
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A continuous-time learning rule for memristor-based recurrent neural networks / Zoppo, G.; Marrone, F.; Corinto, F.. -
(2019), pp. 494-497. (Intervento presentato al convegno 26th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2019 tenutosi a Genova nel 2019) [10.1109/ICECS46596.2019.8964918].

Original

A continuous-time learning rule for memristor-based recurrent neural networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECS46596.2019.8964918

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2794032 since: 2020-02-17T14:45:51Z

Institute of Electrical and Electronics Engineers Inc.

A Continuous-time Learning Rule for
Memristor–based Recurrent Neural Networks

Gianluca Zoppo, Francesco Marrone, Fernando Corinto
Department of Electronics and Telecommunications

Politecnico di Torino
Torino, Italy

emails: gianluca.zoppo@polito.it; francesco.marrone@polito.it, fernando.corinto@polito.it

Abstract—Among the recent disruptive technologies,
volatile/nonvolatile memory–resistor (memristor) has attracted
the researchers’ attention as a fundamental computation
element. It has been experimentally shown that memristive
elements can emulate synaptic dynamics and are even capable
of supporting spike timing dependent plasticity (STDP), an
important adaptation rule for competitive Hebbian learning.
The overall goal of this work is to provide a novel analogue
computing platform based on memristor devices and recurrent
neural networks that exploit the memristor device physics to
implement the backpropagation algorithm. Back propagation
for recurrent neural networks requires a side network for the
propagation of error derivatives. The use of memristor–based
synaptic weights permit to propagate the error signals in the
network via the nonlinear dynamics without the need of a digital
side network. Experimental results show that the approach
significantly outperforms conventional architectures used for
pattern reconstruction. Further results will be reported in an
extended work.

I. INTRODUCTION

In the last few decades, the search of innovative comput-
ing platforms featuring an exponential market adoption has
intensified, looking for technological areas that could offer
new, ultra–low power processing methods and architectures.
A neuromorphic computing approach aims to go beyond the
status quo of conventional digital processing by exploiting
complex dynamics and nonlinear phenomena emerging from
the physics of nonvolatile memory devices (e.g. memristors)
[1], [2]. Combining memristor technology with advanced deep
learning algorithms used to train neural networks unlocks
processing speed and power efficiency for large sets of sensor
data. In supervised learning, one of the most popular method
used for training feedforward neural networks is the backprop-
agation algorithm.

The aim of this paper is to propose a generalization of
backpropagation to Recurrent Neural Networks (aka Recurrent
Backpropagation). This method has been first introduced by
Almeida [3] and Pineda [4] who independently obtained the
same results and developed an iterative scheme to adjust the
synaptic weight matrix of the neural network. The idea is to
force the neural network to converge, for fixed input and initial
state, to a desired fixed–point attractor. As for feedforward
neural networks, this is achieved by minimizing a particular
loss function associated to the neural network parameters.
The novelty of this method is that the error signal is now

”backpropagated” by introducing an analog side network (i.e.
an associated differential equation). This avoids the direct
computation of the gradient by exploiting the second non-
linear dynamics of the side network that adjusts the synaptic
weights in situ. This work shows that the nonlinear dynamics
of the analog side network can be mapped onto (the state
equation) memristor–based synaptic weights. Although this
work includes some selected experimental results, an extensive
study has shown that the proposed approach outperforms con-
ventional architectures used for pattern reconstruction. Further
results will be reported in an extended work.

II. MEMRISTOR–BASED RECURRENT NEURAL NETWORK

Let each synaptic weight be described by a generic mem-
ristor (see also [5]) that satisfies the following equations:{

i = G(x)v
dx
dt = f(x, v)

(1)

where i is the current, v is the voltage, G(·) is the mem-
ductance and x = [w, y]T is the state vector including the
state variables w and y. By using a memristor–based synaptic
weight G(x) = w, the following set of ordinary differential
equations describes the memristor–based neural network in
Figure 1 (∀k = 1, . . . , N and ∀j = 1, . . . , N):

Ck
dvk
dt

= −Gkvk +Ggk

 N∑
j=1

wkjvj + Ik

 (2)

dxkj

dt
= f(xkj , vk) (3)

In the next section a brief derivation of the backpropagation
algorithm for recurrent neural network is reported in order
to make clear the link between the nonlinear dynamics of
memristor–based synaptic weights given by eq. (3) and the
side network for the backpropagation of error signals. Here-
inafter, Ck = 1F and Gk = G = 1 Ω−1 for the sake of
simplicity.

III. RECURRENT BACKPROPAGATION ALGORITHM

Consider a Recurrent Neural Network (RNN) whose state
vector v evolves according to:

dvi
dt

= −vi + gi

 N∑
j=1

wijvj + Ii

 , i = 1, . . . , N (4)

Ik

wk,1
ik,1

wk,2
ik,2

wk,N
ik,N

Îk

gk(Îk)

G

Gk

Ck

−

+

−

+

+

−
vN

+

−
v2

+

−
v1

+

−

Zk

+

−

Vk

Fig. 1. Neuron’s architecture with memristive synaptic connections.

where N is the number of neurons of the network and Ii is
an external input to the i-th neuron. There is no restriction
on the choice of the activation function gi as long as it is
differentiable [4]. In the most general case, it is possible to
define different subsets of the network units:

- the subset I of input units;
- the subset O of output units;
- the subset H of hidden units.

The goal of the algorithm is to adjust the weights wij so that,
for a given initial condition v0 = v(t0) and a given vector
of input I, the RNN (4) converges to a desired fixed point
v∞ = v(t∞). This is obtained by minimizing a loss function
E which measures the euclidean distance between the desired
fixed point and the actual fixed point:

E =
1

2

N∑
i=1

J2
i =

1

2

N∑
i=1

(Ti − v∞i)2 (5)

where Ti is the i-th desired output state component and Ji is
the i-th component of the difference between the current fixed
point v∞i and the target point Ti. Observe that E depends
on the weight matrix W through the fixed point v∞(W, I).
Therefore, one way to drive the system to converge to a desired
attractor is to let it evolve in the weight parameter space along
trajectories which have opposite direction of the gradient of
E:

dwij

dt
= −η ∂E

∂wij
, η > 0 (6)

where η is the learning rate and must be small enough so that
the state variable v can always be considered to be at steady
state [4]. Computing now the derivatives in (6), one obtains

dwij

dt
=− η ∂

∂wij

(
1

2

N∑
k=1

J2
k

)

=− η
N∑

k=1

Jk
∂Jk
∂wij

=

= η

N∑
k=1

Jk
∂v∞k
∂wij

(7)

and the derivative of v∞k with respect to wij is derived by
observing that the fixed points of (4) must satisfy the nonlinear
equation:

v∞k = gk

(
N∑
s=1

wksv
∞
s + Ik

)
. (8)

Differentiating (8) with respect to wij one obtains:

∂v∞k
∂wij

= g′k(Î∞k)

[
N∑
s=1

∂wks

∂wij
v∞s +

N∑
s=1

wks
∂v∞s
∂wij

]
(9)

where Î∞k =
(∑N

s=1 wksv
∞
s + Ik

)
.

Solving (9) in terms of ∂v∞
k

∂wij
and defining Lks = δks −

g′k(Î∞k)wks, it follows that:{∑N
s=1 Lis

∂v∞
s

∂wij
= g′i(Î

∞
i)v∞j k = i∑N

s=1 Lks
∂v∞

s

∂wij
= 0 k 6= i

(10)

and therefore for the generic k-th components

∂v∞k
∂wij

= L−1ki g
′
i(Î
∞
i)v∞j (11)

In conclusion, (6) simply becomes:

dwij

dt
= η

[
g′i(Î

∞
i)

N∑
k=1

JkL
−1
ki

]
v∞j . (12)

Unfortunately, (12) requires an inversion of Lki for computing
the weights’ update but, considering

yi = g′i(Î
∞
i)

N∑
k=1

JkL
−1
ki (13)

one can avoid this process by introducing an associated dy-
namical system. Indeed, assuming that g′i(Î

∞
i) 6= 0 ∀Î∞i ∈ R

and observing that Lki = Lik for construction, (13) is
equivalent to:

N∑
k=1

L−1ik Jk =
yi

g′i(Î
∞
i)

. (14)

Solving (14) in terms of Jk one obtains:

Jk =

N∑
i=1

Lki
yi

g′i(Î
∞
i)

. (15)

Substituting now the explicit form for Lki, (15) becomes:

0 = −yk + g′k(Î∞k)

(
N∑
i=1

wikyi + Jk

)
(16)

which can be seen as the steady state of the following side
network:

dyk
dt

= −yk + g′k(Î∞k)

(
N∑
i=1

wikyi + Jk

)
. (17)

Therefore, the system of differential equations is completely
defined by:

dvi
dt

= −vi + gi

 N∑
j=1

wijvj + Ii

 (18)

dyk
dt

= −yk + g′k(Î∞k)

(
N∑
i=1

wikyi + Jk

)
(19)

dwij

dt
= ηy∞i v

∞
j (20)

Observe that the weights’ update depends on the corre-
sponding fixed points of the first two equations, whereas the
last two equations can be mapped onto the memristor state
equation (3). It is readily derived that (18), (19), (20) describe
a memristor–based recurrent neural network. Further details
about the local stability of the system are reported in [3].

IV. CASE STUDY AND SIMULATIONS

In this section, a first investigation of training the
memristor–based recurrent neural network (M–RNN) (18)–
(20) by using the generalized backpropagation algorithm in
a pattern’s reconstruction task is presented. For this kind of
application, input and output units coincide and no hidden
units are considered, i.e. I = O and H = ∅. Moreover, in
order to guarantee the convergence of the system, symmetric
weights were chosen for sake of simplicity. The dynamical
system defined by (18), (19), (20) evolves in the following
way:

- (18) evolves starting from a prefixed initial condition and
converges to the corresponding fixed point v∞;

- (19) evolves starting from a prefixed initial condition and
converges to the corresponding fixed point y∞;

- Lastly, the weights of the matrix W are adjusted accord-
ingly to (20).

However, it is also important to mention that, using the correct
relaxation time scales, the three steps listed above can be
computed simultaneously. During the training phase, each
image is repeatedly proposed to the network by mean of a
constant input I until is memorized. In the case of multiple
patterns to be learnt, the previous steps are performed for
each single image of the dataset for different epochs. Observe
that patterns were shown to the network in the same order
for each epoch. This choice was not restrictive since similar
performances were obtained even in the case the images were
proposed in a random fashion. In order to train the network,
the following parameters and initial conditions have been set
for the training phase:

- Every time a pattern is shown to the network v(0) =
(0.5, . . . , 0.5)T ∈ RN and y(0) = (0.5, . . . , 0.5)T ∈ RN ,
as suggested in [4];

- The matrix W is symmetric and initialized with uniform
random values between [−0.1; 0.1];

- The activation function is chosen as a hyperbolic tangent
function;

- The learning parameter η = 0.01 as suggested in [4];

Fig. 2. In the top panel, the dataset of all the 16 patterns to be learnt. In
the bottom panel, a graphical representation of the corresponding patterns’
correlation matrix computed with the Pearson correlation coefficient.

- The number of epochs is 300.
- In order to guarantee the convergence of the three state

variables v, y and W, adimensional time spans of [0, 50],
[0, 20] and [0, 3] were respectively used.

With the aim of discussing the feasibility of the M–RNN (18)–
(20) in VLSI implementation, a short analysis on the impor-
tance of local/global interconnections is performed. Starting
from a fully connected M–RNN with a full matrix W of
synaptic weights, the number of connections is decreased by
setting to zero all the elements of W located outside a band
centered in the main diagonal. This optimization is studied
because fully connected neural networks are really difficult
to be implemented in analog circuitry. The cut of K outer
diagonals from the matrix reduces the number of synapses
from N2 to N2 − K(K + 1). In order to test the M–RNN,
corrupted patterns are generated by flipping, with probability
p, each pixel of an image from white to black and viceversa.
In this pattern recognition analysis, a corrupted pattern is
identified as reconstructed if the least square error with respect
to the original images is less than 0.1. The results are shown
in Fig. 3 with different levels of test images’ corruption (e.g.
p = 0.1, p = 0.15, p = 0.2 and p = 0.25). The assement is
carried out by testing the recovery capabilities of the M–RNN
against 1000 corrupted patterns for each class in Fig. 2.

The plot in Figure 3 reveals that, despite the presence of
different levels of corruption, the accuracy is still higher than
90% even when a large amount of global connections are cut
off.
Figure 5 shows an example of the reconstruction of 6 corrupted
images. The performance of the M–RNN is remarkably stun-
ning with an accuracy of 0.99. The noise is removed in almost
all the test cases with only few exceptions.

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

p=0.25

p=0.20

p=0.15

p=0.10

Fig. 3. Accuracy for different radius of connectivity with different levels of
test images’ corruption: p = 0.10, p = 0.15, p = 0.20 and p = 0.25.

Fig. 4. On the top row, the corrupted patterns with probability p = 0.2.
On the bottom row the corresponding reconstructed images with the fully
connected network.

In order to assess the efficiency of the recurrent backprop-
agation algorithm, a comparison of this method is performed
with two of the most used learning rules for training networks
in associative memory’s tasks. It is well known that a standard
Hopfield model trained on uncorrelated patterns with the
Hebbian rule has an approximate capacity of 0.14N (N is the
number of units in the network). Unfortunately, this capacity
decreases significantly if patterns are correlated. To overcome
this problem, a novel learning method has been introduced by
[6]. The Storkey learning rule presents indeed a significantly
improved performance over the standard Hopfield model, both
with correlated and uncorrelated data.

Hebbian Rule Storkey Rule Pineda-Almeida Rule

Accuracy 0.1792 0.2663 0.9968

TABLE I
ACCURACY FOR EACH SINGLE LEARNING RULE OVER 1000× 16

CORRUPTED IMAGES WITH PROBABILITY 0.1.

However, as shown in Table I and in the examples of Figure
5, the results provide compelling evidence that the recurrent
backpropagation algorithm is able to reconstruct perfectly even
in the presence of correlated patterns.

Fig. 5. From the top row: six corrupted patterns with probability p = 0.1, re-
constructed pattern with hebbian rule, Storkey rule, Almeida-Pineda recurrent
backpropagation rule and in the last row the target patterns.

V. CONCLUSIONS

In this paper, the dynamics of a memristor–based recurrent
neural network has been analyzed. The network is trained
by using a generalization of the recurrent backpropagation
algorithm adapted to the continuous domain. Such in situ
training learning rule permits to the memristor–based neural
network to continuously adapt and adjust the synaptic weights
without the direct computation of the loss function’s gradient.
The method significantly outperforms conventional approaches
used for pattern reconstruction motivating future works for as-
sessing the validity of the model in other areas of applications.
However, further work is still needed to find physical devices
that approximate the proposed memristive synapse dynamics.
Nonetheless, the learning rule can be instead implemented by a
series of discrete programming pulses that perform the weights
update according to (20).

ACKNOWLEDGMENT

This work is supported by the Ministero degli Affari Esteri e
della Cooperazione Internazionale (MAECI) under the project
n. PGR00823. Authors are also grateful to Prof. Kyeong-Sik
Min (School of Electrical Engineering, Kookmin Univ., Seoul,
Korea) for the useful discussion.

REFERENCES

[1] L. O. Chua, ”Memristor-the missing circuit element,” IEEE Transactions
on Circuits Theory, vol. 18, no. 5, pp. 507-519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, ”The
missing memristor found” Nature, vol. 453, pp. 80-83, 2008

[3] L. Almeida, ”A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment,” Proceedings of the 1987 IEEE
First Annual International Conference of Neural Networks, S. Diego,
CA, 1987.

[4] F. Pineda, ”Generalization of backpropagation to recurrent and higher
order networks,” Neural Information Processing Systems, D. Anderson
(ed.), American Institute of Physics, 1987.

[5] F. Corinto, P.P. Civalleri, and L. O. Chua, ”A theoretical approach to
memristor devices,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2015.

[6] A.J. Storkey, ”Increasing the capacity of the hopfield network without
sacrificing functionality,” International Conference on Artifcial Neural
Networks, 1997.

