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Hasse–Schmidt Derivations and Cayley–Hamilton Theorem
for Exterior Algebras

Letterio Gatto and Inna Scherbak

Contemporary Mathematics 733, 2019, AMS, 149–165

Functional analysis and geometry: Selim Grigorievich Krein centennial

(https://doi.org/10.1090/conm/733/14739)

In memory of those participants of the Voronezh Winter Mathematical School

who have already passed into another world where all problems are solved

Abstract. Using the natural notion of Hasse–Schmidt derivations on an ex-

terior algebra, we relate two classical and seemingly unrelated subjects. The

first is the famous Cayley–Hamilton theorem of linear algebra, “each endomor-
phism of a finite-dimensional vector space is a root of its own characteristic

polynomial”, and the second concerns the expression of the bosonic vertex

operators occurring in the representation theory of the (infinite-dimensional)
Heinsenberg algebra.

1. Introduction

In 1937, Hasse and Schmidt introduced the notion of higher derivations [8],
nowadays called Hasse–Schmidt (HS) derivations. Let (A, ∗) be an algebra over
a ring B, not necessarily commutative or associative. A HS–derivation on A is a
B-algebra homomorphism, D(t) : A→ A[[t]], that is, a B-linear mapping satisfying

D(t)(a1 ∗ a2) = D(t)a1 ∗D(t)a2, ∀a1, a2 ∈ A.

A fundamental example of a HS–derivation is given by the map sending any
function f = f(z), holomorphic in some domain of the complex plane, to its formal
Taylor series,

f(z) 7→ T (t)[f(z)] =

(
exp

(
t
d

dz

))
f(z).
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2 GATTO AND SCHERBAK

The property T (t)[f(z)g(z)] = T (t)[f(z)]T (t)[g(z)] encodes the full set of the Leib-
niz’s rules,

di(fg)

dzi
=

i∑
j=0

(
i

j

)
djf

dzi
· d

i−jf

dzi−j
.

In general, if (A, ∗) is any commutative Q-algebra and δ(t) : A → A[[t]] is a
derivation in the Leibniz rule sense, i.e., δ(t)(a ∗ b) = δ(t)a ∗ b + a ∗ δ(t)b, then
exp(δ(t)) is a HS–derivation.

The aim of Hasse and Schmidt was to find a counterpart to the Taylor series
that would work in positive characteristic. Their definition does not require division
by integers and is therefore particularly suitable for this purpose. Schmidt later
applied the theory to investigate Weierstrass points and Wronskians on curves in
positive characteristic [15].

In a number of papers motivated by Schubert Calculus [3, 6] (see also the book
[5]), one of us proposed to study HS–derivations for exterior algebras.

If A is a commutative ring with unit, M a module over A, and
∧
M its exterior

algebra, then a HS–derivation on
∧
M is a ∧-homomorphism

D(t) :
∧
M →

(∧
M
)

[[t]],

that is, a linear mapping satisfying

(1.1) D(t)(u ∧ v) = D(t)u ∧ D(t)v, ∀u, v ∈
∧
M.

In this paper we consider HS–derivations D(t) =
∑
i≥0Di · ti with D0 = 1, the

identity on
∧
M . Such D(t) is invertible as an element of End(

∧
M)[[t]], that is,

there exists D(t) ∈ End(
∧
M)[[t]] satisfying

(1.2) D(t)D(t) = D(t)D(t) = 1.

A straightforward calculation shows that D(t) is also a HS–derivation on
∧
M .

Hence,

(1.3) D(t)(D(t)u ∧ v) = u ∧ D(t)v, D(t)(D(t)u ∧ v) = u ∧ D(t)v, ∀u, v ∈
∧
M.

The coefficients of t in these equations give u ∧ D1v = D1(u ∧ v)−D1u ∧ v. That
is why in [3] we call (1.3) the integration by parts formulas.

In the present article we show how these simple formulas link two classical
and seemingly unrelated subjects (one finite-dimensional and the other infinite-
dimensional), apparently leading to a unified interpretation.

One topic is the classical Cayley–Hamilton Theorem of Linear Algebra saying
that each endomorphism f of an r-dimensional vector space M is a root of its own
characteristic polynomial det(t1 − f). Let us reformulate this theorem as a linear
recurrence relation on the sequence of endomorphisms (f j)j≥0,

(1.4) fr+k − e1fr+k−1 + · · ·+ (−1)kerf
k = 0, ∀k ≥ 0,

where det(t1− f) = tr − e1tr−1 + · · ·+ (−1)rer, and 0 denotes the zero endomor-
phism. Consider D(t) =

∑
i≥0Di · ti, the unique HS–derivation on the exterior

algebra of M such that Di|M = f i, i ≥ 0. It turns out that the sequence (Di)i≥0
of endomorphisms of

∧
M satisfies relations similar to (1.4), see Theorem 2.3 in

Section 2.1 for the exact formulation, and Section 3 for the proof.
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The other topic concerns bosonic vertex operators arising in the representation
theory of the (infinite-dimensional) Heisenberg algebra (see, for example, [9]). As
we observe in Section 2.2, any countably generated vector space over the rationals
can be equipped with the structure of a free module of finite rank r over a ring
of polynomials in r variables with rational coefficients, for any integer r > 0. We
present the construction in Section 4, and in Section 5 we apply it to obtain the
“finite-dimensional approximation” to the well-known expressions of the vertex op-
erators Γ(t) and Γ∗(t) generating the bosonic Heisenberg vertex algebra (see [9,
p. 56]). We interpret Γ(t) and Γ∗(t) as the limit, when r →∞, of the ratio of two
characteristic polynomials associated to the shift endomorphisms of steps +1 and
−1, respectively. The precise formulation can be found in Section 2.3.

Our work is based on interpreting (1.3) as a sort of abstract Cayley–Hamilton
theorem, holding for general invertible HS–derivations on exterior algebras of ar-
bitrary modules (not necessarily free). If the module is countably generated,
then (1.3) produces a sequence of Cayley-Hamilton relations (3.5) which specialize
to the classical Cayley–Hamilton formulas (2.7) when considering Hasse–Schmidt
derivations associated to endomorphisms of finitely generated free modules.

Plan of the paper. In Section 2 we formulate the main statements. Section 2.1
is devoted to our extention of the Cayley–Hamilton theorem on an exterior algebra
of a finite rank free module, which is Theorem 2.3. The proof can be found in
Section 3, which also includes the necessary information on the Hasse–Schmidt
derivations, and the discussion concerning the case when the ring A contains the
rationals.

In Section 2.2, we equip a countably infinite-dimensional Q-vector space with
a natural structure of a free module of rank r over the ring of polynomials of r
variables with rational coefficients, for any integer r > 0. The construction is based
on a Giambelli’s type formula. The details are explained in Section 4.

In Section 2.3 we apply our construction to the bosonic Heisenberg vertex
algebra and interpret the truncation of bosonic vertex operators as the ratio of two
characteristic polynomials, respectively associated to the shift endomorphisms of
step ±1; see Section 5 for detailed explanation.

Acknowledgments We thank the referees for their efforts reading the first version
of the paper. Their sharp criticism really contributed to the improvement of the
article. In particular, we appreciate the help of the referee who found a mistake in
our text. Her/his suggestions allowed us to simplify our proof. We are also grateful
to the other referee who demanded more motivations.

2. Formulation of the results

2.1. Cayley–Hamilton theorem for exterior algebras. Let M be a free
A-module of at most countable (i.e., either finite or countable) rank. If b1, b2, . . . is

a basis of M , then
{
bi1 ∧ . . . ∧ bij

}
1≤i1<...<ij

is a basis of
∧j

M , j ≥ 1. Following

a referee’s suggestion, we observe that any A-endomorphism f : M →M naturally
extends to the endomorphism

∧
f of

∧
M as follows.

Define
∧
f =

⊕
j≥0

∧j
f by setting

∧0
f to be the identity on

∧0
M = A, and

by defining the action of
∧j

f on the basis of
∧j

M as follows,

(2.1) bi1 ∧ . . . ∧ bij 7→ fbi1 ∧ . . . ∧ fbij , j ≥ 1.
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As a consequence, any formal power series P (t) =
∑
i≥0 pit

i, where pi ∈ EndAM ,

clearly defines a HS–derivation
∧
P (t) on

∧
M . If, in addition, p0 = 1, the identity

on M , then the formal inverse P−1(t) ∈ (EndAM) [[t]] defines the inverse HS–
derivation, ∧

P (t) =
∧
P−1(t).

Proposition 2.1. Let M be an A-module of at most countable rank, and
f ∈ EndAM . Set f0 = 1. Then

(2.2) D(t) =
∧∑

i≥0

f iti


is an invertible HS–derivation, and its inverse is

(2.3) D(t) =
∧

(1− ft) .

Our extension of the Cayley–Hamilton theorem concerns modules of finite rank.
If M has rank r over A, then

∧r
M has rank 1, and so D(t) and D(t) act on

∧r
M by

multiplication by some formal power series. Indeed,
∧r

M = SpanA {b1 ∧ . . . ∧ br},
and, by definition (2.3),

D(t) (b1 ∧ . . . ∧ br) = (1− ft)b1 ∧ . . . ∧ (1− ft)br = det(1− ft) (b1 ∧ . . . ∧ br) .
Thus, the “eigenvalue” of D(t) on

∧r
M is det(1 − ft), considered as an element

of A[[t]]. Let us write det(1− ft) = Er(t), where

(2.4) Er(t) = 1− e1t+ · · ·+ (−1)rtr.

Remark 2.2. (1) Clearly “the eigenvalue” Hr(t) of D(t) on
∧r

M is the formal
inverse of Er(t), i.e.,

(2.5) Hr(t)Er(t) = 1.

If we write Hr(t) =
∑
j≥0 hjt

j , then (2.4) and (2.5) determine each hj as a poly-

nomial of e1, . . . , er. For example, h0 = 1, h1 = e1, h2 = e21 − e2 etc.
(2) It is worth emphasizing that {ei} and {hj} are related in exactly the same

way as the elementary and the complete symmetric functions of r variables, since
Er(t) and Hr(t) are their generating functions, respectively (see, for example, [13,
I 2]).

For f ∈ EndAM , one can write HS–derivations D(t) and D(t), defined by (2.2)
and (2.3), respectively, in the form

D(t) =
∑
i≥0

Di · ti, D(t) =
∑
i≥0

(−1)iDi · ti.

We have D0 = 1 = D0, D1 = D1, and Di |M= f i, i ≥ 0.

Denote
∧>i

M =
⊕r

j=i+1

∧j
M .

Theorem 2.3. For 1 ≤ k < r, the endomorphism

(2.6) Dk − e1Dk−1 + · · ·+ (−1)kek1

vanishes on
∧>(r−k)

M , and for i ≥ r the endomorphism

(2.7) Di − e1Di−1 + · · ·+ (−1)rerDi−r
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vanishes on the whole of
∧
M .

According to (2.4), the characteristic polynomial of f is

(2.8) det(t1− f) = trEr(1/t) = tr − e1tr−1 + · · ·+ (−1)rer.

Hence, for i = r+k, the restriction of (2.7) to M gives the classical Cayley–Hamilton
theorem (1.4).

2.2. A look at the infinite-dimensional case. Let M0 be a Q-vector space

with a countable basis, and
∧
M0 =

⊕
j≥0

∧j
M0 its exterior algebra.

We equip M0 with a structure of a free module of rank r over the ring of
polynomials of r variables with rational coefficients, for any integer r > 0. See
Section 4 for details.

We fix a basis (bj)j≥1 of M0, and define the shift operators σ+1, σ−1 on M0 by
their action on the basis,

σ+1(bj) = bj+1, j ≥ 1, and σ−1(b1) = 0, σ−1(bj) = bj−1, j > 1.

One can attach to each of the endomorphisms σ+1, σ−1 a unique HS–derivation and
its inverse, as in (2.2), (2.3). In this subsection we need only the HS–derivations

σ+(t), σ+(t) :
∧
M0 →

(∧
M0

)
[[t]]

generated by σ+1. We shall denote by σ+i, σ+i :
∧
M0 →

∧
M0 the coefficients

of ti in σ+(t) and σ+(t) respectively. In the next subsection, the HS–derivations
corresponding to σ−1 will also appear.

Let us fix r > 0. It is convenient to enumerate the basis of
∧r

M0, which
corresponds to (bj)j≥1, by partitions λ = (λ1 ≥ · · · ≥ λr ≥ 0) of lenght at most
r. We write Pr for the set of all such partitions, and denote the basis vectors as
follows,

(2.9) [b]rλ = b1+λr ∧ b2+λr−1
∧ · · · ∧ br+λ1

, λ ∈ Pr .

In particular, the zero partition 0 = (λ1 = 0) gives [b]r0 = b1 ∧ · · · ∧ br.

Now consider (ei)1≤i≤r as indeterminates, and the polynomial ring

(2.10) Br = Q[e1, e2, . . . , er].

Let us equip
∧r

M0 with a Br-module structure via

(2.11) Er(t)[b]rλ = σ+(t)[b]rλ ,

where Er(t) is given by (2.4). In terms of the inverses, see (2.5), the same structure
is given by

(2.12) Hr(t)[b]rλ = σ+(t)[b]rλ .

The interpretation of ej ’s and hj ’s as the elementary and the complete sym-
metric functions of r variables, see Remark 2.2 (2), suggests to consider Br as a
Q-vector spaces generated by the Schur polynomials (see, for example, [13, I 3]),

(2.13) ∆λ(Hr) = det(hλj−j+i)1≤i,j≤r , λ ∈ Pr.

Here hj ’s are defined as in Remark 2.2 (1) for j ≥ 0, and hj = 0 for j < 0.
According to Giambelli’s formula as in [3, p. 321]),

(2.14) [b]rλ = ∆λ(Hr)[b]r0,
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that is,
∧r

M0 is a free Br-module of rank 1 generated by [b]r0. This allows us to
equip M0 with a multiplicative structure over Br, see Proposition 4.3. Denote M0,
endowed with this multiplicative structure, by Mr. In Section 4, we check that

• Mr is a Br-module of rank r freely generated by b1, . . . , br.
•
∧r

Mr is
∧r

M0 with the Br-module structure defined by (2.11) or (2.12).
• ei is the eigenvalue of σ+i restricted to

∧r
Mr, 1 ≤ i ≤ r.

• hj is the eigenvalue of the restriction of σ+j to
∧r

Mr, j ≥ 0.

Remark 2.4. The notion of HS–derivation on an exterior algebra enables one to
extend some finite-dimensional linear algebra concepts (like eigenvalues and charac-
teristic polynomials) to an infinite-dimensional situation. Indeed, an endomorphism
of an infinite-dimensional vector space does not have a characteristic polynomial,
whereas the corresponding HS–derivation is still defined.

2.3. Finite-dimensional approximations of bosonic vertex operators.
We apply the construction of the previous subsection in order to get a “finite-
dimensional approximation” of the well-known expression of the vertex operators
occurring in the boson-fermion correspondence. We interpret this approximation
as the ratio of certain characteristic polynomials.

Details are in Section 5, see also [5].
Take the polynomial ring of countably many indeterminates, B = Q[x1, x2, . . .],

and define the bosonic vertex operators, following [9, p. 56],

Γ(t) = exp

∑
i≥1

xit
i

 · exp

−∑
i≥1

1

iti
∂

∂xi

 : B → B[t−1, t]],

Γ∗(t) = exp

−∑
i≥1

xit
i

 · exp

∑
i≥1

1

iti
∂

∂xi

 : B → B[t−1, t]].

We find finite-dimensional counterparts of these operators using the symmetric
functions interpretation. Namely, similarly to the finite-dimensional case, define
E∞(t) and H∞(t),

E∞(t) = 1− e1t+ e2t
2 + · · ·+ (−1)kekt

k + . . . , H∞(t) = 1/E∞(t),

as the generating functions of the elementary and the complete symmetric functions
of a countable set of variables, say, (ξk)k≥1. Consider also xj = j

∑
k≥1 ξ

j
k, the

power sum symmetric functions, see [13, I 3]. We have Q[x1, x2, . . .] = Q[e1, e2, . . .].
Moreover, X∞(t) =

∑
i≥1 xit

i, the generating function of (xi)i≥1, satisfies

exp

∑
i≥1

xit
i

 =
∑
i≥0

hit
i.

Clearly, Er(t), Hr(t), Xr(t) are obtained from E∞(t), H∞(t), X∞(t) by setting
τk = 0 for k > r.

In order to define Γr(t) and Γ∗r(t) for r > 0, use the notation of Section 2.2. In
particular, the ring (2.10) is freely generated by the Schur polynomials (2.13), and∧r

Mr is spanned over Br by [b]r0, according to (2.14). Juxtaposing (2.11) or (2.12)
and (2.14) we get, respectively,

(2.15) σ+(t)[b]rλ = σ+(t) (∆λ(Hr)[b]r0) = Er(t)∆λ(Hr)[b]r0, ,
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(2.16) σ+(t)[b]rλ = σ+(t) (∆λ(Hr)[b]r0) = Hr(t)∆λ(Hr)[b]r0 .

Thus each of σ+(t), σ+(t) defines certain homomorphism Br → Br[[t]], which
we denote in the same way.

For the HS–derivations generated by the shift operator σ−1 of Section 2.2, we
use the indeterminate t−1 instead of t, and denote them by σ−(t−1), σ−(t−1). The
corresponding homomorphisms are defined via

(σ−(t−1)∆λ(Hr))[b]r0 = σ−(t−1)[b]rλ, (σ−(t−1)∆λ(Hr))[b]r0 = σ−(t−1)[b]rλ.

Definition of σ−1 implies that σ−(t−1)bi = bi + bi−1t
−1 + bi−2t

−2 + · · · + b1t
1−i is

a polynomial of t−1 for each i > 0. It follows that σ−(t−1), σ−(t−1) also send all
∆λ(Hr)’s to Br-polynomials of t−1.

Now we are ready to define the homomorphisms Γr(t),Γ
∗
r(t) : Br → Br[t

−1, t]]
by their values on ∆λ(Hr)’s, as follows,

Γr(t) (∆λ(Hr)) =
1

Er(t)

(
σ−(t−1)∆λ(Hr)

)
,

Γ∗r(t) (∆λ(Hr)) = Er(t) ·
(
σ−(t−1)∆λ(Hr)

)
.

For r1 < r2, the natural projection Br2 → Br1 sending each of er1+1, . . . , er2 to
zero, sends Er2(t) to Er1(t), Hr2(t) to Hr1(t), and Xr2(t) to Xr1(t) . In this sense,
Er(t)→ E∞(t), Hr(t)→ H∞(t), Xr(t)→ X∞(t) as r →∞.

Thus, Γr(t) and Γ∗r(t) tend to Γ(t) and Γ∗(t) when r →∞.

3. Cayley–Hamilton Theorem revisited

3.1. Hasse-Schmidt derivations on exterior algebras [3, 6]. Let A be
a commutative ring with unit, M a free A-module of rank r, and b1, . . . , br some
A-basis of M .

Set
∧0

M = A. For 1 ≤ j ≤ r, denote by
∧j

M the A-module generated by all
bi1 ∧ . . . ∧ bij modulo permutations,

biτ(1) ∧ . . . ∧ biτ(j) = sgn(τ)bi1 ∧ . . . ∧ bij ,

where sgn(τ) is the sign of permutation τ . In particular,
∧1

M = M .

The exterior algebra
∧
M =

⊕r
j=0

∧j
M possesses the natural graduation given

by juxtaposition ∧ :
∧i

M ×
∧j

M →
∧i+j

M .
We denote by (

∧
M)[[t]] the ring of formal power series of t with coefficients in∧

M , and by (EndA(
∧
M))[[t]] the ring of formal power series of t with coefficients

in EndA(
∧
M).

For D(t) =
∑
i≥0Diti, D(t) =

∑
j≥0 D̃jtj ∈ (EndA(

∧
M))[[t]], their product is

defined as follows,

D(t)D̃(t)u = D(t)
∑
j≥0

D̃ju · tj =
∑
j≥0

(D(t)D̃ju) · tj , ∀u ∈
∧
M.

Given series D(t), we use the same notation for the induced A-homomorphism,

D(t) :
∧
M →

∧
M [[t]], u 7→ D(t)u =

∑
i≥0

Diu · ti, ∀u ∈
∧
M.
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The series D(t) =
∑
i≥0Diti is invertible in (EndA(

∧
M))[[t]], if there exists D(t) ∈

(EndA(
∧
M))[[t]] such that

(3.1) D(t)D(t) = D(t)D(t) = 1∧
M .

We call D(t) the inverse series and write it in the form D(t) =
∑
i≥0(−1)iDiti.

Then (3.1) is equivalent to

(3.2) Dj −D1Dj−1 + . . .+ (−1)jDj = 0, ∀j ≥ 1.

One can check that D(t) invertible if and only if D0 is an automorphism of
∧
M .

Proposition 3.1. The following two statements are equivalent:

i) D(t)(u ∧ v) = D(t)u ∧ D(t)v, ∀u, v ∈
∧
M ;

ii) Di(u ∧ v) =
∑i
j=0Dju ∧ Di−jv, ∀u, v ∈

∧
M , ∀i ≥ 0.

Proof. i)⇒ ii) By definition of D(t), one can write i) as

(3.3)
∑
i≥0

Di(u ∧ v)ti =
∑
j1≥0

Dj1u · tj1 ∧
∑
j2≥0

Dj2v · tj2 .

Hence Di(u ∧ v) is the coefficient of ti on the right hand side of (3.3), which is∑
j1+j2=i

Dj1u ∧ Dj2v =
∑i
j=0Dju ∧ Di−jv.

ii)⇒ i) We have

D(t)(u ∧ v) =
∑
i≥0

Di(u ∧ v)ti =
∑
i≥0

 ∑
i1+i2=j

Di1u ∧ Di2v

 ti

=
∑
i≥0

(∑
i1

Di1u · ti1 ∧
∑
i2

Di2v · ti2
)

= D(t)u ∧ D(t)v.

Definition 3.2. (Cf. [3]) Let D(t) ∈ (EndA(
∧
M))[[t]]. The induced map

D(t) :
∧
M → (

∧
M)[[t]] is called a Hasse–Schmidt derivation (or, for brevity, a

HS–derivation) on
∧
M , if it satisfies the (equivalent) conditions of Proposition 3.1.

Proposition 3.3. (Cf. [3, 6]) The product of two HS–derivations is a HS–
derivation. The inverse of a HS–derivation is a HS–derivation.

Proof. For the product of HS–derivations D(t) and D̃(t), the statement i) of Propo-
sition 3.1 holds. Indeed, ∀u, v ∈

∧
M ,

D(t)D̃(t)(u ∧ v) = D(t)

∑
j≥0

∑
j1+j2=j

D̃j1u ∧ D̃j2v

 tj

=
∑
j≥0

∑
j1+j2=j

D(t)Dj1u · tj1 ∧ D(t)Dj2v · tj2

= D(t)D̃(t)u ∧ D(t)D̃(t)v.

Similarly, if D(t) is the inverse of the HS–derivation D(t), then ∀u, v ∈
∧
M ,

D(t)(u ∧ v) = D(t)(D(t)D(t)u ∧ D(t)D(t)v)
= (D(t)D(t))(D(t)u ∧ D(t)v)

= D(t)u ∧ D(t)v.
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Corollary 3.4. [6] If D(t) is the inverse of a HS–derivation D(t), then

D(t)u ∧ v = D(t)u ∧ D(t)D(t)v = D(t)(u ∧ D(t)v),
u ∧ D(t)v = D(t)D(t)u ∧ D(t)v = D(t)(D(t)u ∧ v)(3.4)

for all u, v ∈
∧
M . Equivalenly, for any k ≥ 1,

Dku ∧ v = Dk(u ∧ v)−Dk−1(u ∧ D1v) + . . .+ (−1)ku ∧ Dkv,
u ∧Dkv = Dk(u ∧ v)−Dk−1(D1u ∧ v) + . . .+ (−1)kDku ∧ v(3.5)

3.2. Proof of the Theorem 2.3. As we have seen in Proposition 2.1, any
endomorphism f ∈ EndA(M) defines two graded mutually inverse HS–derivations,

D(t) =
∧

(1− ft) and D(t) =
∧∑

i≥0

f iti

 ,

where 1 denotes the identity endomorphism. Write D(t) and D(t) in the form

D(t) =
∑
i≥0

(−1)iDit
i and D(t) =

∑
i≥0

Dit
i,

then these HS–derivations satisfy the following properties.

Lemma 3.5. We have
(i) D0 = D0 = 1∧

M and D1 = D1,

(ii) Di |M= f i, i ≥ 0,

(iii) Dku = 0, for all u ∈
∧i

M with i < k.

Indeed, D(t) |∧kM is a polynomial of t of degree k, 1 ≤ k ≤ r.

As before, we assume that our A-module M is freely generated by (bj)1≤j≤r.
Thus

∧r
M has rank 1 and is spanned by [b]r0 = b1 ∧ · · · ∧ br. The restriction of

each Di to
∧r

M is a multiplication by some scalar ei ∈ A,

(3.6) Di ([b]r0) = ei[b]r0, 1 ≤ i ≤ r.

Take now u ∈
∧i

M and v ∈
∧r−i

M . Then Dju ∧ v ∈
∧r

M for 1 ≤ j ≤ k.
Applying (3.5) to our situation, we can write

Dku ∧ v − e1(Dk−1u ∧ v) + · · ·+ (−1)kek(u ∧ v) = (−1)ku ∧Dkv

for 1 ≤ k ≤ r, and

Dku ∧ v − e1(Dk−1u ∧ v) + · · ·+ (−1)ker(Dk−ru ∧ v) = (−1)ku ∧Dkv

for k > r.
Equivalently, we have

(3.7)
(
Dku− e1Dk−1u+ · · ·+ (−1)keku

)
∧ v = (−1)ku ∧Dkv, 1 ≤ k ≤ r,

and

(3.8)
(
Dku− e1Dk−1u+ · · ·+ (−1)kerDk−ru

)
∧ v = (−1)ku ∧Dkv, k > r.

Of course, one can set ek = 0 for k > r, in order do not distinguish between the
two cases. However, we prefer a division into cases.

Assume now i > r − k > 0. Then, according to Remark 3.5, (iii), the right

hand side of (3.7) vanishes ∀v ∈
∧r−i

M , as r − i < k. This means that

Dku− e1Dk−1u+ · · ·+ (−1)eku = 0
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for any u ∈
∧i

M with i > r − k > 0. This proves the first part of Theorem 2.3.
If k > r, then the left hand side of (3.8) vanishes for each i ≥ 0, and this proves

the second part.

Remark 3.6. Thus we understand (1.3) as an abstract Cayley–Hamilton theo-
rem valid for general invertible HS–derivations on exterior algebras of arbitrary (not
necessarily free) modules. If the module is free and at most countably generated,
then (1.3) produces a sequence of Cayley–Hamilton relations (3.5). This sequence
turns into the classical Cayley–Hamilton formulas (2.7) when the HS–derivation
corresponds to an endomorphism of a finitely generated free module.

3.3. Example. Take M = R3. Let f : R3 → R3 have an eigenbasis,

fu = au, fv = bv, fw = cw.

Then det(1t− f) = t3 − e1t2 + e2t− e3, where

e1 = a+ b+ c, e2 = ab+ ac+ bc, e3 = abc.

In notation of Theorem 2.3, we have r = 3.
1) Let us take k = 2 and check that D2−e1D1 +e21 vanishes on R3∧R3, as it

should be, according to (2.6). We show the calculation of (D2−e1D1 +e21)(u∧v);
for two other basis vectors u ∧w and v ∧w it is completely similar.

First, we find the action of D1, D2 on u ∧ v. We have

(1 + ft+ f2t2 + ◦(t2))u ∧ (1 + ft+ f2t2 + ◦(t2))v =

= u ∧ v + (fu ∧ v + u ∧ fv)t+ (f2u ∧ v + fu ∧ fv + u ∧ f2v)t2 + ◦(t2).

Thus D1(u ∧ v) = (a+ b)(u ∧ v), D2(u ∧ v) = (a2 + ab+ b2)(u ∧ v), and

(D2 − e1D1 + e21)(u ∧ v) = (a2 + ab+ b2 − e1a− e1b+ e2)(u ∧ v).

Now, we substitude the expressions for e1, e2, and get

a2+ab+b2−e1a−e1b+e2 = a2+ab+b2−a2−ab−ac−ab−b2−bc+ab+ac+bc = 0.

2) Take k = 4 and check that D4 − e1D3 + e2D2 − e3D1 vanishes on R3 ∧R3.
According to (2.7), this endomorphism vanishes on the whole of

∧
R3, and in fact

the verification for the rest of the direct summands is simpler. Again we calculate
the image of u ∧ v.

First, we obtain D3(u ∧ v) and D4(u ∧ v) in the standard way, writing

(1 + ft+ f2t2 + f3t3 + f4t4 + ◦(t5))u ∧ (1 + ft+ f2t2 + f3t3 + f4t4 + ◦(t5))v,

and collecting the coefficients of t3, t4, respectively. We get

D3(u∧v) = (a3+a2b+ab2+b3)(u∧v), D4(u∧v) = (a4+a3b+a2b2+ab3+b4)(u∧v),

substitute all the expressions for D4, D3, D2, D1, e1, e2, e3 in terms of a, b, c into
D4 − e1D3 + e2D2 − e3D1, and safely get 0.

Remark 3.7. In general, if f ∈ End(M) is diagonalizable, and if (vi)1≤i≤r
is an eigenbasis, fvi = xivi, 1 ≤ i ≤ r, then the vector v1 ∧ . . . ∧ vl ∈

∧l
M is

an eigenvector of Dk with the eigenvalue which is the complete symmetric poly-
nomial of x1, . . . , xl of degree k. Therefore, for a diagonizable endomorphism our
Theorem 2.3 is reduced to the following identity. Denote by hi(xj) the complete
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symmetric polynomial of degree i in x1, . . . , xj , and by ek(xn) the elementary sym-
metric polynomial of degree k in x1, . . . , xn. Then, for n ≥ 1 and all 1 ≤ j ≤ n, we
have

hn(xj)− e1(xn)hn−1(xj) + . . .+ (−1)nen(xn) = 0.

One can deduce the identity, for example, from the formula (*) of [13, I 3 28].

This remark can be turned into a rigorous general proof, using a standard
(though rather long) reasoning. Another possible way, which was suggested by our
referee, is based on the Frobenius proof of the classical Cayley–Hamilton theorem
for the complex matrices, [2]. We were not aware of that 1896 paper by Frobenius.
Probably one could translate our arguments into the language of matrix minors.
However, our approach, through the relationship to symmetric functions, is short,
easy, and, in addition, allows us to concern with the infinite-dimensional case.

3.4. The case of a Q-algebra. If A is a Q-algebra, then for f ∈ EndAM the
exponential

exp(ft) :=
∑
k≥0

fktk

k!
∈ (EndAM)[[t]]

is well-defined. In the ring (EndAM)[[t]], there is the formal derivative by t,

y(t) =
∑
k≥0

gkt
k ⇒ y′(t) =

∑
k≥0

kgkt
k−1, gk ∈ EndAM.

Recall the notation Er(t) given by (2.4), and write the characterictic polynomial of
f as in (2.8). In [4] for any commutative ring R containing the rational numbers,
the formal Laplace transform L : R[[t]] → R[[t]] and its inverse L−1 are defined as
follows,

L
∑
n≥0

ant
n =

∑
n≥0

n!ant
n, L−1

∑
n≥0

cnt
n =

∑
n≥0

cn
tn

n!
, an, cn ∈ R.

Take the inverse formal Laplace transform of the HS–derivationD(t) =
∑
i≥0Dit

i

corresponding to f ∈ EndAM ,

(3.9) D∗(t) = L−1
∑
k≥0

Dkt
k =

∑
k≥0

Dkt
k

k!
∈
(

EndA(
∧
M)
)

[[t]].

Define pk(D) as the coefficient of tk in Er(t)D(t). We have

p0(D) = 1, p1 = D1 − e11, pj = Dj − e1Dj−1 + . . .+ (−1)jej1, 1 < j < r,

and

pr+j(D) = Dr+j − e1Dr+j−1 + . . .+ (−1)rerDj = 0, j ≥ 0,

according to Theorem (2.3). Therefore,

Proposition 3.8. We have

(3.10) D(t) =
1 + p1(D)t+ . . .+ pr−1(D)tr−1

Er(t)
.
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Corollary 3.9. Let Q ⊆ A and the characteristic polynomial of f ∈ EndAM
be given by (2.8). Then the series D∗(t) defined in (3.9) solves the ordinary differ-
ential equation

(3.11) y(r)(t)− e1y(r−1)(t) + . . .+ (−1)rery(t) = 0

in (EndA(
∧
M))[[t]].

Proof. Take the inverse formal Laplace transform of (3.10). We obtain

D∗(t) = u0 + p1(D)u−1 + . . .+ pr−1(D)u−r+1,

where

u−j = u−j(t) = L−1
(

tj

Er(t)

)
, 0 ≤ j ≤ r − 1.

Let us re-write the series u0, u−1, . . . , u−r+1 in terms of Hr(t) = 1/Er(t), see Re-
mark 2.2(1),

u−j = L−1(tjHr(t)) =
∑
n≥j

hn−j
tn

n!
, 0 ≤ j ≤ r − 1.

In [7], we proved that these series form an A-basis of solutions to the ODE (3.11)
in R[[t]]. For R = EndA(

∧
M) we get the claim.

3.5. Elementary remarks. We finish this section with a few remarks rele-
vant to the case when A is a Q-algebra.

(1) The characteristic polynomial of f ∈ EndAM is given by (2.8) if and only
if y(t) = exp(ft) satisfies the linear ordinary differential equation (3.11). This is
our Corollary 3.9 restricted to M .

In particular,

exp(ft) = v0(t)1M + v1(t)f + · · ·+ vr−1(t)fr−1,

where (vj(t))0≤j≤r−1 is the standard A-basis of solutions to (3.11) in A[[t]] , that

is, v
(i)
j (t) = δij , 0 ≤ i, j ≤ r − 1. Indeed, 1M , f, . . . , f

r−1 are the initial conditions

of the solution exp(ft).
In the context of endomorphisms of complex vector spaces, the formula for

exp(ft) was obtained in 1966 by Putzer [14], and then re-obtained in 1998 by
Leonard and Liz, [11, 12], in a different way.

(2) The relation between the standard fundamental system vj(t))0≤j≤r−1 and
the fundamental system u−j(t)0≤j≤r−1 appeared in the proof of Corollary 3.9 is as

follows. Consider the linear system of first order differential equations equivalent
to our ODE (3.11),

y′1 = y2, y′2 = y3, . . . , y
′
r−2 = yr−1, y′r−1 = e1y(r−1) − . . .+ (−1)r−1ery1.

Denote the matrix of this system by Pr. Then Q = exp(Prt) is the Wronski matrix
of v1(t), . . . , vr−1(t),

(Q)ij = v
(i)
j (t), 0 ≤ i, j ≤ r − 1,

and u0(t), u−1(t), . . . , u1−r(t) is the last column of Q,

vr−1(t) = u1−r(t), v
′
r−1(t) = u2−r(t), . . . , v

(r−1)
r−1 (t) = u0(t).

(3) As another elementary corollary of our considerations, we get formulas for
the coefficients ek of the characterictic polynomial of f ∈ EndAM in terms of its
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matrix elements. If C = (cij) is the r× r matrix of f in some A-basis of M , denote
by D(i1, . . . , ik) the determinant of the (r − k)× (r − k)-matrix obtained from the
matrix C by deleting the i1-th,. . . ,ik-th rows and columns. Then

(−1)kek =
∑

1≤i1<...<ik≤r

D(i1, . . . , ik), 1 ≤ k ≤ r.

This formula was obtained differently by Brooks in [1].

4. Countably generated Q-vector spaces

Let M0 be a Q-vector space generated by (bj)j≥1 and
∧
M0 =

⊕
r≥0

∧r
M0 be

its exterior algebra.
As in Section 2.2, we take shift operators σ±1 ∈ EndQM0, and denote by

σ±(t±1), σ±(t±1) the corresponding HS-derivations. Below we will write

(4.1) σ+(t) =
∑
j≥0

σjt
j , σ+(t) =

∑
j≥0

σjt
j ,

skipping sign + in the subscript.
In this section, we treat e1, . . . , er as indeterminates. As we already pointed out

in Section 2.2, the ring Br, given by (2.10), has a basis formed by Schur polynomials
∆λ(Hr), see (2.13). The structure of a principal Br-module on

∧r
M0 is defined

via any of the two equivalent equalities (2.11) and (2.12).
Let (βi)i≥1 be linear forms on M0 defined by βi(bj) = δij . Their linear span is,

by definition, the restricted dual M∗0 . Each βj induces a Q-linear contraction map

βj :
∧r

M0 →
∧r−1

M0 defined by βjym = βj(m) for all m ∈M0 and

(4.2) βjy(m ∧ η) = βj(m)η −m ∧ βjyη.

As each ζ ∈
∧
M0 is a sum of homogeneous elements of the form m ∧ η, equa-

tion (4.2) defines the contraction operator over the entire exterior algebra
∧
M0.

Lemma 4.1. Let m,m′ ∈M0 satisfy

(4.3) m ∧ η = m′ ∧ η

for all η ∈
∧r−1

M0. Then m = m′.

Proof. Under the hypothesis (4.3), suppose first that m′ = am for some a 6= 1. If
m 6= 0, then there is µ ∈ M∗0 such that µ(m) 6= 0. Because of the isomorphism∧r−1

M0
∼= M∗0 , there is then η ∈

∧r−1
M0 such that m ∧ η 6= 0. We get m′ ∧ η =

a(m ∧ η), hence m ∧ η 6= m′ ∧ η.
If m and m′ are not proportional, take their duals µ, µ′ ∈ M∗0 and choose

ζm,m′ = µ′y(µy[b]r0) ∈
∧r−1

M0. Then µ(m) = µ′(m′) = 1 and so m∧m∧ζm,m′ = 0
while m′ ∧m ∧ ζm,m′ 6= 0.

Corollary 4.2. For each ei, 1 ≤ i ≤ r, there exists the unique mapping
M0 →M0, called the multiplication by ei, m 7→ eim, such that

(4.4) (eim) ∧ η = ei(m ∧ η),

for all η ∈
∧r−1

M0.

The vector space M0 endowed with the multiplications by ei, 1 ≤ i ≤ r,
becomes a Br-module, denoted by Mr.
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Proposition 4.3. The Br-module Mr is freely generated by (bi)1≤i≤r, and
σ+(t) ∈ EndBr (Mr)[[t]].

Proof. Let us check first that b1, b2, . . . , br are Br-linearly independent. Denote by
(βj)j≥0 the generators of M∗0 dual to (bi)i≥1. Notice that a1b1 + · · · + arbr = 0
implies 0 = aibi ∧ ηi , where ηi = βiy[b]r0, that is, ai = 0 for all 1 ≤ i ≤ r.

Now, let us show that bi+r − e1bi+r−1 + · · · + erbi = 0 for all i ≥ 0. This will
prove, by induction, that Mr is generated over Br by b1, b2, . . . , br. It is enough to
observe that

∞∑
i=1

(bi − e1bi−1 + (−1)rerbr−1+i)t
i = Er(t)σ+(t)b1

is a polynomial of degree r (here we set bj = 0 for j < 1). By definition of the

module structure, for each η ∈
∧r−1

M0 we have

Er(t)(σ+(t)b0) ∧ η = Er(t)(σ+(t)b0 ∧ η) (definition of the
Br-module structure)

= Er(t)σ+(t)(b0 ∧ σ+(t)η) (Proposition 3.4)

= Er(t)
1

Er(t)
(b0 ∧ σ+(t)η) (definition of the

Br-module structure)

= b0 ∧ σ+(t)η.

We use now the agreement (4.1). As in Remark 3.5, we see that σr vanishes on∧r−1
M0, hence the expression obtained above is a polynomial in t of degree r− 1.

We have so proven that Mr is a Br-module of rank r. Moreover σ1 is Br-linear. In
fact,

σ1(eim)∧η = σ1(eim∧η)−eim∧σ1η = eiσ1(m∧η)−eim∧σ1η = e1σ1m∧η.

Corollary 4.4. The elements ei, 1 ≤ i ≤ r, and hj , j ≥ 0, of Br are the
eigenvalues of σi and σj , respectively, thought of as endomorphisms of

∧r
Mr.

Similarly to (2.15) and (2.16), the mappings σ−(t−1) and σ−(t−1) define two
homomorphisms Br → Br[t

−1], via the equalities

(4.5) (σ−(t−1)∆λ(Hr))[b]r0 := σ−(t−1)[b]rλ,

and

(4.6) (σ−(t−1)∆λ(Hr))[b]r0 := σ−(t−1)[b]rλ.

By abuse of notation, we denote the homomorphisms in the same way.

5. Bosonic Vertex Operators

5.1. Let B := Q[x1, x2, . . .] be the polynomial ring in infinitely many indeter-
minates and M0 :=

⊕
i≥0 Qbi. The aim of this section is to show that the bosonic

vertex operators

Γ(t) := exp(
∑
i≥1

xit
i) · exp

−∑
i≥1

1

iti
∂

∂xi

 : B → B[t−1, z]]
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and

Γ∗(t) := exp(−
∑
i≥1

xit
i) · exp

∑
i≥1

1

iti
∂

∂xi

 : B → B[t−1, z]]

may be identified with ratios of characteristic series operators associated to the
shift endomorphisms of step ±1 of M0.

Let Γr(t),Γ
∗
r(t) : Br → Br[t

−1, t]] be defined by

Γr(t)∆λ(Hr)[b]r0 := σ+(t)σ−(t−1)∆λ(Hr))[b]r0

and
Γ∗r(t)∆λ(Hr)[b]r0 := σ+(t)σ−(t−1)∆λ(Hr)[b]r0.

Then, due to (2.15) and (2.16) one can write:

Γr(t) =
1

Er(t)
· σ−(t−1) and Γ∗r(t) = Er(t) ·

1

σ−(t−1)
.

Remark 5.1. Notice that Er(t) is indeed the characteristic polynomial of σ1,
thought of as endomorphism of Mr, and σ−(t−1) is the characteristic series operator
associated to σ−1.

Proposition 5.2. [5] The operators Γr(t),Γ
∗
r(t) tend to Γ(t),Γ∗(t) as r goes

to infinity.

Proof. We sketch the arguments of [5]. First of all, notice that for all r ≥ 1

(5.1) σ−(t−1)hn = hn −
hn−1
t

and σ−(t−1)hn =
∑
i≥0

hn−i
ti

.

Let σ−(t−1)Hr = (σ−(t−1)hn)n∈Z and σ−(t−1)Hr = (σ−(t−1)hn)n∈Z. Then

(5.2) σ−(t−1)∆λ(Hr) = ∆λ(σ−(t−1)Hr), σ−(t−1)∆λ(Hr) = ∆λ(σ−(t−1)Hr),

by [5, Propositions 6.2.10 and 6.2.13]. Now, according to [5, Corollaries 6.2.11 and
6.2.14],

(5.3) σ−(t−1)(hi1 · . . . · hir ) = σ−(t−1)hi1 · . . . · σ−(t−1)hir

and

(5.4) σ−(t−1)(hi1 · . . . · hir ) = σ−(t−1)hi1 · . . . · σ−(t−1)hir .

Clearly formulas (5.1) and (5.2) do not depend on r when r is big enough (that is,
at least the length of the partition λ). Thus these formulas hold for r =∞ as well.
We set

E∞(t) = 1− e1z + e2t
2 + · · · and H∞(t) = 1/E∞(t).

Define now

exp

∑
i≥1

xit
i

 :=
∑
n≥0

hnt
n.

Then we have

B = Q[e1, e2, . . .] = Q[h1, h2, . . .] = Q[x1, x2, . . .],

see, for example, [13, I 3]. Moreover,

(5.5)
∂hn
∂xi

= hn−i and
∂jhn

∂xj1
=
∂hn
∂xj

.
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As it follows from (5.3) and (5.4), σ−(t−1) and σ−(t−1), for r = ∞, become ring
homomorphisms B → B[t−1]. Thus

σ−(t−1)hn = hn −
hn−1
t

(first formula in (5.1))

=

(
1− 1

t

∂

∂x1

)
hn

= exp

−∑
i≥1

1

it

∂i

∂xi1

hn (definition of the logarithm

of a formal power series)

= exp

−∑
i≥1

1

it

∂

∂xi

hn (second equality in (5.5)).

Notice that exp

−∑
i≥1

1

it

∂

∂xi

, being the exponent of a first order differential

operator, is a ring homomorphism whose value at hn coincides with σ−(t−1)hn.
This means that

σ−(t−1) = exp

−∑
i≥1

1

it

∂

∂xi

 .

Similarly one shows that

σ−(t−1) = exp

∑
i≥1

1

it

∂

∂xi


Thus

Γ∞(t) =
1

E∞(t)
σ−(t) = exp

∑
i≥1

xit
i

 exp

−∑
i≥1

1

it

∂

∂xi

 = Γ(t)

and

Γ∗∞(t) = E∞(t)σ−(t−1) = exp

−∑
i≥1

xit
i

 exp

∑
i≥1

1

it

∂

∂xi

 = Γ∗(t)

as claimed.

References

[1] B. P. Brooks, The coefficients of the characteristic polynomial in terms of the eigenvalues and

the elements of an n× n matrix, Applied Mathematics Letters, 19, no. 6, 2006, 511–515.
[2] G. Frobenius, ÜvertauschbareMatrizen, Sitzungsberichte der Preussischen Akademie

der Wissenschaften zu Berlin, Reichsdr., 1896. Available at http://www.e-rara.ch/

zut/content/titleinfo/5929398

[3] L. Gatto, Schubert Calculus via Hasse–Schmidt Derivations, Asian J. Math. 9, No. 3, 315–322,

(2005).
[4] L. Gatto, D. Laksov, From linear recurrence relations to linear ODEs with constant coeffi-

cients, J. Algebra Appl. 15, 1650109 (2016) [23 pages]



HASSE–SCHMIDT DERIVATIONS AND CAYLEY–HAMILTON THEOREM 17

[5] L. Gatto, P. Salehyan, Hasse-Schmidt derivations on Grassmann Algebras, with applications

to Vertex Operators, IMPA Springer Monographs, no. 4, 2016.

[6] L. Gatto, T. Santiago, Schubert Calculus on a Grassmann Algebra, Canad. Math. Bull. 52
(2009), no. 2, 200–212.

[7] L. Gatto, I. Scherbak, “On One Property of One Solution of One Equation” or Linear ODE’s,

Wronskians and Schubert Calculus, Moscow Math. J., to the seventy-fifth anniversary of
V. I. Arnold, 12 (2012), No. 2, 275–291.=

[8] H. Hasse, F. K. Schmidt, Noch eine Bergründer der Theorie der höheren Differentialquotienten
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