## POLITECNICO DI TORINO

## Repository ISTITUZIONALE

## Least common multiple of polynomial sequences

Original
Least common multiple of polynomial sequences / Bazzanella, Danilo; Sanna, Carlo. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 0373-1243. - STAMPA. - 78:1(2020), pp. 21-25.

## Availability:

This version is available at: 11583/2790092 since: 2020-11-17T15:14:07Z
Publisher:
Politecnico di Torino - Università di Torino

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

## D. Bazzanella and C. Sanna

## LEAST COMMON MULTIPLE OF POLYNOMIAL SEQUENCES


#### Abstract

We collect some results and problems about the quantity


$$
L_{f}(n):=\operatorname{lcm}(f(1), f(2), \ldots, f(n)),
$$

where $f$ is a polynomial with integer coefficients and lcm denotes the least common multiple.

## 1. Introduction

For each positive integer $n$, let us define

$$
L(n):=\operatorname{lcm}(1,2, \ldots, n),
$$

that is, the lowest common multiple of the first $n$ positive integers. It is not difficult to show that

$$
\log L(n)=\psi(n):=\sum_{p \leq n} \log p,
$$

where $\psi$ denotes the first Chebyshev function, and $p$ runs over all primes numbers not exceeding $n$. Hence, bounds for $L(n)$ are directly related to bounds for $\psi(n)$ and, consequently, to estimates for the prime counting function $\pi(n)$. In particular, since the Prime Number Theorem is equivalent to $\psi(n) \sim n$ as $n \rightarrow+\infty$, we have

$$
\log L(n) \sim n .
$$

In 1936 Gelfond and Shnirelman, proposed a new elementary and clever method for deriving a lower bound for the prime counting function $\pi(x)$ (see Gelfond's editorial remarks in the 1944 edition of Chebyshev's Collected Works [15, pag. 287-288]). In 1982 the Gelfond-Shnirelman method was rediscovered and developed by Nair [16, 17]. Their method was actually based on estimating $L(n)$, and in its simplest form [16] it gives

$$
n \log 2 \leq \log L(n) \leq n \log 4,
$$

for every $n \geq 9$, which in turn implies

$$
(\log 2+o(1)) \frac{n}{\log n} \leq \pi(n) \leq(\log 4+o(1)) \frac{n}{\log n}
$$

after some manipulations. Later, it was proved [18] that the Gelfond-Shnirelman-Nair method can give lower bound in the form

$$
\pi(n) \geq C \frac{n}{\log n}
$$

only for constants $C$ less than 0.87 , which is quite far from what is expected by the Prime Number Theorem. (A possible way around this problem has been considered in [13, 14, 19].)

Moving from this initial connection with estimates for $\pi(n)$ and the Prime Number Theorem, several authors have considered bounds and asymptotic for the following generalization of $L(n)$ to polynomials. For every polynomial $f \in \mathbb{Z}[x]$, let us define

$$
L_{f}(n):=\operatorname{lcm}(f(1), f(2), \ldots, f(n)) .
$$

In the next section we collect some results on $L_{f}(n)$.

## 2. Products of linear polynomials

Stenger [12] used the Prime Number Theorem for arithmetic progressions to show the following asymptotic estimate for linear polynomials:

THEOREM 1. For any linear polynomial $f(x)=a x+b \in \mathbb{Z}[x]$, we have

$$
\log L_{f}(n) \sim n \frac{q}{\varphi(q)} \sum_{\substack{1 \leq r \leq q \\(q, r)=1}} \frac{1}{r},
$$

as $n \rightarrow+\infty$, where $q=a /(a, b)$ and $\varphi$ denotes the Euler's totient function.
Hong, Qian, and Tan [6] extended this result to polynomials $f$ which are the product of linear polynomials, showing that an asymptotic of the form $\log L_{f}(n) \sim A_{f} n$ holds as $n \rightarrow+\infty$, where $A_{f}>0$ is a constant depending only on $f$.

Moreover, effective lower bounds for $L_{f}(n)$ when $f$ is a linear polynomial have been proved by Hong and Feng [3], Hong and Kominers [4], Hong, Tan and Wu [7], Hong and Yang [8], and Oon [9],

## 3. Quadratic polynomials

Cilleruelo [2, Theorem 1] considered irreducible quadratic polynomials and proved the following result:

TheOrem 2. For any irreducible quadratic polynomial with integer coefficients $f(x)=a x^{2}+b x+c$, we have

$$
\log L_{f}(n)=n \log n+B_{f} n+o(n),
$$

where

$$
\begin{aligned}
B_{f}:= & \gamma-1-2 \log 2-\sum_{p} \frac{(d / p) \log p}{p-1}+\frac{1}{\varphi(q)} \sum_{\substack{1 \leq r \leq q \\
(r, q)=1}} \log \left(1+\frac{r}{q}\right) \\
& +\log a+\sum_{p \mid 2 a D} \log p\left(\frac{1+(d / p)}{p-1}-\sum_{k \geq 1} \frac{s\left(f, p^{k}\right)}{p^{k}}\right),
\end{aligned}
$$

and $\gamma$ is the Euler-Mascheroni constant, $D=b^{2}-4 a c=d \ell^{2}$, where $d$ is a fundamental discriminant, $(d / p)$ is the Kronecker symbol, $q=a /(a, b)$ and $s\left(f, p^{k}\right)$ is the number of solutions of $f(x) \equiv 0\left(\bmod p^{k}\right)$.

Rué, Šarka, and Zumalacárregui [11, Theorem 1.1] provided a more precise error term for the particular polynomial $f(x)=x^{2}+1$,

Theorem 3. Let $f(x)=x^{2}+1$. For any $\theta<4 / 9$ we have

$$
\log L_{f}(n)=n \log n+B_{f} n+O_{\theta}\left(\frac{n}{(\log n)^{\theta}}\right) .
$$

## 4. Higher degree polynomials

Regarding general irreducible polynomials, Cilleruelo [2] formulated the following conjecture.

Conjecture 1. If $f(x) \in \mathbb{Z}[x]$ is an irreducible polynomial of degree $d \geq 2$, then

$$
\log L_{f}(n) \sim(d-1) n \log n,
$$

as $n \rightarrow+\infty$.
Except for the result of Theorem [】, no other case of Conjecture Tis known to date. It can be proved (see [10, p. 2]) that for any irreducible $f$ of degree $d \geq 3$, we have

$$
n \log n \ll \log L_{f}(n) \leq(1+o(1))(d-1) n \log n .
$$

Also, Rudnick and Zehavi [10, Theorem 1.2] proved the following result, which established Conjecture $\square$ for almost all shifts of a fixed polynomial, in a range of $n$ depending on the range of shifts.

THEOREM 4. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $d \geq 3$. Then, as $T \rightarrow+\infty$, we have that for all $a \in \mathbb{Z}$ with $|a| \leq T$, but a set of cardinality $o(T)$, it holds

$$
\log L_{f(x)-a}(n) \sim(d-1) n \log n
$$

uniformly for $T^{1 /(d-1)}<n<T / \log T$.

Regarding lower bounds for $L_{f}(n)$, Hong and Qian [5, Lemma 3.1] proved the following:

THEOREM 5. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \geq 1$ and with leading coefficient $a_{d}$. Then for all integers $1 \leq m \leq n$, we have

$$
\operatorname{lcm}(f(m), f(m+1), \ldots, f(n)) \geq \frac{1}{(n-m)!} \prod_{k=m}^{n}\left|\frac{f(k)}{a_{d}}\right|^{1 / d}
$$

Shparlinski [1] suggested to study a bivariate version of $L_{f}(n)$, posing the following problem:

Problem 1. Given a polynomial $f \in \mathbb{Z}[x, y]$, obtain an asymptotic formula for

$$
\log \operatorname{lcm}\{f(m, n): 1 \leq m, n \leq N\}
$$

with a power saving in the error term.

## 5. Acknowledgements

C. Sanna is supported by a postdoctoral fellowship of INdAM and is a member of the INdAM group GNSAGA.

## References

[1] Candela P., Memorial to Javier Cilleruelo: A problem list, INTEGERS 18 (2018), \#A28.
[2] Cilleruelo J., The least common multiple of a quadratic sequence, Compos. Math. 147 (2011), 1129-1150.
[3] Hong S., Feng W., Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Math. Acad. Sci. Paris 343 (2016), 695-698
[4] Hong S., Kominers S. D., Further improvements of lower bounds for the least common multiples of arithmetic progressions, Proc. Amer. Math. Soc. 138 (2010), 809-813.
[5] Hong S., Qian G., Uniform lower bound for the least common multiple of a polynomial sequence, C. R. Math. Acad. Sci. Paris 351 (2013), 781-785.
[6] Hong S., Qian G., Tan Q., The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar. 135 (2012), 160-167.
[7] Hong S., Tan Q., Wu R., New lower bounds for the least common multiples of arithmetic progressions, Chin. Ann. Math. Ser. B, 34B(6) (2013), 861-864.
[8] Hong S., Yang Y., Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., 136 (2008), 4111-4114.
[9] Oon S.-M., Note on the lower bound of least common multiple, Abstr. Appl. Anal., (2013) Article ID 218125.
[10] Rudnick Z. and Zehavi S., On Cilleruelo's conjecture for the least common multiple of polynomial sequences, ArXiv: http://arxiv.org/abs/1902.01102v2.
[11] Rué J., Šarka, P., Zumalacárregui A., On the error term of the logarithm of the lcm of a quadratic sequence, J. Théor. Nombres Bordeaux 25 (2013), 457-470.
[12] Bateman P., Kalb J., Stenger A., A limit involving least common multiples, Amer. Math. Monthly 109 (2002), 393-394.
[13] D. BazZanella, A note on integer polynomials with small integrals, Acta Math. Hungar. 141 (2013), n. 4, 320-328.
[14] D. Bazzanella, A note on integer polynomials with small integrals. II, Acta Math. Hungar. 149 (2016), n. 1, 71-81.
[15] P. L. Chebyshev, Collected Works, Vol. 1, Theory of Numbers, Akad. Nauk. SSSR, Moskow, 1944.
[16] M. NAIR, On Chebyshev's-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126-129.
[17] M. NAIR, A new method in elementary prime number theory, J. Lond. Math. Soc. (2) 25 (1982), 385391.
[18] I. E. Pritsker, Small polynomials with integer coefficients, J. Anal. Math., 96 (2005), pp. 151-190.
[19] C. SANNA, A factor of integer polynomials with minimal integrals, J. Théor. Nombres Bordeaux 29 (2017), 637-646.

## AMS Subject Classification: 11N32, 11N37

## Danilo BAZZANELLA,

Department of Mathematical Sciences, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: danilo.bazzanella@polito.it
Carlo SANNA,
Department of Mathematics, Università di Genova
Via Dodecaneso 35, 16146 Genova, Italy
e-mail: carlo.sanna.dev@gmail.com
Lavoro pervenuto in redazione il 30.10.2019.

