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ABSTRACT 

Extreme rainfall may trigger some of the most catastrophic natural disasters, whose 

consequences may be exacerbated especially in places where an appropriate network of 

measurement instruments is not available. A combination of remotely sensed data and weather 

prediction model outputs can often help to obtain information with a global spatial coverage 

without the limitations that characterize other instruments. In order to achieve this goal, an 

Extreme Rainfall Detection System (ERDS – erds.ithacaweb.org) was developed and 

implemented with the aim of monitoring and forecasting exceptional rainfall events. The 

system was designed with the aim of providing information in an understandable way also for 

non-specialized users. The NOAA-GFS deterministic weather prediction model is used for the 

purpose of forecasting extreme rainfall events. Regarding the near real-time rainfall 

monitoring, the previous version of ERDS was using NASA TRMM TMPA 3-hourly data as 

input. Due to TRMM instrument shutdown, a different rainfall measurement must be used. 

NASA GPM IMERG early run half-hourly data proved to be the proper one. A comparison 

between GPM and rain gauge data allowed to define the minimum time aggregation intervals 

to be used for the detection of extreme rainfall events in order to reduce the effects of the bias 

due to satellite data. The same comparison was also performed using GFS data instead of GPM 

data. A new extreme rainfall detection methodology was also developed with the aim of 
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increasing system performances. The currently adopted methodology is based on the concept 

of event-identification threshold. A threshold represents the amount of precipitation needed to 

trigger a flood event induced by extreme rainfall. Specifically, if for a selected aggregation 

interval the accumulated precipitation exceeds the threshold, an alert is provided. Obtained 

results highlighted that the combination of new input data and new threshold methodology 

allowed one to increase system performances, both in terms of spatial and temporal resolution 

and in terms of identified events. 

1. Introduction 

Several studies highlighted an increasing trend in the number of hydrological and 

meteorological disasters. Early warning system based on remotely-sensed data and numerical 

weather prediction models can often help in the detection and monitoring of extreme rainfall at 

the global scale. These systems have an increasingly important role in the disaster risk 

management, especially for the triggering of flood preparedness actions [1]. 

The investigation of available dataset and approaches led several institution and 

research groups to develop new techniques for rainfall and/or flood monitoring. From this 

perspective, ITHACA developed an Extreme Rainfall Detection System (ERDS – 

erds.ithacaweb.org). ERDS is a demo service for the monitoring and forecasting of exceptional 

rainfall events, with a nearly global spatial coverage. ERDS is also an alert system designed to 

identify hydrometeorological events (such as hurricanes, tropical storms, convective storms, 

flash floods and heavy rainfall that could lead to flood events or landslides) [8]. This system 

provides information both on the accumulated rainfall and on heavy rainfall alerts. 

The first objective of this study is the assessment of the accuracy of two different 

datasets used as input data for different aggregation intervals. The obtained results allowed the 

definition of the proper aggregation intervals usable to provide information regarding the 

rainfall amount and to evaluate the presence of places potentially affected by 

hydrometeorological disasters. The second objective, instead, is the development of an extreme 

rainfall detection methodology applicable at a global scale based on event-identification 

thresholds calibrated taking into consideration the mean annual rainfall as site-specific 

parameter. 

One of the aspects to be taken into consideration is the non-coincidence between the 

place where the alert was given and the place where the flood may occur. ERDS is a tool 

developed for rainfall monitoring. The system provides an alert where the amount of rainfall is 

higher than a specific threshold. The system, however, does not take into account the 

morphology of the territory or information regarding basins. The flood, therefore, may occur in 

the alerted cell or in nearby ones. Further studies might investigate this important aspect. 

2. Input Data 

Regarding the near real-time rainfall monitoring, the system takes advantage of NASA 

GPM (Global Precipitation Measurement) IMERG (Integrated Multi-satellite Retrievals for 

GPM) early run half-hourly data [5]. This gridded and georeferenced product is characterized 

by a 0.1° × 0.1° spatial resolution, a spatial coverage between 60° N and 60° S and 4-hour 

latency [6]. 

The rainfall forecasting is instead based on NOAA – NCEP GFS (Global Forecast 

System) deterministic weather prediction model [9], characterized by a spatial resolution of 



 S1425 

0.25° × 0.25° and a spatial coverage between 90° N and 90° S. GFS model runs every day at 

00, 06, 12 and 18 UTC. 

In this study, both datasets were compared with rain gauges measurements in order to 

evaluate the relative accuracy for a set of different aggregation intervals. Fifty rain gauges 

located in different climatic zones were taken into account in order to evaluate the accuracy at 

a global scale (Fig. 1). Rain gauge dataset characterized by a temporal resolution of at least one 

hour were downloaded from the data providers websites [10, 2]. The biased spatial distribution 

of the rain gauges is induced by the difficulties encountered in the research of freely accessible 

well-recognized dataset characterized by a good temporal resolution and an almost zero 

percentage of missing data. 

 

Figure 1. Spatial distribution of the rain gauges used for the evaluation of the accuracy 

of the input data. The reference system is WGS84 

The analysis was performed using statistical performance scores and time series 

analyses in the period from 15th January 2015 to 30th April 2017. The following aggregation 

intervals were considered in order to evaluate the cumulated rainfall and the relative intensity: 

1, 2, 3, 6, 12, 24, 48, 72, 96, 120 and 144 hours. 

Bias and MAE (mean absolute error) were evaluated for both dataset, for each location 

and for the previously mentioned set of aggregation intervals, as 
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where n  is the total number of time instants; 

t  – time; 

ESTIMATOR
R  – the average rainfall intensity measured by GPM Mission or provided by 

GFS weather prediction model (expressed in mm/hr); 
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GAUGE
R  – the average rainfall intensity measured by rain gauge in the same time 

interval t  (expressed in mm/hr). 

Both parameters were evaluated both in standard conditions (taking into account only 

nonzero rainfall measurements) and in heavy-rainfall conditions (considering only rainfall rate 

greater than 99th percentile of the intensities distribution). 

The second part of the analysis consisted of the comparison of the observed and the 

estimated events. For every location and for every aggregation interval previously mentioned, a 

contingency table (Tab. 1) was created. In the contingency table, the occurrences of the 

following four conditions were reported: 

• both rain gauge and estimator data are null (case A, correct negatives); 

• nonzero rain gauge data and zero estimator data (case B, misses); 

• zero rain gauge data and non-null estimator data (case C, false alarms); 

• both rain gauge and estimator data are non-null (case D, hits). 

Table 1. Example of a contingency table usable to evaluate the quality of the predictions 

 RAIN GAUGE  

= 0 mm/hr > 0 mm/hr 

E
S

T
IM

A
T

O
R

 = 0 mm/hr 
Correct negatives 

(A) 

Misses 

(B) 
Estimated 

non-events 

> 0 mm/hr 
False alarms 

(C) 

Hits 

(D) 
Estimated 

events 

 
Observed 

non-events 

Observed 

events 
 

Three indices were derived using these contingency tables as a basis: the false alarm 

ratio, the probability of detection and the critical success index [11]. 

The false alarm ratio (FAR) represents the number of false alarms per number of 

estimated events and is assessable on the basis of elements contained in false alarms and hits 

cells. The ideal situation is characterized by approximately zero FAR. 

 .
FALSE ALARMS

FAR
HITS FALSE ALARMS




  (3) 

The probability of detection (POD) is instead evaluable by combining elements 

contained in the misses and hits cells. The ideal situation is characterized by a unitary POD 

value. 

 .
HITS

POD
HITS MISSES




  (4) 

The critical success index (CSI), unlike POD and FAR, combines the characteristics of 

hits, false alarms and misses and it can be expressed in terms of POD and FAR. The ideal 

situation is characterized by a unitary CSI. 

 .
HITS

CSI
HITS FALSEALARMS MISSES


 

  (5) 
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The outcomes of this analysis allowed to identify the most appropriate aggregation 

interval usable to provide information about the rainfall amount and the possible occurrence of 

disasters induced by heavy rainfall. The results are summarized in several boxplots (Fig. 2). In 

these figures, the first quantile, the median value of the distribution and the third quantile are 

identifiable. The mean values are instead summarized in a separate table (Tab. 2). 

 

 

 

 

 

Figure 2. Bias, MAE, FAR, POD and CSI evaluated for nonzero rainfall intensities: the dark grey 

boxplot refers to GPM IMERG V05B data while the light grey boxplot refers to GFS data 
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Table 2. Bias, MAE, FAR, POD and CSI calculated taking into account only nonzero 

rainfall intensities both for GPM IMERG V05B early run and for GFS dataset 

  1 hr 2 hr 3 hr 6 hr 12 hr 24 hr 48 hr 72 hr 96 hr 120 hr 144 hr 

BIAS 
GPM -0.35 -0.28 -0.23 -0.17 -0.13 -0.09 -0.07 -0.06 -0.05 -0.05 -0.05 

GFS - - - - -0.59 -0.45 -0.36 -0.32 -0.30 -0.29 -0.23 

MAE 
GPM 1.97 1.43 1.16 0.80 0.55 0.37 0.27 0.22 0.20 0.19 0.18 

GFS - - - - 0.90 0.67 0.52 0.46 0.43 0.41 0.40 

FAR 
GPM 0.63 0.62 0.60 0.57 0.52 0.45 0.36 0.30 0.25 0.21 0.18 

GFS - - - - 0.54 0.46 0.36 0.30 0.25 0.21 0.18 

POD 
GPM 0.52 0.58 0.62 0.69 0.76 0.83 0.89 0.92 0.94 0.96 0.96 

GFS - - - - 0.92 0.95 0.96 0.97 0.97 0.98 0.98 

CSI 
GPM 0.27 0.30 0.32 0.36 0.42 0.49 0.59 0.66 0.71 0.76 0.79 

GFS - - - - 0.44 0.52 0.62 0.69 0.74 0.77 0.81 

From this analysis, a negative value of the bias emerged for both products. As a general 

rule, therefore, both the satellite-derived data and the rainfall estimation obtained through GFS 

weather prediction model tend to underestimate rainfall with respect to the rain gauge. For both 

products, as the aggregation interval increases, the bias tends to have a null value, allowing 

more accurate information. Aggregation intervals who matched the optimal accuracy for a near 

real-time application are the one greater or equal to 12 hours. Smaller time intervals have also 

an unsatisfactory value of false alarm ratio (greater than 0.55). As expected, FAR shows a 

decreasing trend for both datasets. 

 

 

Figure 3. Bias and MAE related to heavy rainfall events. The dark grey boxplot refers to GPM 

IMERG V05B data while the light grey boxplot refers to GFS data 

As far as GPM data concerns, the outcomes demonstrate that a 24-hours aggregation 

interval ensures a probability of detection greater than 80% and a critical success index equal 

to 50%. With an aggregation interval of 72 hours, a probability of detection greater than 90% 
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was reached. Shorter aggregation intervals are characterized by a not acceptable probability of 

detection. It is, therefore, convenient to set the minimum rainfall aggregation interval to 12 

hours to be able to detect events with an acceptable accuracy. 

The selected aggregation intervals were assessed taking into account several aspects, 

such as the requirements of the system, the ideal latency in the provision of information or the 

final use of the output. As a consequence, also similar aggregation intervals are suitable for 

these purposes. It is, however, important to highlight the limitations in terms of the accuracy of 

the outputs obtained using these aggregation intervals. 

A further study was conducted taking into account only rainfall rate greater than the 

99th percentile of the intensities distribution in order to understand the estimator performances 

in heavy rainfall detection. The modest underestimation of GPM and GFS data emerged from 

these results (Fig. 3 and Tab. 3). 

Table 3. Bias and MAE related to heavy rainfall events evaluated both for GPM IMERG 

V05B early run and for GFS data 

  1 hr 2 hr 3 hr 6 hr 12 hr 24 hr 48 hr 72 hr 96 hr 120 hr 144 hr 

BIAS 
GPM -10.59 -9.31 -8.34 -6.54 -4.87 -3.40 -2.29 -1.84 -1.52 -1.33 -1.18 

GFS - - - - -12.80 -9.18 -6.37 -5.15 -4.37 -3.88 -3.47 

MAE 
GPM 11.64 10.19 9.09 7.12 5.23 3.64 2.47 2.00 1.67 1.46 1.30 

GFS - - - - 12.80 9.18 6.38 5.15 4.37 3.88 3.47 

3. Extreme Rainfall Detection 

The main purpose of this section is to describe the extreme rainfall detection 

methodology developed in order to provide near real-time alerts with an almost global spatial 

coverage. 

The whole study (described in detail in Mazzoglio et al [8]), was conducted using GPM 

IMERG half-hourly early run data as input. Results presented in this section refer to this data. 

This methodology will also be repeated using GFS data as input in order to calibrate the 

threshold values that will be used for alerts forecasting. 

The extreme rainfall detection methodology is based on the concept of activation 

threshold: an event is identified when the rainfall exceeds a given threshold value. An “event-

identification threshold” (EIT) represents the amount of rainfall needed to trigger a flood event 

induced by extreme rainfall [8]. EITs are used to define near real-time alerts about extreme 

rainfall. Specifically, an alert is provided if for a selected time interval the accumulated rainfall 

exceeds the EIT. 

The calibration of these thresholds was performed using an empirical approach, 

analyzing rainfall events that have led to hydrometeorological disasters. These threshold 

values, obviously, vary over time from place to place. Extreme rainfall conditions in one place 

are, in fact, very different from the one that characterizes another one. Moreover, it is 

impossible to define a threshold if the aggregation interval is not defined. A longer time 

interval has, in fact, a higher EIT. 

To develop this extreme rainfall detection methodology, the first step was to search 

databases of hydrometeorological disasters with a global spatial coverage to be used as truth 

data. The adopted databases were EM-DAT (The Emergency Events Database) [3], Reliefweb 

[12] and Floodlist [4]. 
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The methodology consisted of the identification of the optimal EIT for different 

aggregation intervals (12, 24, 48, 72 and 96 hours) and for every place of the world. The study 

covered 85 different countries, from 12 March 2014 to 30 April 2017. For every temporal 

interval and for every country, a series of simulations was performed by varying the threshold 

values mask. 

Threshold masks (different for every aggregation interval) were calibrated using a site-

specific parameter: the mean annual precipitation. This total rainfall amount (Fig. 4) was 

calculated using 10 years of GPCC (Global Precipitation Climatology Centre) “Monitoring 

product” [13] with a 1° resolution. The “Monitoring product” is a monthly global data which is 

available about 2 months after the end of the month which it refers to. This product is 

recommended by GPCC to be used for applications that need high-quality gridded measures of 

rainfall. 

 

Figure 4. The mean annual rainfall calculated using 10 years of GPCC monthly 

“Monitoring product”. The white areas are places characterized by an absence 

of measurement. The reference system is WGS84 

For each aggregation interval, a series of simulations using this 1° × 1° total rainfall 

amount was performed. In every simulation, thresholds equal to a percentage of the mean 

annual rainfall have been adopted. Specifically, the threshold values were calculated using the 

equation 

 . .
. .

T R
T T R p   (6) 

where T  represents the threshold; 

. .T R  represents the total rainfall (i.e. the mean annual rainfall calculated using 10 years 

of GPCC data); 

. .T R
p  is a parameter representing the fraction of the total rainfall leading to the extreme 

event identification. 

The application of an upper bound and a lower bound proved to be necessary. There are 

places where the recorded average annual rainfall amount is very low (below 100 mm in a 

year), which would lead to very low threshold values, comparable with the satellite 

measurement accuracy, with . .T R
p  values around 0.1 – 0.2. Analogously, in places where the 

total annual rainfall is very high (above 2000 mm in a year), the EIT could be unrealistically 

high because in these places rainfall events tend to occur in the form of low intensity – high 

frequency events [8]. 
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Several tests were performed. For every aggregation interval, both the criterion of 

minimization of missed and false alarms and the maximization of the number of identified 

events were taken into account in order to choose the proper threshold values. 

The best results for every aggregation interval were achieved with the parameters 

summarized in Tab. 4.  

Table 4. Threshold values currently adopted in ERDS for the near real-time alerts 

provision based on NASA GPM IMERG early run data 

Aggregation interval 

(hours) 
T.R.

p  

(%) 

Lower bound 

(mm) 

Upper bound 

(mm) 

12 6 100 150 

24 8 120 210 

48 12 140 240 

72 15 170 260 

96 16 190 280 

Before publishing on ERDS website, the alerts produced on areas entirely occupied by 

sea or ocean are discarded. In order to accomplish this operation, a mask containing, in each 

cell, the water coverage of the area was used. This mask is freely available on NASA’s website 

[7]. Alerts provided on cells characterized by water coverage equal to 100% were discarded. 

ERDS, in fact, is a tool developed for the provision of alerts on populated areas. 

4. Conclusion 

To sum up, the current version of ERDS automatically downloads the most recent GPM 

IMERG early run data and GFS data and cumulates them according to specific time intervals. 

More importantly, ERDS generates rainfall alerts based on GPM data where and when the 

rainfall amount is higher than a specific set of event-identification thresholds. 

The current version of ERDS is able to provide alerts using GPM as input data every 

hour with 4-hour latency and a 0.1° × 0.1° resolution in the latitude range between 60° N and 

60° S. The ERDS data are uploaded every hour because GPM IMERG data, despite the 30-

minute resolution, is made public in pairs of two. 

ERDS is an alert system designed to identify hydrometeorological events. However, 

there are some types of phenomena that put a strain on this alert system. Specifically, ERDS 

may fail in the identification of convective storms characterized by a high spatial and temporal 

variability and discontinuity. They can indeed be transparent to the satellite (rainfall could 

affect an area smaller than the size of a single cell of GPM data) or their intensity may be 

underestimated. ERDS may also fail in the provision of a timely alert in the case of intense 

flash floods affecting very small basins. ERDS, in fact, is characterized by a delay of about 4 

hours (due to original GPM data delay plus the time required by the data download, processing 

and alert evaluation in the ERDS system). If the event is very short, very intense and can cause 

a flood within 4 hours, the alert will be provided too late. Conversely, the system showed a 

good performance regarding the identification of hydrometeorological disasters like hurricanes, 

cyclones, tropical storms, heavy rainfall that might lead to flood events and flash floods 

characterized by durations greater than the ERDS latency [8]. 



 S1432 

New improvements are still required to increase the overall accuracy of early warning 

systems based on remotely sensed rainfall measurements and weather prediction model 

outputs. The system performances are deeply influenced by the input data resolution. The 

system is working at the global scale with a spatial resolution of 0.1° × 0.1°. These 

characteristics could lead to a wrong picture of rainfall events that vary greatly on a small scale 

and over time. A local-scale validation is advisable. Further studies aimed at developing a 

temporal/spatial downscaling of the GPM data could help to provide more accurate and reliable 

outputs. Moreover, one of the major problems with this kind of application is the error that may 

be present in the rainfall measurement. The system has no control over any underestimation, 

overestimation or random errors. Furthermore, no remedy is in place with reference to any kind 

of temporary interruptions in the provision of data. 

With this type of application, the model calibration and performance evaluation 

continue to be challenging problems in large data-scarce regions or in areas where only a few 

hydrometeorological events were recorded. The currently adopted thresholds may be 

influenced by this problem. 
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