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LANG-VOJTA CONJECTURE OVER FUNCTION FIELDS

FOR SURFACES DOMINATING G2
m

LAURA CAPUANO AND AMOS TURCHET

Abstract. We prove the nonsplit case of the Lang-Vojta conjecture over function fields for surfaces of log

general type that are ramified covers of G2

m. This extends the results of [CZ13], where the conjecture was

proved in the split case, and the results of [CZ08, Tur17] that were obtained in the case of the complement

of a degree four and three component divisor in P2. We follow the strategy developed by Corvaja and

Zannier and make explicit all the constants involved.

1. Introduction

The celebrated Lang-Vojta conjecture, see [HS00, Conjecture F.5.3.6], predicts degeneracy of S-integral

points on varieties of log general type over number fields. It is known in full generality for curves, where

it reduces to Siegel’s theorem (see for example [Sie14]), and for subvarieties of semi-abelian varieties

[Voj96, Voj99]. Very deep results have been obtained applying the method developed by Corvaja and

Zannier in [CZ04], building on [CZ02], which led to the proof of the conjecture in several new cases, e.g.

[CZ06, CLZ09, Lev09, CZ10, Aut11] (see [Cor16] for surveys of known results).

In the case of function fields, the Corvaja and Zannier strategy allows one to obtain results that are

still out of reach with the current methods in the number field case: for example, in [CZ08] the authors

prove the split case of the conjecture for the complement of a conic and two lines in P2, a problem which

is still open over number fields. The latter result has then been generalized in [CZ13] for isotrivial surfaces

that are ramified covers of G2
m (see also [Cam05, NWY07, Lu10] for analogue results in the compact and

analytic cases).

The goal of this article is to prove the non-isotrivial case of [CZ13]. The setting is the following: let κ

be an algebraically closed field of characteristic 0, let κ(C) be the function field of a nonsingular projective

curve C and let S be a finite set of points of C. Let (X,D) be a pair of log general type over κ(C), where

X is a nonsingular projective surface, D is a simple normal crossing Cartier divisor on X and X \ D

dominates G2
m over κ(C). Let (X ,D) be a model of (X,D) such that there exists a generically finite

dominant map π : (X ,D) → P2 × C.

Theorem A. Let Z be the ramification divisor of π↾X\D and assume that pr1(π(Z)) is disjoint from the

singular points of P2 \ G2
m. Then, for every projective embedding ϕ of X , there exists an explicit positive

constant C = C(Z,deg π, ϕ) such that every section σ : C → X with supp(σ∗D) ⊆ S satisfies

degσ(C) ≤ C ·max{1, χS(C)},

where χS(C) is the Euler characteristic of the affine curve C \ S, i.e. χS(C) = 2g(C) − 2 + #S.
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The main application of Theorem A is to complements of normal crossing divisors in P2
κ(C).

Theorem B. Let D be a divisor in P2
κ(C) of degree d ≥ 4 with r ≥ 3 components. Let D be the closure

of D in P2 × C and let S be a finite set of points of C such that, for every P /∈ S, the fiber DP has

normal crossing singularities. Then, for every projective embedding ϕ of P2 × C, there exists a constant

C = C(D,ϕ) such that every section σ : C → P2 × C with supp(σ∗D) ⊆ S verifies

deg σ(C) ≤ Cmax{1, χS(C)}.

The isotrivial case of Theorem B was proved in [CZ13, Theorem 1], and previously in [CZ08, Theorem

1.1] for d = 4 and r = 3; the latter case was obtained in [Tur17, Theorem 1.3] for non-isotrivial pairs.

Note that when r ≥ 4, the conclusion is known to hold essentially by a reduction to [BM86] or [Vol85].

Remark 1.1. In the statements of Theorem A, given a projective embedding of X , the degree of σ(C)
is bounded by a constant C multiplied by max{1, χS(C)}, where the constant C depends only on the

geometric data of the finite map π and its ramification. The dependence on the curve appears only in the

Euler characteristic. This implies that, given a finite cover E → C and a pair (X ,D) → C as before, one

will obtain the same result for the pair (X ,D) ×C E with the same constant C. This is consistent with

more general conjectures of Vojta (see Section 1.1 or [AT19, Section 10.2] for a more detailed discussion).

The main idea in the proof of Theorem A, as in [CZ13], is to estimate the contribution of the ramification

divisor of the finite map π to the height of a section σ ∈ X(κ(C)). More precisely, the strategy of the

proof is the following: in Section 3 we obtain a preliminary result on dependent S-units; this is used in

Section 4, where we prove an explicit bound for the number of multiple zeros of polynomials in κ(C)[X,Y ]

evaluated at S-units, extending [CZ08, Theorem 1.2]. This latter result is the key point to estimate the

contribution of the ramification divisor Z to the height of a section, which is obtained in Section 5.

In the nonsplit case one needs to deal with the problem that the log general type assumption does not

guarantee in general the positivity of the ramification divisor Z. We discuss various results about the

divisor Z in Section 6. In particular, we show that, even if the divisor Z might not be big, its twist by

the pullback of a positive divisor on C is big. Moreover, in the case in which the model of the divisor D

is ample, the ramification divisor itself can be shown to be big (see Proposition 6.4).

We prove Theorem A in Section 7, where we apply Proposition 5.1 together with the generalized abc

inequality over function fields [BM86, Theorem B]. Lastly, in Section 8, as an application of Theorem A,

we prove Theorem B and give an explicit example in the case where the base curve is P1.

1.1. Connections with Vojta’s conjectures. The fundamental Vojta’s conjecture [Voj87, Conjecture

3.4.3] predicts an arithmetic analogue of a (conjectural) higher dimensional Second Main Theorem in

Nevanlinna Theory. The conjecture can be extended to describe the distribution of algebraic points on a

non-singular projective variety X defined over a number field k and a normal crossing divisor D on X.

In the stronger form with truncation the conjecture reads as follows:

Conjecture 1.2 (See [Voj11, Conjecture 24.3]). Let X,D, k as above. Let S be a finite set of places

of k containing the Archimedean ones, let KX be the canonical divisor of X, let A be an ample divisor

on X and let r be a positive integer. Then, for every ε > 0 there exists a Zariski closed subset W =

W (k, S,X,D,A, ε, r) of X such that the inequality

hKX+D(x)− εhA(x) ≤ dk(x) +N
(1)
S (D,x) +O(1)
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holds for almost all x ∈ (X \W )(k) with [k(x) : k] ≤ r.

In the statement of the conjecture, dk(x) denotes the logarithmic discriminant of the point x (see

[Voj11, Definition 23.1]) and N
(1)
S (D,x) denotes the truncated counting function (see [Voj11, Definition

22.4]). Conjecture 1.2 has a wide range of important consequences; we mention for example the abc

conjecture of Masser-Oesterlé [Oes88, Conjecture 3], the Bombieri-Lang conjecture [HS00, Conjecture

F.5.2.1] and the Lang-Vojta conjecture [HS00, Conjecture F.5.3.6].

In this paper we deal with the function field case of Conjecture 1.2, i.e. when the number field k is

replaced by the function field κ(C) of a non-singular projective curve over an algebraically closed field

κ of characteristic zero. We note that, despite the different appearance, Theorem A is an instance of

Conjecture 1.2. To see this, consider (X,D) as in Conjecture 1.2: points x ∈ X(k) correspond over

function fields to sections σ : C → X , for a projective model X of the variety X. Similarly, the height

bound corresponds to a degree bound for the image σ(C), while the contributions of the discriminant and

the truncated counting function correspond to the Euler characteristic 2g(C) − 2 + #S.

We also note that, in Theorem A there is no exceptional set W : the reason for this is that in our

setting, the relative dimension of X is 2, and therefore the exceptional set is the union of finitely many

curves. This implies that its total degree is bounded and its irreducible components satisfy the conclusion

of Theorem A.

The reader can find a detailed analysis of the case X = Pℓ, C = P1 and S = {0,∞} in [CLZ19, Section

5], where the Nevanlinna analogue is also discussed. Moreover in [CLZ19] the authors obtain new cases

of Conjecture 1.2 for rational points in higher dimensions, adopting a function field version of the method

introduced in [Lev19] (which in turn extended [CZ05]). These results can be seen as higher dimensional

cases of [CZ13, Theorem 2], therefore we expect that the methods of the present paper can be further

generalized to give higher dimensional analogues of Theorem A.

Acknowledgements. We thank Kenny Ascher, Lucas Braune, Pietro Corvaja, Kristin DeVleming, Carlo

Gasbarri, Sándor Kovács, Aaron Levin and Siddarth Mathur for useful conversations. This paper was

partly written during visits of the two authors to the Department of Mathematics of University of Wash-

ington, the Mathematical Institute of University of Oxford and the Politecnico of Torino: we thank all the

institutions for providing an excellent working environment. Research of Capuano was partly supported

by funds from EPSRC EP/N008359/1. Research of Turchet was supported in part by funds from NSF

grant DMS-1553459 and by Centro di Ricerca Matematica Ennio de Giorgi.

2. Setting and Notations

2.1. Function fields. In this paper we will denote by C a nonsingular projective curve (integral, separated

scheme of finite type of dimension 1) defined over an algebraically closed field κ of characteristic zero and

by S a finite set of points of C. We will denote by OS the ring of S-integers, i.e. the ring κ[C \ S] of

regular functions in the complement of S: its elements are rational functions on C with poles contained

in S. Similarly, we will denote by O∗
S the group of S-units, i.e. the group of invertible elements of OS :

its elements are rational functions on C with both zeros and poles contained in S. If g(C) is the genus of

the curve C, then the Euler characteristic of the affine curve C \ S, denoted by χS(C), is defined as

χS(C) := χ(C \ S) = 2g(C) − 2 + #S.
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Notice that if we have at least a nonconstant S-unit, then the cardinality of S is at least 2 hence χS(C)
will always be non negative.

For any rational function a ∈ κ(C) we denote by HC(a), or simply by H(a) when the reference to the

curve is clear, the height of a, i.e. its degree as a morphism to P1. This is equivalent to the usual definition

of Weil Height via valuations as follows: every point P ∈ C induces a discrete valuation of the field κ(C),
trivial on κ, that can be normalized such that its value group is Z. We denote by ordP the corresponding

valuation on κ(C). Then, the height of a function a ∈ κ(C) can be expressed as

HC(a) =
∑

P∈C

max{0, ordP (a)} = −
∑

P∈C

min{0, ordP (a)}.

If E is a nonsingular projective curve and E → C is a dominant morphism (corresponding to an inclusion

κ(C) ⊆ κ(E)), then the heights of a rational function a ∈ κ(C), with respect to C and E , verify

HE(a) = [κ(E) : κ(C)]HC(a).

For n ≥ 2 and elements a1, . . . , an ∈ κ(C), we denote by H(a1 : · · · : an) the projective height

H(a1 : · · · : an) = −
∑

P∈C

min{ordP (a1), . . . , ordP (an)}.

Given a polynomial F ∈ κ(C)[X1, . . . ,Xn], the height of F , denoted by HC(F ), will always be the maxi-

mum of the heights of its coefficients. For more details about heights we refer to [Voj11].

An important tool over function fields is the presence of derivations. Following [CZ08], we will fix a

differential form on C in order to define the “derivative” of a rational function as follows:

Lemma 2.1 ([CZ08, Lemma 3.5]). Given a nonsingular projective curve C of genus g and a finite set

of points S ⊂ C, there exist a differential form ω ∈ Ω1(C) and a finite set T ⊂ C such that #T =

max{0, 2g− 2} and, for every u ∈ O∗
S , there exists an (S ∪T )-integer θu ∈ OS∪T having only simple poles

such that
d(u)

u
= θu · ω and HC(θu) ≤ χS(C).

In the rest of the paper the form ω ∈ Ω1(C) will be fixed (and compatibly for every finite cover E → C)

and, for a ∈ κ(C), we will denote by a′ the rational function that satisfies d(a) = a′ ·ω. With this notation,

the rational function θu appearing in the previous lemma is equal to u′/u.

2.2. Surfaces over function fields and fibered threefolds. The main focus of this paper is non-

isotrivial surfaces defined over function fields and their models. We recall here the main definitions, fixing

notations and terminology.

Definition 2.2. Given a projective variety X of dimension n defined over the function field κ(C), a model

X of X over C (or over κ(C)) is the datum of a proper flat map ρ : X → C such that the generic fiber is

isomorphic to X.

From this definition it follows that the model of a surface X over the function field κ(C) is a fibered

threefold X → C. We note that, in Definition 2.2, the model X can be singular. In this paper we will

always restrict to the case in which the total space X has only mild singularities: in particular, we will

consider only models of nonsingular surfaces that are normal.
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When dealing with an affine variety Y , we will identify it with a pair (X,D), where X is a projective

variety, D is a normal crossing divisor and X \ D ∼= Y . Even if this identification is not unique, in

this paper we will use the language of pairs, since it is more natural from the geometric point of view.

Moreover, when Y is a nonsingular affine surface, one can always consider a canonical choice for (X,D),

namely a minimal log resolution. In this latter case, the pair (X,D) can be chosen to be log smooth, i.e.

X is nonsingular and D has simple normal crossing singularities.

Definition 2.3. Given a pair (X,D), a model of (X,D) is a model ρ : X → C of the projective variety

X over C together with a model of D whose total space is a Cartier divisor D of X . We view the model

as a family of pairs (X ,D) → C. Given an integral affine variety Y , a model of Y is a model of the

corresponding pair (X,D).

Similarly as before we will restrict to the case in which the model of a log smooth pair (X,D) has only

mild singularities: in particular, we will consider models of a log smooth pair that have log canonical

singularities. This still implies that the total space of X is normal, but takes into account the presence

of the divisor D. We refer to [Kol13, Chapter 2] for the precise definition and properties of log canonical

singularities.

In the setting of Conjecture 1.2, we are interested in affine surfaces Y of log general type.

Definition 2.4. An affine variety Y is of log general type if for a(ny) log resolution (Ỹ , E) of Y , the log

canonical divisor KỸ + E is big. This property is independent of the choice of the log resolution. If we

identify Y with (X,D), we say that the pair is of log general type if X \D ∼= Y is of log general type.

We note that being of log general type does not extend naturally to models. Indeed, if (X ,D) → C is

a model of a pair (X,D) over the function field κ(C), the fact that (X,D) is of log general type does not

imply in general that the log canonical divisor of the total space (X ,D) is big.

Finally we define non-isotrivial models for pairs: these are models that cannot be trivialized after a

finite base change, i.e. there exists no finite base change E → C such that the base changed model is

isomorphic over κ to a product (X ′,D′)×κ E , for a pair (X ′,D′) defined over κ.

In the case in which the fibers of the model (X ,D) have ample log canonical and mild singularities,

being non-isotrivial is equivalent to require that the the moduli map C → Mh to the KSBA moduli space

of stable pairs Mh is not constant.

2.3. Threefolds dominating P2 × C. In this article we consider non-isotrivial models of pairs (X,D)

over the function field κ(C) where X \D is a ramified cover of G2
m. These correspond to fibrations of the

form ρ : (X ,D) → C, together with dominant maps π : X → P2 × C, that restrict to finite maps in the

complement of D.

We note that in practice the threefold X will be given by a dominant rational map

π : X 99K P2 × C whose indeterminacy locus is contained in D. Moreover, the irreducible components

of the indeterminacy locus have dimension at most 1, and their images under the map ρ are finite sets

of points of C (and contained in the set S). Resolving the indeterminacy of π gives a threefold X ′ and

a morphism π′ : X ′ → P2 × C that coincides with π in the complement of D. Moreover, every section

σ : C → X extend to a section σ′ : C → X ′. Therefore we can always assume that π is a morphism, up
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to resolving the indeterminacy locus and replacing it with π′, since this will affect neither the map in the

complement of D nor the sections that we will consider.

We denote by Z the closure of the ramification divisor of π↾X\D. We assume that:

• the fibers of D → C have simple normal crossing singularities outside of S;

• the map π is compatible with the fibration, i.e. pr2 ◦ π = ρ, where pr2 : P
2 × C → C is the second

projection;

• on every fiber of ρ outside of S, the map π restricts to a finite dominant map to G2
m in the

complement of D and the restriction of the divisor D is the pull-back of the boundary divisor

P2 \G2
m;

• the image π(Z) avoids the singular points of the boundary of G2
m, i.e.

pr1(π(Z)) ∩ (P2 \G2
m)sing = ∅.

The situation is made explicit in the following diagram:

(X ,D)

ρ

��

π
// P2 × C

pr2
zztt
t
t
t
t
t
t
t
t
t

C

σ

<<

In the case in which the generic fiber (X,D) of ρ is of log general type, given a projective embedding

ϕ of X , Conjecture 1.2 predicts the existence of a constant C = C(X,D, π, ϕ) such that for every section

σ : C \ S → X \D one has

degϕ(σ(C)) ≤ Cmax{1, χS(C)},

where degϕ denotes the corresponding degree in the projective space where X is embedded. Note that

different embeddings give rise to different constants but the existence of the bound is independent of the

choice of the embedding. For this reason we will drop the explicit dependence on ϕ and we will assume

that all bounds depend on the choice of the embedding.

In order to prove Theorem A we obtain height bounds that yield the degree bound predicted by

the conjecture. Recall that a section σ : C \ S → X \ D, or equivalently a section σ : C → X such that

supp(σ∗D) ⊆ S, corresponds to an integral point X(OS) = X(κ[C \S]); similarly, a map π◦σ : C → P2×C
such that pr2◦(π◦σ) = idC corresponds to a S-unit point (u, v) ∈ G2

m(O∗
S), where u, v are rational functions

on C with zeros and poles contained in S. The heights of u and v and the degree of σ(C) are strictly

related, since a bound on the heights of u and v gives a bound on the degree of the image σ(C). On

the other hand, a bound on the degree of the image does not guarantee that the heights of u and v are

bounded, since, for example u and v might be multiplicatively dependent. We refer to [CZ13, Section 2]

for a detailed discussion.

3. Multiplicative Dependence between S-units

Let A(X,Y ) ∈ κ(C)[X,Y ] be an irreducible polynomial of the form

A(X,Y ) =
∑

i+j≤degA

λijX
iY j,
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where degA := degX A + degY A. Let u1, u2 ∈ κ(C) be nonzero rational functions and let B(X,Y ) ∈
κ(C)[X,Y ] be defined, in terms of A(X,Y ), u1, u2 as

B(X,Y ) =
u′1
u1

X
∂

∂X
A(X,Y ) +

u′2
u2

Y
∂

∂Y
A(X,Y ) +

∑

i+j≤degA

λ′
ijX

iY j .

Note that the derivative of A(u1, u2) coincide with B(u1, u2).

In this section we derive a dependence relation for S-units u1 and u2 assuming they satisfy a relation of

the form (u1/α)
r(u2/β)

s = µ for some constant µ ∈ κ× and α, β roots of A and B. In general, we cannot

expect u1 and u2 to satisfy the conclusion of [CZ08, Lemma 3.14], i.e. ur1u
s
2 = µ′, for some µ′ ∈ κ×;

instead we prove that there exists a fixed S-unit γ, independent of u1 and u2, such that ur1u
s
2 = γ. This

will be sufficient for the applications in this paper.

Lemma 3.1. Let A and B as before and let (α, β) be a common zero of A and B. If u1/α and u2/β

satisfy a multiplicative dependence relation of the form

(3.1)
(u1
α

)r(u2
β

)s
= µ,

for a suitable pair of nonzero integers (r, s) ∈ Z2 and a constant µ ∈ κ×, then either one between u1/α

and u2/β is constant or u1, u2 satisfy a relation of the form ur1u
s
2 = γ, where γ is an algebraic function of

the coefficients of A.

Proof. Assume that u1/α and u2/β satisfy a multiplicative dependence relation of the form (3.1). If (α, β)

is a singular point of A(X,Y ), then it is defined in κ(λij) independently of u1 and u2; so we can conclude

with γ = µαrβs. Therefore, we can assume that at least one between ∂
∂XA(α, β) and ∂

∂Y A(α, β) is non

zero.

Notice moreover that, without loss of generality, we can assume that r, s are coprime integers. If they

are not, then we can write r = r′d and s = s′d with (r′, s′) = 1; then, (3.1) would imply that there exists

µ′ ∈ κ such that
(
u1

α

)r′(u2

β

)s′
= µ′.

Let us define

Γ(X,Y ) :=
∑

i+j≤degA

λ′
ijX

iY j .

Since A(α, β) = 0, taking differentials, we obtain

(3.2) α′ ∂

∂X
A(α, β) + β′ ∂

∂Y
A(α, β) + Γ(α, β) = 0.

By definition of α and β, we have that B(α, β) = 0, i.e.

(3.3)
u′1
u1

α
∂

∂X
A(α, β) +

u′2
u2

β
∂

∂Y
A(α, β) + Γ(α, β) = 0.

By (3.1) we have a linear relation of the form

(3.4) r

(
u′1
u1

− α′

α

)
+ s

(
u′2
u2

− β′

β

)
= 0.

Taking the difference between (3.3) and (3.2) and multiplying (3.4) by αβ, we obtain the system:

(3.5)





(
u′

1

u1
α− α′

)
∂
∂XA(α, β) +

(
u′

2

u2
β − β′

)
∂
∂Y A(α, β) = 0

(
u′

1

u1
α− α′

)
rβ +

(
u′

2

u2
β − β′

)
sα = 0

.
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From (3.5) it is easy to see that either u′1/u1 = α′/α and u′2/u2 = β′/β, which implies that both u1/α

and u2/β are constant, or we have

sα
∂

∂X
A(α, β) − rβ

∂

∂Y
A(α, β) = 0.

We define A∗(X,Y ) := sX ∂
∂XA(X,Y )− rY ∂

∂Y A(X,Y ); as by assumption A(X,Y ) is irreducible, we can

have either that (A∗(X,Y ), A(X,Y )) = 1 or, as the two polynomials have the same degree, there exists a

constant a ∈ κ such that A∗(X,Y ) = aA(X,Y ). Let us analyze the two cases separately.

Suppose first that (A∗(X,Y ), A(X,Y )) = 1. We have that (α, β) is a common zero of the polynomials

A∗(X,Y ) and A(X,Y ). As the two polynomials are coprime, Bezout’s theorem ensures that the number

of common solutions is finite and bounded by (degA)2. Hence, α and β are two rational functions in κ(E)
independent of u1 and u2, and (3.1) can be rewritten as

ur1u
s
2 = µαrβs.

Therefore γ = µαrβs is an algebraic function of the coefficients of A as wanted.

Let us finally see what happens if A∗(X,Y ) = aA(X,Y ) for some a ∈ κ. In this case, λ00 = 0 and, for

all i, j such that 1 ≤ i+ j ≤ degA and λij 6= 0, we have

(3.6) si− rj = a.

Moreover, as by assumption A is irreducible, A has both a monomial that contains only X and a monomial

that contains only Y , which implies that a is a non-zero integer divisible by rs (as we are assuming r and

s coprime), sa > 0 and ra < 0.

Let us assume that a > 0 (the other case is completely symmetric); then, we must have s > 0 and

r < 0. From (3.6) and the fact that a is divisible by r and s, the polynomial A will be of the form

(3.7) A(X,Y ) =

m∑

j=0

λjX
−r(m−j)Y sj,

for some m > 0. As A(α, β) = 0, from (3.7) we have
∑

j=0

λj (α
rβs)j = 0,

therefore γ = µαrβs is an algebraic function of the coefficients of A, and ur1u
s
2 = γ. �

Remark 3.2. We point out that, as (α, β) is a common zero of A and B where B depends on u1 and u2

and their derivatives, writing ur1u
s
2 = µαrβs does not directly give the desired conclusion. In the proof of

the previous Lemma we however obtained that either u1/α and u2/β are constant, or the quantity µαrβs

is an algebraic function of the coefficients of A, and so it is independent of u1 and u2. In particular, if u1/α

and u2/β are not constant, given r, s and µ there are only finitely many γ ∈ κ(E) such that ur1u
s
2 = γ.

4. Counting multiple zeros

The goal of this section is to prove a bound for the number of multiple zeros of polynomials evaluated

at S-units; this extends explicitly [CZ08, Theorem 1.2] to polynomials with nonconstant coefficients.

Moreover, we give an explicit bound on the exponents of a multiplicative relation between the S-units,

when the bound on the number of multiple zeros might not be achieved.
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Let C be a smooth projective curve and let S ⊂ C be a finite set of points. Let A(X,Y ) ∈ κ(C)[X,Y ]

be a polynomial without repeated factors. We can write the polynomial as

A(X,Y ) =
∑

i+j≤degA

λijX
iY j,

where degA = degX A+degY A as before. Recall that we denote by HC(A) the height of the polynomial

A, which is defined as the maximum of the heights of its coefficients. Then, we have the following result.

Theorem 4.1. Let ε > 0 be a positive real number. Then, there exist constants Θ1 = Θ1(degA,HC(A),

ε) and Θ2 = Θ2(degA, ε) such that, for all pairs (u1, u2) ∈ (O∗
S)

2 with

max{HC(u1),HC(u2)} ≥ Θ1max{1, χS(C)},

at least one of the following holds:

• the S-units u1, u2 verify a relation of the form ur1u
s
2 = γ for a pair of integers (r, s) ∈ Z2 \ {(0, 0)}

such that max{|r|, |s|} ≤ Θ2 and γ is an algebraic function of the coefficients of A;

• the rational function A(u1, u2) verifies

(4.1)
∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} ≤ εmax{HC(u1),HC(u2)}.

Proof of Theorem 4.1. We factor A(X,Y ) in irreducible polynomials in κ(C)[X,Y ] as

(4.2) A(X,Y ) = A1(X,Y )A2(X,Y ) · · ·Al(X,Y ).

Note that, if a factor Ai(X,Y ) does not depend on X or on Y , a bound of the desired form is immediate.

Therefore we will assume that all the irreducible factors depend nontrivally both on X and Y .

We begin by noticing that we can enlarge the set S so that all the coefficients of A are S-units. Moreover

the cardinality of the new set is bounded by #S + 2(degA+ 1)2HC(A). Therefore, from now on, we will

assume that A(X,Y ) ∈ O∗
S [X,Y ].

We want to prove a bound for the number of multiple zeros of A(u1, u2) in terms of HC(u1) and HC(u2).

This is equivalent to bound the multiple zeros of every irreducible factor Ai(u1, u2) together with a bound

on the number of common zeros of Ai(u1, u2) and Aj(u1, u2) for every pair 1 ≤ i < j ≤ l.

Number of multiple zeros of an irreducible polynomial. We begin by proving the bound for the

number of multiple zeros of an irreducible polynomial, which is the content of the following proposition.

Proposition 4.2. In the same setting as above, let A(X,Y ) ∈ O∗
S [X,Y ] be an irreducible polynomial

and let ε > 0 a positive real number. Then, there exist constants C1 = C1(degA,HC(A), ε) and

C2 = C2(degA, ε) such that, for every pair (u1, u2) ∈ (O∗
S)

2 with

max{HC(u1),HC(u2)} ≥ C1max{1, χS(C)},

at least one of the following holds:

• the S-units u1, u2 verify a relation of the form ur1u
s
2 = γ for a pair of integers (r, s) ∈ Z2 \ {(0, 0)}

such that max{|r|, |s|} ≤ C2 and γ is an algebraic function of the coefficients of A;

• the rational function A(u1, u2) verifies

(4.3)
∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} ≤ εmax{HC(u1),HC(u2)}.
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Proof of Proposition 4.2. Let us consider the polynomial B(X,Y ) given by:

(4.4) B(X,Y ) =
∑

i+j≤degA

λijX
iY j

(
i
u′1
u1

+ j
u′2
u2

+
λ′
ij

λij

)
;

then, we have that A′(u1, u2) = B(u1, u2). We can enlarge S to a set S′ including the set T defined in

Lemma 2.1 so that all the coefficients of B have no poles outside S′, i.e. B(X,Y ) ∈ OS′ [X,Y ] (notice the

presence of the derivatives of the coefficients λij in the expression of B(X,Y )). Using Lemma 2.1, we can

bound the cardinality of S′ by

(4.5) #S′ ≤ max{1, χS(C)},

and so

(4.6) max{1, χS′(C)} ≤ 2max{1, χS(C)}.

We rewrite (4.3) as
∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} =
∑

P∈C\S′

max{0, ordP (A(u1, u2))− 1}

+
∑

P∈S′\S

max{0, ordP (A(u1, u2))− 1}.

We will estimate the two sums separately, dividing the proof into several steps similarly to [CZ08]. More-

over, we will explicitly compute all the constants involved at every step showing that they depend only

on degA, HC(A) and ε as wanted.

Step 1. Either the two polynomials A(X,Y ) and B(X,Y ) are coprime, or u1 and u2 satisfy a relation of

the form ur1u
s
2 = γ, with γ an algebraic function of the coefficients of A and max{|r|, |s|} ≤ degA.

Proof. First, notice that by assumption A is irreducible and neither ∂A/∂X nor ∂A/∂Y is identically zero,

hence A(X,Y ) has at least two monomials. Suppose by contradiction that the two polynomials A and B

are not coprime. Since degB(X,Y ) ≤ degA(X,Y ), there exists a ∈ κ(C)∗ such that B(X,Y ) = aA(X,Y ).

Using (4.4), we have that i
u′

1

u1
+ j

u′

2

u2
+

λ′

ij

λij
= a for every i, j with λij 6= 0. Let us consider two monomials

with (i, j) 6= (h, k); we have

i
u′1
u1

+ j
u′2
u2

+
λ′
ij

λij
= h

u′1
u1

+ k
u′2
u2

+
λ′
hk

λhk
,

hence

(i− h)
u′1
u1

+ (j − k)
u′2
u2

=
λ′
hk

λhk
−

λ′
ij

λij
,

which gives a relation of multiplicative dependence between u1 and u2, i.e.

ui−h
1 uj−k

2 = µλhkλ
−1
ij ,

where µ ∈ κ×. Taking r = i − h, s = j − k and γ = µλhkλ
−1
ij , we have a relation ur1u

s
2 = γ with γ an

algebraic function of the coefficients of A and max{|r|, |s|} ≤ degA. This proves Step 1. �

From now on, we will therefore assume that A and B are coprime.

As A(u1, u2)
′ = B(u1, u2), we have that, for every P 6∈ S′,

(4.7) max{0, ordP (A(u1, u2))− 1} ≤ min{ordP (A(u1, u2)), ordP (B(u1, u2))},
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since both A(u1, u2) and B(u1, u2) are S′-integers and so the term of the right hand-side is nonnegative.

Let F (X) := ResY (A(X,Y ), B(X,Y )) ∈ OS′ [X] and G(Y ) := ResX(A(X,Y ), B(X,Y )) ∈ OS′ [Y ] be

the two resultants of A and B with respect to Y and X. If A and B are coprime, then F and G do not

vanish identically. Moreover, since F (X) and G(Y ) are linear combinations of A(X,Y ) and B(X,Y ) over

OS′ [X,Y ], we have that for every P 6∈ S′,

(4.8) min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ min{ordP (F (u1)), ordP (G(u2))}.

It is then enough to bound the gcd of F (u1) and G(u2). In order to do this, we first need to prove a

bound for the degrees of F and G and for the heights of their coefficients. This is the content of Step 2.

Step 2. There exist positive constants C3 and C4 such that the heights of B(X,Y ), F (X) and G(Y ) are

bounded by C3 max{1, χS(C)} and the degrees of B(X,Y ), F (X) and G(Y ) are bounded by C4.

Proof. Given the expression for B(X,Y ) we can bound the height of each of its coefficients as

HC

(
u′1
u1

)
+HC

(
u′2
u2

)
+HC

(
λ′
ij

λij

)
+HC(λij) ≤ 3χS′(C) +HC(A),

since the first three terms are bounded by the Euler characteristic of C\S′ using Lemma 2.1. Consequently,

HC(B) ≤ 3max{1, χS′(C)} + HC(A). Moreover, by definition, F (X) and G(Y ) can be expressed as a

determinant of a N ×N matrix whose entries are the monomials appearing in A(X,Y ) and B(X,Y ), and

with N = degY A(X,Y )+degY B(X,Y ) for F and N = degX A(X,Y )+degX B(X,Y ) for G respectively.

Using that degY B(X,Y ) ≤ degY A(X,Y ) and degX B(X,Y ) ≤ degX A(X,Y ), we have that the heights

of F and G are bounded as follows:

HC(F ) ≤ 2 degY A (3max{1, χS′(C)} +HC(A)) and HC(G) ≤ 2 degX A (3max{1, χS′(C)}+HC(A)) .

Using (4.6), the first estimate is proved by taking

C3 := 2max{degX A(X,Y ),degY A(X,Y )}(6 +HC(A)).

Finally, since the degrees of F (X) and G(Y ) are bounded by 2 degX A(X,Y ) degY A(X,Y ), and

degB(X,Y ) = degX B(X,Y ) + degY B(X,Y ) ≤ 2max{degX A(X,Y ),degY A(X,Y )},

we have that C4 := 2degX A(X,Y ) degY A(X,Y ) gives the desired estimate. �

Next, we need to factor F (X) and G(Y ); this can be done in a suitable finite extension of κ(C). However,

in order to bound the gcd of F (u1) and G(u2), we have to estimate the degree of this extension and the

height of the roots of F (X) and G(Y ). This can be done as follows.

Step 3. There exist a cover E → C of degree bounded by 2C4 and a finite set U ⊂ E such that F (X) and

G(Y ) splits over κ(E) into linear factors and their roots are U -units. Moreover, there exist two constants

C5, C6 > 0 such that

(4.9) χ(E) ≤ C5 max{1, χS(C)} and #U ≤ C6max{1, χS(C)}.

Proof. If the polynomials F (X) and G(Y ) split over κ(C), then the conclusion holds trivially, so we will

assume that this is not the case.

Let us define κ(E) to be the splitting field of F (Z)G(Z) and let us denote by p : E → C the cover corre-

sponding to the field extension. Then deg p ≤ degF+degG ≤ 2C4. To estimate the Euler characteristic of
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E we can use the Riemann-Hurwitz formula. First, note that the ramification of p can arise only over zeros

or poles of the discriminants of the irreducible factors of F and G. By construction, the poles are contained

in the set S′; on the other hand, the number of zeros is bounded by the heights of the discriminants. Recall

that the discriminant of a degree n polynomial h is an homogeneous polynomial in the coefficients of h

of degree 2n − 2. Therefore, its height is bounded by 2H(h) deg h. In our case, the heights of F (X) and

G(Y ) are both bounded by C3 max{1, χS(C)} as proved in Step 2, and therefore the total number of zeros

is bounded by 2C3C4 max{1, χS(C)}. This, together with (4.5), implies that the cardinality of the support

of the ramification divisor is bounded by 2C3C4max{1, χS(C)} +#S′ ≤ (2C3C4 + 1)max{1, χS(C)}.

Since each ramification index is at most C4 (as deg p ≤ 2C4), the total ramification of p is bounded by

C4(2C3C4 + 1)max{1, χS(C)}. Applying the Riemann-Hurwitz formula, we get

χ(E) ≤ (deg p)χ(C) + C4(2C3C4 + 1)max{1, χS(C)} ≤ C5max{1, χS(C)},

where C5 := C4(2C3C4 + 3).

Let us define the set U ′ as the set of zeros of the constant and leading terms of both F and G and

U ′′ := U ′ ∪ S′. Note that the cardinality of U ′ is bounded by 2(HC(F ) +HC(G)) ≤ 4C3 max{1, χS(C)},
and therefore the cardinality of U ′′ is bounded by (4C3 + 1)max{1, χS(C)}. We define U := p−1(U ′′).

Notice that, by construction, the roots of F and G are U -units in κ(E); this follows from the fact that

the coefficients of F and G are S′-integers and the product of all the roots of both F and G is a U ′′-unit.

The cardinality of U is bounded by (deg p)(#U ′′), i.e.

#U ≤ C6 max{1, χS(C)},

with C6 := 2C4(4C3 + 1), which completes the proof. �

Since κ(E) is the splitting field of F (Z)G(Z), we can rewrite the two polynomials in κ(E) as

(4.10) F (X) = η(X − α1) · · · (X − αm) and G(Y ) = ν(Y − β1) · · · (Y − βn),

where η, α1, . . . , αm and ν, β1, . . . , βn are U -units in κ(E) as proved in the previous step.

Using that U ′′ ⊇ S′ ⊇ S, we can split the sum in (4.3) as
∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} ≤
∑

P∈C\U ′′

max{0, ordP (A(u1, u2))− 1}

+
∑

P∈U ′′\S

max{0, ordP (A(u1, u2))− 1}.

By (4.7) and the fact that p(U) = U ′′, we can bound the first sum as
∑

P∈C\U ′′

max{0, ordP (A(u1, u2))− 1} ≤
∑

P∈C\U ′′

min{ordP (A(u1, u2)), ordP (B(u1, u2))}

=
1

[κ(E) : κ(C)]
∑

P∈E\U

min{ordP (A(u1, u2)), ordP (B(u1, u2))}.
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Using (4.8) we finally get
∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} ≤
∑

P∈E\U

min{ordP (F (u1)), ordP (G(u2))}(4.11)

+
∑

P∈U ′′\S

max{0, ordP (A(u1, u2))− 1}.

We now want to bound the first sum of the right hand side of (4.11). By (4.10) we have that, for every

point P ∈ E \ U ,

min{ordP (F (u1)), ordP (G(u2))} ≤
∑

(i,j)

min{ordP (u1 − αi), ordP (u2 − βj)},

using the general property that min{∑i ai,
∑

j bj} ≤ ∑
(i,j)min{ai, bj}; hence we have

(4.12) min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤
∑

(i,j)

min{ordP (u1 − αi), ordP (u2 − βj)}.

Let us define the set Z = {α, β ∈ κ(E) : A(α, β) = 0 = B(α, β), αβ 6= 0}. This set is in principle

strictly smaller than the set of pairs (αi, βj) such that F (αi) = G(βj) = 0 that we consider in the sum;

however, we will show that, eventually replacing U with a bigger set, the inequality (4.12) remains true if

we restrict the sum to the the pairs (αi, βj) ∈ Z. This is the content of the following step.

Step 4. There exist a finite set V ⊇ U and a constant CV > 0 such that #V ≤ CV max{1, χS(C)} and,

for every P ∈ E \ V ,

(4.13) min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤
∑

(α,β)∈Z

min{ordP (u1 − αi), ordP (u2 − βj)}.

Proof. Let V be the subset of E obtained by enlarging U such that, for every i and j, A(αi, βj) and

B(αi, βj) are V -units, whenever they are not zero. The cardinality of the set V can be bounded as

follows: since αi and βj are U -units which are roots of F and G respectively, their heights are bounded by

max{HE(F ),HE (G)}, which using Step 2 and Step 3 is bounded by 2C3C4 max{1, χS(C)}. Moreover, we

can always bound the height of A(αi, βj) and B(αi, βj) by the maximum of the heights of their monomials;

using that HC(A) ≤ C3, this implies that

HE(A(αi, βj)) ≤ HE(A) + (degA)(HE (αi) +HE(βj)) ≤ 4C3C4(1 + degA)max{1, χS(C)},

and similarly, since degB ≤ degA and HE(B) ≤ C3 max{1, χS(C)},

HE(B(αi, βj)) ≤ HE(B) + (degA)(HE(αi) +HE(βj)) ≤ 4C3C4(1 + degA)max{1, χS(C)}.

Taking into account that the number of pairs (αi, βj) is bounded by (degF )(degG), which is bounded by

C2
4 by Step 2, the former two inequalities give

(4.14) #V ≤ #U + C2
4 (HE(A(αi, βj)) +HE(B(αi, βj))) ≤ CV max{1, χS(C)},

with CV := C6 + 8C3C
3
4 (1 + degA).

Let us fix P ∈ E\V . To prove (4.13) we can assume without loss of generality that min{ordP (A(u1, u2)),
ordP (B(u1, u2))} > 0, otherwise the inequality is trivial since every term in the sum on the right of (4.13)
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is nonnegative. In particular, we can assume that ordP (A(u1, u2)) > 0. We will show that, if (αi, βj) /∈ Z,

then

min{ordP (u1 − αi), ordP (u2 − βj)} = 0,

hence proving the claim. To see this, consider (αi, βj) /∈ Z, so for example A(αi, βj) 6= 0. By definition

of V , A(αi, βj) is a V -unit, which implies that ordP (A(αi, βj)) = 0 since P /∈ V . But this implies that

min{ordP (u1 − αi), ordP (u2 − βj)} = 0, otherwise both the differences u1 − αi and u2 − βj would have

a zero in P , and therefore since A(u1, u2) has a zero in P , also A(αi, βj) would have a zero in P , which

contradicts the fact that ordP (A(αi, βj)) = 0. �

Using the bound for χ(E) obtained in (4.9) we get

(4.15) χV (E) = χ(E) + #V ≤ (C5 + CV )max{1, χS(C)}.

By (4.13), Step 2, and inverting the order of summation, we have:
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤
∑

P∈E\V

∑

(α,β)∈Z

min{ordP (u1 − α), ordP (u2 − β)}

≤ C2
4 max
(α,β)∈Z

∑

P∈E\V

min{ordP (u1 − α), ordP (u2 − β)}.(4.16)

Let us define (αı̂, β̂) as a pair in Z for which the maximum is obtained.

In order to estimate the right hand side of (4.16), we will apply the gcd result of [CZ08] to the V -units

u1/αı̂ and u2/β̂. We distinguish two cases according to whether the V -units are independent modulo

constants or not.

Step 5. Assume that u1/αı̂ and u2/β̂ are multiplicatively independent modulo constants; then, there exist

a constant C7 > 0 such that, if max{HC(u1),HC(u2)} ≥ C3max{1, χS(C)}, then
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ C7 max {HC(u1),HC(u2)}2/3 max{1, χS(C)}1/3.

Proof. Since we are assuming that the V -units u1/αı̂ and u2/β̂ are independent, we get that [CZ08,

Corollary 2.3] implies that

(4.17)
∑

P∈E\V

min{ordP (u1 − αı̂), ordP (u2 − β̂)} ≤ 3
3
√
2max

{
HE

(
u1
αı̂

)
,HE

(
u2
β̂

)}2/3

χV (E)1/3.

Using the bound of χV (E) in (4.15), we can rewrite (4.16) using (4.17) as

(4.18)
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ 3
3
√
2C2

4
(C5 + CV )

1/3 max

{
HE

(
u1

αı̂

)
, HE

(
u2

β̂

)}2/3

max{1, χS(C)}1/3.

To prove the statement we want to relate the heights of u1/αı̂ and u2/β̂ with the heights of u1 and u2.

Since αı̂ and β̂ are roots of the polynomials F and G, by Step 2 we obtain that

max{HE(αı̂),HE(β̂)} ≤ 2C3C4max{1, χS(C)}.

Therefore, if

(4.19) max{HE(u1),HE(u2)} ≥ 2C3C4 max{1, χS(C)},
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we have that

(4.20) HE

(
u1
αı̂

)
≤ HE(u1) +HE (αı̂) ≤ 2max{HE(u1),HE(u2)} = 4C4 max{HC(u1),HC(u2)},

and similarly for u2/β̂. Notice that (4.19) is equivalent to

max{HC(u1),HC(u2)} ≥ C3max{1, χS(C)};

under this assumption, using (4.20), we can rewrite (4.18) as

∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ C7 max {HC(u1),HC(u2)}2/3 max{1, χS(C)}1/3,

where we set C7 := 3 · 25/3 C8/3
4 (C5 + CV )

1/3. �

In the next step, we deal with the case in which the V -units u1/αı̂ and u2/β̂ are dependent. We observe

that, as by construction (αı̂, β̂) ∈ Z, we can apply Lemma 3.1 which implies that in this case either u1

and u2 satisfy a relation of the form ur1u
s
2 = γ, or at least one between u1/αı̂ and u2/β̂ is constant.

However, using the bound for HC(F ) and HC(G) given in Step 2, we have that if max{HC(u1),HC(u2)} ≥
C3 max{1, χS(C)} we can always assume to be in the case in which none of the quotients u1/αı̂ and u2/β̂

is constant.

Step 6. Assume that there exists (r, s) ∈ Z2 \ {(0, 0)} such that (u1/αı̂)
r(u2/β̂)

s = µ for some µ ∈ κ×.

Then, if max{HC(u1),HC(u2)} ≥ C3max{1, χS(C)}, we have that ur1u
s
2 = γ, where γ is an algebraic

function of the coefficients of A, and

∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ 4C3
4

max{HC(u1),HC(u2)}
max{|r|, |s|} .

Proof. Under the dependence assumption, [CZ08, Corollary 2.3] applied to the V -units u1/αı̂ and u2/β̂

gives

(4.21)
∑

P∈E\V

min{ordP (u1 − αı̂), ordP (u2 − β̂)} ≤
max

{
HE

(
u1

αı̂

)
,HE

(
u2

β̂

)}

max{|r|, |s|} .

As in the previous step, under the assumption that max{HC(u1),HC(u2)} ≥ C3 max{1, χS(C)}, we can

rewrite (4.16), using (4.21), in terms of the heights of u1 and u2 as

∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))} ≤ 4C3
4

max{HC(u1),HC(u2)}
max{|r|, |s|} ,

as wanted. Moreover, the relation ur1u
s
2 = γ, with γ an algebraic function of the coefficients of A follows

applying Lemma 3.1 and using the assumption that max{HC(u1),HC(u2)} ≥ C3max{1, χS(C)}. �
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Recall that our goal is to prove a bound on the number of multiple zeros of A(u1, u2). This problem

has been reduced to estimate the following sum:

∑

P∈C\S

max{0, ordP (A(u1, u2)− 1)} ≤
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))}

+
∑

P∈V \U

max{0, ordP (A(u1, u2))− 1}+
∑

P∈U ′′\S

max{0, ordP (A(u1, u2))}

≤
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))}(4.22)

+ [κ(E) : κ(C)]
∑

P∈p(V )

max{0, ordP (A(u1, u2))}.

In Steps 5 and 6 we proved an estimate for the first sum appearing in the right hand side. We are left

with providing an estimate for the remaining sum, which we deal with in the following step.

Step 7. There exists a constant C8 > 0 such that:

∑

P∈p(V )

max{0, ordP (A(u1, u2))} ≤ C8 max{1, χS(C)}.

Proof. Let us write the polynomial A(u1, u2) = θ1 + · · · + θM as a sum of monomials, where no subsum

vanishes. All the θi are S-units, in particular they are p(V )-units as p(V ) ⊇ S; hence,

(4.23) HC(θ1 : · · · : θM ) ≥ HC(A(u1, u2)) =
∑

P∈C

max{0, ordP (A(u1, u2))}.

On the other hand [CZ08, Lemma 3.11], which follows from [Zan93, Theorem 1], implies that

(4.24)
∑

P∈C\p(V )

max{0, ordP (A(u1, u2))} ≥ HC(θ1 : · · · : θM )−
(
M

2

)
χp(V )(C);

so, combining (4.23) and (4.24), we have

(4.25)
∑

P∈p(V )

max{0, ordP (A(u1, u2))} ≤
(
M

2

)
χp(V )(C).

The number of monomials of A(u1, u2) is bounded by (degA + 1)2, and χp(V )(C) ≤ 2g(C) − 2 + #V .

Hence, using the estimate for #V obtained in (4.14), we have

χp(V )(C) ≤ (1 + CV )max{1, χS(C)}.

Therefore, (4.25) can be rewritten as

∑

P∈p(V )

max{0, ordP (A(u1, u2))} ≤
(
(degA+ 1)2

2

)
(1 + CV )max{1, χS(C)}.

Taking C8 :=
((degA+1)2

2

)
(1 + CV ), we have the desired estimate. �



LANG-VOJTA CONJECTURE OVER FUNCTION FIELDS FOR SURFACES DOMINATING G2
m 17

End of the proof of Proposition 4.2. Fix ε > 0. From (4.22), we have that, either ur1u
s
2 = γ with γ an

algebraic function of the coefficients of A and max{|r|, |s|} ≤ degA or

∑

P∈C\S

max{0, ordP (A(u1, u2)− 1)} ≤
∑

P∈E\V

min{ordP (A(u1, u2)), ordP (B(u1, u2))}

+ [κ(E) : κ(C)]
∑

P∈p(V )

max{0, ordP (A(u1, u2))}.

In the case in which u1/αı̂ and u2/β̂ are independent modulo constants, by Step 5, if max{HC(u1),HC(u2)} ≥
C3 max{1, χS(C)}, we get

∑

P∈C\S

max{0, ordP (A(u1, u2))−1} ≤ C7 max{HC(u1),HC(u2)}2/3 max{1, χS(C)}1/3+2C4C8 max{1, χS(C)}.

Therefore in this case we obtain that, if max{HC(u1),HC(u2)} ≥ C9 max{1, χS(C)} with

C9 := max

{
C3,

(
2C7

ε

)3

,
4C4C8

ε

}
,

then
∑

P∈C\S

max {0, ordP (A(u1, u2))− 1} ≤ εmax{HC(u1),HC(u2)},

as wanted.

On the other hand, in the case in which u1/αı̂ and u2/β̂ are dependent, by Step 6 we obtain that, if

max{HC(u1),HC(u2)} ≥ C3 max{1, χS(C)}, then

∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} ≤ 4C3
4
max{HC(u1),HC(u2)}

max{|r|, |s|} + 2C4C8max{1, χS(C)}.

This implies that, either ur1u
s
2 = γ with γ an algebraic function of the coefficients of A and max{|r|, |s|} ≤

8C3
4/ε, or, if max{HC(u1),HC(u2)} ≥ C10 max{1, χS(C)} with

C10 := max

{
C3,

4C4C8

ε

}
,

then
∑

P∈C\S

max {0, ordP (A(u1, u2))− 1} ≤ εmax{HC(u1),HC(u2)}.

The two cases imply that, either ur1u
s
2 = γ with max{|r|, |s|} ≤ C2 where

C2 := max{degA, 8C3
4/ε},

or, if max{HC(u1),HC(u2)} ≥ C1max{1, χS(C)}, with C1 := max{C9, C10}, we get

∑

P∈C\S

max {0, ordP (A(u1, u2))− 1} ≤ εmax{HC(u1),HC(u2)},

finishing the proof. �
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Number of common zeros of two irreducible polynomials. To conclude the proof of Theorem 4.1

we need to prove a bound for the number of common zeros of two irreducible polynomials, which is the

content of the following proposition.

Proposition 4.3. In the same setting of Theorem 4.1, let A1, A2 ∈ O∗
S [X,Y ] be two coprime polyno-

mials and let ε > 0 be a positive real number. Then, there exist constants D1 = D1(degA1,degA2,

HC(A1),HC(A2), ε) and D2 = D2(degA1,degA2, ε) such that, for every pair (u1, u2) ∈ (O∗
S)

2 with

max{HC(u1),HC(u2)} ≥ D1 max{1, χS(C)},

at least one of the following holds:

• the S-units u1, u2 verify a relation of the form ur1u
s
2 = γ for a pair of integers (r, s) ∈ Z2 \ {(0, 0)}

such that max{|r|, |s|} ≤ D2 and γ is an algebraic function of the coefficients of A1 and A2;

• the rational functions A1(u1, u2) and A2(u1, u2) verify

(4.26)
∑

P∈C\S

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤ εmax{HC(u1),HC(u2)}.

Proof of Proposition 4.3. Let us write the polynomials A1(X,Y ) and A2(X,Y ) as

A1(X,Y ) =
∑

i+j≤degA1

λijX
iY j and A2(X,Y ) =

∑

k+l≤degA2

µklX
kY l,

where degAi(X,Y ) = degX Ai(X,Y ) + degY Ai(X,Y ) for i = 1, 2 as before.

The proof follows the same steps as in the proof of Proposition 4.2, where the polynomial A2 plays

the role of the polynomial B. Therefore we will only indicate the required adjustments and compute the

corresponding constants.

Note that Step 1 is automatically verified since the two polynomials A1 and A2 are coprime.

Let F (X) = ResY (A1(X,Y ), A2(X,Y )) ∈ OS [X] and G(Y ) = ResX(A1(X,Y ), A2(X,Y )) ∈ OS [Y ] be

the two resultants of A1 and A2 with respect to Y and X, which do not vanish identically in view of the

coprimality of A1 and A2. As in the previous case, we have that, for every place P 6∈ S,

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤ min{ordP (F (u1)), ordP (G(u2))}.

It is then enough to bound the gcd of F (u1) and G(u2). By definition of F and G we get the following

bounds for their degrees and their heights.

Step 2. There exist positive constants D3 and D4 such that the heights of A1(X,Y ), A2(X,Y ), F (X) and

G(Y ) are bounded by D3 max{1, χS(C)} and the degrees of F (X) and G(Y ) are bounded by D4.

Proof. The bounds are obtained similarly to Step 2 of Proposition 4.2. In this setting we get

D3 := 2(degA1 + degA2)(HC(A1) +HC(A2)) and D4 := (degA1 + degA2)
2.

�

In order to bound the gcd of F (u1) and G(u2), we have to estimate the degree of the splitting field of

F (Z)G(Z) and the height of the roots of F and G.
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Step 3. There exist a cover p : E → C of degree bounded by 2D4 and a finite set U ⊂ E such that F (X)

and G(Y ) splits over κ(E) into linear factors and their roots are U -units. Moreover, there exist constants

D5,D6 > 0 such that

χ(E) ≤ D5 max{1, χS(C)} and #U ≤ D6 max{1, χS(C)}.

Proof. Letting κ(E) be the splitting field of F (Z)G(Z) and using the same argument as in the previous

case, one concludes taking D5 := D4(2D3D4 + 3) and D6 := 2D4(4D3 + 1). �

In κ(E) we can rewrite the two polynomials as

F (X) = η(X − α1) · · · (X − αm) and G(Y ) = ν(Y − β1) · · · (Y − βn),

where η, α1, . . . , αm and ν, β1, . . . , βn are U -units in κ(E) as proved in the previous step. This implies

that, for every P ∈ E \ U ,

min{ordP (F (u1)), ordP (G(u2))} ≤
∑

(i,j)

min{ordP (u1 − αi), ordP (u2 − βj)}.

As in the previous case, we want to restrict the sum on the right to the set Z = {(α, β) ∈ E : A1(α, β) =

0 = A2(α, β), αβ 6= 0}. In the next step we prove that the same inequality holds when restricting to a

finite set V ⊇ U of bounded cardinality.

Step 4. There exist a finite set V ⊇ U and a positive constant DV such that #V ≤ DV max{1, χS(C)}
and, for every P ∈ E \ V ,

(4.27) min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤
∑

(α,β)∈Z

min{ordP (u1 − α), ordP (u2 − β)}.

Proof. The proof is identical to the Step 4 of Proposition 4.2 and we can take

DV := D6 + 4D3D4
3 (2 + degA1 + degA2) .

�

We can then split the sum (4.26) as
∑

P∈C\S

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤
∑

P∈E\V

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))}

+ 2D4

∑

P∈p(V )\S

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))}.(4.28)

Using (4.27) and Step 2, we can rewrite the first sum as
∑

P∈E\V

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤
∑

P∈E\V

∑

(α,β)∈Z

min{ordP (u1 − α), ordP (u2 − β)}

≤ D4
2 max
(α,β)∈Z

∑

P∈E\V

min{ordP (u1 − α), ordP (u2 − β)}.(4.29)

Let (αı̂, β̂) ∈ Z be a pair for which the maximum is obtained. We will estimate the right hand side of

(4.29) using the gcd estimate of [CZ08, Corollary 2.3] and relating it to the heights of u1 and u2. We will

consider the case when the two V -units u1/αı̂ and u2/β̂ are independent or dependent modulo constants

separately. This is the content of the next two steps.
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Step 5. Assume that u1/αı̂ and u2/β̂ are independent. Then, there exists a constant D7 > 0 such that,

if max{HC(u1),HC(u2)} ≥ D3 max{1, χS(C)}, then

(4.30)∑

P∈E\V

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤ D7max {HC(u1),HC(u2)}2/3 max{1, χS(C)}1/3.

Proof. We apply [CZ08, Corollary 2.3] to (4.29), noticing that, if max{HC(u1),HC(u2)} ≥ D3 max{1, χS(C)},
we can bound the heights of u1/αı̂ and u2/β̂ in terms of the heights of u1 and u2. Following the same

computation as in the irreducible case, we get that (4.30) holds with

D7 := 3 · 25/3D4
8/3 (D5 +DV )

1/3 .

�

We are left with the case in which u1/αı̂ and u2/β̂ are multiplicatively dependent modulo constants,

which is the content of the following step.

Step 6. Assume that there exists (r, s) ∈ Z2 \ {(0, 0)} such that (u1/αı̂)
r(u2/β̂)

s = µ for some µ ∈ κ×.

Then, ur1u
s
2 = γ, where γ is an algebraic function of the coefficients of A1 and A2 and, if max{HC(u1),HC(u2)}

≥ D3 max{1, χS(C)}, we have

(4.31)
∑

P∈E\V

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤ 4D3
3

max {HC(u1),HC(u2)}2/3
max{|r|, |s|} .

Proof. As before, we apply [CZ08, Corollary 2.3] to (4.29), and, if max{HC(u1),HC(u2)} ≥ D3max{1, χS(C)},
we can bound the heights of u1/αı̂ and u2/β̂ in terms of the heights of u1 and u2. The same computation

as in the irreducible case give (4.31). Notice that since (αı̂, β̂) is a zero of A1 and A2, this implies directly

that ur1u
s
2 = γ where γ := µαr

ı̂β
s
̂ is an algebraic function of the coefficients of A1 and A2. �

In the previous steps we estimated the first sum in the right hand side of (4.28); in the last step, we

bound the second sum.

Step 7. There exists a constant D8 > 0 such that:

∑

P∈p(V )

min{ordP (A1(u1, u2)), ordP (A2(u1, u2))} ≤ D8 max{1, χS(C)}.

Proof. The main idea is that the number of common zeros of A1(u1, u2) and A2(u1, u2), counted with

multiplicities, is bounded by the number of zeros of A1(u1, u2) counted with multiplicities, and therefore

we can reduce the computation to the case of a single polynomial as in the irreducible case. Using the

same computation of Step 7 of Proposition 4.2, we can take

D8 :=

(
(degA1 + 1)2

2

)
(1 +DV ).

�
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End of the proof of Proposition 4.3. The end of the proof is identical to the irreducible case: given ε > 0

one considers (4.28) and uses Step 5 and Step 6 to bound the first sum, and Step 7 to bound the second

sum. Then, one gets the desired conclusion with the constants

D1 := max

{
D3,

(
2D7

ε

)3

,
4D4D8

ε

}
and D2 := 8D4

3/ε.

�

End of the proof of Theorem 4.1. Given the factorization of the polynomial A given in (4.2) we have that,

either ur1u
s
2 = γ with max{|r|, |s|} ≤ Θ2 and Θ2 := max{C2,D2} or

∑

P∈C\S

max{0, ordP (A(u1, u2))− 1} =

l∑

i=1

∑

P∈C\S

max{0, ordP (Ai(u1, u2))− 1}

+
∑

1≤i<j≤l

∑

P∈C\S

min{ordP (Ai(u1, u2)), ordP (Aj(u1, u2))}

≤ (degA+ 1)2


max

i

∑

P∈C\S

max{0, ordP (Ai(u1, u2))− 1}

+ max
(i,j)

∑

P∈C\S

min{ordP (Ai(u1, u2)), ordP (Aj(u1, u2))}


 .

We obtain the bound (4.1) with

Θ1 := max

{
max

i
C1

(
Ai,

ε

2(degA+ 1)2

)
, max

(i,j)
D1

(
Ai, Aj ,

ε

2(degA+ 1)2

)}
.

where C1(Ai, δ) is the constant appearing in Proposition 4.2 applied to the polynomial Ai and the real

number δ and D1(Ai, Aj , δ) is the constant appearing in Proposition 4.3 applied to the polynomials Ai

and Aj and the real number δ. �

Remark 4.4. Recently in [Lev19], Levin obtained a generalization of gcd results over number fields as

[BCZ03, CZ05] for polynomials with an arbitrary number of variables. These results have been used to

prove some cases of the Lang-Vojta conjectures in higher dimension both over number fields [Lev19] and

function fields [CLZ19].

5. The Ramification Divisor

In this section we study the contribution of the ramification divisor of the map π↾X\D to the height

of a section σ : C → X with supp(σ∗D) ⊆ S, where X is a threefold as in Section 2.3 and S ⊂ C is a

finite set of points. Recall that we denote by Z the closure of the ramification divisor of the finite map

π↾X\D : X \ D → G2
m × C. The image π(Z \ D) will be defined by the vanishing of a certain polynomial

A ∈ κ(C)[X,Y ]. We will use Theorem 4.1 to derive a bound for the degree of the pull-back of the

ramification divisor. This is the content of the following proposition.
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Proposition 5.1. In the setting above, for every ε > 0 there exists a constant C = C(degA,HC(A),deg π, ε),

such that, for every section σ : C → X of height H ≥ C max{1, χS(C)} such that supp(σ∗D) ⊆ S and

σ(C) is not contained in Z, the degree of σ∗(Z) \ S satisfies

deg(σ∗(Z) \ S) ≤ εH.

Proof. The statement is trivial if C∩Z is empty, and without loss of generality we can assume Z irreducible

by applying the same argument to each irreducible component. By construction π(Z \ D) inside G2
m × C

is defined by an irreducible polynomial A ∈ κ(C)[X,Y ], which, since we are assuming Z is not empty,

is not a monomial. Furthermore, we can enlarge S such that each coefficient of A is an S-unit (and the

extension depends only on HC(A) and degA). The pullback π∗A is a regular function on X \D. We claim

that the degree of σ∗(Z) \ S is bounded by the sum of the orders of A evaluated at two S-units.

Note that we can assume that Z is a Cartier divisor: it is always Q-Cartier (see Section 6) and therefore

there exists a positive integer ℓ such that ℓZ ∼ Z ′ with Z ′ Cartier. Then, since σ∗(Z) = 1
ℓσ

∗(Z ′) and

ℓ is independent of σ, we can reduce to the case in which Z itself is a Cartier divisor. Then, since X
is a normal variety, Z is locally defined by fV = 0 for an open (affine) V ⊂ X . The fact that Z is the

ramification divisor of π implies that f2
V divides π∗A as elements of the local ring OV,Z . Therefore we

can write locally π∗A = f2
V g for a regular function g in V . Consider now a point P ∈ C \ S such that

σ(P ) ∈ Z ∩ V . The contribution of P to the divisor σ∗(Z) \ S is ordP (fV ◦ σ). On the other hand, since

π∗A = f2
V g in OV,Z for a regular function g, we have

ordP (A(u, v)) ≥ 2 ordP (fV ◦ σ),

where π ◦σ = (u, v) for two S-units u, v of C. Hence, we can bound the degree of σ∗(Z) \S by estimating

the number of multiple zeros of the polynomial A evaluated at the two S-units u and v. Formally:

(5.1) deg(σ∗(Z) \ S) =
∑

σ(P )∈Z

ordP (fv ◦ σ) ≤
∑

σ(P )∈Z

(ordP (A(u, v)) − 1) .

Since we are estimating the degree of σ∗(Z) restricted to C \ S, the sum on the right includes only

P ∈ C \ S. To estimate this sum we want to apply Theorem 4.1. Fix ε > 0 and assume first that u, v are

multiplicatively independent, i.e. they do not satisfy any multiplicative relation of the form urvs = γ for

a suitable pair of nonzero integers (r, s) ∈ Z2 \ {(0, 0)} and γ an algebraic function of the coefficients of

A. We can apply Theorem 4.1 to obtain directly from (5.1) a bound of the form

(5.2) deg(σ∗(Z) \ S) ≤ εH,

provided that H is bigger than Θ1max{1, χS(C)} where Θ1(degA,HC(A), ε) is the explicit constant of

Theorem 4.1. This proves the conclusion in this case.

Assume on the contrary that there exist (r, s) ∈ Z2 \ {(0, 0)} and a rational function γ ∈ κ(C) which is

an algebraic function of the coefficients of A, such that urvs = γ. Then Theorem 4.1 implies that, either

the same conclusion as in (5.2) holds, or there is a bound of the form max{|r|, |s|} ≤ Θ2 for a constant Θ2

that depends only on degA and ε. In this latter case, the curve (π ◦ σ)(C) is a curve of degree bounded

by 2Θ2 HC(γ). Therefore, the intersection between (π ◦σ)(C) and π(Z) is bounded by (2Θ2 HC(γ)) degA.

In this case we obtain that

deg(σ∗(Z) \ S) ≤ 2Θ2HC(γ)(degA)(deg π) ≤ εH,
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provided that H ≥ 2Θ2HC(γ)(degA)(deg π)

ε
. Hence setting

C = max

{
Θ1,

2Θ2HC(γ)(degA)(deg π)

ε

}

gives the desired bound. �

6. Positivity of the ramification divisor

In Proposition 5.1 we estimated the contribution of the ramification divisor Z to the degree of σ(C). In

this section we study positivity properties of this divisor. We first show that Z is linearly equivalent to

the divisor KX/C +D.

Lemma 6.1. Let X ,D, Z be defined as in Section 2.3. Then

Z ∼ KX/C +D.

In particular if KX/C +D is big then Z is a big divisor on X .

Proof. The general fiber of the fibration ρ : X → C is smooth, so in particular normal, and C is smooth

therefore X is normal and the relative canonical divisor KX/C is Q-Cartier (see for example [Has96, 4.1]).

Therefore KX is Q-Cartier since the canonical divisor of X verifies

KX = KX/C + ρ∗(KC).

At the same time, the canonical divisor of P2 × C is KP2 ⊞KC := pr∗1(KP2) + pr∗2(KC), and therefore the

Riemann-Hurwitz formula for π : X → P2 × C implies that

KX = π∗(KP2 ⊞KC) +Ram

= π∗pr∗1(KP2) + π∗pr∗2(KC) +Ram

= π∗pr∗1(KP2) + ρ∗(KC) +Ram,

where Ram is the ramification divisor of π and we used that ρ = pr2 ◦ π. Therefore we obtain that

KX/C − π∗pr∗1(KP2) = Ram.

Since KP2 ∼ −(P2 \G2
m), the pullback π∗pr∗1(KP2) is linearly equivalent to −(D+RamD), where RamD is

the ramification coming from the support of D. Similarly, Ram = Z+RamD and therefore KX/C+D ∼ Z,

as wanted. �

Lemma 6.1 was used in the split case to show that, if X is of log general type then Z is a big divisor.

However, in our situation, Lemma 6.1 only implies that the restriction of Z to the generic fiber is big,

which is sometimes referred as Z is relatively big or ρ-big. This follows from the fact that

(KX/C +D)↾Xη
∼= KXη +Dη ,

and we are assuming that the generic fiber has the property that the log canonical divisor is big. This in

general does not imply that Z is a big divisor (consider for example a trivial family over the base). Note

however that in certain cases Z is already positive, as shown in the following remark.
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Remark 6.2. One important example of applications of the main theorem is for complements of divisors

in P2. In this case, X = P2 × C and D is an effective member of the linear system |OP2(m) ⊠ L| :=
|pr∗1OP2(m)⊗ pr∗2L|. The condition that the fibers of ρ = pr2 are of log general type implies that m ≥ 4

and the fact that the fibration is not isotrivial implies that degC L > 0. Then a direct computation shows

that KX/C ∼ O2
P(−3)⊠OC and therefore

OX (KX/C +D) = (OP2(−3)⊠OC)⊗ (OP2(m)⊠ L) = OP2(m− 3)⊠ L,

which is ample since m ≥ 4 and degC L > 0. This shows that Z = KX/C +D is big in this case.

To obtain positivity properties of the divisor Z it is sufficient to add to it the pullback of a divisor from

the base curve. More in general, the following proposition holds.

Proposition 6.3. There exists an effective divisor M on C such that Z + ρ∗MC is big.

Proof. The argument is somehow standard; we reproduce it here for completeness. Since Z is ρ-big, there

exists a ρ-ample Cartier divisor A and an effective Cartier divisor E on X such that ρ∗OX (E) 6= 0 and

dZ ∼ A + E for some d ≥ 1 (see [dFEM14, Proposition 1.6.33]). By [Sta19, Lemma 0892], if M1 is an

ample divisor on C, then for every a large enough the divisor AaM1
:= A+ ρ∗aM1 is ample. In particular,

letting M = aM1, one has that d(Z + ρ∗M) ∼ AaM1
+ E, and therefore Z + ρ∗M is a big divisor on X ,

as wanted. �

Proposition 6.3 will be used in the next section to bound the degree of a section by estimating the

intersection with the divisor Z. We end this section with a result that allows a more direct control on the

positivity of Z when the family has nice properties coming from the theory of stable pairs.

When the log canonical divisor of the generic fiber of ρ is ample, we can choose a model of (X,D) over

C that is a stable family in the sense of Kollár (see for example [AT16, Definition 2.7]). In this situation

we show that, when D is an ample divisor on X , the divisor KX/C +D, and therefore Z, is indeed big.

This follows from a result of Kovács and Patakfalvi in [KP17].

Proposition 6.4. Let (X,D) → B be a stable family such that the generic fiber has log canonical singu-

larities, the base B is a nonsingular projective curve and D is an ample divisor on X. Then, KX/B +D

is big.

Proof. Let E be an irreducible divisor in the linear system nD and consider the pair (X, 1
nE) → B: it

is a stable family where the generic fiber has now klt singularities (see [Kol13, Definition 2.8]). The fact

that D is ample and the base is one dimensional implies that the variation of the family is maximal and

therefore [KP17, Corollary 7.3] implies that KX/Y + 1
nE is big, finishing the proof. �

Proposition 6.4 has the advantage of reducing the problem of testing whether the divisor Z is big to an

ampleness condition on the model of the divisor D, a condition that is easier to check in the applications.

7. Geometric Lang-Vojta for ramified covers of G2
m

In this section we apply Proposition 5.1 together with Proposition 6.3 to deduce Theorem A. This

extends explicitly [CZ13, Theorem 2] to the case of non-isotrivial pairs.

https://stacks.math.columbia.edu/tag/0892
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Theorem A. Let ρ : (X ,D) → C be a fibered threefold and let Z be the closure of the ramification divisor

of the finite map π : X \ D → G2
m × C as defined in Section 2.3.

Assume that pr1(π(Z)) is disjoint from the singular points of P2 \ G2
m; then, there exists a constant

C = C(Z,deg π) such that, for every section σ : C → X with supp(σ∗D) ⊆ S, the following holds:

degσ(C) ≤ C ·max{1, χS(C)}.

Proof. By Proposition 6.3, there exists an effective divisor M on C such that Z + ρ∗M is a big Q-Cartier

divisor; therefore there exist an integer m, an ample divisor H and an effective divisor E on X such that

m(Z + ρ∗M) ∼ H + E. We can estimate the degree of σ(C) by estimating σ(C) · H. Recall that the

constant C implicitly depends on the projective embedding X → Pn, and therefore on the choice of H.

First we notice that, if σ(C) is contained in the support of E, then we obtain a bound of the desired

form immediately. Indeed, assuming E is irreducible by arguing on every irreducible component, since

σ(C) ⊂ E, the restriction ρ|E is a flat dominant map where now E has relative dimension 1, i.e. E is a

curve over the function field κ(C). The generic fiber of the image π(E) intersects π(D) in at least three

points, since we are assuming that pr1(π(Z)) is disjoint from the singular points of P2 \G2
m. This shows

that E/κ(C) is a curve of log general type hence Siegel’s Theorem applies: in particular, either there are

only finitely many integral sections σ ∈ E(κ(C)) or E is isotrivial. In both cases we obtain directly that

deg(σ(C)) is bounded by c1 = c1(Z,deg π).

We are therefore left with the case in which σ(C) is not contained in the support of E. Then,

(7.1)
1

m
deg σ(C) = 1

m
σ(C) ·H ≤ 1

m
σ(C) · (H + E) = σ(C) · Z + σ(C) · ρ∗M.

Since ρ∗M is supported on a finite number of fibers, the intersection σ(C)·ρ∗M is bounded independently

of σ by a constant c2 = c2(Z) that depends only on Z. Therefore it is enough to bound the intersection

σ(C) · Z.

We view G2
m embedded in P2 as the complement of the divisor UVW = 0, where U, V and W are

the homogeneous coordinates in P2. Considering the morphism π ◦ σ : C → P2 × C restricted to the

complement of S (which by abuse of notation we still denote by π ◦σ), since pr1(π(Z)) avoids the singular

points of P2 \G2
m, there are S-units u, v such that π ◦ σ is given by ((u : v : 1), idC).

Let f(U, V,W ) = 0 be an equation for π(Z), which is a polynomial with coefficients in κ(C). Then, we

can estimate the intersection σ(C)·Z by counting the number of zeros of f evaluated at (u, v, 1). Therefore

(7.1) can be written as

(7.2)
∑

P∈C

max{0, ordP f(u, v, 1)} ≥ 1

m deg π
max{H(u),H(v)} − c2

degπ
.

On the other hand, if at least one of the heights of u and v is larger than the constant appearing in

Proposition 5.1, we have that for every ε > 0 the following equality holds:

(7.3)
∑

P∈C\S

max{0, ordP f(u, v, 1)} ≤ εmax{H(u),H(v)}.

Up to a finite extension of S, independent of u and v, we can assume that the coefficients of f are

S-units, and therefore f(u, v, 1) is an S-integer. Since pr1(π(Z)) is disjoint from the singular points of

P2 \G2
m, the constant term f(0, 0, 1) = µ is a nonzero S-unit (independent of u and v). We write f(u, v, 1)

as sum of monomials using the following notation
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w1 := −f(u, v, 1) f(u, v, 1) :=
n∑

j=2

wj .

We get w1 + · · · + wn = 0 where wn = µ. If a proper subsum vanishes, this gives an equation of the

form g(u, v) = 0 which implies that deg π(σ(C)) is bounded by deg g ≤ deg f thus finishing the proof. In

particular, this might happen when u and v are multiplicatively dependent, and one obtains a bound on

the exponents of the multiplicative relation.

Therefore, we can assume that no proper subsum of w1 + · · · + wn = 0 vanishes, so that we can apply

[BM86, Theorem B] to obtain

(7.4) H(w1 : · · · : wn) ≤ γnmax{0, 2g − 2}+
∑

P∈C

(γn − γmP
),

where

γ0 = 0, γℓ =
1

2
(ℓ− 1)(ℓ − 2) ∀ℓ ≥ 1,

and mP denotes the number of wis that are units at P . The right hand side of (7.4) can be bounded from

above obtaining

(7.5) H(w1 : · · · : wn) ≤ γnmax{0, 2g − 2}+
∑

P∈S

γn +
∑

P∈C\S

(γn − γmP
).

Notice that γmP
= γn for all but finitely many P ∈ C \ S. In this finite set, which is the set of zeros of

f(u, v, 1) outside S, we have γmP
= γn−1. Therefore we can rewrite equation (7.5) as

H(w1 : · · · : wn) ≤ 2γn max{1, 2g − 2 + #S}+ (n− 2)
∑

P∈C\S

max{0, ordP f(u, v, 1)}.

Using (7.3), we have that for every ε > 0

(7.6) H(w1 : · · · : wn) ≤ (n − 1)(n − 2)max{1, 2g − 2 +#S}+ (n− 2)εmax{H(u),H(v)}.

Since w1 = −f(u, v, 1) and wn = µ, we can bound from below the projective height as

(7.7) H(w1 : · · · : wn) ≥ H(f(u, v, 1) : µ) ≥
∑

P∈C

max{0, ordP (f(u, v, 1))} −H(µ).

Combining (7.2) with (7.7), we have

(7.8) H(w1 : · · · : wn) ≥
1

m deg π
max{H(u),H(v)} − c2

deg π
−H(µ).

Using (7.6) with ε =
1

2m(n− 2) deg π
together with (7.8) we obtain

(7.9) max{H(u),H(v)} ≤ c3 max {1, χS(C)} ,

where

c3 := max

{
2m deg π

(
(n− 1)(n − 2) +

c2
deg π

+H(µ)

)
, c4

}
.

and c4 is the constant appearing in Proposition 5.1, which depends only on Z and deg π.

Finally, we have obtained that either the degree of σ(C) is directly bounded by a constant which depends

only on Z and the degree of π, or the maximum of the heights of u and v is bounded by (7.9), which

implies a bound for the degree of the image σ(C). �
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8. Applications

In this section we give an explicit application of Theorem A, which generalizes [CZ13, Theorem 1] and

[Tur17, Theorem 1.3].

Theorem B. Let D be a non-isotrivial stable flat family of divisors in P2 over a smooth integral curve

C. Assume that there exists a finite set of points S ⊂ C such that for every P ∈ C \ S the fiber DP of D
over P has simple normal crossing singularities and r ≥ 3 components of total degree d ≥ 4. Then, there

exists a constant C, depending only on the generic fiber of D, such that for every section σ : C → P2 × C
verifying supp(σ∗D) ⊆ S the following holds:

degσ(C) ≤ C ·max{1, χS(C)}.

Proof. By Remark 6.2, D is an ample (Cartier) divisor on P2 × C, and therefore we can assume that

D ∈ |OP2(d) ⊠ L| for an ample L ∈ Pic(C) and d ≥ 4. Let 0 ∈ C be the generic point and let D0 be the

generic fiber of the family D → C. The hypotheses ensure that we can write D0 = D1 +D2 + · · · +Dr,

with r ≥ 3. Let g1 be an equation of D1, g2 be an equation of D2, and g3 be an equation of D3+ · · ·+Dr,

of degree respectively d1, d2 and d3; clearly d1 + d2 + d3 = d. Let us consider the map

π0 : P
2 → P2 π0([x0 : x1 : x2]) = [gd2d31 ([x0 : x1 : x2]) : g

d1d3
2 ([x0 : x1 : x2]) : g

d1d2
3 ([x0 : x1 : x2])],

which is clearly a finite map and it is defined everywhere since D0 has simple normal crossing singularities.

Moreover π0(D
0) = P2\G2

m and therefore π0 restricts to a finite cover of G2
m on P2\D0. The same argument

as in [CZ13, Theorem 1] implies that if E is an irreducible component of the ramification divisor of π0 such

that π0(E) passes through a singular point of P2 \G2
m then E lies in the support of D0. Therefore, we can

extend π0 to a generically finite map π : P2 × C 99K P2 × C which, after possibly resolving indeterminacy

of the map, fits into the diagram

(P2 × C,D)

pr2
��

π
// P2 × C

pr2

xxqqq
q
q
q
q
q
q
q
q
q
q

C

σ

<<

By the above discussion the ramification divisor of π has the property that every irreducible component

E such that pr1(π(E)) passes through one of the singular points of P2 \ G2
m is contained in the support

of D; in particular pr1(π(Z)) is disjoint from the singular points of P2 \G2
m, where Z is the ramification

divisor of π↾(P2×C)\D. Therefore we can apply Theorem A whose conclusion implies the theorem. �

We give now an explicit example where Theorem B applies.

Example 8.1. Consider the 1 parameter family of reducible plane quartics given by the vanishing of

(y0x0)(y0x1)(y
2
0x

2
2 − y20x

2
1 − y21x1x0 − y20x

2
0),

in P2 × P1, and let D ∈ |OP2(4) ⊠ OP1(4)| be the associated divisor. Let S be the finite set of points of

P1 for which the specialized divisor has no normal crossing singularities or does not have 3 irreducible

components; note that S contains at least two points, e.g. [0 : 1] and [1 :
√
2]. We define

π([x0 : x1 : x2]) = [(y0x0)
2 : (y0x1)

2 : y20x
2
2 − y20x

2
1 − y21x1x0 − y20x

2
0],
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which is clearly a finite map and well defined outside of D. In this case one can compute explicitly

the ramification of the finite map π which is given by (y0x0)(y0x1)(y
2
0x2) = 0; in particular it has 3

irreducible components. Two of them, namely y0x0 = 0 and y0x1 = 0 are contained in the support of D,

while y20x2 = 0 corresponds to Z in our previous notation. We see directly that Z is an ample divisor

lying in the linear system |OP2(1)⊠OP1(2)| and moreover Z ∼ KP2×P1 +D. Clearly, π(Z) does not pass

through [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0] and therefore we can apply Theorem B obtaining a bound on

the degree of the image of sections σ : P1 → P2 × P1 such that supp(σ∗D) is contained in S.
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