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AN EFFECTIVE CRITERION FOR PERIODICITY OF `-ADIC
CONTINUED FRACTIONS

LAURA CAPUANO, FRANCESCO VENEZIANO, AND UMBERTO ZANNIER

Abstract. The theory of continued fractions has been generalized to `-adic
numbers by several authors and presents many differences with respect to
the real case. For example, in the `-adic case, rational numbers may have a
periodic non-terminating expansion; moreover, for quadratic irrational num-
bers, no analogue of Lagrange’s theorem holds, and the problem of deciding
whether the continued fraction expansion is periodic seems to be still open. In
the present paper we investigate the `-adic continued fraction expansions of ra-
tionals and quadratic irrationals using the definition introduced by Ruban. We
give general explicit criteria to establish the possible periodicity of the expan-
sion in both the rational and the quadratic case (for rationals, the qualitative
result is due to Laohakosol [Lao85]).

1. Introduction

The theory of real continued fractions plays a central role in real Diophantine
Approximation for many different reasons, in particular because the convergents of
the simple continued fraction expansion of a real number α give the best rational
approximations to α. Motivated by the same type of questions, several authors
(Mahler [Mah34], Schneider [Sch69], Ruban [Rub70], Bundschuch [Bun77], and
Browkin [Bro78]) have generalized the theory of real continued fractions to the
`-adic case in various ways.

There is no canonical way to define a continued fraction expansion in this context,
as we lack a canonical `-adic analog of the integral part. The `-adic process which is
the most similar to the classical real one was mentioned for the first time in one of
the earliest papers on the subject by Mahler [Mah34], and then studied accurately
by Ruban [Rub70], who showed that these continued fractions enjoy nice ergodic
properties.

Ruban’s continued fractions will be the subject of this paper and they have
many important differences with respect to the classical real ones. First of all,
while some rational numbers have a finite expansion, this is not—unlike the real
case— the only possible behaviour. For example, it is easy to see that negative
rational numbers cannot admit a terminating Ruban continued fraction.

It is however possible to decide when a given rational number admits a finite
Ruban continued fraction expansion and indeed our first result is the following:

Theorem 1.1. Let ` be a prime number and α ∈ Q be a rational number.

(i) The Ruban continued fraction expansion of α terminates if and only if all
complete quotients are non-negative; there is an algorithm to decide in a
finite number of steps whether this happens.
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2 L. CAPUANO, F. VENEZIANO, AND U. ZANNIER

(ii) If the Ruban continued fraction expansion of α does not terminate, then it
is periodic with all partial quotients eventually equal to `−`−1; in this case,
the pre-periodic part can be effectively computed.

Disregarding the computability aspect, the last part of this result has already
appeared in the literature, due to Laohakosol and, independently, to Wang (see
[Lao85] and [Wan85]), but this does not seem to be the case for either of the
algorithmic conclusions, which apparently do not follow directly from the proofs
in [Lao85] and [Wan85]. For completeness, we have also included our own (short)
proof of the qualitative part, which is quite different.

The conclusion of Theorem 1.1 depends of course on the precise algorithm defin-
ing the continued fraction expansion. In [Bro78], Browkin modified Ruban’s defini-
tion so that every rational number has a finite `-adic continued fraction expansion.

Another natural question arises when one considers the periodicity of Ruban
continued fractions. In the classical real case, Lagrange’s theorem states that a
real number has an infinite periodic continued fraction if and only if it is quadratic
irrational. We will show that this is not true in the `-adic case and only some
similarities can be recovered. For example, in Section 5 we will prove the following
result:

Theorem 1.2. A Ruban continued fraction which is periodic represents an element
of Q` which is either a rational number or a real quadratic irrational over Q.

No full analogue of Lagrange’s theorem holds in this setting as remarked by
Ooto in [Oot17], and the problem of deciding whether a quadratic (`-adic) irrational
number has a periodic continued fraction seems still open. For Browkin’s definition,
some very partial sufficient conditions were given in a series of papers by Bedocchi
[Bed93]. Moreover, in [Bro01], Browkin wrote an algorithm to generate the periodic
continued fraction expansion of

√
∆ ∈ Q` \ Q for some values of ∆ and `, giving

many numerical examples.
In this paper we investigate the periodicity of the `-adic Ruban continued frac-

tion expansion of quadratic irrational numbers, thus solving a problem posed by
Laohakosol in [Lao85].

Our main result is the following:

Theorem 1.3. Let α ∈ Q` \Q be a quadratic irrational over Q. Then, the Ruban
continued fraction expansion of α is periodic if and only if there exists a unique real
embedding j : Q(α) → R such that the image of each complete quotient αn under
the map j is positive.

Moreover, there is an effectively computable constant Nα with the property that,
either ∃ n ≤ Nα such that αn does not have a positive real embedding, and therefore
the expansion is not periodic, or ∃ n1 < n2 ≤ Nα such that αn1

= αn2
, hence the

expansion is periodic.
In particular, both the preperiodic and the periodic part of a periodic expansion

can be computed with a finite algorithm.

This theorem follows directly from Theorem 6.5 and Lemma 6.6 in Section 6. A
suitable constant Nα is explicitly computed in the proof of Theorem 6.5 (see also
Remark 6.8 for an optimised value of the constant).

It is also interesting to study how the qualitative behaviour of the expansion
varies with the prime ` for fixed rational or irrational quadratic numbers. We will
show that finiteness of the expansion (for rational numbers) and periodicity (for
irrational quadratic numbers) are "unlikely" behaviours which occur for at most
finitely many primes.
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In Section 7 we carry out a formal complexity analysis of the effective algorithms
outlined in the paper.

2. General properties of the continued fractions in Q`
For the rest of the paper, we will denote by ` a prime number, and we will

consider continued fractions in Q`. By v = v`, we will mean the usual `-adic
valuation, and similarly for |·|`. For any α algebraic over Q we will denote by h(α)
the absolute logarithmic height and by H(α) the multiplicative height (for a precise
definition see [BG06, Section 1.5]).

A simple continued fraction is an expression (either finite or infinite) of the form

a0 +
1

a1 +
1

a2 + · · ·

.

The ai for i = 0, 1, 2 . . . may be in a fixed field, and they are usually taken in Z
when the field is R and in Q when the field is Q`. The terms a0, a1, . . . are called
partial quotients.

The standard notation for a simple continued fraction is [a0, a1, . . .]. If the partial
quotients become periodic after some point, then a bar is placed over the repeating
partial quotients, i.e. [a0, . . . , an−1, an, . . . , an+k−1]. In this case, the minimal k is
called the length of the period. We call the continued fraction purely periodic if the
periodic part starts with a0.

Starting with a real number α, its classical continued fraction expansion is given
by the following algorithm: we define a0 := bαc, r0 := α − a0, and, by recurrence,
an+1 := b1/rnc and rn+1 := r−1

n − an+1, whenever rn 6= 0. If on the other hand
rn = 0 for some n, then the procedure stops. With this definition, we have that
for i ≥ 1 the ai are all positive integers, while a0 has the same sign of the starting
α. Moreover, the procedure eventually stops if and only if we start with a ratio-
nal number. This construction leads to the best rational approximations to real
numbers, and produces an eventually periodic expansion for irrational quadratic
numbers. Indeed a famous theorem of Lagrange says that the simple continued
fraction expansion of a real number α is periodic if and only if α is quadratic
irrational.

For a real number, the algorithm used to construct the continued fraction is well-
defined, since for every α there is only one integer a such that 0 ≤ α − a < 1. If
α ∈ Q` instead, there are infinitely many a ∈ Z such that 0 ≤ |α−a|` < 1, and there
is no canonical choice nor any obvious way of choosing a so that the analogues of
theorems about real continued fractions hold. Many authors (see [Sch69], [Rub70],
[Bro78]) gave different definitions of `-adic continued fractions. In the rest of the
paper, we will focus on the definition given by Ruban [Rub70]. We will refer to
Ruban’s definition using the abbreviation RCF.

Following Ruban, we give the following definition:

Definition 2.1. The `-adic integral part bαc` of α ∈ Q` is the unique a ∈ Z
[

1
`

]
such that 0 ≤ a < ` and |α− a|` < 1.

Given this definition, we may expand elements in Q` in a continued fraction in
the usual way: put α0 := α, a0 := bα0c` and r0 := α0 − a0; by definition, |r0|` < 1.
Then for all n ≥ 0 define by recurrence:

αn+1 := 1/rn, an+1 := bαn+1c` and rn+1 := αn+1 − an+1,
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whenever rn 6= 0; if on the other hand rn = 0 for some n, then the procedure stops.
Thus a given number α ∈ Q` uniquely defines a RCF. We also define en := −v(αn)
for n ≥ 0.

Notice that, if |α|` < 1, then a0 = 0 and α1 = 1
α with |α1|` > 1; so, shifting n

by one if necessary, we can always assume that |α|` ≥ 1, so that a0 6= 0.
The partial quotients an so obtained satisfy, for n > 0,

|an|` = `en , en > 0, 0 < an ≤ `− `−en < `.

As in the classical real case, we can define two sequences (pn) and (qn) by setting1

(2.1)



pn, qn = 0 ∀n < 0;

p0 = 1, p1 = a0,

pn+1 = anpn + pn−1 ∀n ≥ 1;

q0 = 0, q1 = 1,

qn+1 = anqn + qn−1 ∀n ≥ 1.

Note that the pn, qn are rational numbers whose reduced denominator is a power
of `. They are non-negative and they satisfy the usual formula

(2.2) pnqn−1 − pn−1qn = (−1)n.

We call (pn/qn) the convergents of the continued fraction; for n > 0, we have
pn
qn

= [a0, a1, . . . , an−1].

The αn which appear in the algorithm are called complete quotients and they
satisfy, as in the classical case, several relations with the pn and qn (see [HW08] for
a classical account). In particular we have, for n > 0,

α =
αnpn + pn−1

αnqn + qn−1
,(2.3)

ϕn := pn − αqn =
(−1)n

αnqn + qn−1
.(2.4)

2.1. Convergence in Q`. Notice that, as |ai|` ≥ ` > 1 for i > 1, the continued
fraction converges in Q`. In fact, if v(an) = −en, we have by induction that

−v(pn) = e0 + . . .+ en−1, −v(qn) = e1 + . . .+ en−1,

for n ≥ 1. Then, equation (2.2) gives v((pn/qn) − (pn−1/qn−1)) = −v(qn) −
v(qn−1) ≥ 2n − 3, proving in particular that (pn/qn)n∈N is a Cauchy sequence
in Q with respect to the `-adic metric.

Note that the limit, when expanded in a RCF, gives back the same continued
fraction, since the definition of `-adic integral part, as given above, is well-posed.

We shall denote by [a0, . . . ]` the value of a continued fraction in Q` defined as
the limit, whose existence has just been proved, in the `-adic metric. Moreover, we
have αn = [an, an+1, . . . ]` for all n ≥ 0.

As a matter of notation, we shall put

sn := e0 + · · ·+ en−1 for every n ≥ 1.

Notice that sn ≥ n − 1, as ei ≥ 1 for all i ≥ 1. In this way, we have v(pn) = −sn
and v(qn) = e0 − sn.

1Several authors use shifted indices, so that their pn is our pn+1.
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From the construction of the RCF we have v(αn) = v(an) and, inserting in (2.4),
we find

(2.5) v(pn − αqn) = −v(qn+1) = sn+1 − e0 ≥ n,

unless the continued fraction stops and pn = αqn.
Inverting (2.3) we also find

(2.6) αn = −ϕn−1

ϕn
=
pn−1 − αqn−1

αqn − pn
.

We will also define, for n ≥ 1,

p̃n := `snpn and q̃n := `snqn,

so that p̃n, q̃n are positive integers such that v(p̃n) = 0, v(q̃n) = e0 and pn/qn =
p̃n/q̃n. From (2.1), we have the following recurrence formulae for p̃n and q̃n:

(2.7)


p̃n = 0 ∀n < 0,

p̃0 = 1, p̃1 = `e0a0,

p̃n+1 = `en(anp̃n + `en−1 p̃n−1) ∀n ≥ 1;
q̃n = 0 ∀n < 0,

q̃0 = 0, q̃1 = `e0 ,

q̃n+1 = `en(anq̃n + `en−1 q̃n−1) ∀n ≥ 1.

The following Lemma, which can be proved by an easy induction using (2.7),
gives an estimate on the growth of the p̃n and q̃n.

Lemma 2.2. If a0 6= 0, then for every n > 1, we have

p̃n > `sn ≥ `n−1 and q̃n ≥ `sn−1 ≥ `n−2 if n is even

p̃n > `sn−1 ≥ `n−2 and q̃n ≥ `sn ≥ `n−1 if n is odd.

2.2. On the convergence in R. Given a RCF with partial quotients a0, a1, . . ., we
want to analyse the convergence of the continued fraction [a0, a1, . . .] in R (though
not being the continued fraction expansion of any real number).

From (2.2) we have that, for every n ≥ 1,

(2.8)
pn
qn
− pn−1

qn−1
=

(−1)n

qnqn−1
.

Since qn+2 ≥ qn for every n ≥ 0 (as follows from the recurrence formulae), this
easily implies in particular that the sequence (pn/qn) is increasing for odd n and
decreasing for even n, so these two corresponding subsequences have limit in R
equal to their supremum, for n odd, and their infimum, for n even, respectively.

Also, the same equation yields that every pn/qn with odd n is smaller than any
pm/qm with even m ≥ 0 (where we agree that p0/q0 = 1/0 = +∞).

We have the following:

Proposition 2.3. A continued fraction with real partial quotients a0, a1, . . . such
that ai > 0 for i > 0 converges in R if and only if

∑
ai = ∞, which holds if and

only if the qn are unbounded.

This fact appears in more general form in [Hen06], but we can give a very simple
and short proof.

Proof. For n ≥ 1, we let for this proof hn := qnqn−1. The formula (2.8) implies
that there is convergence in R as soon as lim suphn = +∞. In fact, if this happens,
it follows that pn/qn − pn−1/qn−1 → 0, i.e. pn/qn is a Cauchy sequence in R.
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The usual recurrence formulae imply that hn+1 = anq
2
n + hn−1, whence hn =

anq
2
n + an−1q

2
n−1 + . . . + a2q

2
2 + h1. As q1 = 1, q2 = a1 > 0 and, for every n ≥ 3,

qn > qn−2, we have that for n ≥ 1 the qn are bounded from below by a strictly
positive number. This yields hn �

∑
m≤n am, thus proving convergence in R of

the continued fraction whenever
∑
ai diverges. Since hn → +∞ in this case, the

qn are unbounded.
For the converse, it suffices to note that qn ≤ (an−1 + 1) · · · (a1 + 1), as follows

from an easy induction.2 But then qn ≤ exp(
∑
m<n am), so the qn are bounded

if
∑
ai converges. Formula (2.8) then implies that the continued fraction cannot

converge. �

Note that we certainly have convergence in R if a := inf an > 0 (which happens
in particular when the en are bounded).

Actually, in this case, the growth of the qn and the convergence occur with (at
least) exponential rate; indeed, it is easy to prove that pn, qn � cn, where c is
the positive root of the equation x2 − ax − 1; in turn, this root is checked to be
≥ 1 + a/2.

2.3. Upper bounds for αn, pn, qn. In this short subsection we collect some simple
inequalities which do not seem to be easily located in the literature, despite their
probable usefulness.

First we give an upper bound for the sequences of the pn, qn.For this it is not
necessary to restrict to the present context, and we consider an arbitrary continued
fraction with real positive entries. For a ∈ R, a > 0, we let

B(a) :=

(
a 1
1 0

)
, pn :=

(
pn
pn−1

)
, qn :=

(
qn
qn−1

)
.

Also, let λ(a) denote the maximum eigenvalue of B(a). Of course, λ(a) is the
positive root of the equation x2 − ax− 1 = 0, i.e.

λ(a) =
a+
√
a2 + 4

2
,

with the positive square root. We note that the other eigenvalue of B(a) is in
(−1, 0), whereas λ(a) ≥ 1 + a

2 .

Proposition 2.4. For all n > 1 we have

pn ≤ λ(an−1) · · ·λ(a0) and qn ≤ λ(an−1) · · ·λ(a1).

Proof. Let us discuss first the case of the qn. We have qm+1 = B(am)qm for all
integers m ≥ 1, whence we derive the well-known matrix representation

qm+1 = B(am) · · ·B(a1)q1.

Note that the B(a) are symmetric matrices, and that, since a ∈ R+ and λ(a) is
the maximum eigenvalue (also in modulus) of B(a), we have for every x ∈ R2 the
well-known (easy) inequality

|B(a)x| ≤ λ(a)|x|,

where |x| denotes the euclidean length. On iterating this and recalling that q1 = 1
and q0 = 0, we have:

qn ≤
√
q2
n + q2

n−1 = |qn| ≤ λ(an−1) · · ·λ(a1)|q1| = λ(an−1) · · ·λ(a1),

which concludes the argument.

2See Proposition 2.4 below for a more accurate estimate.
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To prove the estimate for the pn, one argues similarly, using the matrix repre-
sentation

pm+1 = B(am) · · ·B(a0)p0,

and recalling that p0 = 1 and p−1 = 0 by definition. �

Now we give an upper bound for the height of the complete quotients αn. This
holds in the context of Ruban Continued Fractions.

Proposition 2.5. Let α ∈ Q` algebraic over Q with v(α) ≤ 0. Then for every
n ≥ 0 the following bounds for the height of the complete quotients of the RCF
expansion of α hold:

h(αn) ≤ h(α) + sn log `+ n log(2`),(2.9)
h(αn) ≤ 2n(h(α) + log(2`))− log(2`).(2.10)

Proof. By the recurrence formula

αn = an +
1

αn+1
,

we obtain that

(2.11) h(αn+1) = h

(
1

αn+1

)
= h(αn − an) ≤ h(αn) + h(an) + log 2.

The height of an can be easily estimated in terms of en, because an is a posi-
tive rational number smaller that ` and with denominator `en , so that h(an) ≤
log(`en+1−1) < (en+1) log `. The bound (2.9) now follows by induction from (2.11).

On the other hand we have by definition en = −v(αn) > 0, so that h(αn) ≥
en log `. Together with (2.11) this gives

h(αn+1) ≤ h(αn) +h(an) + log 2 ≤ h(αn) + (en+ 1) log `+ log 2 ≤ 2h(αn) + log(2`),

and the second bound follows again by induction on n. �

2.4. Examples. Let us calculate the RCF expansions of some numbers in Q3.

Example 2.6. Take α = 17
11 = 1 + 3 + 33 + · · · ; then, a0 = 1 and r0 = 17

11 − 1 = 6
11 .

If we expand 11
6 , we have that

⌊
11
6

⌋
3

= 1
3 and r1 = 11

6 −
1
3 = 3

2 . This means that 1
r1

is equal to its integral part, so a2 = 2
3 , r2 = 0 and the algorithm stops giving the

finite expansion
17

11
=

[
1,

1

3
,

2

3

]
3

.

Example 2.7. Take α = 5
6 = 3−1+2+2·3+· · · . Then, a0 = 7

3 and r0 = 5
6−

7
3 = − 3

2 .
Going on, we have

a1 =

⌊
−2

3

⌋
3

=
7

3
, r1 = −2

3
− 7

3
= −3,

a2 =

⌊
−1

3

⌋
3

=
8

3
, r2 = −1

3
− 8

3
= −3.

This means that − 1
3 has purely periodic continued fraction equal to

[
8
3 ,

8
3 ,

8
3 , ...

]
3
.

The continued fraction expansion of 5
6 is then equal to

5

6
=

[
7

3
,

7

3
,

8

3
,

8

3
,

8

3
, . . .

]
3

.

This shows that even some positive rational numbers may have infinite RCF ex-
pansion.
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Example 2.8. If we take a prime `, we have − 1
` =

∑∞
k=−1(`−1)`k in Q`, so, if we

calculate the RCF expansion, we have that a0 = `− `−1, r0 = −`; hence, 1
r0

= − 1
`

proving that the continued fraction is purely periodic and equal to
[
`− `−1

]
`
.

Note that this continued fraction converges to −`−1 in the `-adic metric, whereas it
converges to ` (the only other possible limit value) in the usual euclidean topology.

We will see in the next section that, if a rational number doesn’t have a termi-
nating RCF, then it has a periodic part equal to

[
`− `−1

]
`
.

Example 2.9. Take δ the only square root of 37 in Q3 congruent to 1 modulo 3.
Let us consider θ = 1+δ

6 . We have that δ = 1+2 ·32 +34 + · · · for some reminder in
35Z, so a0 = 1

3 and α1 = 1
δ−1
6

= δ+1
6 = θ. This means that the continued fraction

of θ is purely periodic and equal to

θ =

[
1

3
,

1

3
,

1

3
, . . .

]
3

.

If we consider the continued fraction of δ, this does not look likely to be periodic.
Carrying out the computations we obtain

δ =

[
1,

5

9
,

16

9
,

7

3
,

26

81
,

5

3
,

7

9
,

7

3
, . . .

]
3

.

We will show later that this expansion is indeed not periodic.

3. Rationals and the terminating case: Theorem 1.1

Of course if a number in Q` has a terminating RCF expansion, then it is rational
and positive. Hence a negative rational number cannot have a finite continued
fraction. However from Example 2.7 it appears that even positive rational numbers
may have infinite continued fraction expansions. Indeed, the RCF cannot terminate
if in the expansion we find a negative complete quotient. This proves the easy
implication in part (i) of Theorem 1.1. We now prove the rest of the statement.

3.1. Proof of part (i) of Theorem 1.1. Simultaneously with the proof, we give
an algorithm to test whether the expansion of a given (positive) rational α ∈ Q
is terminating. The algorithm works by computing sufficiently many complete
quotients and checking whether they are positive.

We can start by computing the first m+ 1 partial quotients, complete quotients
and convergents, assuming m = 2k ≥ 2. If any of the complete quotients computed
so far is negative, then the algorithm stops, and we can conclude that the RCF
does not terminate. Then, we may assume that α0, α1, . . . , α2k ≥ 0.

As showed in Section 2.2, the sequence of convergents pn/qn is increasing for odd
n and decreasing for even n, and formula (2.6) with 2k in place of n shows that α
lies in between p2k−1/q2k−1 and p2k/q2k. By equation (2.4), we have:

(3.1) 0 ≤ ϕ2k = p2k − αq2k =
1

α2kq2k + q2k−1
≤ 1

q2k−1
,

as we are assuming α0, α1, . . . , α2k ≥ 0.
On the other hand, if b = `e0b0 > 0 is a denominator for α, where b0 is a positive
integer not divisible by `, the number b0(p2k − αq2k) is an integer divisible by
`s2k+1−e0 as v(ϕ2k) = v(q2k+1) from (2.5).

Finally, q2k−1 ≥ q1 = 1, so if `s2k+1 > `e0b0 = b, the above equation (3.1) forces
α = p2k/q2k. Hence, to decide about this dichotomy we need merely to perform
the algorithm until `2k+1 > b.

This proves the first part of Theorem 1.1; moreover, we deduce the following:
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Quantified algorithm (i): If the RCF of a rational number α with denomina-
tor b is not terminating, then a negative complete quotient will appear in at most
max

(
log b
log ` , 2

)
steps.

Using the same arguments, we can also prove the following conclusion:

Proposition 3.1. The RCF of a rational number always converges in R.

Proof. We have seen in Section 2.2 that, if a RCF does not converge in R, then the
qn are bounded, so if α ∈ Q, the numbers |pn − αqn| are rationals with bounded
denominators; but since pn/qn are bounded, the numerators are also bounded.
Using (2.5), we see that they are divisible by `sn+1−e0 . This is eventually impossible
unless they vanish, but then the RCF expansion of α is finite, proving anyway our
conclusion. �

Indeed, this conclusion follows also directly from part (ii) of Theorem 1.1, which
we prove in next section.

3.2. Proof of part (ii) of Theorem 1.1. We want now to prove that, if the RCF
of a rational number α does not terminate, then it is periodic with all the partial
quotients eventually equal to `− `−1. Moreover, we will give an explicit bound for
the length of the pre-periodic part.

We assume that v(α) < 0, which can be achieved by replacing α with α1, and
we write α = α0 = d

b`e0 , where b, d are coprime integers not divisible by `, b > 0
and e0 > 0 consistently with our notation. Assume also that the RCF expansion
of α does not terminate. The idea of the proof is to consider again the quantities
bϕn = b(pn − αqn). Arguing as in the previous section, this number is an integer,
because thanks to the factor b the denominator can only be a power of `, and
we know from (2.5) that v(pn − αqn) = sn+1 − e0 ≥ n. Therefore we can write
bϕn = βn`

sn+1−e0 for some integers βn, which are not zero because the continued
fraction does not terminate.

Concerning the usual absolute value, by Proposition 2.4, we have

|pn − αqn| ≤ (λ(a0) + |α|)λ(an−1) · · ·λ(a1),

where λ(a) = a+
√
a2+4
2 as seen before. We have then

(3.2) 1 ≤ |βn| ≤ b(λ(a0) + |α|)`e0−sn+1

n−1∏
i=1

λ(ai) ≤ b(λ(a0) + |α|)`−en
n−1∏
i=1

λ(ai)

`ei
.

As every partial quotient a is of the form r
`e , where e ≥ 1 is an integer and 1 ≤ r ≤

`e+1 − 1, it is easy to prove that

λ(a) ≤ `e,
with the equality holding if and only if a = `− `−1.

We also have that b(λ(a0) + |α|) ≤ b(`e0 + |α|) ≤ 2H(α), so that from (3.2) we
obtain for n > 0

(3.3) |βn| ≤
2

`en
H(α) ≤ 2

`
H(α),

independently of n. This shows that the |βn| belong to a fixed finite set of cardinality
at most 2

`H(α) (remember that we are assuming e0 > 0, so H(α) ≥ `).
Moreover, as λ(a) is an increasing function of a ≥ 0, we have

(1) if e ≥ 2, then λ(a)`−e ≤ λ(`)`−e ≤ (1+
√

2)`
2`e ≤

(
1+
√

2
2`

)e−1

≤
(

1+
√

2
2`

) e
2 ≤(

1+
√

2
4

) e
2

;
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(2) if e = 1 and a 6= ` − `−1, then λ(a)`−1 ≤ λ
(
`− 2

`

)
`−1 = `2−2+

√
`4+4

2`2 ≤
1− 3

4`2 .

But for every ` ≥ 2 we have that
(

1+
√

2
4

) 1
2

< 1 − 3
4`2 , so λ(a)`−e ≤ Ce1 where

C1 := 1− 3
4`2 < 1, unless a = `− `−1.

Using this last estimate in (3.2) and putting σn :=
∑′

ei, the sum being ex-
tended to all indices 1 ≤ i ≤ n− 1 with ai 6= `− `−1, we have

1 ≤ b(λ(a0) + |α|)`−1Cσn1 ≤ 2

`
H(α)Cσn1 .

Hence σn is bounded independently of n. This shows that only finitely many an
can be different from ` − `−1, so the continued fraction expansion is periodic and
all the partial quotients are eventually equal to this number.

To conclude the proof, we are going to exhibit an explicit bound for the length
of the pre-periodic part in the case that the continued fraction expansion does not
terminate.

Consider the identity αn = −ϕn−1

ϕn
= − βn−1

`enβn
. We have from (3.3) that all the αn

belong to a fixed finite set of cardinality at most 8
`H(α)2 and have height bounded

by 2H(α). Then, for some i < j ≤ 8
`H(α)2 + 1, we will find αi = αj and the

continued fraction becomes periodic from αi on, with all partial quotients equal to
`− `−1 as proved before.

This computation holds under the assumption e0 > 0. It might be needed to
replace α0 with α1. In this case the length of the preperiodic part is increased by
one, while the height H(α) is replaced by H(α1) ≤ 2`H(α) (by Proposition 2.5 if
v(α) = 0, otherwise α1 = 1/α and they have the same height).

This completes the proof of Theorem 1.1; moreover, we deduce the following:

Quantified algorithm (ii): If the RCF of a rational number α is not terminating,
then the length of the pre-periodic part can be explicitly computed as above; in
particular it is at most 32`H(α)2.

Moreover for all n ≥ 0 the height of the complete quotients is bounded by

H(αn) ≤ 4`H(α).

Remark 3.2. We point out that one can compare the complexity of a rational
number α = p

q with a finite RCF expansion with the length k of the expansion
itself. In fact, it is easy to prove using Lemma 2.2, that

k ≤ log min{p, q}
log `

+ 2 ≤ h(α)

log `
+ 2.

3.3. Finiteness of the expansion for varying `. Given α ∈ Q ⊆ Q`, we can ask
what happens to the expansion when we vary the prime `. The following proposition
gives an answer to this question:

Proposition 3.3. Let α ∈ Q. The following holds:
(i) If α < 0, then for every prime number ` the RCF expansion of α does not

terminate;
(ii) If α ≥ 0 and α ∈ Z, then there are only finitely many prime numbers ` such

that the RCF expansion of α does not terminate;
(iii) If α ≥ 0 and α 6∈ Z, then there are only finitely many prime numbers ` such

that the RCF expansion of α terminates.

Proof. Part (i) follows directly from Theorem 1.1.
Assume that α ∈ Z≥0 has finite RCF expansion. Then, by Remark 3.2, the length

of this expansion is equal to 1 or 2. More specifically, if α < `, then bαc` = α and
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so the RCF expansion is equal to 1. This proves the assertion (ii). We point out
that we can say something more about the behaviour of the RCF expansion in Q`
with ` ≤ α. In this case in fact, bαc` 6= α so the expansion has necessarily length
2, and this happens if and only if α = `h + a0 with 0 ≤ a0 < ` and h ≥ 1.

Let now take α = n
m with n,m positive coprime integers and m > 1. We prove

that, if ` is a prime number with ` > max{n,m}, then the RCF expansion of α in
Q` does not terminate.

Let a0 = bαc`; we have that a0 ∈ Z because ` - m. If n
m − a0 ≥ 0, then we

would have that ` > n > n − ma0 > 0, which is impossible because n − ma0 is
divisible by `. Then we see that α1 = 1

n
m−a0

, which is the first complete quotient
of the RCF expansion of α, is negative. Then by Theorem 1.1 the expansion does
not terminate. This completes the proof of the proposition. �

4. About quadratic expansions

In this section we analyse the behaviour of the RCF expansion of the quadratic
irrationals α ∈ Q`. For such α, we denote by α′ the algebraic conjugate over Q.

From a quadratic equation Aα2 +Bα+C = 0, with A,B,C ∈ Z and A 6= 0, we
derive the shape

(4.1) α =
b0 + δ

`f0c0
,

where δ ∈ Q`, δ2 = ∆ is a non-square integer (non necessarily square-free) and
b0, c0, f0 are integers with ` - c0.

A necessary and sufficient condition for δ to lie in Q` can be obtained with
Hensel’s lemma. Let us write ∆ = `h∆̃ with ` - ∆̃; then δ ∈ Q` if an only if
h is even and ∆̃ is a square modulo `, if ` is odd, or ∆̃ ≡ 1 (mod 8), if ` = 2.
In particular ` will always appear with even exponent in the values of ∆ that we
consider.

Notice that the b0, δ, f0, c0 in (4.1) are not uniquely determined. We could obtain
uniqueness by imposing a coprimality condition, but for our aims it is more conve-
nient to allow multiple representations and common factors between the numerator
and the denominator. We can always require

(4.2) c0 | ∆− b20.

In fact this is not restrictive since it can be achieved for instance by replacing
b0, c0,∆ respectively by b0c0, c20, c20∆.

Recall e0 = −v(α); then, e0 = f0−v(b0+δ), so e0 ≤ f0. Under the non-restrictive
assumption v(α) ≤ 0, we have that f0 ≥ 0.

We want now to detail the behaviour of the first step in the `-adic continued
fraction of α.

Take a0 = bαc` = r0
`e0 , where r0 is the unique integer with 0 ≤ r0 ≤ `e0+1 − 1

such that b0 + δ − c0r0`
f0−e0 ≡ 0 (mod `f0+1), where this congruence holds in Z`.

In this case, r0 6= 0. We can then write α as:

α =
r0

`e0
+
δ + b0 − c0r0`

f0−e0

`f0c0
=

r0

`e0
+

∆− (c0r0`
f0−e0 − b0)2

`f0c0(δ + (c0r0`f0−e0 − b0))
.

Now, if we denote b1 := c0r0`
f0−e0 − b0, we easily find that ∆ − b21 ≡ ∆ − b20 ≡ 0

(mod c0) and `f0+1 | [δ− (c0r0`
f0−e0 − b0)] | ∆− b21. This means that we can write

∆− b21 = `f0+f1c0c1 with f1 ≥ 1 and (`, c1) = 1. Hence, we have

α = a0 +
1

α1
,
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with
a0 :=

r0

`e0
, and α1 :=

b1 + δ

`f1c1
,

where r0, f1, b1, c1 are defined as above.
In particular, this shows that the first complete quotient α1 (and hence all the

subsequent ones) has the same shape of α, especially in the fact that δ in the
numerator appears with the coefficient 1. This is due to our special hypothesis that
c0 | ∆−b20 (which, as noted above, can always be achieved and is preserved at every
step).

We can continue our expansion and, as a matter of notation, we shall put

αm =
bm + δ

`fmcm
= [am, am+1, . . .]`,

where bm, cm and fm are integers defined by the following recurrence formulae:

(4.3)

{
bn + bn+1 = an`

fncn

`fn+fn+1cncn+1 = ∆− b2n+1.
for all n ≥ 0.

Notice that, since we are assuming that ` does not divide any cn, the second
formula of (4.3) implies that fn + fn+1 = v(∆ − b2n+1); hence, as fn ≥ 0, we have
for every n ≥ 0,

1 ≤ fn+1 ≤ v(∆− b2n+1),

where the the second inequality becomes strict when n ≥ 1 as fn ≥ 1.

We just saw that, computing the RCF expansion of a quadratic α satisfying (4.2),
all complete quotients will be quadratic numbers in Q`(α) of a similar shape.
Moreover once we fix (∆, b0, c0, f0) the recurrence (4.3) defines sequences bn, fn, cn
uniquely. We will now show that, after a finite number of steps depending only on
α, we reach a complete quotient αM which admits a (possibly different) representa-
tion (∆̃, b̃M , c̃M , f̃M ) which satisfies some additional conditions. More specifically,
we have the following proposition:

Proposition 4.1.
(i) Let α = b0+δ

`f0c0
as before satisfying (4.2). Assume in addition that

(4.4)


`fmcm | ∆− b2m,
` - ∆,

v(αm) = −fm < 0 if ` is odd,
v(αm) = 1− fm < 0 if ` = 2

holds for m = 0. Then (4.4) holds for every m ≥ 0 as well.
(ii) Assume that ∆ = `2h∆̃, with h ≥ 0 and (`, ∆̃) = 1. Then, there exists

a positive integer M ≤ h + 2 such that αM = b̃M+δ̃

`f̃M c̃M
with δ̃2 = ∆̃ and

b̃M , c̃M , f̃M integers satisfying (4.4).

Proof. We prove first the part (i) of the statement.
The first two conditions in (4.4) are clearly preserved by the recurrence for-

mulae (4.3). We only have to show that the condition on v(αm) is preserved as
well.

Suppose first that ` is odd. Then v(b1 − δ) ≥ f0 + 1 ≥ 2 by construction, while
v(2δ) = 0. Therefore by the ultrametric inequality we have v(b1 + δ) = 0 and
v(α1) = −f1.

If ` = 2 instead, we have v(b1− δ) ≥ f0 +1 ≥ 2 by construction, while v(2δ) = 1.
Therefore by the ultrametric inequality we have v(b1 + δ) = 1 and v(α1) = 1− f1.
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We now prove part (ii). After changing the representation of α and replacing
(b0,∆, f0) with (b0/`

k,∆/`2k, f0 − k) if needed, we may suppose that ` - (b0,∆).

Let us write now ∆ = `2h∆̃ for some integer h ≥ 0.
Let us first assume h > 0. As by assumption ` - (∆, b) and ` | ∆, we have that

` - b0 + δ, hence v(b0 + δ) = 0 and e0 = −v(α) = f0.
Then by the algorithm discussed at the beginning of the section, we have

α1 =
b1 + δ

`f1c1
,

where b1 = c0r0−b0 as shown before. But, by construction, we have that δ−b1 ≡ 0
(mod `f0+1) and `h | δ, hence b1 ≡ 0 (mod `min{h,f0+1}). This means that we can
simplify the factor `min{h,f0+1} (whose exponent is ≥ 1), obtaining α1 = b̃1+δ1

`f̃1c1
,

with v(δ1) ≤ h − 1 and 0 > v(α1) = v(b̃1 + δ1) − f̃1, so that f̃1 > 0. If v(δ1) > 0,
then we can repeat the argument. In this way we see in at most h steps we reach
αm = b̃m+δ̃

`f̃mcm
with ∆̃ = δ̃2 satisfying (`, ∆̃) = 1 and f̃m > 0. Notice that, in the last

step, we are no more sure that v(b̃m + δ̃) = 0 as (`, ∆̃) = 1, so we could in principle
have f̃m 6= −v(αm).

We have shown that, up to performing the previous procedure and replacing ∆
with ∆̃, we can assume that ` - ∆.

Let us now analyse what happens if f0 6= −v(α). We will show that, after
possibly replacing α with its second complete quotient, we can always satisfy the
assumption f0 = −v(α) > 0 if ` is odd or f0 = 1− v(α) if ` = 2.

Take as before α = b0+δ
`f0c0

. As shown before, we can assume that (`,∆) = 1. In
general, we have that −e0 = v(α) = v(b0 + δ)− f0, so e0 ≤ f0.

Then, performing the first step of the algorithm as explained at the beginning
of the section, we obtain α1 = δ+b1

`f1c1
with `f1c1 | ∆− b21.

Let us distinguish two cases:
• if ` odd, then as by assumption ` - ∆ so that v(2δ) = 0. By construction we

have that v(δ − b1) ≥ 1 and so by the ultrametric inequality v(δ + b1) = 0
and e1 = −v(α1) = f1 as wanted.

• assume now that ` = 2. If e0 = f0 ≥ 0, then, this means that v(δ+ b0) = 0,
hence as 2 - ∆, b0 is even. Now, performing the first step and using the
first equation of (4.3), we have that b1 is odd, hence v(δ+b1) ≥ 1. So, after
one step, we reduced ourselves to the case e1 > f1 > 0.
Assume now e0 > f0, i.e. v(δ + b0) > 0. By (4.3), we have that

(4.5) f0 + f1 = v(∆− b21) = v(δ + b1) + v(δ − b1).

Now, we have by construction that both v(δ + b1) and v(δ − b1) are ≥ 1
and moreover min{v(δ + b1), v(δ − b1)} = 1. Using in (4.5) that f1 −
e1 = v(δ + b1), we have that v(δ − b1) = f0 + e1 ≥ 2, as by assumption
f0 ≥ 1 and e1 = −v(α1) ≥ 1. But this shows that v(δ + b1) = 1, hence
v(α1) = 1 − f1 < 0, as wanted. The same holds for all subsequent steps,
proving the statement. �

Definition 4.2. We shall refer to ∆ = δ2 in (4.1) as the ordinate of α for this
shape. Note that this is not uniquely determined by α (but it is determined up to
a square).

Example 4.3. Take ` = 3 and let δ be the only square root of 13 in Q3 which is
congruent to 1 modulo 3. We want to compute the `-adic expansion of δ.
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• a0 = bδc3 = 1, so α1 = 1
δ−1 = δ+1

12 ;
• a1 = bα1c3 = 2

3 , so α2 = δ−7
12 .

Going on with the calculations, we have that δ =
[
1, 2

3 ,
4
3 ,

8
9 , . . .

]
3
, which does not

seem to have a periodic pattern.

4.1. Useful bounds. Using the recurrence relations given by (4.3) it is possible
to give exponential bounds for the quantities bm and cm`em .

Proposition 4.4. The following bounds hold

|bn| �α C2(`)n,∣∣cn`fn ∣∣�α C2(`)n,

fn < 3n+Oα(1),

where C2(`) = `2+2+`
√
`2+4

2 and the implied constants are effectively computed be-
low.

Proof. For this proof, we write kn := `fncn ∈ Z for all n ≥ 0. Moreover, we define
k−1 :=

∆−b20
`f0c0

. By the definition of bn+1, we can write bn+1 = ankn − bn; then (4.3)
gives, for every n ≥ 0,

kn+1 =
∆− bn+1

2

kn
=

∆− bn2

kn
+
ankn(2bn − ankn)

kn
= kn−1 + an(2bn − ankn).

Now 0 ≤ an < ` by construction, so that

|kn+1| < |kn−1|+ 2` |bn|+ `2 |kn| ,

and
|bn+1| < |bn|+ ` |kn| .

If we define two recurrence sequences An, Bn such that A−1 = |k−1| , A0 = |k0| ,
B0 = |b0|, and {

An+1 = `2An +An−1 + 2`Bn,

Bn+1 = `An +Bn,

then we have the estimates |kn| ≤ An and |bn| ≤ Bn for all n ≥ 0.
Now we can argue as in Section 2.3 and write

M =

`2 1 2`
1 0 0
` 0 1

 , vn :=

 An
An−1

Bn

 , vn+1 = Mvn.

The biggest eigenvalue of M is the number C2(`) := `2+2+`
√
`2+4

2 < `2 + 2, and
therefore

An, Bn ≤ |vn| = |Mnv0| ≤ C2(`)n|v0|,
where |v0| ≤ |k−1|+ |k0|+ |b0| =: C3(α). In particular, we have that

|bn| ≤ Bn ≤ C3(α)C2(`)n,∣∣cn`fn ∣∣ ≤ An ≤ C3(α)C2(`)n,

fn ≤
logAn
log `

≤ n logC2(`)

log `
+

logC3(α)

log `
<

log(3 + 2
√

2)

log 2
n+

logC3(α)

log `

< 3n+ C4(α),

where C4(α) = logC3(α)
log ` . �
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4.2. Convergence in R of the RCF of quadratic irrationals. We have briefly
discussed convergence in R of a general RCF, and we have also proved directly in
Proposition 3.1 that for Ruban expansions of rational numbers, convergence in R
always holds. In this section we prove the same for the expansion of an arbitrary
quadratic irrational number.

Proposition 4.5. The RCF of a quadratic irrational number always converges in
R.

Proof. We may assume the number α in question is of the form (4.1) and use the
results of the previous section. As in the previous proposition, for this proof we
write kn := `fncn ∈ Z; then by (4.3) we have

(4.6) bn+1 + bn = ankn and ∆− b2n+1 = knkn+1.

Assume by contradiction that the RCF of α does not converge in the real topol-
ogy. Then we have that an ≥ `−fn and we deduce from Proposition 2.3 that
fn → +∞ as n → +∞; moreover, since kn = `fncn and the cn are non-zero in-
tegers, this means that |kn| → +∞, hence ∃ n0 ≥ 1 such that |kn| > ∆ for all
n ≥ n0. Since we may replace α with any partial quotient, we may assume that
this happens for all n ≥ 0. Formulae (4.6) above show that knkn+1 < 0 and
b2n+1 = ∆ + |kn||kn+1|. By shifting n if necessary, we may assume that kn > 0 for
even n.

From (4.6) for n and n+1 in place of n, we have bn+2−bn = an+1kn+1−ankn, so
the sequence of the bn is monotone increasing for odd n and monotone decreasing
for even n; also, we find that, for instance for odd n, bn+2 = an+1|kn+1|+ an|kn|+
. . .+a1|k1|+ b1 and similarly for even n. We also find that eventually bn is positive
(resp. negative) for odd (resp. even) n, and on shifting again we may assume this
holds for all n. We further find

(4.7) |bn+1| − |bn| = an|kn|.

Equation (4.6) also yields

(4.8) (|bn+1| − |bn|)(|bn+1|+ |bn|) = |kn|(|kn+1| − |kn−1|).

Set for this proof γn :=
√
|kn|. From the equality b2n+1 = |kn||kn+1| + |∆|, we

derive |bn+1| ≤ γnγn+1 +
√
|∆|, whence

|bn|+ |bn+1| ≤ γn(γn+1 + γn−1) + 2
√
|∆|.

Using this in (4.8), we find

|kn|(|kn+1| − |kn−1|) ≤ (|bn+1| − |bn|)
(
γn(γn+1 + γn−1) + 2

√
|∆|
)
.

On using (4.7) and dividing by |kn|(γn+1 + γn−1), we have

γn+1 − γn−1 ≤ an

(
γn +

2
√
|∆|

γn+1 + γn

)
,

hence, as γn ≥ 1 for all n ≥ 1,

γn+1 ≤ an
(

1 +
√
|∆|
)
γn + γn−1.

Now,
∑
an converges by assumption; so, arguing as in the previous proposition, it

easily follows that γn are bounded, a contradiction which proves the result. �

This result allows to formulate the following (probably difficult)

Conjecture: Consider the real limit of the RCF of a quadratic irrational. Then,
either the RCF is eventually periodic or the said limit is transcendental.
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Other problems concern the behaviour of the en for a non periodic RCF of a
quadratic irrational. Can they tend to infinity? It will follow from the arguments
at the end of the paper that they cannot be bounded.

5. Purely periodic expansions

Before studying periodicity, let us focus on pure periodicity, i.e. the case when
an α ∈ Q` has a RCF expansion which is purely periodic.

If this happens, we have α = αk for some period k > 0, and equation (2.3)
implies that α satisfies a quadratic equation over Q, precisely,

(5.1) qkα
2 − (pk − qk−1)α− pk−1 = 0.

This equation holds for every period k, and so for any multiple of any given
period. Using this, we can prove Theorem 1.2.

Proof of Theorem 1.2. In view of Theorem 1.1, we obtain that the only rational
number with a purely periodic RCF is α = `− `−1.

In all other cases of pure periodicity, equation (5.1) says that α is quadratic
irrational. But in any case α must be real, since k ≥ 1 and so qk, pk−1 > 0.

Now, if α ∈ Q` has a(n eventually) periodic RCF, then some complete quo-
tient has a purely periodic RCF, and the above conclusion applies. This proves
Theorem 1.2. �

Notice that, if α ∈ Q` \ Q has a pure periodic continued fraction, it is then a
quadratic irrational and by Proposition 4.1 we have that α has directly to satisfy
the condition given by (4.4). We can derive the following useful proposition:

Proposition 5.1. If α ∈ Q` \Q has a purely periodic RCF, then there is precisely
one embedding j = jα : Q(α) → R such that j(αm) > 0 for all complete quotients
αm.

Similarly, but relative to the `-adic valuation, we have |α|` > 1 and |α′|` =
|α|−1

` < 1.

Proof. To prove the first assertion, let α be as in the statement. From equa-
tion (5.1), we have that there is precisely one real embedding j : Q(α) → R such
that ξ := j(α) > 0 (in fact, the product ξξ′ = −pk−1/qk is negative) and we may re-
peat the argument for each complete quotient. We are left with the task of showing
that j is the same for all complete quotients, and, by induction, it suffices to show
that j works for the first complete quotient α1 as well, i.e. that ξ1 := j(α1) > 0.

We have α = a0+α−1
1 , so ξ = a0+ξ−1

1 . Taking conjugates, we have ξ′ = a0+ξ′−1
1 .

Now, ξ′ < 0 so ξ′1 = (ξ′ − a0)−1 < 0, and hence ξ1 > 0, as wanted.
To prove the last assertion concerning the `-adic place, notice first that |α|` > 1

because, by periodicity, α is equal to some other complete quotient, and every
complete quotient after the first one has this property. Moreover, equation (5.1)
shows that |αα′|` = |pk−1/qk|`, hence

|α′|` = |pk−1/qk|`/|α|` = `e0+sk−1−sk−e0 = `−ek−1 ,

and the assertion follows since ek−1 > 1. �

Remark 5.2 (Dependence of the embedding). It is worth noting that, even if the
quadratic field K = Q(α) ⊂ Q` is given, in general the embedding jα of the
previous proposition is not uniquely determined by K, namely it may change if we
take another quadratic β ∈ K with a purely periodic RCF. Here is an example of
this behaviour.

Let δ ∈ Q7 be the square root of 2 such that δ ≡ 3 (mod 7) and put α = 1+5δ
7 .

Then α is a root of x2− 2
7x−1, so α = 2

7 +α−1. By our choice of δ, we have |α|7 > 1,
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hence the previous equation produces the purely periodic expansion α =
[

2
7

]
7
. If we

let
√

2 denote the real positive square root of 2, the embedding ι : Q(α) = Q(δ)→ R
such that ι(δ) =

√
2 has ι(α) > 0, hence is the (unique) embedding jα predicted by

the proposition for α.
Let now β := 17−13δ

7 , so Q(β) = Q(α). This β is a zero of x2 − 34
7 x − 1, and

since again |β|7 > 1 (note that 17− 13 · 3 ≡ −1 (mod 7)) we have β =
[

34
7

]
7
. On

the other hand, ι(β) = 17−13
√

2
7 < 0. Hence the embedding jβ of the proposition

relative to β in place of α is ι−, where with ι− we denote the other real embedding
of Q(β) into R, i.e. the one such that ι−(δ) = −

√
2.

Example 5.3 (Purely periodic RCF of period 1 in a quadratic field).
Fix ` a prime number and let δ ∈ Q` \Q be the square root of a positive integer ∆.
We want to compute the pure periodic RCF’s of Q(δ), i.e. RCF of the form

[
t
`h

]
`

with h > 0 and 0 ≤ t < `h+1. If x =
[
t
`h

]
`
, this means that x is the solution of

the equation x2 − t
`h
x − 1 = 0 with |x|` > 1, i.e. x is of the form t±

√
t2+4`2h

2`h
. In

order to have that x ∈ Q(δ), we must impose that t2 + 4`2h = u2∆ for some u ∈ Z.
Hence, to generate all pure periodic RCF’s of period 1 of Q(δ), we have to solve
the generalized Pell equations

t2 − u2∆ = −4`2h, with 0 ≤ t < `h+1.

We give an explicit example. Take ` = 3 and let δ ∈ Q3 be the square root of
∆ = 10 which is congruent to 1 modulo 3. Let us calculate the first solutions of
the previous equation:

• for h = 1, we have t = 1 and u = 1, hence x1 = 1+δ
3 =

[
2
3

]
3
;

• for h = 2, we have t = 13 and u = 5, hence x2 = 13−5δ
9 =

[
26
9

]
3
;

• for h = 3, we have t = 31 and u = 13, hence x3 = 31+13δ
27 =

[
62
27

]
3
;

• for h = 4, we have t = 43 and u = 29, hence x4 = 43−29δ
81 =

[
86
81

]
3
;

• for h = 5, no solutions;
• for h = 6, we have two solutions, giving x5 = 881+289δ

36 =
[

1762
36

]
3
and

x6 = 601−205δ
36 =

[
1202
36

]
3
.

Now, let
√

10 be the real positive square root of 10, and denote by ι the em-
bedding ι : Q(δ) → R such that ι(δ) =

√
10. We easily see that, in the previous

examples, ι(x1), ι(x3) and ι(x5) > 0, while ι−(x2), ι−(x4) and ι−(x6) > 0 (where
ι− denotes the other real embedding of Q(δ) in R). This gives another evidence
that the embedding of the proposition does not depend only on the field Q(δ).

5.1. Finiteness of purely periodic expansions with a given shape. We want
now to study the quadratic irrationals with a given ordinate which have purely
periodic continued fractions.

First of all, as observed before, if α ∈ Q` \Q has a purely periodic RCF, it is a
quadratic irrational satisfying conditions (4.4). So, let us consider α of the form

b0 + δ

`f0c0
, ` - δ2 = ∆ ∈ Z, ` - c0 ∈ Z, f0 > 0.

Moreover, we have that v(α) = −f0 < 0 if ` is odd and v(α) = 1− f0 < 0 if ` = 2.
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We know that, by Section 4, every complete quotient of the RCF expansion of
α has the form

αm =
bm + δ

`fmcm
,

with bm, cm, fm satisfying the conditions (4.4). Denote by ξm and ξ′m the two real
embeddings of αm. Using Proposition 5.1, we have that ξmξ′m < 0 for all m ≥ 0.
But if we compute ξmξ′m, we have that

ξmξ
′
m =

b2m −∆

`2fmc20
< 0,

which implies that b2m < ∆ for all m ≥ 0. In particular, we proved that |bm| <
√

∆,
so the sequence |bm| is bounded.

Now, by (4.3) and the fact that |bm| is bounded, we have that

(5.2) `fm+fm+1 |cmcm+1| ≤ ∆.

In turn, for given ∆, this implies in particular that fm and |cm| are bounded, so
they have a finite number of possibilities in terms of ∆. As the |bm| are bounded
too, we get a finite list of numbers of the form (5.1), with a given ordinate, such
that the RCF expansion is purely periodic.

Once we have this finite list containing those α which in fact have a purely
periodic RCF, we can effectively determine the precise list of these α. For this,
given a β in the list, it suffices to compute more complete quotients of β than the
cardinality of the list: either we find some complete quotient out of the list (and
then we rule out β itself) or we must find a repetition, which would provide the full
period. We state all of this in a proposition:

Proposition 5.4. For a given non-square integer ∆ > 0, there are only finitely
many α ∈ Q` with ordinate ∆ such that the RCF of α is purely periodic, and these
numbers may be effectively determined.

Remark 5.5 (Practical computations and an example). For practical computa-
tions, once we form a list according to the above inequalities, we may often shorten
it by applying Proposition 5.1, possibly also looking at the first complete quotient
(on looking both at the real and at the `-adic valuation): if any conjugate has either
positive real value or `-adic absolute value ≥ 1, we may eliminate that number from
the list.

Let us give here an example, taking ` = 3 and δ the square root of ∆ = 13 in
Q3 which is congruent to 1 modulo 3 in Q3. Let us compute the list of the α ∈ Q3

with ordinate 13 (i.e. of the form b0+δ
3e0c0

) which have a purely periodic RCF.
Using (5.2), we have, for all m ≥ 1, 3fm+fm−1 |cmcm−1| ≤ 13. Since fh ≥

1 for all h, this immediately implies that, for all m ≥ 0, fm = 1 and cm =
±1; also, |bm| <

√
13. Hence the possible elements of the previous shape hav-

ing a purely periodic continued fractions are among the following fourteen ones:
± δ3 , ±

±1+δ
3 , ±±2+δ

3 , ±±3+δ
3 .

Now, by Proposition 5.1 we must have |α|3 > 1 and |α′|3 < 1; hence we easily
see that the only two a priori possible cases for a purely periodic continued fraction
with ordinate 13 are ±−2+δ

3 . We now find that the first complete quotient of −2+δ
3

is − 7+δ
12 , which does not belong to the list. Then the minus sign must occur, so we

remain with α = 2−δ
3 . This satisfies α2− 4

3α− 1 = 0, so α = 4
3 + 1

α , leading indeed

to the purely periodic RCF expansion α =
[

4
3

]
3
.
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6. A general criterion for periodicity

In this section, we are going to prove a necessary and sufficient criterion to
decide whether the continued fraction of a quadratic irrational α has RCF continued
fraction expansion or not.

6.1. An explicit example. We begin by showing a concrete example involving
the square root of 13 in Q3.

Proposition 6.1. Let us denote by δ ∈ Q3 the square root of 13 which is congruent
to 1 modulo 3. Then, the RCF expansion of δ is not periodic.

Proof. Suppose by contradiction that the RCF expansion of δ is periodic; then,
there will be some complete quotient of the expansion which is purely periodic.
As discussed at the beginning of Section 4, every complete quotient in the RCF
expansion of δ will have ordinate 13, and we proved in Remark 5.5 that the only
quadratic irrational number with ordinate 13 which has purely periodic RCF ex-
pansion is 2−δ

3 =
[

4
3

]
3
. This means that there exist n > 0 and a0, . . . , an−1 ∈ Z

[
1
3

]
such that δ =

[
a0, . . . , an−1,

4
3

]
3
. From (2.3), we have that

δ =
αpn + pn−1

αqn + qn−1
,

with α = 2−δ
3 , hence, on substituting for α, we get

δ =
−pnδ + 3pn−1 + 2pn
−qnδ + 3qn−1 + 2qn

.

If we now denote by ξ the positive real square root of 13 and by j : Q(δ)→ R the
real embedding sending δ to −ξ, we have that

−ξ = j(δ) =
pnξ + 3pn−1 + 2pn
qnξ + 3qn−1 + 2qn

,

which gives a contradiction as the right member of the equality is positive while
−ξ < 0. �

Remark 6.2. This method naturally works much more generally. For instance,
let us see that −δ does not have a periodic 3-adic continued fraction either. The
argument of Proposition 6.1 does not apply directly, but we can compute a few
more complete quotients and try to repeat the argument with those numbers.

We have

−δ = 2 + (−2− δ) = 2 +
−9

−2 + δ
,

hence the first complete quotient is (2−δ)/9. The second complete quotient is found
to be equal to (−11 + δ)/12. Now, if −δ has a RCF expansion which is periodic,
the same would hold for all complete quotients, in particular for (−11 + δ)/12. But
now we can perform the same argument as in Proposition 6.1 (replacing δ with
(−11 + δ)/12) and we obtain a contradiction.

Remark 6.3. The proofs of Proposition 6.1 and of Remark 6.2 ultimately rely on
the independence of the real and 3-adic topologies.

It is also possible to give another argument for the non-periodicity of the RCF
of −δ which avoids any reference to the convergence in the reals. The idea is
to examine the RCF at the point where the periodic part begins and to seek a
contradiction using a congruence argument.
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Repeating the argument used in Proposition 6.1 for the RCF expansion of −δ,
we find that

(6.1) − δ =
−pnδ + 3pn−1 + 2pn
−qnδ + 3qn−1 + 2qn

for some n > 0. We may also assume that n is the minimal integer for which this
holds. Comparing rational and irrational parts, this equation yields

(6.2) 3pn−1 + 2pn = 13qn, 3qn−1 + 2qn = pn,

and, eliminating pn, we have that

3qn = 2qn−1 + pn−1.

From this equation we can clear the denominators and obtain 3q̃n = 3en−1(2q̃n−1 +
p̃n−1), which implies that en−1 = 1 and that

q̃n = 2q̃n−1 + p̃n−1,

while clearing denominators from (6.2) we have that 2q̃n ≡ p̃n (mod 9), and clearing
denominators from pnqn−1 − pn−1qn = (−1)n yields q̃np̃n−1 ≡ p̃nq̃n−1 (mod 9).

Hence q̃np̃n−1 ≡ 2q̃nq̃n−1, whence 2q̃n−1 ≡ p̃n−1 (mod 9). This implies that
q̃n ≡ 4q̃n−1 (mod 9), which easily gives an−1 = 4/3. But this implies αn−1 =

[
4
3

]
3
,

which contradicts our choice of the index n as the smallest for which (6.1) holds.

6.2. The general result. In this section we give a general effective criterion to
decide whether the RCF expansion of a quadratic irrational is periodic or not.

Let us consider a quadratic irrational α ∈ Q` \Q. As argued before we can take
it of the form

α =
b0 + δ

`f0c0
,

with b0, c0, δ
2 = ∆ and f0 satisfying conditions (4.2). As discussed before, all

complete quotients will be of the form αm = bm+δ
`fmcm

, where bm, cm and fm are
integers defined by the recurrence formulae (4.3).

We saw in a previous example how to deduce that a certain RCF is not periodic,
by looking at the sign of a suitable complete quotient and considering its real
embeddings. The sign of the real embeddings is related to the size of the quantities
bm (more precisely, to the sign of ∆ − b2m). We now show that the periodicity of
the RCF expansion is related to the boundness of the bm.

Proposition 6.4. Let α ∈ Q` be a quadratic over Q. Then, the RCF continued
fraction expansion is periodic if and only if the sequence {|bn|}n is bounded from
above.

Proof. Assume first that α has a periodic RCF expansion. Then, there existM0 ≥ 0
and k > 0 such that for every m ≥ M0, αm+k = αm. This means that we have a
finite number of complete quotients {α, α1, . . . , αM0+k−1}. But every αn has the
form bn+δ

`fncn
for all n = 0, . . . ,M0 + k− 1, and the bn can assume only finitely many

values, hence the sequence {|bn|}n is bounded as required.
Conversely, assume that the sequence {|bn|}n is bounded; as they are integers,

they can assume only finitely many values. Moreover, from (4.3), we have that, for
all n ≥ 0,

`fn+fn+1cncn+1 = ∆− b2n+1.

The cn are non-zero integers and, by Proposition 4.1, after a finite number of steps,
also the fn are all positive; therefore, for all n ≥ n0, we have |`fncn| ≤

∣∣∆− b2n+1

∣∣.
This implies that there exists a finite number of possibilities for the fn and the cn.
But now as αn = bn+δ

`fncn
, all complete quotients of α vary among a finite number of
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possibilities. Hence there exist some N,M ≥ 0 such that αN = αM , which implies
that the RCF expansion of α is periodic. �

The previous proposition gives a necessary and sufficient condition for deciding
whether a RCF expansion is periodic or not, but it does not give an effective
criterion. In the following theorem we give an effective bound on the number of
complete quotients we have to compute in order to decide on periodicity.

Theorem 6.5. Let α ∈ Q` be a quadratic irrational over Q.
If the RCF continued fraction of α is eventually periodic, then there is a unique

embedding j : Q(α) → R such that j(αn) > 0 for every complete quotient αn of
α; moreover, the limit in R of the same continued fraction is a root of the same
quadratic equation satisfied by α, and in fact is j(α).

Conversely, there is a computable integer N = Nα > 0 such that, if for every
n ≤ N there is an embedding jn : Q(α) → R with jn(αn) > 0, then the `-adic
Ruban continued fraction of α is periodic.

Before proving Theorem 6.5, we show a simple lemma.

Lemma 6.6. Let α ∈ Q` be a quadratic irrational over Q and j : Q(α) → R an
embedding such that j(αm) < 0 for some complete quotient αm. Then, j(αr) < 0
holds for all r ≥ m.

In particular, if the embeddings jn exist as in the second part of Theorem 6.5,
then the same embedding can be chosen independently of n.

Proof. By definition we have that αm = am + α−1
m+1. Therefore j(αm) = am +

j(αm+1)−1. If j(αm) < 0, then j(αm+1) must be negative as well, because am > 0.
By induction this proves the first part of the statement.

For the second part we just need to remark that, if for a fixed embedding j and
complete quotient αm, we have j(αm) < 0, then the same embedding j will take
negative values over all complete quotients from αm on. We can then take all the
embeddings jn equal to the other embedding j′ 6= j. �

Proof of Theorem 6.5. Suppose first that α is a quadratic number in Q` \Q having
a(n eventually) periodic RCF. As discussed in the previous proposition, for every
m greater than some m0, all complete quotients αm of α have a purely periodic
RCF. Therefore, by Proposition 5.1, there exists a unique embedding j : Q(α)→ R
such that j(αm) > 0 for all m > m0. In particular, Q(α) is a real quadratic field.

Now, let us use again the fact that, for every fixed integer h ≥ 0, αm+h is a
complete quotient of αh for every m ≥ 0. Then, if we call {rn/sn}n the sequence
of convergents to αh, by (2.3), we have

αh =
αm+hrm + rm−1

αm+hsm + sm−1

for all m ≥ 0, hence

j(αh) =
j(αm+h)rm + rm−1

j(αm+h)sm + sm−1
.

For m > m0 this shows that j(αh) > 0 as required.

As seen in Subsection 2.2, lim inf an > 0, which is ensured by periodicity, implies
that the RCF of α converges in R. In view of the usual formulae relating α with
the complete quotients, the corresponding limit must satisfy the same quadratic
equation satisfied by α, and the same holds for all complete quotients αn. Also, all
of these limits must be positive, so must be equal to j(αn). This proves the first
part of the statement.
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To go in the opposite direction is more delicate. Let

α =
b0 + δ

`f0c0

be a representation of α satisfying the usual conditions (4.1) and (4.2). We denote
by ξ and ξ′ the two real embeddings of α and by ξn and ξ′n the real embeddings of
αn for all n ≥ 0. Let also t :=

⌊√
∆
⌋
.

Step A) We show first that within at most max(0, |b0| − t) steps in the con-
tinued fraction expansion either we reach a complete quotient with two negative
embeddings, or a complete quotient αn satisfying the inequality |bn| <

√
∆.

Suppose that |b0| >
√

∆. As ξξ′ =
b20−∆

(`f0c0)2
> 0, it follows that the two embed-

dings have the same sign, which we take to be positive otherwise there is nothing
to prove. This in turn implies that b0 and c0 have the same sign. If the same holds
for α1 as well, i.e. |b1| >

√
∆ and ξ1, ξ′1 > 0, we have similarly that b1c1 > 0.

Suppose for example that b0 > 0. Then c0 > 0 and the second equation in (4.3)
with n = 0 implies that c1 < 0 and then b1 < 0. But then the first equation in (4.3)
gives that |b0| − |b1| > 0. The same holds analogously if b0 < 0. This shows that
the absolute values of the bi decrease until |bi| <

√
∆ or both ξi < 0 and ξ′i < 0

hold; this will happen in at most |b0| − t steps.

Step B) By replacing α with a complete quotient, we can now assume that
|b0| <

√
∆ holds. Arguing as before, this implies that ξξ′ < 0. Assume without

loss of generality that ξ > 0 and ξ′ < 0. By Lemma 6.6, we have that ξ′n < 0 for
all n ≥ 0. If, for a later index m, it holds that |bm| >

√
∆, then ξmξ′m > 0 which

implies ξm, ξ′m < 0. This shows that the inequality |bn| <
√

∆ holds until we reach
a complete quotient with two negative embeddings.

Notice now that, under the inequality |bn| <
√

∆, equation (4.3) implies that the
ci’s all have the same sign. Therefore for every fixed value of bn, the second equation
in (4.3) implies that the quantity `fncn can assume at most ∆− b2n different values.
However bn can assume only the 2t+ 1 different values between −t ant t. Thus we
see that, after at most 1+

∑t
i=−t(∆− i2) = (2t+1)∆− t(t+1)(2t+1)

3 +1 steps, either
we reach a complete quotient with two negative embeddings or we get a repetition
in the sequence of the complete quotients, which implies the periodicity of the RCF
expansion of α.

Hence, if we take Nα := max(0, |b0| − t) + (2t + 1)∆ − t(t+1)(2t+1)
3 + 1, and for

all n ≤ Nα at least one between ξn and ξ′n is positive, then the RCF expansion of
α is periodic, proving the claim. �

Remark 6.7. We point out that there is an alternative argument to prove Theo-
rem 6.5 which uses well-known explicit bounds for the number of solutions of some
S-unit equation. It was in fact the use of S-units which allowed us to find the al-
gorithm using the real embedding. On the other hand, the bound on Nα produced
with this approach is far worse than the one above.

Remark 6.8 (Explicit computation of the constants). As shown in the proof,
given α = b0+δ

c0`f0
of the usual shape (4.1) satisfying (4.2) and setting t =

⌊√
∆
⌋
, the

value Nα can be taken equal to

max(0, |b0| − t) + (2t+ 1)∆− t(t+ 1)(2t+ 1)

3
+ 1.

However, this bound can be improved in the case that ` | ∆ by performing the steps
described in Proposition 4.1 and choosing a more convenient representation for the
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complete quotients involved. Let ∆ = `2h∆̃ and t̃ =
⌊√

∆̃
⌋
. Notice that the sign of

the quantities b2i −∆i which occur during the cancellation steps of Proposition 4.1
is not changed when divided by a power of `. Then if |bi| >

√
∆i, the absolute

value of the bi decreases at each step unless we find a complete quotient with two
negative embeddings. This means that, after max(h + 2, |b0| − t) steps, both the
cancellations of Proposition 4.1 and Step A of the proof will be completed. We can
then perform Step B using ∆̃ instead of ∆, which saves a factor of `3h in the main
term at the cost of performing at most h+ 2 ≈ log ∆ additional steps.

The value Nα can then be taken equal to

max(h+ 2, |b0| − t) + (2t̃+ 1)∆̃− t̃(t̃+ 1)(2t̃+ 1)

3
+ 1.

As
√

∆̃− 1 < t̃ <
√

∆̃, this is bounded from above by

max
(
h+ 2, |b0| −

⌊√
∆
⌋)

+
4

3
∆̃3/2 − 1

3
∆̃1/2 + 1.

Example 6.9. Let us give some examples of application of Theorem 6.5.
Let us prove that the 3-adic expansion of δ, the only square root of 37 in Q3 which
is congruent to 1 modulo 3 considered in the Example 2.9 is not periodic. Indeed:

• a0 = bδc3 = 1, hence δ = 1 + 1
α1

, with α1 = 1+δ
36 . If we denote by

ι : Q(δ)→ R the real embedding that sends δ in
√

37, and with ι− the one
sending δ in −

√
37, we have that ι(α1) > 0 and ι−(α1) < 0;

• a1 = bα1c3 = 5
9 , hence α1 = 5

9 + 1
α2

,with α2 = − 19+β
9 . So, we have that

ι(α2) < 0 and ι−(α2) < 0. By Theorem 6.5, we can conclude that the
expansion of δ is not periodic.

In this case, the algorithm stops at the second step. There are also cases in which
more steps are needed to decide whether the expansion is periodic or not. Take
for example γ the square root of 13 in Q3 which is congruent to 1 modulo 3. Take
θ = 2+γ

12 . Then

θ =

[
0,

2

3
,

5

9
,

2

3
,

8

3
,

7

3
, . . .

]
.

In this case, the images of the complete quotients under the two real embeddings
of Q(γ) are both negative for the first time at the fifth iteration. Indeed, it is easy
to construct examples in which this phenomenon happens arbitrarily late.

We notice that Theorem 6.5 allows us to conclude that certain classes of square
roots of positive integers cannot have a periodic continued fraction. For instance,
the following holds:

Corollary 6.10. Let ` be an odd prime and ∆ = 1 + k`h not a square, with h > 0
and (k, `) = 1. Let δ ∈ Q` \ Q be the square root of ∆ congruent to 1 modulo `.
Then, if ∆ > (`h + 1)2, the RCF expansion of δ is not periodic.

Proof. Let us compute the RCF of δ: a0 = 1, hence δ = 1 + 1
α1

, with α1 = 1+δ
∆−1 =

1+δ
k`h

. If we denote by ι : Q(δ) → R the real embedding obtained sending δ in√
∆ (the positive real square root of ∆) and by ι− the other real embedding, then

ι(α1) > 0 and ι−(α1) < 0.
To calculate the second complete quotient, we have first to compute the `-integral

part of α1. As by assumption ∆ = 1 + k`h, using the Taylor expansion of
√

1 + x,
we can write δ as δ = 1 + k`h

2 + `2hC for some C ∈ Z`. This implies that

bα1c` =

⌊
δ + 1

k`h

⌋
`

=

⌊
2 + k`h

2

k`h

⌋
`

=

⌊
2

k`h
+

1

2

⌋
`

.
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Now, as
∣∣ 1

2

∣∣
`

= 0, we have that bα1c` ≥ 1
`h
. Furthermore the assumption ∆ >

(1+`h)2 implies that
√

∆ > 1+`h. Putting these two inequalities together we have
that

1

ι(α2)
= ι(α1)−bα1c` ≤ ι(α1)− 1

`h
=

1 +
√

∆

∆− 1
− 1

`h
=

1√
∆− 1

− 1

`h
<

1

`h
− 1

`h
= 0,

so ι(α2) < 0. But also ι−(α2) < 0, as ι−(α1) < 0, and by Theorem 6.5 this implies
that the RCF expansion of δ is not periodic, as wanted. �

6.3. Periodicity of the expansion for varying `. In this section we show that,
for a fixed irrational quadratic number α, there are at most finitely many primes `
and embeddings ι : Q(α)→ Q` such that ι(α) has a periodic RCF expansion, thus
answering a question posed by Professor Corvaja.

Proposition 6.11. Let α ∈ Q` be a root of the irreducible polynomial Ax2+Bx+C,
with A,B,C ∈ Z, A > 0 and ∆ := B2 − 4AC > 0. Assume that ` - A and
` > max

(
∆
4A , C

)
. Then the RCF expansion of α is not periodic.

Proof. Because ` - AC, it is easy to see that v(α) = 0 and therefore a := bαc` ∈ Z.
We have that Aa2 + Ba + C ≡ 0 (mod `), because a is the `-adic integral part of
α. The integral number Aa2 + Ba + C cannot be zero, because the polynomial
Ax2 +Bx+ C is irreducible and a ∈ Z, therefore

∣∣Aa2 +Ba+ C
∣∣ ≥ `.

It is impossible that Aa2+Ba+C ≤ −`, because ` > ∆
4A . The smallest solution of

Ax2+Bx+C = ` is negative, because ` > C, but a > 0 so the only possibility is that
a ≥ −B+

√
∆+4A`

2A , which is strictly bigger than both the real roots of Ax2 +Bx+C.
But then both real embeddings of α1 = (α − a)−1 are negative and Theorem 6.5
implies that the RCF expansion of α is not periodic. �

Corollary 6.12. Let f(x) = Ax2 + Bx + C ∈ Z[x] be an irreducible quadratic
polynomial. Then there are at most finitely many primes ` such that there exists a
root of f(x) in Q` with a periodic RCF expansion.

Proof. Without loss of generality, we assume A > 0. Let ` be a prime number such
that f(x) has a root in Q`. If ∆ := B2 − 4AC < 0, then Theorem 1.2 guarantees
that the RCF expansion of both roots of f(x) in Q` is not periodic. The same holds
by Proposition 6.11 if ∆ > 0 and ` is big enough. �

7. Algorithms

In this section we collect the pseudo-code implementation of the decision algo-
rithms that have been described along the paper.

7.1. Rational numbers. The first is an algorithm that decides in finite time
whether the RCF expansion of a rational number is periodic or finite.
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Algorithm 1 Deciding on the periodicity of the RCF expansion of a rational
number
Input: A rational number α = a/b.
Output: The algorithm tells whether the RCF expansion of α is finite or periodic.

1: x := α

2: B1 := max
(

log b
log ` , 2

)
3: for i = 1 to B1 do
4: if x < 0 then
5: return The expansion is periodic.
6: end if
7: y := x− bxc`
8: if y == 0 then
9: return The expansion is finite.

10: end if
11: x := 1/y
12: end for

The second is an algorithm that computes in finite time the RCF expansion of
a rational number.

Algorithm 2 Computing the RCF expansion of a rational number

Input: A rational number α = a/b.
Output: The algorithm outputs the RCF expansion of α, divided into pre-periodic

and periodic part if the expansion is not terminating.
1: B2 := 32`H(α)2

2: for i = 1 to B2 + 1 do
3: if x == −`−1 then
4: return `− `−1

5: end if
6: print bxc`
7: y := x− bxc`
8: if y == 0 then
9: return

10: end if
11: x := 1/y
12: end for

Both algorithms are easy to describe and analyse. The first one executes the
continued fraction algorithm until the expansion terminates or a negative complete
quotient appears. Either one or the other of the stopping conditions will occur
within B1 = max

(
log b
log ` , 2

)
steps, according to the Quantified Algorithm (i) and to

Remark 3.2, while Theorem 1.1 ensures that the existence of a negative complete
quotient implies the periodicity of the expansion. The running time is clearly
bounded by O

(
h(α)
log `

)
steps.

The second algorithm executes the same operations and prints the partial quo-
tients of the expansion until the expansion terminates or a complete quotient equal
to −`−1 is found, at which point the expansion becomes periodic by Example 2.8
and the algorithm prints the periodic part `− `−1. Theorem 1.1 again ensures that
one of these two conditions will eventually occur and the Quantified Algorithm (ii)
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together with Remark 3.2 guarantees that one of the stopping conditions will occur
within B2 + 1 steps. The running time of Algorithm 2 can be then bounded by
O(`H(α)2).

Both Algorithm 1 and 2 only need to store in memory the values of x and y,
which are updated at every step. We recall that the space required to store an
algebraic number of height α is about h(α); then, the space complexity of both
algorithms is bounded by O

(
max0≤i≤B1,2

h(αi)
)
. In particular, for the first algo-

rithm using (2.10) we get O
(
H(α)

log 2
log ` log (`H(α))

)
, while for the second algorithm

the Quantified Algorithm (ii) gives O (`H(α)).

7.2. Quadratic irrational numbers. The third algorithm implements the second
part of Proposition 4.1, that is it computes the first steps of the RCF expansion of
a quadratic irrational number until a complete quotient satisfying conditions (4.4)
is found.

Algorithm 3 The RCF expansion of a quadratic irrational number

Input: A quadratic irrational number α with v(α) ≤ 0, represented by a 4-tuple
(f, c, b,∆).

Output: The algorithm outputs the firstM ≤ v(∆)
2 +2 steps of the RCF expansion

of α, and a 4-tuple (fM , cM , bM , ∆̃) representing αM and satisfying (4.4).
1: d := c/ gcd(c, b2 −∆)
2: c := cd
3: b := bd
4: ∆ := d2∆
5: h := v(∆)/2
6: for i = 1 to h+ 2 do
7: α := b+

√
∆

`f c
8: a := bαc`
9: print a

10: b := a`fc− b
11: c := (∆− b2)/(`v(∆−b2)c)
12: f := v(∆− b2)− f
13: k := min(v(∆)/2, v(b))
14: b := b/`k

15: ∆ := ∆/`2k

16: f := f − k
17: if conditions (4.4) are satisfied then
18: return αi is represented by (f, c, b,∆)
19: end if
20: end for

Lines 1–4 ensure that condition (4.2) is satisfied. Lines 7–12 perform one step of
the RCF and the recurrence formulae (4.3) and lines 13-16 simplify as many factors
` as possible. Proposition 4.1 guarantees that at as long as ∆ remains divisible by
` at least one factor ` is simplified at every step, and that when ` - ∆ is satisfied,
the remaining conditions are also satisfied within two more steps.

The time complexity is clearly bounded by O(h(α)), which is O
(

log ∆
log `

)
.

The algorithm stores in memory at any time only the data relative to one single
step of the RCF. A clear upper bound for the quantities ∆, |b| ,

∣∣c`f ∣∣ is given by the
values of the recurrence sequences defined by (4.3) without simplifying any factor
`. These recurrence sequences are bounded in Proposition 4.4.
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We have that the space complexity is bounded by O (max0≤i≤h+2 h(αi)). The
height h(αi) is O(log ∆ + log |bi|+ log

∣∣ch`fi∣∣) so, according to Proposition 4.4, we
have

O

(
max

0≤i≤h+2
h(αi)

)
= O (log(∆) + h log(C2(`)) + logC3(α))

= O
(
log
(
∆ + b2 + c`f

))
,

because log(C2(`))/ log ` < 3 independently of `.

The last algorithm implements Theorem 6.5. It decides whether the RCF ex-
pansion of a quadratic irrational number is periodic, and in this case it computes
the preperiodic and periodic parts of the expansion.

Algorithm 4 The RCF expansion of a quadratic irrational number

Input: A quadratic irrational number α, represented by a 4-tuple (f, c, b,∆) which
satisfies (4.1) and (4.2).

Output: The algorithm outputs the RCF expansion of α, divided into pre-periodic
and periodic part, if the expansion is periodic; otherwise it tells that the ex-
pansion is aperiodic.

1: x0 := α

2: t :=
⌊√

∆
⌋

3: N := max(0, |b| − t) + (2t+ 1)∆− t(t+1)(2t+1)
3 + 1

4: for i = 0 to N do
5: if both real embeddings of xi are negative then
6: return The expansion is not periodic.
7: end if
8: y := xi − bxic`
9: xi+1 := 1/y

10: for j = 0 to i do
11: if xj == xi+1 then
12: print Preperiodic part:
13: for k = 0 to j − 1 do
14: print bxkc`
15: end for
16: print Periodic part:
17: for k = j to i do
18: print bxkc`
19: end for
20: return
21: end if
22: end for
23: end for

The algorithm simply executes the RCF iterations and at each step it compares
the new complete quotient with all the previous ones until a repetition is detected
or a complete quotient with two negative embeddings is reached. Thanks to Theo-
rem 6.5 we know that in at most N steps one of these conditions will occur.

Due to the nested iterations, the time complexity is O(N2), which is O
(
∆3 + b2

)
.

Unlike the previous algorithms, this one needs to store in memory the whole
sequence of complete quotients in order to detect repetitions. The space complexity
is therefore bounded by O

(∑N
i=0 h(αi)

)
.
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By (2.9) we have that h(αi) ≤ h(α) + si log `+ i log(2`). As shown in the proof
of Proposition 4.4 we have that ei ≤ fi < 3i + C4(α), so that si = O(i2 + iC4(α))
and

O

(
N∑
i=0

h(αi)

)
= O

(
Nh(α) +N3 log `+N2C4(α) log `+N2 log(2`)

)
.

We already remarked analysing the previous algorithm that

h(α) = O
(
log ∆ + log |b|+ log

∣∣c`f ∣∣) ,
while C4(α) = O(log(∆ + b2 +

∣∣c`f ∣∣)), as computed in Proposition 4.4.
In the end, the space complexity of the algorithm is bounded by

O

((
∆

3
2 + |b|

)3

log `
(
log ∆ + log |b|+ log

∣∣c`f ∣∣)) .
Remark 7.1. As noticed in Remark 6.8, if ∆ = `h∆̃ for some h ≥ 1 and (∆̃, `) = 1,
it is more convenient to apply first Algorithm 3 to reduce α to the form (4.4),
and then to apply Algorithm 4 to the reduced form (fM , cM , bM , ∆̃). Using the
improved estimate for N that comes out of Remark 6.8, we have that the total
complexity is bounded by O

(
h2 + ∆̃3 + b2

)
in place of O(∆3 + b2).
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