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Abstract

Compressed Sensing (CS) has been proposed as a method able to reduce

the amount of data needed to represent sparse signals. Nowadays, different

approaches have been proposed in order to increase the performance of this

technique in each stage that composes it. Particularly, this paper provides a

critical review of the state-of-the art of some CS adaptations in the sensing

stage to identify the strengths and limitations of each of them. In addition, a

new method is proposed (Nearly Orthogonal Rakeness-based CS) that aims

to overcome limits of the CS adaptations covered in this work. After inten-

sive numerical simulations on synthetic signals and electroencephalographic

(EEG) signals, the proposed approach outperforms discussed state-of-the-art

approaches in terms of compression capability required to achieve a target

quality of service.
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1. Introduction

In recent years, the trade-off between the increase of the quantity of

data to manage and the electronic devices miniaturization has been a big

challenge. The amount of data we currently store and share daily is growing

impressively. To cope with this problem, new processing techniques have

been developed along with the improvement of hardware devices. In the

field of data compression, one of these new approaches is the Compressed

Sensing (CS) [1; 2], that is a framework capable to simultaneously acquire and

compress an input signal. Basically, CS exploits a very common feature of the

signals called sparsity. This property is the mathematical quantification of

the idea that a signal, when expressed in a proper basis, allows a much more

compact representation than what one can obtain using a straightforward

Nyquist-rate sampling approach. Due to this, the interest in CS has recently

grown, and has led to the development of Analog-to-Information Converters

(AICs) [3; 4; 5], that base the acquisition of an analog signal on the CS

framework, with a potential reduction of energy consumption in comparison

with the standard Analogic-to-Digital Converters (ADCs). The effectiveness

of AICs has already been investigated in different areas, ranging from bio-

medical prototypes [5; 6; 7] to AICs for the acquisition of radio-frequency

signals [8; 9].

Mentioned prototypes are essentially CS-based encoder blocks. Com-

pressed information is dispatched to a decoder stage, that is able to recover
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Figure 1: Std-CS based system block diagram.

the original signal exploiting the assumption that the input signal is sparse.

The encoder/decoder processing scheme that follows the CS framework is

highly asymmetric. The encoder compresses the input signal, once it has

been segmented into contiguous and non overlapped chunks, by a linear pro-

jections on the rows of a properly designed sensing matrix A (usually drawn

as instances of stochastic process) with a very low computational cost. This

cost can be also further reduced with some constraints on the A. As an

example, by asking that each element of A is an antipodal entry, i.e, whose

value can be only +1 or −1, the linear projection is such that only signed

sums are required to compute it. Since no performance degradation has been

observed with this approach [10; 11], we will refer in this paper to approaches

capable to generate an antipodal matrix A only.

Conversely, a much higher cost is paid by the decoder, where a convex

optimization problem has to be solved. This fits well the Internet of Things

paradigm, where the typical scenario is given by a plethora of sensors with a

low computational power transmit acquired data on the cloud, where compu-

tational power is not an issue. Some proposed algorithms capable to recover

the input signal are discussed in [12; 13]. However, for the sake of simplicity,

l1 minimization-based algorithms are frequently adopted [14; 15]. The block
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diagram of a Standard CS-based (Std-CS) system is shown in Figure 1.

Many papers recently appeared in the literature proposed methods to

improve performance of a CS system, either at the encoder or at the decoder

block. Generally, the key point of all these works is the adaptation of some

quantities characterizing the CS framework to special features of the input

signal. An overview of these approaches can be found in [16]. Several works

are focused on the decoder side. In details, they improve performance by

adapting the reconstruction algorithms [17; 18] or the sparsity basis [19] to

the input signal features. Many others works are focused in the encoder side

[20; 21; 22; 23; 24; 25] by adapting the sensing procedure to the input signal

peculiarities. This work belongs to the latter group.

1.1. State-of-the-Art and original contribution

The state of the art of the encoder-side optimization is focused on two

different research lines. The first aims to optimize the sensing matrix A by

minimizing the mutual coherence between the input signal and A [20; 21]. A

second approach considers additional peculiarities of the input signals [22; 23;

25]. Both approaches are undoubtedly capable of improving the performance

with respect to the Std-CS, even if better resuts are achieved by using the

second approach.

This paper is based on the results appeared in [22] and [25], both taking

advantage of an a priori knowledge about a property of the input signal called

localization. In general terms, a signal is localized when its energy is not uni-

formly distributed over the whole signal space. Interestingly, the localization

is not an unusual property, as almost all real-life signals are localized [26]. In

[22] the Rakeness-based CS (Rak-CS) is proposed. In details, the correlation
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profile of the rows of the sensing matrix is adapted with that of the input

signal, still preserving the fundamental requirement of a randomly generated

rows required by the Std-CS for the correct reconstruction. In [25] the au-

thors proposed the Nearly-Orthogonal CS (NeO-CS), aiming to reduce any

redundancy in the sensing stage through geometric constraints (i.e., by set-

ting a minimum value for the angle between any couple of rows of A). The

difference is that, whereas Rak-CS adapts, in average, the sensing stage to

the input signal statistics, NeO-CS imposes a proper characterization to each

possible CS sensing stage.

In particular, with respect to the two considered publications, our original

contribution can be summarized as follows.

• We present a detailed analysis of both sensing matrix adaptation tech-

niques (the Rak-CS and the NeO-CS). Strengths, and in particular

limitations of each of them are discussed.

• A new innovative approach, indicated with Nearly Orthogonal Rakeness-

based CS (NOR-CS) is proposed and discussed to overcome the limi-

tation identified in our analysis.

In particular, if Rak-CS ensure the easy generation of the sensing matrix A,

it cannot be trimmed to the maximum possible adaptation level in order to

avoid reconstruction problems with instances of the input signal appearing

with a lower probability. Conversely, the NeO-CS is always pushed to the

maximum adaptation level, but the geometrical constraints introduced to

ensure a good behavior with less frequently input signal instances may pre-

vent the convergence of the process generating A. The proposed NOR-CS is
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instead capable both to set adaptation to the maximum possible level, but

also to ensure the convergence of the process generating A. This ensures per-

formance results higher with respect to what obtained when applying both

Rak-CS and NeO-CS, that are considered as reference cases. The comparison

between the proposed approach and the two reference cases relies on both

synthetic and real bio-signals case studies.

The rest of the paper is organized as follows. Section 2 gives a brief

overview about the Compressed Sensing theory. Then, we provide a criti-

cal review of the Rak-CS and NeO-CS approaches. Once their advantages

and limitations are discussed, Section 3 introduces in detail our proposed ap-

proach. In Section 4 the numerical results are presented testing our proposed

method and those referred with synthetic signals and electroencephalograph

(EEG) signals. Finally, Section 5 concludes this paper.

2. Adapted Compressed Sensing

The CS mechanism is designed to process chunks of the input signal that

must be sparse. Let be x = (x0, . . . , xn−1)> the input vector that contains n

successive Nyquist samples, where ·> stands for vector transpose. We say that

x is k-sparse if its representation on the basis S ∈ Rn×n, i.e., x = Sξ, gives

a coefficient vector ξ ∈ Rn that exhibits a number of non-zero components

less than or equal to k � n for any possible instance x [1; 2].

For this class of signals, a CS encoder generates m dimensional measure-

ment vector y = (y0, y1, . . . , ym−1)> by projecting x on the rows of a sensing

matrix A ∈ Rm×n, such that y = Ax = ASξ where m < n ensure data

compression.
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At the decoder side, CS theory insures that a signal can be recovered

from the measurement vector y by exploiting sparsity. It is done by solving

the following optimization problem

ξ̂ = arg min
ξ∈Rn

‖ξ‖1

s.t. ‖ASξ − y‖2
2 ≤ ε2

(1)

where the 1-norm ‖ξ‖1 is used as sparsity-promoting function, ‖ASξ − y‖2
2

counts the noise affecting y (bounded by ε ≥ 0), while the final reconstructed

signal is x̂ = Sξ̂.

To achieve a correct reconstruction, CS theory suggests matrices A com-

posed by instances of Gaussian or sub-Gaussian random variables where the

number of rows is in the order m = O(k log n) [14; 15]. Conveniently for

hardware applications [7; 5; 8; 9], A can still be random but it is forced in

the set A ∈ {−1,+1}m×n, i.e., A is an antipodal matrix. This setting is

chosen as reference, and from now on, it is implicitly assumed that A is an-

tipodal. As a remark, encoder and decoder need to share the information of

A, while the knowledge of S is required only at the decoding stage.

Despite the advantages that the CS presents, it is proved that an appropri-

ate design of the sensing matrix A can significantly increases the performance.

In [20] and [21] two deterministic methods for the matrix A optimization has

been proposed that are able to outperform the Std-CS. However, methods

that adapts the sensing stage to the statistics of the input signal can further

increase the reconstruction performance, as for both the method in [23] and

the Rak-CS approach. Nevertheless, limiting to the adoption of antipodal

sensing matrix, we consider the Rak-CS approach as representative for the

state of the art in the Adapted CS framework [16].
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2.1. Rakeness-based CS

The reconstruction of the input signal in the CS framework is theoretically

guaranteed if using a number of measurement m = O(k log(n/k)) and a few

conditions are satisfied. Among them, one of the most important and known

is the Restricted Isometry Property (RIP) [14]. Indeed, CS performance can

be improved (i.e., either by increasing the signal reconstruction quality at a

given m, or by allowing a correct reconstruction with a value of m smaller

than what expected by the general theory) if some other constraints on the

input signal can be exploited.

In this paper we focus on the localization property, introduced in [22]. A

class of signal is localized if the expected energy distribution of instances is

not uniform over the whole signal space. Mathematically, let us consider the

n × n input signal correlation matrix X = E[xx>]. In terms of eigenvalues

µ0 ≥ µ1 ≥ µ2 · · · ≥ µn−1 ≥ 0 ∀j ∈ {0, 1, . . . , n − 1} corresponding to

the orthonormal eigenvectors u0, u1, . . . , un−1, we have X =
∑n−1

j=0 µjuju
>
j .

Localization appears when the eigenvalues µj are not equal to each other,

and can be quantified by computing the deviation of each eigenvalue from

the isotropic case by

Lx =
n−1∑
j=0

(
µj

tr (X )
− 1

n

)2

=
tr (X )2

tr2 (X )
− 1

n
(2)

where tr(·) stands for matrix trace. The value of Lx ranges from 0 (when

considering instances of a white random stochastic process, where the signal

presents an uniform energy distribution) to Lx = 1 − 1/n ≈ 1 (when µ0 >

1 and µj = 0, j = 1, 2, . . . , n − 1, i.e., when the signal energy is always

concentrated in a single direction).
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An example of a localized signal is a low-pass signal: in the frequency

domain, energy is concentrated on the lower part of the spectrum, whereas

the energy that can be found on the upper part of the spectrum is much

smaller. Note that localization is a property that does not depend on the

specific basis used to express the input signal x. In the above definition

of X we have implicitly considered the canonical, leading to eigenvalues µj

and eigenvectors uj. Even if we consider the input signal as expressed in a

different basis (such as the Fourier basis as in the example), its correlation

matrix still gives rise to the same eigenvalues, and so the same Lx according

to (2). This observation is of particular importance, at the light of the fact

that the sparsity property, required by the CS framework, indeed depends

on a particular basis. As a consequence, for a given input signal, the sparsity

property and the localization property are independent from the each other.

The Rak-CS approach discussed in [22] and better formalized in [24] ex-

ploits the observation that the reconstruction quality in a CS framework can

be improved by increasing the energy captured by the projection operation

y = Ax. If x is localized, it is easy to understand that this energy is max-

imized by aligning the rows of the matrix A with the directions where the

signal is most probably concentrated, and identified from X . Nevertheless,

it is still important to explore less energetic directions over the whole space

signal to guarantee a correct reconstruction of any possible instance x and

to not go against to the fundamental precepts of the standard CS theory.

The trade-off between focus-exploration is not a trivial issue. To formalize

it, let us define a generic row of A as a = (a0, a1, . . . , an−1)>, with a corre-

lation matrix A = E[aa>]. The aim of Rak-CS is to maximize the rakeness,
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defined as the average energy collected by a generic entry of the measure-

ment vector a>x and expressed as ρ = Ea,x[(a
>x)2], under the assumption

that the rows of A are still random enough and ensured by imposing a cap

on the localization La of the generic row a by means of a localization scaling

parameter l ≥ 0, whose typical value is l = 0.5 [26]. Mathematically, the rak-

eness optimization problem [22] is analytically solved in terms of eigenvalues

λj and eigenvectors vj of A:

vj = uj

λj =
1

J

1 +
Jµj − Σ1(J)√

Σ2(J)− 1
J

Σ2
1(J)

γ− 1
J

 (3)

with j = 0, 1, 2, . . . , J − 1, and λj = 0 ∀j ≥ J . J is the largest integer

for which, according to (3), it is still possible to achieve λJ−1 > 0. The two

terms Σ1(J) and Σ2(J) are defined as the partial sums Σ1(J) =
∑J−1

j=0 µj and

Σ2(J) =
∑J−1

j=0 µ
2
j , whereas γ is defined according to the localization scaling

parameter l as

γ =
1

n
+

l2Lx
(1− nµj)2

(4)

Finally, the correlation matrix A is given by

A =
J−1∑
j=0

λjvjv
>
j (5)

while the corresponding process generation rows of A possesses a localization
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equal to1

La =

(
l

1− nµn−1

)2

Lx.

The limitation of this approach is that the correlation profile of all the

rows of A is adapted to the one of the input signal. So, dealing with highly

localized signals could result in redundancies in terms of information of the

measurement vector. In this case, the rows that conform A tends to be

very similar to each other, resulting in measurements with almost the same

information. This scenario has to be avoided by lowering the value of l with

respect to the typical values suggested in [22; 25].

2.2. Nearly-Orthogonal CS

As previously described, the key feature to deal with localized signals is

the balance between focusing the projections to the most energetic directions

and the exploration of the whole signal domain. Another solution to handle

this trade-off is the NeO-CS approach discussed in [25] where the rows of the

matrix A possess the same statistical distribution of x. This implies La = Lx.

To reduce redundancy in measurements, a lower bound is imposed on the

angles between all couples of rows that compose the matrix A. Formally,

indicate with aj and ak two rows of the matrix A. The cosine of the angle

α = âjak between them is cos(α) =
a>j ak

||aj ||2||ak||2
. NeO-CS restricts the matrix

A to be composed by couples of rows such that |cos(α)| ≤ c only. In [25]

authors suggest to generate all m rows of A iteratively. Each new row is

randomly obtained; if it satisfies the geometric constraint with respect to all

1La is computed as in (2), where λj replaces µj and where tr(A) = n to be compliant

with the generation of antipodal sequences.
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rows already generated, it is added to A. Otherwise, it discarded, and a new

row is generated and tested.

An approximation of the probability to generate a new row whose angle

with another row has a cosine smaller than c is explained in detail in [25]

and given by

Pr{|cos(α)| ≤ c} = erf

 c√
2
(
La + 1

n

)
 . (6)

The probability to generate a new row that satisfies the geometric constraint

when more than one row has already been generated rapidly decreases with

the number of rows.

Let us indicate with Z the number of iterations necessary to generate all

m rows of A. According to [25], when we deal with a high localized signal,

a better performance in the reconstruction stage is achieved when a smaller

value of c is imposed; however, the difficulty to generate the matrix A also

increases considerably, and so, the expected value of Z. Although the matrix

A can be generated offline and locally stored, it is important to consider

if the increase in the performance justifies a possible huge computational

effort. For instance, Figure 2 shows the average number of iterations E[Z]

required to obtain a new row of A as a function of the total number of

rows m with c = 0.1875 and for n = {128, 256}, obtained by montecarlo

simulations. The figure also reports profiles obtained by data extrapolation

(solid line) that evidences that E[Z] > 106 is necessary to get a compression

ratio CR = n/m = 2. If we limit Z to be less than a certain Zmax, NeO-CS

could hardly be applicable with certain c values.

From a geometric point of view, in the case of La = 0, antipodal vectors
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Figure 2: Average of the number of iterations E[Z] to

generate the rows of the matrix A using NeO-CS with c =

0.1875 and two different values of n. The threshold value

E[Z] = 106 is also indicated.

can be represented by points uniformly distributed on the surface of a multi-

dimensional sphere. As a result, when n increases, the angle between a

couple of rows increases up to π
2
. However, for La > 0, the points are not

more uniformly distributed on the surface and their distribution concentrates

according to the assigned correlation matrix. The observable effect is that the

average value of α, E[α], slowly approaches the angle π
2
. This is the reason

why when La increases the difficult to generate the rows of A increases as

well.

The impact of both localization and n is shown in Figure 3, that depicts

the E[α] profiles as a function of n for La = (0.001, 0.002, 0.005, 0.01). As one

can observe, as n increases also E[α] increases, but the speed of convergence

of E[α] to the π
2

asymptotic limit strongly depends on the localization value.
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Figure 3: Average of the angle between two rows as a

function of n.

3. Nearly Orthogonal Rakeness Based CS

With the aim to propose a new focus/exploration trade-off, we introduce

the Nearly Orthogonal Rakeness-based (NOR-CS) approach. This method

exploits the geometric constraints that characterize NeO-CS, and mitigate

the hardness in generating the m rows of A by exploiting the localization

as in the Rak-CS approach mathematically described by (3), i.e., by re-

introducing the l parameter that scales the localization imposed to the A

rows.

With NeO-CS we limit the maximum number of iterations that are al-

lowed to generate a new row of A by Zmax, NOR-CS tries to exploit as much

as possible the same geometric constraint introduced before where the hard-

ness of a new generation is imposed on average, i.e., E[Z] ≤ Zmax. If this

cap cannot be ensured, the localization of the next generated row is reduced

by scaling the value of l.

For a known class of signal, i.e., for a known Lx, the hardness to generate
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the m̂-th row of A with a given value of c has been modeled by the probability

p that a process with a correlation profile evaluated with (3)(4) will generate a

row for which the geometric constraint holds with the m̂−1 already generated

rows. Mathematically, fixed a-priori the values of Lx and n, p is a function of:

the cosine value c, the localization scaling factor l and the number of steps m̂.

Due to the complexity in computing a closed-expression for p, we evaluated

it by means of a look-up table p = Fp(c, l, m̂) that has been estimated by

Montecarlo simulations for the two values n = 128 and n = 256. This means

that for a fixed n a system configuration is defined by the value of Lx and

c, while the values of p for each possible m̂ is estimated by following the

procedure described here.

1. The first row of the matrix is not geometrically constrained so that it

is generated as for the NeO-CS framework.

2. To obtain a new row, the method generates candidates with the same

correlation profile until the geometric constraint is satisfied, i.e., | cos(α)| ≤

c, where α is the angle between the current candidate and the first gen-

erated row. We use this approach to estimate p from the number of

generated candidates.

3. The rows generation continue as in the last step until m̂ = mmax, where

mmax is the maximum number of rows considered in the look-up table

and at each new step, the geometric constraint must hold with all the

already generated rows.

The p values in the look-table refer to Montecarlo simulation on 10000

different p estimation. As is shown in the example in Figure 4b, the hardness

to obtain a new row m̂ increases significantly as Lx increases
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(a)
(b)

Figure 4: a) Representation of the look-up table. b) Look-up table for n = 128 and c =

0.3125.

Visually, the look-up table can be represented by the Figure 4a as a

collection of tables containing the probabilities p to generate each row m̂ for

a given Lx. One table for each value of c.

The algorithm we propose to generate A according to the NOR-CS ap-

proach is briefly described as follows, and summarized in Algorithm 1, where

the look-up table is used to map the function Fp. Furthermore, we limit the

(expected) number of iterations in the generation of each row with Zmax.

The key feature of the algorithm is that the value of l is initially set to the

desired value l0. We use l = l0 until the hardness of generating a single row

exceeds a threshold pmin (computed according to the desired Zmax). After

that, by means of the proposed look-up table, l is reduced to the maximum

value that still ensure p > pmin. In detail:

1. First, c and the hardness pmin to generate the rows are fixed.

2. The first antipodal row is generated with an initial correlation profile

evaluated by (3)(4) where l is equal to l0.
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n = 128, m̂ = 35

c = 0.1094 c = 0.1563 c = 0.2031 c = 0.25

l = 0.163 5.48·10−4 0.0897 0.5199 0.8731

l = 0.281 2.82·10−4 0.0609 0.4657 0.8345

l = 0.415 1.00·10−4 0.0360 0.3466 0.7711

l = 0.490 4.55·10−5 0.0229 0.2874 0.7147

l = 0.616 9.61·10−6 8.50·10−3 0.1779 0.5753

l = 0.711 2.51·10−6 3.90·10−3 0.1155 0.4763

l = 0.817 4.72·10−7 1.30·10−3 0.0621 0.3425

l = 1.010 2.34·10−8 1.21·10−4 0.0154 0.1620

l = 1.370 1.36·10−10 5.07·10−7 4.68·10−4 0.0185

l = 1.493 8.23·10−12 1.25·10−7 1.07·10−4 7.10·10−3

n = 128, m̂ = 50

c = 0.1094 c = 0.1563 c = 0.2031 c = 0.25

l = 0.163 1.94·10−5 0.0308 0.3882 0.8223

l = 0.281 7.43·10−6 0.0173 0.3342 0.7697

l = 0.415 1.69·10−6 8.30·10−3 0.2159 0.6911

l = 0.490 5.36·10−7 4.30·10−3 0.1666 0.6190

l = 0.616 5.63·10−8 1.00·10−3 0.0831 0.4501

l = 0.711 8.02·10−9 3.38·10−4 0.0448 0.3423

l = 0.817 7.06·10−10 7.05·10−5 0.0183 0.2135

l = 1.010 9.52·10−12 2.16·10−6 2.50·10−3 0.0733

l = 1.370 6.01·10−15 7.36·10−10 1.60·10−5 3.20·10−3

l = 1.493 1.01·10−16 1.06·10−10 1.90·10−6 8.24·10−4

n = 256, m̂ = 60

c = 0.1094 c = 0.1563 c = 0.2031 c = 0.25

l = 0.154 8.00·10−3 0.4887 0.9338 0.9972

l = 0.273 2.50·10−3 0.3373 0.8789 0.9869

l = 0.405 2.75·10−4 0.1500 0.7363 0.9606

l = 0.500 3.45·10−5 0.0670 0.5501 0.9147

l = 0.600 2.75·10−6 0.0191 0.3752 0.8306

l = 0.708 1.22·10−7 4.00·10−3 0.1867 0.6700

l = 0.823 2.30·10−9 4.71·10−4 0.0696 0.4362

l = 0.972 1.17·10−11 1.93·10−5 0.0131 0.2027

l = 1.386 4.00·10−19 2.12·10−10 1.05·10−5 3.70·10−3

l = 1.603 2.05·10−20 8.35·10−14 7.30·10−8 1.68·10−4

n = 256, m̂ = 90

c = 0.1094 c = 0.1563 c = 0.2031 c = 0.25

l = 0.154 6.82·10−4 0.3413 0.9026 0.9958

l = 0.273 1.19·10−4 0.1946 0.8244 0.9798

l = 0.405 4.23·10−6 0.0569 0.6309 0.9409

l = 0.500 1.83·10−7 0.0169 0.4036 0.8739

l = 0.600 4.01·10−9 2.50·10−3 0.2272 0.7564

l = 0.708 3.69·10−11 2.46·10−4 0.0792 0.5472

l = 0.823 8.91·10−14 9.74·10−6 0.0181 0.2859

l = 0.972 2.91·10−17 7.79·10−8 1.50·10−3 0.0902

l = 1.386 1.20·10−28 2.38·10−15 3.13·10−8 2.16·10−4

l = 1.603 1.94·10−30 1.47·10−20 1.66·10−11 2.10·10−6

Figure 5: Values extracted from the Fp(c, l, m̂) look-up table with Lx = 0.01.
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3. The probability p to generate the next row is obtained from the look-

up table p = Fp(c, l, m̂). If p > pmin, the row is generated with the

same value of l as the previous row. Otherwise, a maximum value of l

is calculated by exponential interpolations of the values in the look-up

table such that p > pmin holds. With this new value of l, (3)(4) is

evaluated and the row is generated.

Input: l0, c, pmin,m.

l0: initial value of l.

c: geometric constraint value.

pmin: probability threshold.

m: total of rows to be generated.

l← l0

A ← equation (3)(4)

A(1, :)← generate the first antipodal row with A

for i = 2 to m do

p = Fp(c, l, i)

if p < pmin then

l← arg max
l̂

Fp(c, l̂, i) > pmin

A ← equation (3)(4)

end

A(i, :)← generate antipodal row with A

end

Output: A
Algorithm 1: NOR-CS pseudocode

As an example, an instance of the matrix A generated by each method

is showed in the Figure 6 trying to match the localization of a low-pass

input signal x. The matrix generated with the Std-CS (Figure 6a) shows

a purely random distribution. In the case of the matrix generated with
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(a) (b)

(c) (d)

Figure 6: Matrix A generated with the different ap-

proaches: a) Std-CS, b) Rak-CS, c) Neo-CS and d) NOR-

CS. Black dots correspond to +1, white dots to -1.

Rak-CS and NeO-CS (Figure 6b and 6c respectively), a low-pass profile is

clearly identifiable. Yet, it is possible to see that sequences generated by

NeO-CS is more localized than that obtained with Rak-CS due to higher

localization. The Figure 6d shows the matrix generated by NOR-CS, where

is possible to visualize how first rows are highly localized and then, gradually

the localization decreases every certain numbers of rows.

Note that, among the many methods known to generate antipodal se-

quences with a certain correlation profile [27; 28; 29], the Rak-CS, the NeO-

CS and the NOR-CS cases in the above example have been generated using

the clipping of Gaussian instances [30; 31]. Basically, a n × n correlation

matrix G = sin
(
π
2

nA
tr(A)

)
is used to generate a zero mean Gaussian vector g,

such that antipodal aj are computed by clipping the elements of g. As a

result, also the obtained antipodal sequences are zero mean.
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4. Numeric Results

Performance of all the approaches described above is provided through

Montecarlo simulations. For each instance, we compute the Reconstructed

Signal to Noise Ratio (RSNR) as the ratio between the energy of the input

signal x and the energy of the difference between x and the reconstructed

signal x̂ expressed in dB. Starting from these data we evaluate the Average

RSNR (ARSNR)

ARSNR = EA,x

[
20 log10

(
||x||2
||x− x̂||2

)]
(7)

and the Probability of Correct Reconstruction (PCR)

PCR = Pr{RSNR ≥ RSNRmin}, (8)

this estimates the probability that the RSNR exceeds a minimum value.

4.1. Synthetic Low-pass Sparse signals test

To prove the performance of the NOR-CS and compare it with the other

approaches mentioned above, the methods are tested with synthetic low-pass

signals. Basically, n-dimensional instances x, localized and k-sparse in a

certain basis S are generated starting from an instance of a random vector x′

with zero mean and correlation matrix X ′. Computing ξ′ = S−1x′, we obtain

ξ by keeping only the k higher absolute values in ξ′. Finally, the synthetic

signal is obtained as x = Sξ. The correlation matrix X ′ is expressed as a

Toepliz matrix X ′i,j = r
β
n
|(i−j)| ∀i, j ∈ {0, 1, . . . , n − 1}, with r ∈ [0, 1], x′ is

a chunk of a stationary stochastic process with low pass profile. The factor

β is empirically imposed to prevent an abrupt decay of the profile when n
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is large. In this work, the Discrete Cosine Transform (DCT) is used as the

orthonormal basis S, the setting of the parameters to generate the synthetic

signals are reported in the Table 1 including the corresponding values of Lx.

Table 1: Parameter settings to generate the synthetic signals.

Sparsity Basis n r k β Lx

DCT 128 0.7 12 150 0.026

DCT 256 0.7 25 150 0.024

For the Rak-CS approach we use the typical value l = 0.5 [26], with

NeO-CS, for each value of c, we have limited the number of iterations to

Zmax = 105 to generate a new row m̂. As pmin for NOR-CS we adopt 10−3, i.e,

the expected average value of trials to be used for each row generation is 103.

Once the parameters are established, for each method, 100 instances of the

matrix A were drawn, each of them encoding 20 different instances of x. Also,

non-idealities were modeled adding white Gaussian noise to each input vector

x adapted to an Intrinsic Signal to Noise Ratio (ISNR) equivalent to 60 dB.

For the estimation of the PCR in (8), we consider a value RSNRmin = 55 dB.

Finally, the instances are reconstructed solving (1) with the SPGL1 toolbox2.

Tuning of c for both NeO-CS and NOR-CS is done in order to reduce as much

as possible the number of measurements required to obtain a PCR = 0.95.

We refer to each of them value as mmin.

Performances are shown in the Figure 7, where we can observe that the

2This tool is available online in https://www.cs.ubc.ca/∼mpf/spgl1/download.html
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(a) (b)

(c) (d)

Figure 7: Performances in terms of ARSNR for a) n = 128 and c) n = 256 and PCR for b) n

= 128 and d) n = 256 between the Std-CS and the optimized CS approaches. NeO-CS and

NOR-CS are evaluated with the best values of c reported in the Table 2.
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ARSNR and the PCR of all the optimized methods mentioned above have

a better performance than the Std-CS approach, that is why from now only

the optimized methods will be considered. In Figures 7a and 7c we can

observe a similar performance in ARSNR for NeO-CS and NOR-CS, both

were evaluated with the best value of c reported in the Table 2. Also, we can

observe in the figure that NeO-CS and NOR-CS slightly outperform the Rak-

CS. Interestingly, the Figures 7b and 7d shown a notably better performance

in terms of PCR for NOR-CS compared with the other methods. Same

results are in the Table 2, where NOR-CS shows a very positive impact in

the reduction of mmin.

Table 2: Best performances for NeO-CS and NOR-CS.

Approach l0 n = 128 n = 256

c mmin c mmin

NeO-CS 1.0 0.2031 51 0.2031 104

NOR-CS

0.5 0.1250 39 0.1328 85

1.0 0.1406 38 0.1484 81

1.5 0.1406 39 0.1328 83

In the Figure 8a we can observe how the localization is reduced by the pa-

rameter l in the process to generate the matrix A by three different versions

of NOR-CS. This localization profile corresponds to the setting that provides

the better performances reported in the Table 2 with n = 256, the constant

values of l for the NeO-CS and Rak-CS are included only as a reference. In

addition, we can observe in the Figure 8b the average of the number of iter-
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(a) (b)

Figure 8: a) Values of l along the matrix A generation. b) Average of the number of

iterations E[Z] of the optimized CS methods with geometric constraints. Both profiles

correspond to the performances showed in the Figures 7c and 7d .

ations E[Z] as a function of m according with the localization profile showed

in the Figure 8a. As was expected, the computational effort to generate a

new row with NOR-CS is approximately constant after a certain number of

row generation.

According with the Table 2 the NOR-CS with l0 = 1 presents a slight

outperformance from the other versions (at least dealing with synthetic sig-

nals). For this reason, from now we refer generally to NOR-CS implying

l0 = 1. In Table 3 we also report values of c that maximize the PCR for

same reference values of m. This table includes the corresponding final l

values as well as performance for the Rak-CS where the observed average

values of c are included. As a result, the observed optimal values of c are not

equal to the minimum tested values. This means that the imposed geometric

constraint must be such that rows span different signal regions, but they are

still inside the subspace where the signal concentrate its energy. This is also

the case of the last proposed comparison in Figure 9. Here, c is the value

24



(a) (b)

Figure 9: ARSNR for and PCR with the optimum values of c that maximize the performance

in each row.

that maximize the performance for each considered number of rows in A.

The Figure 9a shows that the NOR-CS approach presents a performance not

different from NeO-CS in terms of ARSNR and both NeO-CS and NOR-CS

have an outperforming with respect to the Rak-CS. However, the Figure 9b

provides a considerable better performance of the NOR-CS in terms of PCR

than NeO-CS and Rak-CS.

4.2. EEG signals Test

In this section, we propose the reconstruction of electroencephalograph

(EEG) signals as an example to demonstrate the effectiveness of the NOR-

CS. An EEG is a set of signals recorded from several electrodes on the scalp

to analyze the brain activity. These signals provide information to identify

different brain conditions and is useful to monitor the patient’s health and di-

agnosis in the neuroscience, cognitive science and cognitive psychology areas.

In particular we focus on Evoked Potentials (EPs), that consist in recordings

of the electrical activity of the brain following a repetitive auditory stimulus
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Table 3: Best value of c to obtain the best PCR in each row where: i) l values for NOR-CS

indicate the observed final values with l0 = 1; ii) performance for Rak-CS include observed

average value of c, µ(c).

NOR-CS NeO-CS Rak-CS

m CR c l PCR c l PCR µ(c) l PCR

80 3.20 0.1328 0.3621 0.8455 0.1875 1 0.7981 0.3699 0.5 0.6075

90 2.84 0.1484 0.4319 0.9520 0.1953 1 0.8745 0.3705 0.5 0.8050

100 2.56 0.1406 0.3439 0.9870 0.2031 1 0.9094 0.3710 0.5 0.9065

110 2.32 0.1484 0.3806 0.9995 0.2031 1 0.9359 0.3713 0.5 0.9705

with a time interval of 1 s between them to evaluate the auditory perceptual

threshold [32; 33]. However, the individual responses of a spontaneous EEG

are visually indistinguishable, for this reason the analysis of EPs suggests

that the ensemble of the signals post-stimuli (epochs) has to be averaged to

detect the response of the auditory stimulus. A possible scenario is showed

in the Figure 10, where the EEG of the patient is collected by sensors of a

battery-powered system. Due to the amount of information that each channel

generates, the compression stage plays an important role for energy saving.

It is proved that systems based in CS techniques are characterized by a low

energy consumption in portable devices because the rate of the output data

is reduced considerably [34; 35]. A properly designed sensing matrix A could

greatly reduce the data to be transmitted or stored without compromising

the quality of the input signal (in this case without compromise the correct

EEG interpretation).
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Figure 10: CS based system.

We use a data set that consists in EP recordings from a normal-hearing

patient subjected to an auditory task. Basically, the test consists of listening

speech syllables in one second intervals. The EEG acquisition was collected

by 32 channels according the International 10/20 system of electrode place-

ment and two channels used as noise reference to reject ocular artifacts. Each

channel is organized in 700 epochs divided in two parts, the first 350 epochs

are used as Training Set (TS) and it is employed in the correlation matrix

estimation, while the second half named Data Set (DS) is used to test the

CS-based approaches. According to [33] the channel Cz gives the strongest

auditory response. Due to this, we compare the reconstructions of this chan-

nel only . The associated correlation matrix is calculated by (3) from the

average denoised signal of the TS as in [36] using [37; 38; 39] to remove the

artifacts.

To estimate the reconstructions quality we use the Mean Squared Er-

ror (MSE) MSE = 1
n

∑n
i=0(xi − x̂i)

2. Here, x is an n-dimensional vector

computed by averaging all the EEG chunks in the DS while x̂ is another

n-dimensional vector referring to the average profile of the corresponding

reconstructed signal for a certain CS framework. The MSE is computed
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Table 4: Performance of the CS methods on EEG signals.

Std-CS Rak-CS NeO-CS NOR-CS

m CR MSE (µV 2) MSE (µV 2) MSE (µV 2) c MSE (µV 2) c

16 16 1.3065 0.8274 0.6954 0.1875 0.5859 0.1641

32 8 1.2055 0.6793 0.4246 0.1953 0.3827 0.1875

64 4 0.7580 0.3175 0.1852 0.1641 0.1435 0.2266

for three different setting where CR = {4, 8, 16}, that is, m = {64, 32, 16}.

Results are in Table 4 and confirm that all optimized CS approaches have a

better performance than the Standard CS. Remarkably, approaches based on

geometric constrains present a better performance in terms of MSE than the

Rak-CS. However, the proposed NOR-CS approach with l0 = 1.5 presents

the best performance among the optimized CS approaches. Note that for

MSE, lower values correspond to a higher quality.

To visualize the performance related to the acquisition and reconstruc-

tion of the EPs, let us first consider the case with m = 16 that correspond

to CR = 16. We can note in Figure 11a that the matching between the

average reconstructed EPs using the Std-CS is very poor. The matching is

improved using the Rak-CS as we can observe in the Figure 11b; however,

the Figure 11c shows that the quality of the reconstruction using the Rak-

CS is outperformed by the NeO-CS. As highlighted by the Figure 11d, the

best performance is given by the NOR-CS, where the peaks of the auditory

stimulus are easier to distinguish than those given by the other approaches.

Moreover, if the requirement in terms of compression ratio can be relaxed
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(a) (b)

(c) (d)

Figure 11: Comparison between the Average of the EEG raw signals x and the average of

reconstructed signals x̂ with m = 16 that correspond to a compression ratio equal to 16.

Results are for a) Std-CS, b) Rak-CS, c) NeO-CS and d) NOR-CS.

the difference between x and x̂ is strongly reduced. This is the case of Figure

12 where m = 64.

5. Conclusion

In this paper, we present a critical review of the state of the art of the op-

timized CS methods in the the sensing stage (Rakeness-based CS and Nearly

Orthogonal-based CS). Advantages and limitations using these methods to

generate the sensing matrix are discussed. In addition a new algorithmic so-

lution named Nearly Orthogonal Rakeness-based CS is proposed with the aim
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(c) (d)

Figure 12: Comparison between the Average of the EEG raw signals x and the average of

reconstructed signals x̂ with m = 64 that correspond to a compression ratio equal to 4.

Results are for a) Std-CS, b) Rak-CS, c) NeO-CS and d) NOR-CS.
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to overcome the limitations founded in the methods reviewed. This technique

allows to exploit the geometric constraint as much as possible characterizing

the sensing sequences of A with an adapted localization. After intensive sim-

ulations with synthetic low pass signals and electroencephalographic signals,

the performances of all the methods discussed in this paper were compared.

Results shows a remarkably better performance in therms of PCR of the

proposed approach using synthetic low pass signals. Also, results demon-

strate that electroencephalographic signals reconstructed with the proposed

method present the best quality regardless the compression ratio. For this

reason, using a high compression ratio, NOR-CS it can be considered as a

suitable method to identify Evoked Potentials.
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