by a function which is integrable in k < R, and thus, by dominated convergence, one
obtains (5.10).

Step (ii). We now prove that

t t
lim [ ds Mpg(s) = / ds lim Mg(s). (5.17)
0

R—oo Jo R—o0

More precisely, we find a constant K > 0, possibly depending on T' < T, but independent of R,
such that |[Mp(s)| < K for all s € (0,T) and then (5.17) follows by dominated convergence.

To this aim, we consider the integrand as the product of the scalar functions zZS and k - sz/ﬂ\;‘.
For the first factor, we exploit the structure of the energy space and the well-posedness result in
[CCT], that ensures that the solution 15 belongs to V' at any time s, so that it splits as

Vs = ors +a(s)Gy (5.18)
with ¢y s € H'(R?). For the second factor, by (4.4), we get

K - Vicths (k) = —2isk?e 56, o(k) + ek - Ve 0(K)

q(s)k*

(k2 N)?2 +k - Vicfia(s, k) + k- Viefau(s, k). (5.19)

We first notice that the pairing of 5 A,s With k - szZ;‘ is bounded, as the second factor belongs
to H~Y(R?), due to (4.6). It is then possible to estimate

/k<R Ak sk V] (k)‘ < N0ncl oo oy ey 16 Vil o 0.9 112

where the first factor is finite due to conservation of the energy. The pairing of the charge term

q(s)G) in (5.18) with the term g(s)k?/m(k? + A\)? can be understood as a hermitian product in
L?(R?), thus

K2Gi(k)

dk 2o A

[ il G

q(s)
k24

2
< Cllallze 0.1y -

It remains to discuss the pairing of
the most singular term. By (4.4)

~ k2 8 12 ik? 8 2
. - v —ik?(s—7) 1 v —ik2(s—T) (a0 _ -\
k-Vifaa(s, k) O )\)2/0 dre q(T)+7r(k:2 Y /0 dre (s—71)q(7). (5.20)

with k- ka;, 1(8). Let us consider j = 2 only, which gives

Owing to the fact that ¢ belongs to L'(0,T), one immediately has that the first term in (5.20) is
square integrable, so we are left to discuss the second one only. To this aim, we must estimate the

integral
T BN T —T7)g(T
k<r (K2 + ) Jo



BLOW-UP FOR 2D NLS WITH CONCENTRATED NONLINEARITY 19

by a constant independent of R. Using Fubini’s theorem and then introducing the variable u = k2,
the previous integral reads

s R? U » ) s R2 u d " )
d . . d —iu(s—T1) _ dra d M —du(s—7
/0 T (s T)q(T)/O uj(u—l— )\)26 2/0 Tq(T)/O uj(u—i— NE due

s R2e—iR2(s—T) R? \—u .
. ) e AP —iu(s—m) U~ ;
Z/o At { (R% + \)2 /o T Tupe < Cldluon:

We can then conclude that every term involved in the integral (5.17) can be estimated by a
constant, so that (5.17) is proved.
Step (iii). By showing that for any finite ¢ > 0

t t R ~
lim / ds Mp(s) = 4Tm / ds [ dkdy(K)k - Vi (K),
0 0 R2

R—o0

we complete the proof of the result. From (5.10), one has to show that

Jim dk 9, (K)k - Vied* (k)

R—o00 kéR

exists. As in Step (ii), we decompose the integrand into the terms induced by formulae (5.18) and
(5.19), for the two factors 9s(k) and k - Vii(k), respectively.
Now, we first observe that

/]R? dk“g/\,S(k) k- sz//;;‘(k” < ”‘b/\,SHHl(W) Hk Vk{b\sHHq(R%

so that, by monotone convergence, one can conclude that

lim dk fx s (K)k - Vi (k) = /R dk (k- Vied (k).

R—oo Jr<Rr
Analogously, since
E2
(k2 +X)?

i

k2G (k
/ dki)\()g < Gl 2 (re)
k<R L2(R?)

(k2 + )

again by monotone convergence, one gets

k2G (k) K*Gi(k)
. 2 A _ 2 A
A 190 /k:<R e = 1) /RQ R (R VEL

We are thus left to discuss the two terms

/ ax L) k-Vifiank), j=1.2
k<R

k2 + )\

Like in Step (ii), we limit ourselves to the term with j = 2, that is the most singular. From Step
(ii), we know that

: k:2 ° —ik*(s—T .
hm dk m /0 dT € k2( )(5 — T)Q(T)

R—o00 k<R
s R2€—iR2(5—T) R? A—u » )
_ dr g o d —iu(s—T
O G ),
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and it is immediately seen that the quantity in brackets can be estimated by a constant, so that,
by dominated convergence, the limit exists and, by definition of improper integral, one finally has

: k2 B —ik®(s—7 .
hm dk m A dT (& k2( )(S — T)q(T)

R—o0 E<R
_ / P / T dr e O (s — 1)i(r)
R2 (B2 + X3 Jo

and this concludes the proof. O

Remark 5.2 (Derivative of M at t = 0).
Along the lines of the proof below, one can also show that the derivative of M at t = 0 is in fact
well defined and

M(0) = 4Im{ /RQ dk o (k) k-vkig(k)}. (5.21)

Indeed, recalling that the regular part of the initial datum g is a Schwartz function, we can
easily exchange the limit R — oo with the integral in the expression of Mg(0): the latter can be
computed using the identity

> > q(0)k
k pu— k — ———
vka( ) vk(b)\,O( ) 7T(k2 + )\)27
which leads to (note the vanishing of a term because of the imaginary part)

. R . 1.2 7
ME(0) = 41111{ /KR dk <¢A,o(k) + %) k- Vig o(k) — W}

and all the terms are uniformly bounded in R thanks to the smoothness and decay of ¢, ¢, which
allows to take the limit R — oo and recover (5.21).

Before showing the proof of (4.10), it is necessary to recall a property of compactly supported
functions of bounded variation in dimension one.

Lemma 5.3.
Let g € C[0,T]. Then, if qlio ) € BV(R) for any T < T, one has

t
‘/ dr e?"q(7)| < C;, vt € [0,T7, (5.22)
0

for p large.

Proof. The result is quite classical, but we show the proof for the sake of completeness. First, note
that (5.22) can be rewritten as

fi(—p) = /R dr =07 1y (7)

where f; := qljg, € BV(R) and is compactly supported. Consider, then, a function ¢; € C§°(R)
such that 0 < ¢ < 1, ¢+ = 1 on [0,¢/2] and supp{¢:} = [—1,t + 1]. Subsequently, define
bt € C3°(R) as

< C;)T vt € [0, 7], (5.23)

¢t(T), ifT < t/2,
Dtp(T) =4 1, ift/2 <7<t
oe(T+1t/2—1,), if1T>1,
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where t, = (t + p)/2. Now,

F(p,t) := ip/R dr eiprt(T) = i,o/]R dr eiprt(T)d)t,p(T)

+ ip/R dr e f,(1) (1 — brp(T)) = /]R dr ft(T)%(eimﬂst,p(T))

Il(p7t)
~ [ ar ) (677 u(0) o [ dr () dup(r)).
R R
=:2(p;t) =:3(p;t)

One easily sees that

t
1001 < Wflli0 | d7 1= 61,(r)] =0

and that
(0, O < I fell o 192 oy

On the other hand, as ei’”(ﬁtm € C3°(R) with sup norm smaller than or equal to one, by the
definition bounded variation, one obtains that [I1(p,t)| < Cy. Since the procedure above does not
depend on the choice of ¢ € [0, 7] one sees that (5.23) is satisfied. O

Finally, we can present the proof of Proposition 4.2.

Proof of Proposition 4.2. Analogously to the proof of Proposition 4.1, we first verify the identity
on the truncated moment of inertia Mpg(t) (recall its definition (5.9)) and then we show that the
cut-off can be removed. Note that the fact that M € C?[0,T] follows from the continuity of the
r.h.s. of (4.10), once the identity is proven.

Step (i). First, we compute the partial derivative w.r.t. time of the integrand on the r.h.s. of
(5.10). Setting

B(t,k) = Tm {4 (k) k- Vict; (k) }
we have
OB(t.k) = 4Im{ (005 (K) + ik (k) vkzﬁz‘(m} + 81| (k)|.

=:A(t)

Therefore, (let A = 1 throughout) differentiating (5.11) with respect to time, one sees that A(t) =

i%(ﬂt_) , so that

8,B(t,k) = %Re {q(t) k- vk@‘(k)} + 8 K2 (k)| (5.24)
Since

Ma(t) = /M dk B(t,k),
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it is just left to prove that dominated convergence applies. First, one easily sees that
1, ~ ~ ~ ~
D := E‘wt+h(k) k- Vit (k) — (k) k - Vit (K)|

-~ 1)~ ~ ~ 1 ~ ~
< k| Vithrn (k)| E\wm(k) — Ye(k)| + k[ (k)| E‘kawh(k) — Vit (k)| -
—_—— ~—_———
=:A1(th) = Az (t,h) =:43(t) =:A4(t,h)
Arguing as in the proof of Proposition 4.1 and using (5.11), (5.13), (5.14) and (5.15), one obtains
Ai(t,h) < CR*|o10(K)| + K| Viedro(k)| + Ck* +1) gl oo (o -

Aa(t:h) < K [dro(k)] + C(K +1) [lall o o)

As(t) < k\$1,0(k)‘ +O(K +1) a1l o (0,6)

(A4 is already estimated by (5.16)). Hence, since ¢y € Zs, D is estimated by a function which is
Lebesgue integrable and independent of h. Thus dominated convergence applies and, combining
with (5.24), one has

Nt(t) = 2Re {q<t> /

Step (ii). Now, it is necessary to find a version of (5.25), which makes easier the passage to the
limit as R — oo. First we see that, from the divergence theorem,

/ dk k - Viih7 (k) z/ A% ko (k) —2/ dk o7 (k).
k<R k=R

k<R

dkk-vk@(k)} +8/ dk k2| (k)2 (5.25)
k

<R <R

On the other hand,

R R 8 kQA* k
8/ dk k2| (K)|? = 8/ dk k2|61,4(K)|* + ~Re q(t)/ dk(zli’t()
k<R k<R Q k<R ke +1

2|q(t)[? / k?
dk ————
* 7T2 k<R (k?2 + 1)2

and, combining with (5.25), we find that

Mt = 2re{at) [ aswiiaof - trefo [ axiioo]

=R

. 8 K260, 20qt)? 2
8 dk k2o* ,(kK)|]> + —R, t/ dk : / dk ——— .
+ /ksR [91:(K)|° + - e{Q() h<R 211 + 2 Jeer o (B2 +1)2

Furthermore, since 9, € V| easy computations yield

<R

Hntt) = 8Catt) - 2300+ TRe{ato) [ aei0 b 20 sog(r 1)

<R
+ %Re {q(t) /k:R d¥ k@k(k)} , (5.26)

where
no 2
M= [ ak [P,
k<R
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However, one can see that

/ dk 1y (k) = Jp(t) + q(t) log(R? + 1),
k<R

where

» R 0) e—ikzt
Jr(t ::/ dk e~ %t k—Q(/ dk
r(t) e n to(k) — < von T2

L Lo o o
“or ) Ik / dr "D ((r) —ig(r)) =: JuR(D) + r(t) + Ta.m()
2 k<R k +1 0

and, consequently, (5.26) reads

M(t) = S(Crlt) ~ M(0) + TRela (07u(e)) + 2Re{at) [ az ki)
=:®, R(t) + Py R(t) + &3 R(t). (527)

Step (iii). To complete the proof we have to take the limit R — oco. First, combining monotone
convergence with the facts that Mpg is bounded and hence Lebesgue integrable on [0,¢] and that
Mpr(0) = M(0), there results

M(t) = M(0) + tM(0) + lim t ds/os dr Mp(7).

R—o0 0

Notice that at this level we do not need to know that M is C* but only the convergence of Mz(0)
(see Remark 5.2). Furthermore, if there exists a continuous function g(7) such that

lim ds/ dr Mg(t / ds/ dr g(r (5.28)
R—o0

then M(t) = g(t). Consequently, the goal is to compute the Lh.s. of (5.28), using the decomposi-
tion provided by (5.27).
We immediately see, from monotone convergence, that

Rhg})o/ ds/ dr &y p(r /ds/ dT ||¢1T||H1R2 ~ M(r ))

On the contrary, the computation of

t s

lim dS/ dr (1)27}%(7')
R—o0 0 0

requires some further efforts. First, we recall that from [CCT, Eq. (2.33)] (in view of [GR, Egs.

3.722.1 & 3.722.3)), one has

—ik%t ) )
/ dk :2 T —meM [ci(At) — isi(Mt)] = — el (v +1log A +logt — 2Q(\;t)) (5.29)
for every A, t > 0, where si(-) and ci(-) are the sine and cosine integral functions (defined by [AS,
Egs. 5.2.1 & 5.2.2]) and

oo

Q\;t ——W(Z 2;2;;n isi()\t)> (5.30)
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(see, e.g., [AS, Eq. 5.2.16]). Hence, we see that, for every 7 € [0, ],
JLR(T) 7 J1,00(7) 1= 2m(Uo(7)%0)(0)

and

q(0)e’™
2

J2,r(7) R:; Jo,00(T) 1= (7 +log T — %Q(l;T)) ,

by definition. In addition, arguing as in the proof of Proposition 4.1, one finds that

jim [ ds /0 dr Re{q" (1) Jor()} = /0 ds /O dr Re{q* () Jom(m)},  £=1,2.

R—o0

Concerning the third term, we have to prove that

t s t s
lim ; ds/0 dr Re{q (T)J&R(T)}:/(; ds/o dr Re{q*(7)J3,00(7)}, (5.31)

R—o00
with

J3,00(T) = % /OT dn €T (G(n) — iq(n)) (v +log(r —n) — LQ(1;7 — 1)) .

Preliminarily, we observe that by easy computations

aoe(r) = =10 citr) — i) = 5 [ ana)e ™ (o + gt =) — 2@~ )
2 L7 ) (3 -+ log(r — ) - 2QUiT—m). (5.32)
T Jo

On the other hand, using integration by parts, Fubini theorem and the definitions of ci and si [AS,
Egs. 5.2.1 & 5.2.2], we obtain that

J3.r(T) = —Q(Oz)e” (ci(7) —isi(7)) + (OQ)GW (ci(7(R? 4 1)) — isi(7(R? + 1))
T T eiiRQ(Tf ) _
- q<2) log(R? + 1) — ;/O dn Q(77)T_j71- (5.33)

Now, exploiting (5.29) and (5.30), we deduce that

d e~ 1
—Q(L;y) =—m .
dyQ( Y) ;

Consequently,

1 /7 TR _ 1 img(r) 1d [T
— d = - d 1o01: R%(r —
2/0 nq(n) p— 1 t3 dT/O nq(n) QL R (1 —n))
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and combining with (5.33) and (again) with (5.29) and (5.30), there results
Jar(7) = _q(02)e (Ci(T>—isi<T>)+q(02)e (ci(r(R* +1)) —isi(r(R? + 1))) + WZ(T)
~——
=T r(T) =T r(T) =T'3 r(7T)
_q(7) R +1 1d/T (D2 (P2
iow (Mt )+ 5 [ et (= R - ) + iR - )
=Ty r(T) =T5 r(T)
Lrd oy (n) (v +log(T —n)). (5.34)
2°dr Jy nan)\y g\ —n))- .

=T r(T)

In view of (5.34), we can finally compute the limit of the r.h.s. of (5.31). AsI'; r does not actually

depend on R, it remains in the limit as R — oo, while

t s
lim [ ds / dr Re{q"(r)(To.(r) + Ts.a(r) + Tan(r)} =0
In addition, only using integration by parts and again the properties of Q(1;-), we see that

i /0 ' dn q(n)e' ™= (v + log(T — 1))

1d /7 o
dn q(n)e’ T (y + log(r — 1)) 5

F6,R(T):§E ;
1 (7 . d
L ir—n) 4 1. _
+ o ; dngq(n)e an(l,T n)
1d [T L i [T i
=-— [ dngn)e n)(’Y—Flog(T—n))—/ dn q(n)e! ™ (y + log(r — 1))
2dT 0 2
imq(r) €T d [T —in (1
1 on dr ), dnq(n)e ""Q(1; 7 —n)

i / " dn q(n)eT (v + log(r — 1))

1d [ o
= dn q(n)e'"= (v + log(r — 1)) — 3
ieiT T i
(/ dy q(n)e= QL7 — ).
0

T 24dr J,
img(t) 1 d [T (r—
_ - = d (T=mO(1: 7 —
1 on dr |, na(me” QLT —n) + o
Thus, a comparison with (5.32) yields that, if one can show that
(5.35)

t S
lim [ ds / dr Re{q" (7)Ts.(r)} = 0,
R—oo Jg 0

then there results that (5.31) is proved. Now, from an easy computation we find that

t | * _ [ sq(s ) 7q*(7)( = ci(R*(s — 7)) — isi s—T
A@AdW@WMM—Ad«>Adqm( (R2(s — 7)) — isi(R2(s — 7))
s ’ Ta(T ’ * —ci 27’— — 181 27’—
+Adédqu4dmmx (R(r — n)) — isi(R2(r — )

=:fr(T)

Since the former term can be immediately proved to converge to zero as R — oo, we only focus on
the latter one. However, exploiting (5.29), (5.30), [AS, Egs. 5.2.1 & 5.2.2] and [GR, Egs. 3.722.1
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& 2.722.3], one can check that (for R large)

si(R*(r — )| <C,  [ci(R*(r —n))| <C(L+log(r =),  Yne[0,7).
Hence, from a repeated use of dominated convergence there results that fr — 0 pointwise and it
can be estimated by a bounded function independent of R. Since ¢ is integrable by Proposition

5.1, this implies that (5.35) holds true.
Summing up, we have proved that, setting Joo (7) 1= J1,00(7) + J2,00(T) + J3,00(7),

t S t S
lim/ ds/ dT(I)ZR(T):ZlRe{/ ds/ drq*(T)Joo(T)}.
R—o0 0 0 ™ 0 0

Now, recalling [CCT, Eq. (2.59)],

@Waltyon) (0) = (-l + 2522 ) a(0) - 2 4 40—y~ g

t

+ = | ar=r—toate = i)

and arguing as in [CCT, Proof of Theorem 1.2] (precisely, as in Part 2.), long and boring compu-
tations show that in fact

Joo(t) = —2mBq(t)*7q(t) + (v — log 2)q(2).

Consequently,

~log 2
lim/ ds/ dr By (7 :—8/ ds/ dr (q( )\20+70g> lg(T)2
R—o0 2w

t s
~ 8o / ds/ dr |q(r)[2o+2.
o+1 0 0

Finally, one has to show that

lim/ ds/ dr &3 p(T /ds/ dr |q(7 (5.36)
R—o0o

First, observe that from (4.1)

R2€—iR2Tq(O)

| dski00 =R | as G+ +ire [ dngn)e O,
k=R 0

k<R Nl
::A:R(T) :iAQ,R(T) =3A3,R(T)

so that

/Ot ds/0 dr &3 p(T Re{/ ds/ dr ¢* (1 AI,R(T)—FAQ,R(T)+A3,R(7_))}~
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Now, a simple integration by parts of the term involving Az r(7) yields

/t ds /S dr ¢*(7) (A1r(T) + A2 r(T) + A3 R(T))
0 0

_ /Ot ds/os drlq(r)2 + R2</]€_R as $1,0(k)> /Ot ds /0 dr e~ BT g% ()

=:B1 r(t)

R2 / ds/ dr e H#7Tg *( —/ ds/ dr ¢*(7 / dne_’R T=m(n).

=:By g(t =:B3 g(t)

Hence, if one can prove that B r(t) — 0, as R — oo, then (5.36) is proved. However, it is easy to

see that By r(t), Be,r(t) — 0 (for By r(t) — 0 one uses that fact that ¢y is a Schwartz function),
whereas

t . T .
Bonl(t) = /0 dr e TG (1) (t = 7) /0 dy (1),

require some further effort. Nevertheless, if

\ / dneiRQ"q'm)\@t, vr e (0,4,
0

or, equivalently, if
T R C
d 1
/0 ne™ )| < 7

as R — oo, then Bj g(t) vanishes by Riemann-Lebesgue lemma. Now, as shown in Lemma 5.3
(set p = R?), a sufficient condition for (5.37) is that ¢l 7 € BV (R) for every T' < T, but this is
immediate since ¢ € W11(0,T) for every T € (0,T), by Proposition 5.1.

Therefore, (5.36) is true and, summing up,

vr e [0,1], (5.37)

. L 2y —2log2+1
() = $61al3 gy — SM() + 8 (—mq(t)r? AL ) ()P,
so that, exploiting the definition of the energy for A = 1, suitably rearranging terms and using
(2.16), one finds (4.10). O

Remark 5.3. We highlight that the main technical point in proof of the formula of the second
derivative of the moment of inertia is the fact that one cannot use the boundary condition (4.12)
in the computations, since it is an open issue whether 1, is a strong solution of the problem or
not.
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