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DISCRETE-TO-CONTINUUM LIMITS OF PARTICLES WITH AN
ANNIHILATION RULE*

PATRICK VAN MEURS! AND MARCO MORANDOTTT!

Abstract. In the recent trend of extending discrete-to-continuum limit passages for gradient
flows of single-species particle systems with singular and nonlocal interactions to particles of opposite
sign, any annihilation effect of particles with opposite sign has been side-stepped. We present the
first rigorous discrete-to-continuum limit passage which includes annihilation. This result paves the
way to applications such as vortices, charged particles, and dislocations. In more detail, the discrete
setting of our discrete-to-continuum limit passage is given by particles on the real line. Particles of
the same type interact by a singular interaction kernel; those of opposite sign interact by a regular
one. If two particles of opposite sign collide, they annihilate, i.e., they are taken out of the system.
The challenge for proving a discrete-to-continuum limit is that annihilation is an intrinsically discrete
effect where particles vanish instantaneously in time, while on the continuum scale the mass of the
particle density decays continuously in time. The proof contains two novelties: (i) the observation
that empirical measures of the discrete dynamics (with annihilation rule) satisfy the continuum
evolution equation that only implicitly encodes annihilation, and (ii) the fact that, by imposing a
relatively mild separation assumption on the initial data, we can identify the limiting particle density
as a solution to the same continuum evolution equation.

Key words. Particle system, discrete-to-continuum asymptotics, annihilation, gradient flows

AMS subject classifications. 82C22, (82C21, 35A15, 74G10).

1. Introduction. A recent trend in discrete-to-continuum limit passages in over-
damped particle systems with singular and nonlocal interactions (with applications
to, e.g., vortices [9, 19, 38], charged particles [36], dislocations [18, 27, 30], and dis-
location walls [13, 47, 48]) is to extend such results to two-species particle systems.
The singularity in the interaction potential imposes the immediate problem that the
evolution of the particle system is only defined up to the first collision time between
particles of opposite sign. This problem is dealt with by either regularising the singu-
lar interaction potential (see [11, 12]) or by limiting the geometry such that particles of
opposite sign cannot collide (see [7, 46]). However, more realistic models of vortices,
charged particles, and dislocations include the annihilation of particles of opposite
sign. While annihilation has been analysed on the discrete scale [40, 41] and contin-
uum scale [3, 6] separately, there is no rigorous discrete-to-continuum limit passage
known between these two scales.

The main result in this paper establishes the first result on a discrete-to-continuum
limit passage in two-species particle systems in one dimension with annihilation.

Below, we first describe the physical context of our main result. Then, we intro-
duce the discrete and continuum problems. Our main result is the connection between
them in terms of the limit passage as the number of particles n tends to co. Then, we
put our discrete and continuum problems in the perspective of the literature, and com-
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2 P. VAN MEURS AND M. MORANDOTTI

ment how our proof combines known techniques with novel ideas. We conclude with
an exposition of possible extensions to work towards singular interspecies interactions
and higher dimensions.

1.1. Application to plasticity and dislocations. The main application we
have in mind is to increase the understanding of the plastic behaviour of metals.
Plasticity in metals is the emergent behaviour of large groups of dislocations moving
and interacting on microscopic time- and length-scales. Dislocations are stacking
faults in the atomic lattice. We keep the description of dislocations concise, and refer
to the classical textbooks [21, 24] for a detailed description. In two-dimensional elastic
bodies, dislocations are often represented as points in the elastic body at which the
stress has a prescribed singularity. This singularity depends on the orientation of the
dislocation, which is described by the so-called Burgers vector. While dislocations
themselves exert a stress field, they can also move in response to the stress induced
by other dislocations in the elastic body. The simplest model to capture such effects
is an interacting particle system which fits to the setting in this paper.

One of the main unsolved problems in plasticity is how to describe the group
behaviour of many dislocations in terms of a dislocation density. While there are
many different models available in the engineering literature for the dislocation density
[5, 15, 16, 22, 25, 26, 42], it is not clear which of these models describes the group
behaviour of a given collection of dislocations for a given set of parameters. This
problem arises from a lack of rigour in the derivation of these continuum dislocation
models from the dynamics of a large group of interacting dislocations (called discrete
dislocation models).

To resolve this lack of rigour, over the course of two decades a large mathematical
community has established rigorous connections between discrete and continuum dis-
location models; see [1, 10, 11, 13, 18, 29, 30] for a few examples of different discrete
dislocation models and different techniques. The final aim is to lift all the currently
required simplifications on the discrete dislocation models without losing the rigorous
connection(s) with the related continuum model(s).

In recent years, the simplification that all dislocations have the same Burgers
vector is being lifted. This generalisation corresponds to particle systems with mul-
tiple species. It has the difficulty that dislocations with different Burgers vector may
collide in finite time (due to the singular stress they exert). In particular, two (screw)
dislocations with opposite Burgers vector are known to collide in finite time [23], and
disappear upon collision. Such a collision is called annihilation. In the current litera-
ture, the difficulty of including annihilation or other collision rules is side-stepped by
either enforcing geometrical restrictions [7, 46], or by introducing an artificial regu-
larisation of the singularity in the stress field (see [12] and [44, Chap. 9]). A common
observation in these papers is that, depending on the geometrical restrictions or the
regularisation, rigid micro-structures can appear over time which are not recovered by
the expected continuum dislocation model. In fact, the simulations in [44, Chap. 9]
show that the group behaviour of dislocations can depend on the choice of regulari-
sation, which would imply that the continuum model has to depend on the choice of
regularisation.

Therefore, to avoid the dependence of the continuum model on the choice of reg-
ularisation or geometrical restrictions, we aim to make the first step for including
dislocation annihilation in connecting discrete to continuum dislocation models. Our
novel result includes an annihilation rule, but sidesteps the additional difficulty that
prior to collision, the speed of the colliding dislocations becomes unbounded. To avoid

This manuscript is for review purposes only.



89
90
91
92
93
94
95

96

108
109
110

112
113
114
115
116
117
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133

MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 3

unbounded velocities prior to collision, we replace the singular interaction between
dislocations of opposite Burgers vector by a regular one. This choice induces the
further restriction of a one-dimensional spatial setting, which is needed to enforce col-
lisions. Indeed, for regular interactions in higher dimensions, dislocations of opposite
Burgers vector need not collide in finite time.

In Section 1.7 we demonstrate how our main result can be used as a stepping
stone for considering annihilation with singular interactions between dislocations of
opposite Burgers vector.

1.2. The discrete problem (particle system with annihilation). We re-
turn our attention from dislocations to a more general particle system with two species
and an annihilation rule. We introduce the related evolution problem by first spec-
ifying the state of the system, then the related interaction energy, and finally the
evolution law. The state of the system is described by = := (z1,...,2,) € R™ and
b= (b1,...,by) € {—1,0,1}", with n > 2 the number of particles. The point z; is
the location of the i-th particle, and b; is its charge (or Burgers vector, in the setting
of dislocations).

To any state (z,b) we assign the interaction energy E,: R" x {-1,0,1}" —
R U {400} by

L) Bt =g Y (X Ve X Wie-w)

j=1
i bibj=—1
bib;=1

where V and W are the interaction potentials between particles of equal and opposite
charge, respectively. For V' and W, we have three choices in mind, all of which are of
separate interest:

(i) V(r) = —log|r| and W = 0. This corresponds to the easiest case in which
the two species only interact with their own kind. It is distinct from the
single-particle case solely by the annihilation rule which we specify below.
We consider this setting as a convenient benchmark problem, but we have no
direct application in mind.

(ii) V(r) = —log|r| and W a regularisation of —V (as illustrated in Figure 1).
This is a first step to considering the case of positive and negative charges
(or positive and negative dislocations) in which W = —V is chosen in a two-
dimensional setup [40, 41, 43]. After stating our main result for regular W, we
comment in Subsection 1.7 on how this result helps in passing to the limit in
the particle dynamics corresponding to regular potentials Ws which converge
to the singular —V as the regularisation parameter § tends to 0.

(ili) V(r) = rcothr — log|2sinhr| and W a regularisation of —V. This setting
corresponds to that of dislocation walls, i.e., infinite arrays of equi-spaced
dislocations. The explicit expression for V is found by summing over all
dislocations in such a wall; see [21, (19-75)] or [46, Sec. 2]. This potential
V' has several pleasant properties: it has a logarithmic singularity at 0, it
is decreasing on (0,00), and it is positive with integrable tails. Discrete-
to-continuum limits of particle systems consisting of interacting dislocation
walls are established in [13, 17, 21, 46, 47, 48] for either single-sign scenarios
or without annihilation.

For our analysis, we propose a unified setting which includes the three cases above:

we consider a class of potentials V and W which satisfy a certain set of assumptions
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4 P. VAN MEURS AND M. MORANDOTTI

A

FIGURE 1. Plots of V(r) = —log|r| and a typical regularisation W of —V.

specified in Assumption 2.1. The crucial assumptions are that the singularity of V at 0
is at most logarithmic, that V(r) — +oo as r — 0, that W is regular, and that V" and
W have at most logarithmic growth at infinity. In view of other typical assumptions
in the literature, we do not rely on convexity or monotonicity. In Subsection 1.6 we
elaborate on the necessity of these assumptions to our main discrete-to-continuum
result.

Finally, we make three observations on the structure of (1.1). First, if the i-th
particle has 0 charge (i.e., b; = 0), then it does not contribute to E,. Second, the
factor 1/2 in front of the energy is common; it corrects the fact that all interactions are
counted twice in the summation. Third, the condition j # i prevents self-interaction.

Equation (1.2) formally describes the dynamics; for a rigorous definition see Prob-
lem 4.1 and Definition 4.2.

d ! Z V'(a:i—xj)—% Z W'(z; —x;) on (0,T)\ Teol,

Co=—=
(1.2) ¢4 " b= jibiby=—1

annihilation rule at Tco.

Here, Teo = {t1,...,tx} is a finite set of collision times, outside of which x(t) is the
gradient flow of E,. The version of (1.2) in two dimensions and in which W(r) =
—V(r) =log|r| is discussed in great detail in [41].

Next we explain the “annihilation rule at T.,”. Given that at ¢ = 0 all particles
are at different positions, (1.2) follows for at least a small time interval simply the
gradient flow of E,, (- ;b) in which b is constant in time. Since V is a singular, repelling
interaction potential and W is regular, particles of the same sign will not cross each
other, but particles of opposite sign may. We call the first time instance at which
such a crossing happens a collision time, and denote it by ¢;. At ¢1, the annihilation
rule states that those particles of opposite sign which are at the same position are
‘removed’ from the system, and that the system is restarted at time ¢; with the
remaining particles at their current positions. It again follows the gradient flow of E,,
(but now with fewer particles) until the next collision time ¢9 at which two particles of
opposite sign cross. At to, an analogous annihilation rule is applied. In this manner,
Teol is constructed. We allow for more than one pair of particles to annihilate at the
same time instance t;. Because of the singularity of V', annihilations that happen at
the same time always occur at different points in space.

This manuscript is for review purposes only.
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MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 5

For technical reasons, we encode the removal of particles by putting their charge
b;(t) from £1 to 0 as opposed to making n dependent on ¢t. We note that, if particle
1 has zero charge, then

e z;(t) remains stationary,

e the velocity of all other particles does not depend on z;(t), and

e particle ¢ cannot annihilate any more with any other particle.
We note that each b;(t) is a shifted Heaviside functions that jumps at some collision
time t.

Next we motivate the applicability of (1.2) by two related examples. The first
example is that of dislocations, whose dynamical law naturally includes annihilation
effects. The linear relation in (1.2) between the velocity and the gradient of the energy
is purely phenomenological, and is, due to its simplicity and lack of consensus for a
better alternative, the most commonly used relation in dislocation dynamics models.
We refer to [43] for simulations of a generalized version of (1.2) in the context of
dislocations.

The second example of a system related to (1.2) is that in [40] and [41, Theo-
rems 1.3 and 1.4], where the limit of the Ginzburg-Landau equation on the dynamics
of vortices is studied as the phase-field parameter € tends to 0. In the limiting equa-
tion, the vortices are characterised as points with a charge whose dynamics are given
by the version of (1.2) in which W(r) = —V(r) = log|r| and the particles are two-
dimensional. While detailed properties of the particles trajectories are proven, a pre-
cise solution concept to this version of (1.2) remains elusive. In our one-dimensional
setting, we establish a solution concept to (1.2) in Definition 4.2 and Proposition 4.5.

1.3. The continuum problem (PDE for the particle density). On the
continuum level, the state of the system is described by the nonnegative measures p*,
which represent the density of the positive/negative particles (including those that
are annihilated). We further set

p=p"+p° and k:=p"—p7,

and require the total mass of p to be 1. We note that p™ and p~ need not be mutually
singular, and thus p* > [k]+, where [s]+ denotes the positive/negative part of the
signed measure k. We interpret [k]+ as the density of positive/negative particles that
have not been annihilated yet.

For p*(t) we consider the following set of evolution equations

(1.3) {@fZU@MV*M++WWMLW in D'((0,T) x R),

™ = ([5]- (V/*[5]- + W' [5]1))" in D'((0,T) x R),

where we denote by the prime symbol ’ the derivative with respect to the spatial
variable. We remark that no annihilation rule is specified; the annihilation is encoded
in taking the positive/negative part of k. Indeed, it is easy to imagine that while the
integral of p = p™ + p~ is conserved in time, the integral of [k], + [k]_ = |pT — p~|
may not be conserved.

1.4. Main result: discrete-to-continuum limit. Our main theorem (Theo-
rem 5.1) states that the solutions to (1.2) converge to a solution of (1.3) as n — oc.
It specifies the concept of solution to both problems, the required conditions on the
sequence of initial data of (1.2), and guarantees that the so-constructed solution to
(1.3) at time O corresponds to the limit of the initial conditions as n — oco. The
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6 P. VAN MEURS AND M. MORANDOTTI

convergence is uniform in time on [0,7] for any 7" > 0. The convergence in space is
with respect to the weak convergence. As a by-product of Theorem 5.1, we obtain
global-in-time existence of a solution (p*, p~) to (1.3) for which the masses of p* are
conserved in time.

In order to give effectively an outline of the proof and the motivation for the main
assumptions under which Theorem 5.1 holds (Subsection 1.6), we first describe the
related literature.

1.5. Related literature. We start by relating (1.3) formally to its singular
counterpart. Replacing W by —V, we obtain from a formal calculation that the
difference of the two equations in (1.3) is given by

(1.4) Ak = (|k|(V' * K)).

For V(r) = —log |r|, equation (1.4) was introduced by [20] and later proven in [6] to
attain unique solutions when posed on R with proper initial data.

In the remainder of this subsection, we put our main result Theorem 5.1 in the
perspective of the literature. We start by describing those specifications of [10, 28, 29]
which are closest to our main result. A specification of [10, Theorems 2.1-2.3] proves a
‘discrete’-to-continuum result from (1.2) to (1.4), in the case where V(r) = —W (r) is
a regularisation of — log |r| on the length-scale 1/n. We put ‘discrete’ in apostrophes,
because their equivalent of (1.2), given by [10, equation (5)], is a Hamilton-Jacobi
equation, which includes the solution to (1.2) only if all particles have the same sign.
It is not clear if this Hamilton-Jacobi equation relates to (1.2) if the particles have
opposite sign.

As opposed to [10], [29] starts from a different Hamilton-Jacobi equation, which
corresponds to the Peierls-Nabarro model [32, 33]. This model is a phase-field model
for the dynamics of dislocations which naturally includes annihilation. In this model,
opposite to encoding dislocations as points on the line, the dislocations are identified
by the pulses of the derivative of a multi-layer phase field on the real line. In [29], the
width of these pulses is taken to be on the same length-scale as the typical distance
between neighbouring dislocations. Then, in the joint limit when the regularisation
length-scale (and thus simultaneously 1/n) tend to 0, an implicit Hamilton-Jacobi
equation is recovered [29]. In [28, Theorem 1.2] it is shown that this implicit Hamilton-
Jacobi equation converges to (1.4) in the dilute dislocation density limit. While this
framework seems promising for a direct ‘discrete’-to-continuum result (‘discrete’ being
the Peierls-Nabarro model) to (1.3), it only applies to co-dimension 1 objects, i.e.,
particles in 1D and curves in 2D.

Regarding the continuum problem (1.3), we have not found this set of equations
in the literature. Nonetheless, we believe the case W = 0 to be of independent
interest, since then (1.3) serves as the easiest benchmark problem for future studies
on annihilating particles. Also, since our discrete-to-continuum result holds for taking
W as a regularisation of —V, we expect that (1.4) can be obtained from (1.3) as the
regularisation length-scale tends to 0 (see Subsection 1.7). Therefore, we review the
literature on (1.4).

Equation (1.4) as posed on R with V(r) = —log|r|, or even V(r) = |r|™* with
0 < a < 1, attains a self-similar solution [6, Theorem 2.4] in which k has a sign.
The self-similar solution is expanding in time (due to the repelling interaction force
V'(r)), and describes the long-time behaviour of the unique viscosity solutions to
(1.4) [6, Theorem 2.5] for appropriate initial data. Moreover, for V(r) = —log |r| and
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initial condition x° € L(R), the viscosity solution x to (1.4) satisfies x(t) € LP(R)
for all 1 < p < oo [6, Theorem 2.7]. In conclusion, despite (1.4) being the singular
counterpart of (1.3), it has a well-defined global-in-time solution concept.

Lastly, we compare our result to that of [3]. There, the authors are interested
in deriving a gradient flow structure of (1.4) on R? with V having a logarithmic
singularity at 0 by defining a discrete in time minimising movement scheme and
passing to the limit as the time step size tends to 0. The related convergence result is
[3, Theorem 1.4]. However, the limit equation is not fully characterised as (1.4), since
in that equation || is replaced by an unknown measure p > |x| which is obtained from
compactness. The connection to our main result is that we faced a similar problem.
Due to our 1D setup and by a technical assumption on the initial data, we were able
to characterise the corresponding u as |k|.

1.6. Discussion on the proof, assumptions, and possible extensions. We
divide this section into several topics regarding the proof, assumptions, and possible
extensions of Theorem 5.1 (outlined in Subsection 1.4).

Summary of the proof. A crucial step is the observation that the solution to (1.2),
seen as a pair of empirical measures u,il, is a solution to (1.3), i.e.,

L5) {&eui = (Jfnls (V! 5 [Bn)y + W' 5 [5] ) in D'((0,T) x R),
vty = ([Fn]— (V' % [n] - + W' % [ka] 1)) in D'((0,T) x R),

where k, := it — p. The annihilation is completely covered by taking the positive
and negative part of k,. This property is the reason for encoding annihilation in the
charges b;(t) rather than removing particles from the dynamics. Then, relying on
the gradient flow structure underlying (1.2) and the boundedness of W, we find, by
the usual compactness arguments a la Arzela-Ascoli, limiting curves p*(¢). It then
remains to pass to the limit n — oo in (1.5). The difficulty is in characterising the
limit of [x,]+, which only accounts for the particles that have not collided yet. Indeed,
the convergence of measures is not invariant with respect to taking the positive and
negative part. It is here that we heavily rely on the one-dimensional setting and
on a technical assumption on the initial data (Assumption 2.2), which provides an
n-independent bound on the number of neighbouring pairs of particles with opposite
sign. This bound allows us to characterise the limit of [k,]+ as [K]+.

Motivation for Assumption 2.2. Assumption 2.2 prevents small-scale oscillations
between +1 phases. A similar assumption is made in [29], where the initial data
for the particles is constructed from the continuum initial datum. While one might
expect that small-scale oscillations cancel out on small time scales, the simulations in
[45, Chapter 9] suggest otherwise. The problem with such small-scale oscillations is
that they cause the limit of [£,]+ to be larger than [k]4, which makes it difficult to
characterise the limit as n — oo of (1.5) as (1.3).

Singularity of V. Assuming the singularity of V' to be at most logarithmic is
needed to apply the discrete-to-continuum limit passage technique in [38].

In fact, we also require that V (r) — oo as r — 0, i.e., we do not allow for a regular
V. While regular V and W (in particular W = —V') would simplify the equations and
many steps in the proof of our main theorem, it may result in two technical difficulties:
collision between three or more particles, and the limiting signed measure s having
atoms. These difficulties complicate the convergence proof of [k,]+ to [k]+ as n — oo.
Since all our intended applications correspond to singular potentials V', we choose to
side-step these technical difficulties by simply requiring V' to have a singularity at 0.

This manuscript is for review purposes only.
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8 P. VAN MEURS AND M. MORANDOTTI

Regularity of W. W being bounded around 0 results in a lower bound on the
energy along the evolution, which we need for equicontinuity and thus for compactness
of pf. Also, while passing to the limit n — oo in (1.5), we need W’ regular enough
(the technique in [38] does not apply for logarithmic W).

Logarithmic tails of V, W. While it would be easier to assume that V' is bounded
from below and W is globally bounded, we also allow for logarithmic tails to include
all three scenarios in Subsection 1.2. The logarithmic tails of V' and W result in the
energy E, to be unbounded from below. However, following the idea in [38] to prove
a priori bounds on the moments of X (t), we easily obtain that E(u;t(t)) is bounded
from below by —C(1 + t) for some C' > 0 independent of n and ¢.

Uniqueness of solutions to (1.3). While Theorem 5.1 provides a solution of (1.3)
that exists globally in time, we have not investigated uniqueness. We rather interpret
(1.3) as a stepping stone for a future convergence result to (1.4), for which a uniqueness
result is established in [6].

1.7. Conclusion and outlook. We intend our main result to open a new thread
of research on including annihilation in discrete-to-continuum limits. Here we discuss
several open ends.

W = =V singular. This setting corresponds to charges (or dislocations) on the
real line. On the continuum level, see (1.4), this equation is well-understood [6],
but on the discrete level we have not found a closed set of equations to describe
the discrete counterpart of (1.2) (other than [40, 41], whose results are discussed in
Subsection 1.5). Since our main result does allow for —T to be a regularisation Vs of
V' (8 denotes the arbitrarily small, but fixed, length-scale of the regularisation), this
calls for three interesting limit passages:

(a) § — 0 with n fized. This limit seems the easiest out of the three. Similar to

[40, 41], the idea is to pass to the limit, and describe the limit rather than
posing a closed set of equations for it. One challenge is that in the limiting
curves prior to collision at t., the particles’ speed blows up as ~ 1/y/, —
(this is easily seen by considering only two particles; one positive and one
negative). While the resulting curves are not Lipschitz in time, they are C'/2
in time. However, such collisions correspond to —oo wells in the energy, which
require the development of a proper renormalisation of F,,.
Another challenge is that particles need not collide if they come close, regard-
less how small § > 0 is. To see this, consider two particles with opposite sign
and with mutual distance smaller than §. Since Vj is regular, the particles
will come exponentially close, but they will not collide in finite time. In the
case of many particles, such a close pair will only collide if the external force
(induced by the other particles) acts in the right direction. If it does not col-
lide, then the pair remains in the system (as opposed to the case of singular
W), and may even interact with or annihilate other particles that come close.
(b) Connecting (1.3) to (1.4) by § — 0. Taking W = —V; and setting pi as a
corresponding solution to (1.3), it is impossible to pass directly to the limit in
(1.3) due to the term [ks]+ (Vy*[rs]5). Instead, the structure of (1.4) in terms
of viscosity solutions (see [6]) seems promising. We leave it to future research
to find out whether (1.3) enjoys a similar structure, and if not, whether there
is a different continuum model for annihilating particles that does.

(¢) Connecting (1.2) to (1.4) by a joint limit n — oo and 6, — 0. This approach

fits to the convergence result obtained in [29], where roughly speaking §,, ~

This manuscript is for review purposes only.
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1/n is considered, but where a different equation than (1.4) is obtained in the
limit. It would be interesting to see whether those results can be extended to
the case §,, < 1/n, in which case the expected limit is (1.4) (see [28]).

Different regularisations of collisions. In the spirit of proving any of the above
limit passages, we discuss alternative regularisations other than taking W regular.
One idea is ‘premature annihilation’, where particles are removed from the system
when they come d-close, with § > 0 a regularisation parameter. This approach is
commonly adapted in numerical simulations of discrete systems with an annihilation
rule. However, it is not obvious what the limiting equation as n — oo (counterpart
of (1.4)) is for 6 > 0 fixed, because we expect the supports of [k]; and [k]_ to be
separated by at least 6. A third option is to mollify the jump of the charge b;(¢) from
+1 to 0, possibly by an additional ODE for b;(¢). We have not found a proper rule
for this that would still allow for a discrete-to-continuum convergence result.

Higher dimensions. In this paragraph we consider the extension to two dimen-
sions; the discussion easily extends to higher dimensions. The one ingredient in our
proof which intrinsically relies on our 1D setting, is the separation condition on the
initial data. This condition limits the collisions to happen only at a finite number
of points. In 2D, collisions are bound to happen along curves (or more complicated
subsets of R?), which makes it challenging to characterise the limit of [x,]+. A similar
problem occurred in [3] as discussed in Subsection 1.5. In future research we plan to
relax our ‘separation’ assumption, possibly by considering a different regularisation
of collisions.

The remainder of the paper is organised as follows. In Section 2 we fix our notation
and list the assumptions on V, W and the initial data. In Section 3 we recall known
results and provide the preliminaries. In Section 4 we give a rigorous definition of
(1.2), show that it attains a unique solution, and establish several properties of it. In
Section 5 we state and prove our main result, Theorem 5.1.

2. Notation and standing assumptions. Here we list the symbols and nota-
tion which we use in the remainder of this paper:

B(R) space of Borel sets on R Section 3
flam)  limyp, f)
[f]+ positive or negative part of f
LRV product measure; (¢ ® v)(A x B) = pu(A)v(B) Section 3
C>0 constant whose value can possibly change from
line to line
p pi=(pt p7) € P(R x {+£1}) (32)
M(R) space of finite, signed Borel measures on R Section 3
M (R)  space of the non-negative measures in M(R) Section 3
N {1,2,3,...}
P(R) space of probability measures; Section 3
P(R) = {1 € M (R) : pu(R) = 1)
P2 (R) probability measures with finite second moment; Section 3
Pa(R) = {1 € Po(R) : [ a2 dp(x) < oo}
1% interaction potential for equally signed particles Assumption 2.1
w interaction potential for oppositely signed particles Assumption 2.1
W(u,v)  2-Wasserstein distance between u, v € P(R) [2]
Wi(p,v) 2-Wasserstein distance between p,v € P2(R) (3.3)
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Assumption 2.1 lists the standing properties which we impose on V and W.

ASSUMPTION 2.1. We require that the interaction potentials V: R\ {0} — R and
W: R — R satisfy the following conditions:

(2.1a) V € CY(R\{0}), W € C'(R), V' € Lip},.(R\ {0}), and W' € Lip(R),
(2.1b) V and W are even;

(2.1c) V(r) = 400 asr — 0;

(2.1d) r—rV'(r) and r — rW'(r) are in L°(R).

For convenience, we set V'(0) := 0. Below we list two remarks on Assumption 2.1:
e we assume no monotonicity on V or W;
e Condition (2.1d) implies that V has at most a logarithmic singularity (as
mentioned in Subsection 1.2), and that V' and W have at most logarithmically
diverging tails, namely

(2.2) V()| +|W(r)| < C(|]logr|| + 1), forall r 0.

Due to condition (2.1c), and keeping (2.1a) into account, we can sharpen this
inequality around 0 by

(2.3) (V4+W)(r) > —Cr? forall r #0.
The following assumption on the initial data states that no pair of particles of

opposite sign should start at the same position.

ASSUMPTION 2.2 (Separation assumption on the initial data (z°;b°)). There
exist —00 < ag < a1 < ... <agr < 400 such that

L L

{5 :0; =1} € |J(aze—a,an—1), {1 b = =1} C | J(a2e-1, a20).
(=1 =1

The importance of this assumption is clarified later when the limit n — oo is consid-
ered, in which the number L is assumed to be n-independent (see also Subsection 1.6).
Moreover, we will show in Proposition 4.5 that this assumption is conserved in time.

3. Preliminary results. We collect here some basic definitions and known re-
sults that will be useful in the sequel.

3.1. Probability spaces and the Wasserstein distance. On P3(R) (space
of probability measures with finite second moment; see Section 2), the square of the
2-Wasserstein distance W (u,v) with pu, v € P(R) is defined as

(3.1) Wi = ot o=y ane),

YET (1,v)
where T'(u, v) is the set of couplings of 1 and v, namely,
L(p,v) = {7y € P(R?) : y(A x R) = p(A), v(R x A) = v(A) for all A € B(R)}.

We refer to [4] for the basic properties of W. As usual, we set T'o(u,v) C T'(u,v) as
the set of transport plans v which minimise (3.1).
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Since we are working with positive and negative particles, we follow [12] by defin-
ing a space of probability measures on R x {£1}, where R x {£1} is endowed with
the distance

d?(z,9) =z —y+lp—q, T=(z,p) eRx{£l}, §=(y,q) € R x {£1}.

We denote this probability space by P(R x {£1}), and its elements by g or (u*, u™),
with the understanding that

(3.2) (AT A7) = T (AT) + = (A7), for all AT, A~ € B(R).
On

Pa(R x (1)) = {u e P®x (£1)): [ lafan(o) < +oo}

we define the (square of the) 2-Wasserstein distance between p and v as

(3.3) W?(p,v) = inf // d?(z,9) dy(z, ),
YET(1v) J (Rx {£1})2

where I'(u, v) is the set of couplings of g and v, namely,
T(u,w) = {7 € P((R x {£1})?) s 7(A x (R x {£1})) = p(A),
Y((R x {£1}) x A) = v(A) for all A € B(R x {il})}

Since it turns out that (1.3) has a mass-preserving solution p(t) := (p*(¢), p~ (%))
belonging to Pa(R x {£1}), for which also the mass of pT(¢) and p~(¢) is conserved
in time, we define the corresponding subspace

PR x {£1}) == {p € Po(R x {£1}) : uT(R) = m};

where m € [0, 1] is the total mass of the positive particle density. Clearly, if p €
P (R x {£1}), then u~ (R) =1 — m. For any p,v € P*(R x {+1}) we have that

(3.4) W2(, ) < W2t 0t) 4 W2, v),
which simply follows by shrinking the set of couplings I'(u, v) in (3.3).

3.2. Weak form of the continuum problem (1.3). We use the following
notation convention. For any p € P(R x {£1}), we set

(35) p=pt+p  €PR), w=p"—p € MR), j"=[rlL € M(R).

We consider the following weak form of (1.3): given an initial condition p°® € Pa(R x
{#£1}), find p satisfying

0= /0 ' /R Orp™ (x) dp™ (x)dt

89 5[ [ (@) Va9l 0 o) o
- [ [ @ 0 k) @) afe s @ar,

for all p* € CX((0,T) x R), where we have exploited that V' is odd. We seek a
solution of (3.6) in AC(0,T; Py*(R x {£1})) with m = p>*(R) € [0, 1].
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3.3. Several topologies and their connections. Next we define the space
of absolutely continuous curves and their metric derivatives. While the following
definitions work on any complete metric space, we limit our exposition to (Pa(R X
{£1}),W). For any 1 < p < oo, ACP(0,T;P2(R x {£1})) denotes the space of all
curves i : (0,7) — P2(R x {£1}) for which there exists a function f € L?(0,7T) such
that

(3.7) W (u(s), p(t)) < / |f ()P dr, foral 0 <s<t<T.

We set AC(0,T; Po(R x {£1})) :== AC' (0, T; P2(R x {£1})). By [2, Theorem 1.1.2],
the metric derivative

o ) =ty Y ):0)

s—t |3 —t‘

is defined for any g € AC(0,T; P2(Rx {£1})) and for a.e. t € (0, T). Moreover, |u'|w
is a possible choice for f in (3.7).

The following theorem is a simplified version of [31, Theorem 47.1] applied to the
metric space (P2(R x {£1}), W).

LEMMA 3.1 (Ascoli-Arzeld). F C C([0,T]; P2(R x {£1})) is pre-compact if and
only if

(1) {p(t) : p € F} is pre-compact in Po(R x {£1}) for all t € [0,T],

(1) Ye > 036 > 0 such that Vp € F, Vt,s € [0,T] : [t —s] < § =

W(u(t), uls)) <.
The following theorem provides a lower semi-continuity result on the L?(0,T)-

norm of the metric derivative. We expect it to be well-known, but we only found it
proven in the PhD thesis [45, Lemma 8.2.8].

THEOREM 3.2 (Lower semi-continuity of metric derivatives). Let w,,, v : [0,T] —
Pao(R x {£1}). If W(p,,(t), u(t)) — 0 as n — oo pointwise for a.e. t € (0,T), then

T T
(3.9) liminf/ |l |3 (1) dt z/ | |3y () dt.
0 0

n—oo

Proof. We start with several preparations. First, we take a dense subset (t7), of
[0,T] for which W (g,,(t¢), p(tr)) — 0 as n — oo for any ¢ € N. Second, without loss
of generality, we assume that there exists C' > 0 such that for all n

T
(3.10) | B <c.
0

In particular, this means that g, has a representative in AC?(0,T;Po(R x {£1}))
which is defined for all + € (0,7). Taking this representative, we set D (t) =
W, (te), i, (t)), and obtain from [2, Theorem 1.1.2] that

(3.11) |\l [w (t) = sup | (D5)'(t)] for a.e. t € (0,7).
teN

Next we prove (3.9). Firstly, since W (g, (¢), u(t)) — 0 as n — oo for a.e. t €
(0,T), we have for fixed £ € N and for a.e. t € (0,T) that

(3.12) ’DfL(t) — Dg(t)| 270, where D¥(t) = W ((te), u(t)).
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Secondly, || D% ||z 0,7y and || D[ #1(0,7) are bounded uniformly in n and £. To see
this, we have by the definition of the metric derivative and (3.10) that

t
D (1) < ‘ [ ilwis)ds| < VT,
te

Hence, || D% | 12(0,7) is uniformly bounded. With the characterisation of |p/|w in
(3.11), we estimate

T T
(3.13) C > / |l |3y () dt > / ((DLY(1))*dt  for all € € N,
0 0
and thus || DY || zr1(0,7) is uniformly bounded. Therefore, in view of (3.12), we have
(3.14) DY -~ D'  in HY(0,T) as n — oo.

In particular, we observe from (3.14) that D’ € H'(0,T) and that
> lin_1>inf IDE o,y = 1D 1 go,) for all £ € N.

To establish (3.9), we carefully perform a joint limit passage as n — oo and a
maximisation over ¢ in (3.13). With this aim, we take a large fixed L € N, and choose
a partition {4}l | of Borel sets of (0,7) such that for all £ =1,...,L,

(DY (t)] = sup |(DZ)’(t)| for a.e. t € Ay.
1<é<L
We estimate

T 2 r ¢ 2 - ¢ 2
/0 1l By (1) dt > / sup, (D) (0)" 0> 3 /A () ar

1<¢<L
Using (3.14), we pass to the limit n — oo to obtain
T L ) T )
liminf/ ! By () dt > Z/ (DY (1) dt = / sup ((DY)()2 dt.
n—oo 0 = Ae 0 1SZSL

By using the Monotone Convergence Theorem, we take the supremum over L € N to
deduce that

T T
liminf/o |/1,;l\%v(t)dt2/0 sup ((Dz)'(t))2dt.

n—oo LeN

We conclude by using [2, Theorem 1.1.2] to identify sup,cy |(D?)| in L2(0,7T) by
1w O

Next we introduce the narrow convergence of measures. For v,,v € M(R), we
say that v, converges in the narrow topology to v (and write v, — v) as n — oo if

/(panTH—Oo>/gpdy.

for any bounded test function ¢ € C(R). The following lemma extends this notion
for non-negative measures by allowing for discontinuous test functions.
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14 P. VAN MEURS AND M. MORANDOTTI

LeEMMA 3.3 ([34, Lemma 2.1]). Let v, — v in My (R?). Let A € B(R?) such
that v(A) = 0. Then for every bounded ¢ € C(R®\ A) it holds that

/npdynw—o%/gpdy.

Proofs can be found in [39, Theorems 62-63, chapter IV, paragraph 6] and in [8, 14],
or [37] in the case where A is closed.

Finally, we state and prove a lemma which allows us to show that Assumption 2.2
is conserved in the limit as n — oo.

LEMMA 3.4 (Narrow topology preserves separation of supports). Let (Ve)eso,
(pe)e>0 C M4 (R) converge in the narrow topology as € — 0 to v and p, respectively.

If
Ve > 0:sup(suppve) < inf(supp p.),

then also sup(supp v) < inf(supp p).

Proof. We reason by contradiction. Suppose M := sup(supp v) > inf(supp p) =:
m. Take a non-decreasing test function ¢ € Cyp(R) which satisfies

m+ 2M

=0 (— ,
® on 00 3

}, and @ =1on [M,c0).

Since M = sup(suppv), it holds that [pdv > 0. Hence, from v, 2% U we infer
that for all £ small enough, it also holds that [ ¢ dr. > 0, and thus

2M

sup(supp ve) > %
With a similar argument, we can deduce that inf(supp p.) < 2 which contradicts
with m < M. O

4. Definition and properties of the discrete problem (1.2). In this section
we give a rigorous definition to the discrete dynamics formally given by (1.2). We
start by formulating it as Problem 4.1, which may have several solutions. Then, we
define a precise solution concept to Problem 4.1 (see Definition 4.2) which encodes the
annihilation rule and selects a unique solution to Problem 4.1. After establishing some
properties of the energy E,, introduced in (1.1), we prove an existence and uniqueness
result (see Proposition 4.5). Finally, we state the discrete problem in the language of
measures (see Lemma 4.6).

PROBLEM 4.1. Given (z°,0°) € R™ x {£1}" such that x5 < 2§ < ... < x>, find
(x,0): [0,T] = R™ x {-1,0,1}" such that

d 1 1
" @i Z V’(xi—xj)—ﬁ' Z W' (x; —xj) on (0,T)\ Teol
( N ) ]:bﬂ)j:l ]:bibj:—l

(2i(0),:(0)) = (x7,67)
foralli=1,...,n, where Teo is the jump set of b.

We encode the annihilation rule in the solution concept below. With this aim,
we set H: RU {+o0} — [0,1] as the usual Heaviside function, with H(0) := 0 and
H(400) = 1.
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DEFINITION 4.2 (Solution to Problem 4.1). We say that (z,b): [0,T] — R™ x
{—1,0,1}"™ is a solution to Problem 4.1 if
(a) there exists a vector of collision times T = (71,...,7,) with 7, € (0, T)U{+o0}

such that, setting
(42) Teol == {Ti 1< < n} \ {+OO} = {tl,tg,. .. ,tK} C (O,T)
with 0 <ty < ... <tg <T, there holds

(4.3) bi(t) = b7 H(7; — t) foralli=1,... n;

(b) @ € Lip([0, T, R™) A CL((0,T) \ Tuor R™);
(c) (4.1) is satisfied in the classical sense;
(d) setting to =0, forallk=1,..., K,

ty =inf {t € (0,T) : 3(4,j) such that
bi(tkfl)bj(tkfl) =—1 and x;(t) = xj(t)} > tp_1;

(e) at each time t € [0,T), there is a bijection

a:{i:bf =1, 7 <t} = {j:b]=—1,7; <t}

such that x;(t) = xq;)(t).

Remark 4.3 (Comments on Definition 4.2). We collect here some remarks on the
notion of solution presented above.

7; is the time at which particle z; gets annihilated: equation (4.3) describes
this by putting to zero the charge b; at time 7;. If 7, = 400, then it means
that the particle x; does not collide in the time interval (0,7).

e (1) is the ordered list of collision times at which at least one collision occurs.

In equation (4.1), both z; and b; depend on time. However, on each open
component of (0,7) \ Tcol, the charges b; remain constant.

Since V is singular and W is regular, straight-forward a priori energy esti-
mates show that particles of the same type can never come closer than some
positive distance. Hence, the only type of collision that can occur is that
of two particles with opposite sign. We prove precise energy estimates in
Proposition 4.5.

Property (d) ensures that for each pair of two colliding particles, at least
one gets annihilated. Property (e) ensures that both particles are getting
annihilated, and that annihilation can only occur for colliding particles with
non-zero charge. These two properties are the mathematical formulation of
the annihilation process described in Subsection 1.2.

Recalling (4.1), by (4.3), it follows that colliding particles are stationary after
collision.

With reference to the collision times ¢t; < ... < tx in (4.2), we define the set of
indices of the particles colliding at t; and its cardinality by

(4.4)

Fk = {’L LT = tk}, Yk = #Fk

We observe that 7y is even for every k and that

(4.5)

K
Z’Yk <
k=1

|3
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585 We first establish some properties of E,, defined in (1.1). For convenience, we
586  display
e g, Ly v - LY wWai-ay)
587 . (%i xj) n2 T — T5),
Jibibj=1 jibibj=—1

588  where we rely on the choice V’/(0) = 0. We also introduce

1 n
589 My :R" = [0,00),  M(z) =~ JF 0 k=12,
58 K [0, 00) k() nZ|$ |
590 which is the k-th moment of the empirical measure related to the particles x4, ..., z,.
591 LEMMA 4.4 (Properties of E,). Letn > 2. For any x € R™ and b € {—1,0,1}",
592 the following properties hold:
593 (i) En(x;b) < 400 if and only if Vi#j:ax;, =x; = bib; #1;
594 (i1) E, + My is bounded from below;
595 (i4i) VE, is Lipschitz continuous on the sublevelsets of y — E,(y;b) + 2Ms(y);
596 () if En(z;b) < 400 and if there exists an index pair (I,J) which satisfies
597 biby = —1 and x; = xj, then, there exists C > 0 independent of n such that

_ C 9
598 E,(x;b) < Ep(z;b) + —(Ma(z) + 27 + 1),
n

599 where b is the modification of b in which by and by are put to 0.
600 Proof. Property (i) is a direct consequences of the properties of V,W (see As-
601 sumption 2.1). Property (ii) is a matter of a simple estimate. Using Assumption 2.1)

602  (in particular (2.2)), some manipulations inspired by [37], and r — 7% — C'log r being
603  bounded from below, we obtain

1 n
En(ai) + Ma(e) =55 ( 3 Vi@ - ay) Z Wiai =) + 3 (e +3))
i#] 3,J=1
- biby=1 biby 21
1 & 1 )
253 (‘C([loglxi—$j|]++1)+§($i—$y‘) ) > C.
ij=1
605 Property (iii) follows easily from property (ii) by (2.1a) and (2.1¢). To prove (iv),
606  we set y := x; = xy and assume for convenience that by = 1 and by = —1. Then, we
607 compute
- 1
En(x;b)En(:c;b)Qng<ZV(:c1w] Z V(z :cJ>
J#I i#£J
bj:l b;i=—1
1 W (0)
608 + 2712( > Wlr—z)+ >, Wiwi- xJ)) T o2
jibj=—1 itbi=1
- W(0
- (Z BV =)+ 3 W =) ) - O
gy =l
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1 < W
=52 Dbl (V A+ W) (@i —y) +

i=1
i#I,J

> — %i(x e+ 2O —%(Mz(w) +y?+1),
i=1

where we have used (2.3). |

We now prove that Problem 4.1 has a unique solution. In addition, we establish
several properties of it.

PROPOSITION 4.5. Let n > 2, T > 0, and (z°,0°) € R™ x {£1}" be such that
) < x§ <...<uxy. Then there exists a unique solution (x,b) to Problem 4.1 in the
sense of Definition 4.2. Moreover, the following properties are satisfied:

(1) there exists C > 0 independent of n such that

My(z(t)) < Ct + Ma(2®), My(z(t)) < Ct(Ma(z°) + t) + My(a®)

for allt € 10,T7;

(1) O<iItl£Tmin{|xi(t) —xj(t)] : bi(t)bj(t) =1} > 0;

(iii) the energy function e: [0,T) — R defined by e(t) = E,(x(t);b(t)) is left-
continuous on [0,T), differentiable on (0,T) \ Teo1, and €'(t) < 0 for all
t € (0,T)\ Teor. Moreover, denoting by [e(tr)] == e(ty) — e(tx—) the jump of
e at ty, we have that

(4.7) le(te)] < S(’YkMQ(.I(tk)) + ke + Z xf(tk))

i€l
foreveryk=1,..., K, and

K

(48) S [e(t)] < C(T + My(a®) + 1),
k=1

where vy, and Ty, are defined in (4.4), and C > 0 is a constant independent
of n;
1 t
(iv) En(z(t);b(t)) — En(x°;0°) < C(t + Ma(z°) +1) — 7/ l&(s)|? ds for all t €
nJo
(0,71;
(v) there exists an L € N (independent of n) such that for allt € [0,T), (z(t),b(t))

satisfies Assumption 2.2, i.e., there exist —oo < ag(t) < a1(t) < ... <
asr(t) < +oo such that

L
{wi(t) : bi(t) = 1} € | (a2e—2(t), a2e-1 (1)),
(=1
L
{ai(t) : bi(t) = =1} € | (ae—1(t), aze(t)).
(=1
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Proof. Step 1: Construction of (x,b), properties (i) and (i), and (4.7). We
define the counterpart of (4.1) in which no collision occurs, i.e., we seek n trajectories
y; : [0,T] — R such that y;(0) = z and

(9 Sw=-r Y Vii-w)-r X Wii-y) on(0,+o0)

3:bobo=1 jbgbo=—1

for all i = 1,...,n. From (4.6) we observe that (4.9) is the gradient flow of E,(-;b°)
given by

y(t) = —nVE,(y(t); b°),
(4.10) {y o) — o

From Lemma 4.4 we observe that (4.10) has a unique, classical solution y(¢) locally
in time. In particular, t — E, (y(t);b°) is non-increasing.

Next we show that the solution y can be extended to the complete time interval
[0,7]. With this aim, we prove that the second moment Mz (y(t)) (and for later use
the fourth moment My(y(t))) are finite as long as t — y(t) exists. We follow the
argument in [38]. From (4.9), using (2.1b) and (2.1d), we estimate

d

&MQ Zyz vi(t
—ﬁ Z ( YooV wi—u+ Y wWlyi - yj))
i=1 “j:bibj=1 jibibj=—1
1 1
=3 D Wi—y)V (v — ) - o > (i —y)W (g —y;) < C.

i,j:bibjzl ’L‘,j:bibjzfl
Hence,
(4.11) M;(y(t)) < Ma(y(0)) + Ct < My(z°) 4+ CT, for all t € [0,T7.

Similarly, using the identity a® — b3 = (a® + ab + b*)(a — b), we compute

M) = S0 030

Z( —y)+ Y Wy yﬂ)

=1 Nj: bbjzl Jibiby=—1
2 2
=== D W-yWVi-uw - Y W)W -y
i,j:bib]‘—l Zj:bibjzfl
C 2 2 C 2 2
<= D @twytu) o Y 6wty
4,5 :bibj=1 4,7 :bibj=—1

g%zz )+ y2(t) = CMa(y() < Ot + Ma(a®)),

where we have used (4.11). Hence,

(4.12) My(y(t)) < My(z°) + CT (Ma(a°) + T), for all ¢t € [0,T7.
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In conclusion, (4.11) and (4.12) provide a priori bounds for Ms(y(t)) and My(y(t))
that are uniform in n and ¢. Finally, from (4.11) and Lemma 4.4(i)—(iii) we obtain
that the solution y to (4.10) is defined and unique at least up to time 7.

Next we identify ¢; and choose those b; that jump at t = t; (see (4.3)). For this
choice, it is enough to specify the collision times 7; (see (4.2)). We note that

t*:=inf {t € (0,T]:3(i,7) : bjb§ = —1 and y;(t) = y;(t)}

is either attained or t* = +oo. If t* > T, we set x = y and 7; = +oo for all 4,
and observe that properties (d) and (e) of Definition 4.2 are satisfied. If t* < T, we
observe that #; in Definition 4.2(d) has to be equal to t*. We set (g +,] = yl[0,t+]
and observe from (4.11) and (4.12) that property (i) is satisfied up to ¢t = ¢;. For the
choice of 7;, we follow the algorithm explained in Subsection 1.2, i.e., for each pair
of particles that collide at t1, we set the corresponding 7; equal to ¢;. We choose the
remaining values for 7; > ¢; later on in the construction. With this choice for 7;,
it follows from the continuity of x; that properties (d) and (e) of Definition 4.2 are
satisfied by construction. Since E, (z(t)) < E,(z°) for all ¢ € [0,¢1), it follows that
(ii) holds on [0, ¢;].

Next we show that we can continue the construction above for t > t;. First,
applying Lemma 4.4(iv) 377 times (recall from (4.4) that 7, is even), we find that

B(alt0): (1)) < By (ol )ibltn =) + o (Ma(a(t) 47+ 3 aen) ).

2n ‘
i€l

Hence, (4.7) is satisfied for k = 1. Furthermore, we obtain that F,,(z(t1);b(¢1)) < oo,
and thus we can continue the construction above for t > t; by putting x(¢1),b(t1) as
the initial condition at ¢ = ¢;.

Iterating over k, this construction identifies all 7, < T (for i ¢ UK T, we set
7; = 400) and t, and guarantees that z is piecewise C! on [ty,tx11] and globally
Lipschitz. In addition, (4.7) holds for all k =1,..., K.

Step 2: Uniqueness of (x,b). Let x and 7 be as constructed in Step 1, and set b
accordingly. Since (4.10) has a unique solution, Definition 4.2(d) defines uniquely the
time ¢1 until which x(¢) is uniquely defined. By Definition 4.2(e), b has to be constant
on [0,t1). Since x satisfies Property (ii) at ¢t = ¢;, all collisions at ¢; are collisions
of two particles with opposite type. Then, from the explanation in Remark 4.3, it is
obvious that properties (d) and (e) of Definition 4.2 define uniquely the set of indices
i for which 7; = ¢;. Hence, b(t;) is uniquely determined. We conclude by iterating
over k.

Step 8: The remaining Properties (iii)—(v). Estimate (4.7) is already proved,;
summing over k reads

K C K K K
(4.13) S lelt] < = (D wMa(o(t) + > m+ D0 Yk n)).
k=1 k=1 k=1

k=1i€ly

The first and second sums in the right-hand side above can be easily estimated using
(i) and (4.5). We estimate the third sum by using that the sets T'y for k =1,..., K
are disjoint, and that for every £k = 1,..., K and for every ¢ € I'y, we have that
x;(t) = x;(ty) for all t > t;. Hence, the third sum is bounded by Ms(z(T)). Collecting
our estimates, we obtain (4.8) from (4.13).
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With (iii) proven, we prove (iv) for ¢ = T by the following computation (the case
t < T follows by a similar estimate). Setting tx 41 =T, we compute

En(2(T); o(T))—En (xo' b°) = En(2(T); 0(T)) — En(2(tx); btx))

+Z le(t)] + (En(a(ti=):b(ts—)) — En(@(temr); bltr-1)))]

K+1
< Z/ £);b(t)) dt + C(T + Ma(z°) + 1)
K+1
:72 / (D)2 dt + O(T + Ma(2°) + 1)
_ _l/ ()2 dt + O(T + Ma(a®) + 1),
nJo

where we have used in the second-to-last equality that x(t) satisfies (4.1).

Finally, we prove (v). First, we claim that the strict ordering of the particles
{z;(t) : |bi(t)] = 1} is conserved in time. Clearly, this ordering holds at ¢ = 0.
From (ii) it follows that any two particles, say with corresponding indices ¢ # j such
that b;(t)b;(¢t) = 1, can never swap position. Similarly, any pair (x;(t),z;(¢)) with
b;(t)b;(t) = —1 cannot swap either, because Definition 4.2(d) ensures that b;(t) and
b;(t) jump to 0 at the first ¢ at which x;(t) = «;(¢). In fact, as soon as this happens,
the particles cease to move (see the last bullet in Remark 4.3 and also the first bullet
in Subsection 1.2 regarding the properties of particles with zero charge).

Next we construct ag(t). We start with ¢ = 0, and set a(0), a1(0), . .. sequentially.
We set ag(0) ==z — 1, and, if b = —1, we also put a;(0) := z§ — 1. For each pair of
consecutive particles x7,x7,, of opposite sign, we define a new point

1 (o) ]
ar(0) = Q(Zz +271q)-

If the current value of £ is odd, we define L := (£ +1)/2 and set aar(0) := 20 + 1. If
¢ is even, we define L := (£ 4 2)/2 and set azr—1(0) == a2r(0) == x2 + 1.

Since the strict ordering of the particles {x;(t) : |b;(t)| = 1} is conserved in time,
we can construct ay(t) analogously, but for a time-dependent L;. Next we show how
to modify this construction such that L; can be chosen independently of ¢. Because
of the ordering of {x;(t) : |b;(t)] = 1} and that its cardinality is non-increasing in
time, the numbers of pairs of consecutive particles x;(t), z;4+1(t) of opposite non-zero
charge is also non-increasing in time. Hence, ¢t — L; is non-increasing in time. In
case Ly < L, we modify the construction of as(t) above simply by adding a surplus of
points a,(t) which all equal asp, (¢). O

Next we establish several properties of the empirical measures associated to the
solution (x;b) of Problem 4.1 with initial condition (x°,b°) as in Proposition 4.5.
With this aim, we set

(4.14) nt = #{i: b0 = £1}

as the number of positive/negative particles at time 0, and note that n* +n~ = n.
The empirical measures associated to (x(t); b(t)) are

(4.15) Z Spo,  pE(t) = Z 5% )

zbo zb°
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which both have total mass equal to n* /n for all t € [0,T). As in (3.5), we also set

1 <& 1 - -
(416)  Kalt) = =" B0, = Z sy i (8) = [Ra(8)]+
=1 i=1

n

LEMMA 4.6 (Proposition 4.5 in terms of measures). Given the setting as in
Proposition 4.5 with (x,b) the solution to (4.1), let w, = (b, uy), i, = (@5, i),
and Ky, as constructed from (x,b) through (4.15) and (4.16). Then,

n

(i) () = S (0o

i=1

(ii) p, € AC*(0,T; Py (R?)) with m =nt/n (see (4.14)), and

(4.17) |N'n%v(t)§%z:(§t (t)>2 for all0 < t < T;

(i) p,, is a solution to (1.3) with initial condition ps = (uo+, us=).

Proof. Property (i () is a corollary of Proposition 4.5. Indeed, Proposition 4.5(v)
implies that [k, (t)]+ > }LZZ 110i(t)]+05, (), while Definition 4.2(e) implies that

Fn(®I(R) < £ T, bi(0)]. We conclude ()

Next we prove (ii). From the definition of p,, in (4.15) we observe that u,,(t) €
Py (R?) for all 0 < t < T. Hence, (3.4) applies, and we obtain

(4.18) W2 (1, (5), 11, (8)) < W2 (pih (), it (8)) + W2 (1, (5), 1y (1))

for all 0 < s <t < T. To estimate the right-hand side, we let 0 < s <t < T be given,
and introduce the coupling

1
VE = - Z O(aws(s),ms(t)) € T (i (), pim (1))
i:b9=%1

By definition of the Wasserstein distance (3.1), we obtain

@10) W) < | sl dden =g 3 () —a)”

§:bo=41
Finally, using in sequence the estimates (3.8), (4.18), and (4.19), we conclude (4.17).
Since = € Lip([0, T]; R™), we obtain that p, € AC?(0,T; Py (R? x {£1})).

Next we prove (iii). We rewrite (4.1) as

@i (t) = —=bi(£) (V' = it () + W' iy, (8)) (z4(2)), for 4 such that bf =1,
i(t) = —bi(t) (W' * it (¢) + V' * fi,, (t)) (z:(t)),  for i such that b} = —1.

Let ¢ € C°((0,T) x R) be any test function. Since z; is Lipschitz, the Fundamental
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Theorem of Calculus applies, and thus we obtain, using (i),
1 T q

0=— —o(t,x;(t))dt
P> | et

1 ’ ! . .
=y { atga(t,xi(t))dt+/0 O (t, wi(t)) i (t) dt

i b°o=1 0

T T
1
[ [aeduiar [ 1S e (Vi W) )
o Jr o "

T T
- / / Opp dptdt — / / ' (V' [fn]4 + W [Ky] ) d[rn]+dt,
o Jr 0o Jr

where ¢’ denotes the partial derivative with respect to the spatial variable. Since ¢ is
arbitrary and V’ is odd, we conclude that p,! satisfies (3.6). From a similar argument,
it follows that also pu,, satisfies (3.6). d

5. Statement and proof of the main convergence theorem. In this section,
we state and prove our main convergence theorem.

THEOREM 5.1 (Discrete-to-continuum limit). Let the potentials V and W satisfy

Assumption 2.1. Let (x™°,b™°),, be a sequence of initial conditions such that
(i) En(z™°;b™°) is bounded uniformly in n,
(7) (po)n (see (4.15)) has bounded fourth moment uniformly in n,
(iii) there exists an L € N independent of n such that Assumption 2.2 is satisfied
for all n.

Then for every T > 0 the curves w, € AC?(0,T;Py(R x {£1})) determined by the
solution (x™,b™) to Problem 4.1 through (4.15) for each n, converge in measure uni-
formly in time along a subsequence to a solution p of (3.6), whose initial condition
p° is the limit of (ul), along the same subsequence.

The proof is divided in three steps. In the first step we use compactness of ., (t) to
extract a subsequence ny along which p,,(t) converges to some p(t). In the remaining
two steps we pass to the limit in (3.6) as kK — co to show that the limiting curve p(¢)
also satisfies (3.6). Step 2 contains the main novelty; relying on Assumption 2.2 with
an ny-independent number L, we prove that [k,, (t)]+ — [£(t)]+ as k — oo pointwise
in t.

Proof. Step 1: p,, converges along a subsequence ny — oo in C([0,T]; P2(R x
{£1})) to p € AC*(0,T; Py (R x {£1})) with m := p>*(R). We prove this statement
by means of the Ascoli-Arzela Theorem (see Lemma 3.1) applied to the metric space
(P2(R x {£1}), W).

First, we show that, for fixed ¢t € [0, T], the sequence (t,,(t)), is pre-compact in
Pa2(R x {£1}). From the assumption on the initial data and Proposition 4.5(i) we
observe that the second and fourth moments of the measures u, () defined in (4.16),
given by

Ma(a" () = / P dunO)), M@ (1) = / vt dpn(8) (1),

are bounded uniformly in n and ¢t € [0,7]. Then, from [47, Lemma B.3] and [2,
Proposition 7.1.5] we find that (u,,(t))n is pre-compact in the Wasserstein distance
W.
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Second, we show that the sequence (u,,)n C C([0,T]; P2(R x {£1})) is equicon-
tinuous (i.e., (p,,)n satisfies Lemma 3.1(ii)). For any 0 < s <t < T, we estimate

t 2 T
(5.1) W?(un(tmn(s))g( / |u;|w<r>dr> <(t—s) / 1l By () -

To estimate the last integral above, we use the estimates in Lemma 4.6(ii) and Propo-
sition 4.5(iv) to obtain

5o )/0|un|w r)dr <= / (Sarn) dri/OTw”(r)Fdr

T+M2( )4+ 1) + Ep (2™ 0™°) — B, (2"(T); 0™(T)).
Since, by Lemma 4.4(ii) and Proposition 4.5(i), we have

En(2"(T); b™(T)) [ n(2"(T);0"(T)) + Mz (2" (T))] = Mz (2™ (T))
— C — [CT + Ma(z™°)),

we obtain from (5.2) that

T
(5.3) / 11, By () dr < O(T + My(a™?) + 1) + B, (a™255™°).
0

By the assumptions on the initial data, the right-hand side is bounded uniformly in
n. Hence, the right-hand side in (5.1) is bounded by C(¢t — s), and thus (u,,), is
equicontinuous.

From the pre-compactness of (u,,(t)), and the equicontinuity of (i,,)n, we obtain
from Lemma 3.1 the existence of a subsequence nj along which (u,,), converges
in C([0,T]; P2(R x {£1})) to some limiting curve p € C([0,T]; P2(R x {£1})). In
fact, combining the lower semi-continuity obtained in Theorem 3.2 with (5.3), we
obtain that p € AC?*(0,T; Po(R x {#1})). Moreover, since the total mass of i (t) is
conserved in time, and since the narrow topology conserves mass, we conclude that
p(t) € P (R x {£1}) for all t € [0,T]. This completes the proof of Step 1. For later
use, we set as in (3.5)

p=p"+p, k=pt—p7, =K1

Step 2: fu,, (t) = p(t) as k — oo pointwise for allt € [0,T]. We set it = [rn, ]+
as in (4.16) and fi,, as in Lemma 4.6. We keep t € [0,T] fixed, and remove it from
the notation in the remainder of this step. The structure of the proof of Step 2 is to
show by compactness that (g, )r has a converging subsequence, and to characterise
the limit as p. Since p is independent of the choice of subsequence, we then conclude
that the full sequence (f,,, )x converges to p. Keeping this in mind, in the following
we omit all labels of subsequences of n.

Since the second moments of fi,, are obviously bounded by My (z™), the sequence
(fr,,) is tight, and thus, by Prokhorov’s Theorem, (f,) converges narrowly along a
subsequence to some ft € M (R x {£1}).

We claim that i does not have atoms. We reason by contradiction. Suppose that
T has an atom at y of mass o > 0 (the case of i~ can be treated analogously).
Then, setting B, (y) as the ball around y with radius n, we infer from z;7 — gt that
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liminf,, o0 i, (By(y)) > « > 0 for any n > 0. By choosing n > 0 small enough,
the contribution of the particles in B, (y) to the energy E,(z";b") can be made
arbitrarily large, which contradicts with the uniform bound on E, (z";b") given by
Proposition 4.5(iv).

In the remainder of this step we show that i* = [k]+, regardless of the choice of
the subsequence. It is enough to show that

(5.4) [KJ] +
5.5 [k]+(R)

Regarding (5.4), we obtain from Step 1 that

+

*(R)

IV IA
= =

Bt — [, =kn — K asn — oo.

Hence, it — i~ = &, which implies (5.4). To prove (5.5), we let {a}}?L, be as in
Proposition 4.5(v), and set

" M,;|(az}71’a?) { even

o { il (ap apy £ odd
for all £ € {1,...,2L}. By construction,

o and Z”Z ~

[]=
—
=
SR

=

Together with fi,, — f1, we conclude that (i%),, are tight for any ¢, and thus, applying
Prokhorov’s Theorem once more, each sequence (fi%,),, converges along a subsequence
in the narrow topology to some i € M, (R). In particular, from f,, — ft and

L
20 N 20

By By

=1 =1

we infer that i~ = Zngl [i%¢. By a similar argument, it follows that it = Z R T

Finally, since sup(supp fi,) < inf(supp f5!) for all 1 < ¢ < 2L — 1, we obtain from
Lemma 3.4 that sup(supp i) < inf(supp #‘*!) for all 1 < ¢ < 2L — 1. Hence, there
exists A := {a,}3%;" such that

L L
supp i Nsupp i~ = < |J supp ﬁ2“> n ( | supp ﬁ2k>

/=1 k=1
2L—-1

L
U (supp i~ Nsupp i) = | (supp i® Nsupp i“*') C A.

I
u Ch

Since it does not have atoms, ji*(A) = 0. Together with it — i~ = &, it is easy
to construct a Hahn decomposition of k (see, e.g., [35, Theorem 6.14]). We conclude
(5.5).

Step 3: p is a solution to (1.3). To ease notation, we replace ng by n. We show
that p satisfies (3.6). With this aim, let * € C°((0,T) x R) be arbitrary. We recall
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from Lemma 4.6(iii) that p,, satisfies

0= / [ o @y i)t - / L& i [l ) () dli] ()t

(5.6
@@ - @) Ve ) s o e
0 RxR
We show that we can pass to the limit in all three terms separately. From Step 1
it follows that p,, — p, and thus the limit of the first integral equals

/0 ' /R ot () dp* (a)dt.

Regarding the other two integrals in (5.6), we recall from Step 2 that [k, (¢)]+ —
[k(t)]+ as n — oo pointwise for all ¢ € [0,7]. Then, for the second term, since
(z,y) = (%) () W (z — y) is bounded and continuous on R?, we obtain that

/ (%) () (W' % [on) ) (&) d s () = // (&%) (2) W' (2 — ) d([n] s ® [1n] ) (2, v)
R R2

converges, as n. — 00, to

// (™) (@) W'(z —y) d([x] @ [v]5)(2,y) = /(wi)’(ﬂﬁ) (W’ [5]) () d[s] £ ().
R2 R

Finally, we pass to the limit in the third integral in (5.6). We employ Lemma 3.3
with d = 2 and A = {(y,y) : y € R} the diagonal in R?. To show that the conditions
of Lemma 3.3 are satisfied, we observe from the fact that r — rV’(r) is bounded and
belongs to C(R\ {0}), it holds that (z,y) — [(»T)"(x) — (¢*)'(y)] V' (z —y) is bounded
and belongs to C(R%\ A). Moreover, by Step 2, ([r]+ ®[r]+)(A) = (A ®i%)(A) = 0.
Hence, by Lemma 3.3 we can pass to the limit in the third term in (5.6), whose limit
reads

T
. / // (") (@) = (¢*)' ) V'(@ = y) (] @ [1]4) (&, y)dlt.

Combining the three limits above, and recalling the time regularity of p from Step 1,
we conclude that p is a solution to (1.3). d
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