POLITECNICO DI TORINO Repository ISTITUZIONALE

Least common multiple of polynomial sequences / Bazzanella, Danilo; Sanna, Carlo. - In: RENDICONTI DEL

SEMINARIO MATEMATICO. - ISSN 0373-1243. - STAMPA. - 78:1(2020), pp. 21-25.

Least common multiple of polynomial sequences

Original

Availability: This version is available at: 11583/2790092 since: 2020-11-17T15:14:07Z
Publisher: Politecnico di Torino - Università di Torino
Published DOI:
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

25 April 2024

D. Bazzanella and C. Sanna

LEAST COMMON MULTIPLE OF POLYNOMIAL SEQUENCES

Abstract. We collect some results and problems about the quantity

$$L_f(n) := \text{lcm}(f(1), f(2), \dots, f(n)),$$

where f is a polynomial with integer coefficients and lcm denotes the least common multiple.

1. Introduction

For each positive integer n, let us define

$$L(n) := \operatorname{lcm}(1, 2, \dots, n),$$

that is, the lowest common multiple of the first n positive integers. It is not difficult to show that

$$\log L(n) = \psi(n) := \sum_{p \le n} \log p,$$

where ψ denotes the first Chebyshev function, and p runs over all primes numbers not exceeding n. Hence, bounds for L(n) are directly related to bounds for $\psi(n)$ and, consequently, to estimates for the prime counting function $\pi(n)$. In particular, since the Prime Number Theorem is equivalent to $\psi(n) \sim n$ as $n \to +\infty$, we have

$$\log L(n) \sim n$$
.

In 1936 Gelfond and Shnirelman, proposed a new elementary and clever method for deriving a lower bound for the prime counting function $\pi(x)$ (see Gelfond's editorial remarks in the 1944 edition of Chebyshev's Collected Works [15, pag. 287–288]). In 1982 the Gelfond-Shnirelman method was rediscovered and developed by Nair [16, 17]. Their method was actually based on estimating L(n), and in its simplest form [16] it gives

$$n\log 2 \le \log L(n) \le n\log 4,$$

for every $n \ge 9$, which in turn implies

$$(\log 2 + o(1))\frac{n}{\log n} \le \pi(n) \le (\log 4 + o(1))\frac{n}{\log n},$$

after some manipulations. Later, it was proved [18] that the Gelfond-Shnirelman-Nair method can give lower bound in the form

$$\pi(n) \ge C \frac{n}{\log n},$$

only for constants C less than 0.87, which is quite far from what is expected by the Prime Number Theorem. (A possible way around this problem has been considered in [13, 14, 19].)

Moving from this initial connection with estimates for $\pi(n)$ and the Prime Number Theorem, several authors have considered bounds and asymptotic for the following generalization of L(n) to polynomials. For every polynomial $f \in \mathbb{Z}[x]$, let us define

$$L_f(n) := \text{lcm}(f(1), f(2), \dots, f(n)).$$

In the next section we collect some results on $L_f(n)$.

2. Products of linear polynomials

Stenger [12] used the Prime Number Theorem for arithmetic progressions to show the following asymptotic estimate for linear polynomials:

Theorem 1. For any linear polynomial $f(x) = ax + b \in \mathbb{Z}[x]$, we have

$$\log L_f(n) \sim n \frac{q}{\varphi(q)} \sum_{\substack{1 \leq r \leq q \ (q,r)=1}} \frac{1}{r},$$

as $n \to +\infty$, where q = a/(a,b) and φ denotes the Euler's totient function.

Hong, Qian, and Tan [6] extended this result to polynomials f which are the product of linear polynomials, showing that an asymptotic of the form $\log L_f(n) \sim A_f n$ holds as $n \to +\infty$, where $A_f > 0$ is a constant depending only on f.

Moreover, effective lower bounds for $L_f(n)$ when f is a linear polynomial have been proved by Hong and Feng [3], Hong and Kominers [4], Hong, Tan and Wu [7], Hong and Yang [8], and Oon [9],

3. Quadratic polynomials

Cilleruelo [2, Theorem 1] considered irreducible quadratic polynomials and proved the following result:

THEOREM 2. For any irreducible quadratic polynomial with integer coefficients $f(x) = ax^2 + bx + c$, we have

$$\log L_f(n) = n \log n + B_f n + o(n),$$

where

$$\begin{split} B_f := \gamma - 1 - 2\log 2 - \sum_{p} \frac{(d/p)\log p}{p-1} + \frac{1}{\varphi(q)} \sum_{\substack{1 \le r \le q \\ (r,q) = 1}} \log \left(1 + \frac{r}{q}\right) \\ + \log a + \sum_{\substack{p \mid 2aD}} \log p \left(\frac{1 + (d/p)}{p-1} - \sum_{k \ge 1} \frac{s(f,p^k)}{p^k}\right), \end{split}$$

and γ is the Euler–Mascheroni constant, $D=b^2-4ac=d\ell^2$, where d is a fundamental discriminant, (d/p) is the Kronecker symbol, q=a/(a,b) and $s(f,p^k)$ is the number of solutions of $f(x)\equiv 0\pmod{p^k}$.

Rué, Šarka, and Zumalacárregui [11, Theorem 1.1] provided a more precise error term for the particular polynomial $f(x) = x^2 + 1$,

THEOREM 3. Let $f(x) = x^2 + 1$. For any $\theta < 4/9$ we have

$$\log L_f(n) = n \log n + B_f n + O_{\theta} \left(\frac{n}{(\log n)^{\theta}} \right).$$

4. Higher degree polynomials

Regarding general irreducible polynomials, Cilleruelo [2] formulated the following conjecture.

Conjecture 1. If $f(x) \in \mathbb{Z}[x]$ is an irreducible polynomial of degree $d \geq 2$, then

$$\log L_f(n) \sim (d-1)n \log n$$
,

as $n \to +\infty$.

Except for the result of Theorem $\fill 2$, no other case of Conjecture $\fill 1$ is known to date. It can be proved (see [10, p. 2]) that for any irreducible f of degree $d \ge 3$, we have

$$n \log n \ll \log L_f(n) \le (1 + o(1))(d-1)n \log n$$
.

Also, Rudnick and Zehavi [10, Theorem 1.2] proved the following result, which established Conjecture \blacksquare for almost all shifts of a fixed polynomial, in a range of n depending on the range of shifts.

THEOREM 4. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $d \geq 3$. Then, as $T \to +\infty$, we have that for all $a \in \mathbb{Z}$ with $|a| \leq T$, but a set of cardinality o(T), it holds

$$\log L_{f(x)-a}(n) \sim (d-1)n\log n$$

uniformly for $T^{1/(d-1)} < n < T/\log T$.

Regarding lower bounds for $L_f(n)$, Hong and Qian [5, Lemma 3.1] proved the following:

THEOREM 5. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 1$ and with leading coefficient a_d . Then for all integers $1 \le m \le n$, we have

$$\operatorname{lcm}(f(m), f(m+1), \dots, f(n)) \ge \frac{1}{(n-m)!} \prod_{k=m}^{n} \left| \frac{f(k)}{a_d} \right|^{1/d}.$$

Shparlinski [1] suggested to study a bivariate version of $L_f(n)$, posing the following problem:

PROBLEM 1. Given a polynomial $f \in \mathbb{Z}[x,y]$, obtain an asymptotic formula for

$$\log \operatorname{lcm} \{ f(m,n) : 1 \le m, n \le N \}$$

with a power saving in the error term.

5. Acknowledgements

C. Sanna is supported by a postdoctoral fellowship of INdAM and is a member of the INdAM group GNSAGA.

References

- [1] CANDELA P., Memorial to Javier Cilleruelo: A problem list, INTEGERS 18 (2018), #A28.
- [2] CILLERUELO J., The least common multiple of a quadratic sequence, Compos. Math. 147 (2011), 1129–1150.
- [3] HONG S., FENG W., Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Math. Acad. Sci. Paris 343 (2016), 695–698.
- [4] HONG S., KOMINERS S. D., Further improvements of lower bounds for the least common multiples of arithmetic progressions, Proc. Amer. Math. Soc. 138 (2010), 809–813.
- [5] HONG S., QIAN G., Uniform lower bound for the least common multiple of a polynomial sequence, C. R. Math. Acad. Sci. Paris 351 (2013), 781–785.
- [6] HONG S., QIAN G., TAN Q., The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar. 135 (2012), 160–167.
- [7] HONG S., TAN Q., WU R., New lower bounds for the least common multiples of arithmetic progressions, Chin. Ann. Math. Ser. B, 34B(6) (2013), 861–864.
- [8] HONG S., YANG Y., Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., 136 (2008), 4111–4114.
- [9] OON S.-M., Note on the lower bound of least common multiple, Abstr. Appl. Anal., (2013) Article ID 218125.
- [10] RUDNICK Z. AND ZEHAVI S., On Cilleruelo's conjecture for the least common multiple of polynomial sequences, ArXiv: http://arxiv.org/abs/1902.01102v2.
- [11] RUÉ J., ŠARKA, P., ZUMALACÁRREGUI A., On the error term of the logarithm of the lcm of a quadratic sequence, J. Théor. Nombres Bordeaux 25 (2013), 457–470.

- [12] BATEMAN P., KALB J., STENGER A., A limit involving least common multiples, Amer. Math. Monthly **109** (2002), 393–394.
- [13] D. BAZZANELLA, A note on integer polynomials with small integrals, Acta Math. Hungar. **141** (2013), n. 4, 320–328.
- [14] D. BAZZANELLA, A note on integer polynomials with small integrals. II, Acta Math. Hungar. 149 (2016), n. 1, 71–81.
- [15] P. L. CHEBYSHEV, Collected Works, Vol. 1, Theory of Numbers, Akad. Nauk. SSSR, Moskow, 1944.
- [16] M. NAIR, On Chebyshev's-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126–129.
- [17] M. NAIR, A new method in elementary prime number theory, J. Lond. Math. Soc. (2) 25 (1982), 385–391
- $[18]\ \ I.\ E.\ Pritsker, \textit{Small polynomials with integer coefficients}, J.\ Anal.\ Math., \textbf{96}\ (2005), pp.\ 151-190.$
- [19] C. SANNA, A factor of integer polynomials with minimal integrals, J. Théor. Nombres Bordeaux 29 (2017), 637–646.

AMS Subject Classification: 11N32, 11N37

Danilo BAZZANELLA,

Department of Mathematical Sciences, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

e-mail: danilo.bazzanella@polito.it

Carlo SANNA,

Department of Mathematics, Università di Genova

Via Dodecaneso 35, 16146 Genova, Italy

e-mail: carlo.sanna.dev@gmail.com

Lavoro pervenuto in redazione il 30.10.2019.