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Abstract: We investigate a notable class of states peculiar to a bosonic binary mixture featuring
repulsive intraspecies and attractive interspecies couplings. We evidence that, for small values of the
hopping amplitudes, one can access particular regimes marked by the fact that the interwell boson
transfer occurs in a jerky fashion. This property is shown to be responsible for the emergence of
a staircase-like structure in the phase diagram of a mixture confined in a ring trimer and to resemble
the mechanism of the superfluid-Mott insulator transition strongly. Under certain conditions, in fact,
we show that it is possible to interpret the interspecies attraction as an effective chemical potential
and the supermixed soliton as an effective particle reservoir. Our investigation is developed both
within a fully quantum approach based on the analysis of several quantum indicators and by means
of a simple analytical approximation scheme capable of capturing the essential features of this
ultraquantum effect.

Keywords: Bose-Bose mixtures; mixing; localization; superfluid-Mott transition; quantum phase
transitions; entanglement

1. Introduction

The possibility to Bose-condense simultaneously two different boson components (whether they
are two different chemical elements [1], two different isotopes [2], or two different spin states [3])
and to trap them in optical lattices [4] has opened the door to the investigation of the intriguing
phenomenology exhibited by the resulting ultracold mixtures. The behavior of the latter is ruled
by the competition among tunneling processes (resulting from the spatial fragmentation of the
condensates into separated wells) and intra- and inter-species couplings. Such interplay among
different contributions in the overall energy balance of the system results, among the rest, in a rich
scenario of mixing-demixing quantum phase transitions [5–9], in the emergence of novel quantum
phases [10–12], in the possibility of entangling [13,14] the two bosonic species, and in that of triggering
peculiar dynamical regimes [15,16].

In particular, mixing-demixing transitions have been thoroughly described, in the case of small
sized lattices, for repulsive [14,17–20] and attractive [21] interspecies couplings. These analyses have
highlighted rather complex quantum phase diagrams where various phases, differing in the degree
of mixing and localization of the two bosonic species, are recognizable. The latter properties have
been shown to be quantifiable by means of suitable indicators originally devised in the context of
classical fluids [22], but which can be easily and effectively extended to the case of quantum gases.
Mixing-demixing and mixing-supermixing transitions in ultracold bosonic mixtures, which involve the
localization of the condensed species in different sites of the lattice, have also been shown to be strongly
associated with the presence of criticalities in a number of quantum indicators. The latter include,
but are not limited to, the functional dependence of the ground-state energy on model parameters,
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the energy fingerprint (constituted by the structure of the first excited energy levels), and the degree of
entanglement between the bosonic species of the mixture [14,18,19,21,23].

In this work, we shine light on a particular aspect of the phenomenology exhibited by two species
mixtures confined in optical lattices: the emergence of a quantum-granularity effect resulting from the
combination of strong interspecies attractions and weak hopping amplitudes. In these circumstances,
in fact, the minority species occupies just one of the available sites and tends to summon the majority
species in the same site where it is localized (hence the term “supermixed soliton”). Nevertheless,
some bosons of the majority species do not enter the macroscopically occupied lattice site, but remain
spread in the remaining ones. The resulting ground-state configuration can be therefore regarded
as the union of two parts: the supermixed soliton, which plays the role of a particle reservoir for
the majority component, and the remaining sites, which constitute an effective single species system
featuring a variable number of particles. In this perspective, the interspecies attraction plays the
role of an effective chemical potential, as it can finely control the number of bosons that are injected
from (to) the supermixed soliton into (from) the remaining lattice sites. Within this analogy, the jerky
interwell transfer of majority bosons occurring in the system is discussed to strongly resemble the
well known mechanism underlying the superfluid-Mott insulator transition [24–27]. Recently, there
has been considerable interest toward the physics of few body ultracold systems [28] since they allow
better understanding the fundamental properties of quantum systems. In the same spirit, a mesoscopic
number of particles (instead of a macroscopic one) is employed throughout our analysis to better
emphasize the emergence of the quantum-granularity. Moreover, recent experimental advances [29,30]
have demonstrated the possibility to realize systems of interacting atoms trapped in ring shaped
optical lattices, an achievement that opened the doors to the observation of important phenomena in
1D physics.

2. The Two Species Model

A bosonic binary mixture trapped in a three-well potential (trimer) can be effectively described in
terms of the Bose–Hubbard (BH) model. The relevant Hamiltonian,

H = −Ta

3

∑
j=1

(
A†

j+1 Aj + A†
j Aj+1

)
+

Ua

2

3

∑
j=1

Nj(Nj − 1)−

− Tb

3

∑
j=1

(
B†

j+1Bj + B†
j Bj+1

)
+

Ub
2

3

∑
j=1

Mj(Mj − 1) + W
3

∑
j=1

Nj Mj, (1)

in fact, can capture the ultraquantum effects originating from the interplay between the spatial
fragmentation of the two condensates and the competition among tunneling (Ta and Tb) and intra- (Ua

and Ub) and inter- (W) species couplings [17–21,31]. Operator Aj (A†
j ) destroys (creates) a species-a

boson in the jth site. The same holds for operators Bj and B†
j , which, respectively, destroy and create

a species-b boson in the jth site. These operators satisfy standard bosonic commutators: [Aj, Ak] = 0,
[Aj, A†

k ] = δj,k, [Bj, Bk] = 0, [Bj, B†
k ] = δj,k, [Aj, Bk] = [A†

j , Bk] = 0.

Number operators Nj := A†
j Aj and Mj = B†

j Bj respectively count the number of species-a and
species-b bosons in the jth site. Their sums,

3

∑
j=1

Nj = Na,
3

∑
j=1

Mj = Nb,

represent two independent conserved quantities, meaning that [H, Na] = [H, Nb] = 0. The system we
are going to investigate features a ring geometry, and for this reason, it is understood that j = 4 ≡ 1
in the summations of Hamiltonian (1). Moreover, in the following, we shall focus on those regimes
featuring repulsive intraspecies and attractive interspecies couplings, which means Ua > 0, Ub > 0
and W < 0.
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3. A Continuous-Variable Picture to Investigate the Formation of Supermixed Solitons

3.1. The System Phase Diagram

Bosonic binary mixtures trapped in ring lattices share, irrespective of the number of lattice sites,
a rather general mechanism according to which, upon increasing the interspecies attraction |W|,
the ground-state configuration undergoes deep changes [21]. Basically, the two species are mixed and
uniformly distributed in the lattice sites (mixed (M) phase) when |W| is small enough. Conversely,
when the latter becomes sufficiently negative, the minority species is localized in one site, while the
majority species still occupies all sites, although in a non-uniform way (partially localized (PL) phase).
Eventually, further increasing |W|, both species are localized in the same site, thus giving place to
a state that goes under the name of “supermixed soliton” (supermixed (SM) phase). This scenario is
pictorially illustrated in Figure 1.

1
3
1
3
1
3

111

111 222 333
jjj

1
3
1
3
1
3
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111 222 333
jjj

1
3
1
3
1
3

111
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Phase M Phase PL Phase SM

(a) (c)(b)

Figure 1. Pictorial representation of some states belonging to phases M, PL, and SM, respectively.
Labels 1, 2, 3 correspond to site numbers, while the vertical axis corresponds to (normalized) boson
populations x∗,j and y∗,j characterizing the ground-state configuration. The majority (minority) species
is depicted in green (yellow) and corresponds to the left (right) columns of the histograms in each
panel. (a) In phase M, the two bosonic species are mixed and uniformly distributed in the ring trimer;
(b) in phase PL, the minority species is highly localized, while the majority species occupies all the sites
(although in a non-uniform manner); (c) phase SM is characterized by supermixed solitons.

The analytic treatment developed in [21] was based on the continuous variable (CV)
picture [32–36], a rather versatile approximation scheme that, under the assumption that the number
of particles loaded in the system, Na and Nb, is large enough, allows one to turn the search for the
ground state of Hamiltonian (1) into that for the global minimum of effective potential:

V =
1
2

3

∑
j=1

x2
j +

β2

2

3

∑
j=1

y2
j + αβ

3

∑
j=1

xjyj, (2)

an expression where variables:

xj :=
Nj

Na
, yj :=

Mj

Nb
(3)

represent normalized boson populations and where only two effective parameters,

α =
W√
UaUb

, β =
Nb
Na

√
Ub
Ua

, (4)

come into play [19,21]. It is to be noted, in this regard, that, in the limit of large boson populations, not
only the inherently discrete variables Nj and Mj can be replaced with their continuous counterparts
xj and yj, but also the contribution of tunneling terms in the potential (2) can be neglected (recall
that tunneling energy scales as Nc, while intra- and inter-species coupling energies scale as N2

c ,
where c = a, b). The limit Na � 1, Nb � 1, where Nb/Na = const, can be regarded as a sort of
thermodynamic limit if one resorts to the statistical-mechanical framework discussed in [37,38] (see
also [18,19,21]) and allows one to detect the presence of different phases in the (α, β) plane. These
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phases correspond to different classes of ground states of Hamiltonian (1) and differ in the degree of
mixing and localization of the two bosonic species, and, at their borders, the energy corresponding to
the configuration (~x, ~y), which minimizes (2), regarded as a function of control parameters α and β,
features non-analiticities. More specifically, if the configuration (~x∗,~y∗) constitutes the global minimum
of potential (2), the associated energy,

V∗ := V(~x∗,~y∗) := min
(~x,~y)∈R

V(~x,~y), (5)

where:

R =

{
(~xj,~yj) : 0 ≤ xj, yj ≤ 1,

3

∑
j=1

xj =
3

∑
j=1

yj = 1

}
,

features different functional dependences in different regions of the (α, β) plane and thus exhibits
non-analiticities along the borders thereof. This circumstance strongly resembles the hallmark of
quantum phase transitions [39]. Figure 2 illustrates the system phase diagram in the thermodynamic
limit (mentioned above), while Table 1 summarizes the ground-state configuration and the associated
energy in each of the three phases.

M

PL

SM

-3 -2 -1 0
0

0.5

1

Figure 2. Phase diagram of a (possibly asymmetric) two species bosonic mixture confined in a three-well
potential and featuring repulsive intraspecies and attractive interspecies interactions. Each phase is
characterized by a specific functional dependence of the energy minimum (5) on effective model
parameters (4). Along the red dashed (α = −1) and the red solid (β = −1/α) lines, V∗ is not analytic,
a circumstance that strongly suggests the occurrence of phase transitions. In the former (latter) case,
it is the first (second) derivative of V∗ with respect to control parameter α that is discontinuous.

Table 1. Summary of the typical minimum energy configuration and of the associated energy in
each phase.

Phase (~x∗,~y∗) V∗

M
x∗,j = 1/3 ∀j

y∗,j = 1/3 ∀j
VM
∗ =

1
6
(β2 + 2αβ + 1)

PL

x∗,i = [1− 2αβ]/3

x∗,j = [1 + αβ]/3 ∀j 6= i

y∗,i = 1, y∗,j = 0 ∀j 6= i

VPL
∗ =

1
6
[1 + 2αβ +β2(3− 2α2)]

SM

x∗,i = 1

x∗,j = 0 ∀j 6= i

y∗,i = 1, y∗,j = 0 ∀j 6= i

VSM
∗ =

1
2
(β2 + 2αβ + 1)
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To conclude this section, we remark that the presented study encompasses a rather extended
portion of the parameters’ space. With reference to the definitions (4), in fact, we verified that no
additional phases emerge for α < −3, while the case of α > 0 was thoroughly investigated in [18,19].
As regards parameter β, the choice β ∈ [0, 1] comes with no loss of generality in that, if β happens to
be bigger than one, one can always swap species labels and hence come back to the aforementioned
interval β ∈ [0, 1]. Notice also that the asymmetric role of species labels in the definition of β (see the
formulas (4)) implicitly defines a majority species, a, and a minority species, b.

3.2. Some Quantum Indicators to Characterize the Different Phases

In order to better characterize the three possible phases exhibited by the system, one can make use
of the “entropy of mixing” and of the “entropy of location”, two indicators that are commonly used in
physical chemistry [22,40] to quantify the degree of mixing and localization of chemical compounds.
In the case of normal fluids, they are defined as:

Smix(~x, ~y) = −1
2

L

∑
j=1

(
xj log

xj

xj + yj
+ yj log

yj

xj + yj

)
(6)

Sloc(~x, ~y) = −
L

∑
j=1

xj + yj

2
log

xj + yj

2
. (7)

where xj and yj are the molar fractions of the two compounds in the jth spatial domain and L represents
the number thereof (spatial domains result from the discretization of the available volume). As we are
dealing with quantum fluids, the system ground state will be, in general, a superposition of different
Fock states |~N, ~M〉, each one associated with a certain Smix and Sloc, which can be, in turn, determined
by means of Formulas (6) and (7) through the mapping (3) (of course, in our case, L = 3 due to the
presence of three sites, which already constitute the most natural way to discretize the system’s spatial
domain). In this perspective, the quantum version of indicators (6) and (7) reads:

S̃mix :=
Q

∑
~N, ~M

|c(~N, ~M)|2Smix(~N, ~M), (8)

S̃loc :=
Q

∑
~N, ~M

|c(~N, ~M)|2Sloc(~N, ~M), (9)

where Q = (Na+2)!
Na !2!

(Nb+2)!
Nb !2! is the dimension of the Hilbert space of states associated with

Hamiltonian (1) and:

c(~N, ~M) = 〈~N, ~M|ψ0〉 (10)

is the projection of the ground state |ψ0〉 onto Fock state |~N, ~M〉 = |N1, N2, N3, M1, M2, M3〉.
Other quantum indicators that can be used to detect the presence of different phases [39] in the

(α, β) plane are the ground-state energy:

E0 = 〈ψ0|H|ψ0〉 (11)

and the first excited levels:
Ei = 〈ψi|H|ψi〉. (12)

which indeed constitute a sort of energy fingerprint for quantum phases.
Eventually, in order to evaluate the degree of quantum correlation between the two species, one

can introduce the entanglement entropy (EE) relevant to a bipartition of the system space of states in
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terms of species-a and species-b bosons [17,18,23]. More specifically, the entanglement between the
two quantum fluids reads:

EE = −Tra(ρ̂a log2 ρ̂a), (13)

a formula representing the von Neumann entropy of the reduced density matrix ρ̂a = Trb (ρ̂0) obtained,
in turn, by tracing out the degrees of freedom of species-b bosons from the ground-state density matrix
ρ̂0 = |ψ0〉〈ψ0|.

Figure 3 illustrates the behavior of these indicators, regarded as functions of effective model
parameters (4). It is possible to appreciate that the combined use of critical indicators S̃mix and S̃loc (see
the panels in the second and in the third row of Figure 3) allows one to distinguish the different phases
clearly. It is worth noticing that, as the number of particles employed to perform the exact numerical
diagonalization of Hamiltonian (1) is limited (Na = Nb = 15), some finite size effects are present,
which affect the “ideal” phase diagram illustrated in Figure 2. More prominently, the border between
phase M and phase PL (line α = −1 in the thermodynamic limit) has given way to a hyperbole-like
border, which allows phase M to invade the half-plane α < −1 (of course, for sufficiently small values
of β).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Each row illustrates the behavior of a genuinely quantum indicator as a function of model
parameters α and β. Going from left to right, plots correspond to T/Ua = 0, 0.02, and 0.50, where T :=
Ta = Tb. (a)–(c): ground-state energy E0/Ua (11). (d)–(f): quantum version of the entropy of mixing,
S̃mix (8). (g)–(i): quantum version of the entropy of location S̃loc (9). (j)–(l): entanglement between the
two condensed species, EE (13). Model parameters Na = Nb = 15, Ua = 1, Ub ∈ [0, 1] ⇒ β ∈ [0, 1],
and α ∈ [−3, 0] were used. Each plot includes more than 20k points [41], corresponding to as many
numerical diagonalizations of Hamiltonian (1).

The last row of Figure 3 illustrates the behavior of EE. The transition M-PL can be easily
recognized, while the border PL-SM cannot be appreciated (as already noticed in [21]).

Eventually, as is visible in the first row of Figure 3, the ground-state energy E0 as such does
not allow for a direct identification of the various phases because its non-analytic character is better
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highlighted by its first- and second-order derivatives. This aspect will be discussed in Section 4
and illustrated in Figure 4, where the derivatives of E0 with respect to α and β (regarded, in turn,
as functions thereof) are used to reconstruct the phase diagram effectively. Each column corresponds
to a certain value of the tunneling amplitudes Ta and Tb. Going from left to right, the latter increase,
a circumstance that favors boson delocalization and determines the blurring of the phase diagram
illustrated in Figure 2 (see [21] for further details).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (l)(k)

Figure 4. Each row illustrates the behavior of a genuinely quantum indicator as a function of model
parameters α and β. Going from left to right, plots correspond to T/Ua = 0, 0.02, and 0.50, where
T := Ta = Tb. (a)–(c): second derivative of the ground-state energy E0. (d)–(f): second derivative
of the quantum version of the entropy of mixing, S̃mix. (g)–(i): second derivative of the quantum
version of the entropy of location S̃loc. (j)–(l): second derivative of the entanglement between the
two condensed species, EE. Model parameters Na = Nb = 15, Ua = 1, Ub ∈ [0, 1] ⇒ β ∈ [0, 1],
and α ∈ [−3, 0] were used. Each plot includes more than 20k points [41], corresponding to as many
numerical diagonalizations of Hamiltonian (1).

4. Beyond the Continuous-Variable Picture: Emergence of the Quantum-Granularity

The analytic treatment reviewed in Section 3 and based on the CV picture allows one to find all
the phases that are possibly exhibited by the two species mixture in a rather straightforward way.
The resulting phase diagram (see Figure 2) and the associated characteristic quantities (see Table 1)
provide a full overview of the different ways in which the two quantum fluids can rearrange among
available sites and allows one to recognize critical lines in the (α, β) plane.

Nevertheless, this semiclassical approximation scheme cannot accurately describe the
ultraquantum effects exhibited by the system when boson populations Na and Nb are finite and
tunneling processes very weak. In these cases, in fact, a small variation of control parameters α and β

(see the Formula (4)) may not result in a smooth variation of the system’s ground state.
To better clarify this circumstance, we begin with considering the central and the right panels

of Figure 1. In the thermodynamic limit, one loses track of the quantum-granularity characterizing
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bosonic particles, and phase PL can be thought of as a collection of states that, upon increasing |α|,
smoothly approach the supermixed-soliton configuration. Therefore, in this scenario, the majority
species gradually localizes upon increasing the interspecies attraction, meaning that the outer green
bars in the central panel of Figure 1 are smoothly reabsorbed by the emerging supermixed soliton.

In this section, both by means of exact numerical computations and by developing a suitable
analytic framework, we show that this smooth and elementary picture is no longer valid for finite
values of boson populations (Na and Nb) and for sufficiently low values of Ta and Tb. In these regions
of the parameter space, the discrete character of the interwell boson-exchange mechanism emerges,
and the system discloses some new effects ensuing from the granularity of its constituents. Figure 5
provides a pictorial representation of this phenomenology.

111 222 333
jjj

111 222 333
jjj

(a) (b)

Figure 5. Pictorial representation of the discrete character of the interwell boson exchange. (a):
macroscopic configuration of the system for a certain choice of model parameters. A small variation of
control parameters α and β may [panel (b)] or may not modify it. The fact that the supermixed soliton
can gain or loose a boson at a time upon varying a control parameter is what we mean with the term
“quantum-granularity”. Green and yellow circles represent species-a and species-b bosons respectively.
The gray circle represent a species-a boson which is being transferred to the supermixed soliton.

4.1. Exact Numerical Results

The emergence of the aforementioned “quantum-granularity” in the phenomenology of the
discussed system can be appreciated by resorting to the quantum indicators already introduced in
Section 3.2 and including the ground-state energy, the entropy of mixing, the entropy of location, and
the entanglement entropy. In Figure 4, we illustrate their second derivatives with respect to control
parameter α, where, for the sake of simplicity, we set T := Ta = Tb. It is clear that, in the region of the
(α, β) plane corresponding to phase PL, a staircase-like structure is present for sufficiently low values
of T (see the left and central columns of Figure 4). Conversely, this peculiar property is absent when
tunneling is large enough (see the right column of Figure 4), a circumstance that can be explained in
terms of the delocalizing effect of hopping processes, which tend to smooth down transitions and
sharp features of the phase diagram [17–19,21].

The presence of this staircase-like structure in the central region of the (α, β) plane is due to
the fact that, the hopping amplitude being small, the system responds to small variations of control
parameters in a highly non-linear way. As will be explained in Section 4.2 by means of a simple
analytic treatment, when tunneling terms tend to zero, phase PL (which, in the CV picture, can be
thought of as a collection of states which transform in a smooth way when α and β are varied) gives
way to a sequence of stripes in the (α, β) plane within which the ground-state configuration proves
to be rather rigid upon small variations of α and β themselves. The transition between any two such
stripes represents an abrupt change in the ground-state configuration and corresponds to the kind of
boson rearrangement pictorially illustrated in Figure 5.

The staircase-like structure corresponding to jerky transfers of bosons from/to the site hosting
the supermixed soliton is evident also in terms of the energy fingerprint of the system. The latter,
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i.e., the set of the first excited energy levels, are shown in Figure 6 for different values of the
hopping amplitudes.

(a) (b) (c)

Figure 6. First eight excited energy levels, obtained by means of an exact numerical diagonalization
of Hamiltonian (1), for T := Ta = Tb = 0, 0.02, 0.50 in panel (a), (b), and (c), respectively. Model
parameters Na = Nb = 15, Ua = 1, Ub = 0.36 ⇒ β = 0.6, and W ∈ [−1.8, 0] ⇒ α ∈ [−3, 0] were
chosen. Each color corresponds to a different energy level.

In particular, if the hopping amplitudes are sufficiently small (see the left and central panels of
Figure 6), the energy-level structure in the region of the (α, β) plane between phase M and phase
SM features sharp peaks. With reference to the aforementioned figure, where β was set to 0.6,
the staircase-like structure is present for −1.6 ≤ α ≤ −1. The number of peaks in the energy spectrum
corresponds to that of the stripes that one crosses while walking along a straight line at β = const in
the (α, β) plane. Similarly, the number of valleys visible in the energy spectrum corresponds to that of
stripes borders crossed by the constant-β pathway. The sequence of stripes whose borders correspond
to jerky boson transfers (of the type sketched in Figure 5) can be clearly appreciated also in Figure 7,
which has been derived within a fully-analytic framework (see Section 4.2 for details).

M

SM

-3 -2 -1 0
0

0.5

1

Figure 7. Map of the system’s minimum energy configurations. It corresponds to the graphical
representation of the set of inequalities derived in Section 4.2. More specifically: the solid black
(dashed) line corresponds to the condition (23) and (28), while the set of purple (yellow) stripes is given
by the condition (24) and (25). Model parameters Na = Nb = 15, Ua = 1, Ub ∈ [0, 1] ⇒ β ∈ [0, 1],
α ∈ [−3, 0], and Ta = Tb = 0 were used.

If hopping amplitudes Ta and Tb exceed a certain threshold, the discrete character of the interwell
boson exchange fades away, and the energy levels Ej(α), regarded as functions of control parameter α,
become well behaved (see the right panel of Figure 6).

Another effective indicator that can provide insight into the jerky transfers of bosons from/to
the supermixed soliton is represented by D(E0), the degeneracy of the ground-state level when
Ta = Tb = 0. We recall, in this regard, that, as soon as the tunneling is non-vanishing, the ground
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state of Hamiltonian (1) becomes unique and is not degenerate [42], although it can take the form of
a superposition of a few macroscopically different configurations (a Schrödinger-cat state) [18,43]. As
we shall discuss, such a superposition of different Fock states, although being non-degenerate, bears
the memory of the value of D(E0) that one would have if hopping processes were suppressed, since
D(E0) at Ta = Tb = 0 corresponds to the number of macroscopic configurations that constitute the
non-degenerate Schrödinger-cat state at small, but finite tunnelings.

The value ofD(E0), computed along a path in the (α, β) plane featuring β = const, is illustrated in
Figure 8. At the chosen value of β, for α < 2.3, the system’s ground state takes the form of a supermixed
soliton whose degeneracy D is three, because three is the number of its possible positions in the trimer.
For −1 < α < 0, the configuration that minimizes the (expectation value of) Hamiltonian (1) is the
uniform and mixed one. The latter is such that there are Na/3 species-a and Nb/3 species-b bosons in
each site. If, as in the case of Figure 8, Na and Nb are integer multiples of the number of lattice sites,
there exists just one state that minimizes energy (1), and accordingly, the associated degeneracy D(E0)

is unitary.

Figure 8. Degeneracy of the ground-state level E0, obtained by means of an exact numerical
diagonalization of Hamiltonian (1), for T := Ta = Tb = 0. Model parameters Na = Nb = 15,
Ua = 1, Ub = 0.16 ⇒ β = 0.4, and W ∈ [−1.2, 0] ⇒ α ∈ [−3, 0] were chosen. Each jump discontinuity
corresponds to a change in the ground state structure of the type illustrated in Figure 5.

For −2.3 < α < −1, the system ground state transforms from the mixed to the supermixed one in
such a way that bosons are transferred to the emerging supermixed soliton in the jerky fashion sketched
in Figure 5. Accordingly, the degeneracy of the ground-state level alternatively takes the values three
and six, depending on the number of species-a bosons that are not part of the supermixed soliton.
To better clarify this property, we observe that, in the region of the phase diagram corresponding to
phase PL, at Ta = Tb = 0, the ground state of Hamiltonian (1) is made up of Fock states of the type:

|N1, N2, N3, M1, M2, M3〉 = |Na − N2 − N3, N2, N3, Nb, 0, 0〉 (14)

where N2 < Na − N2− N3 and N3 < Na − N2− N3. In light of this, one can immediately conclude that
the degeneracy of the associated energy level, i.e., the number of possible permutations of the quantum
numbers that come into play, is three when N2 = N3, and it is six when N2 6= N3. With reference
to Figure 7, which was obtained by means of the fully-analytic framework discussed in Section 4.2,
purple (yellow) stripes are associated with D = 6 (D = 3), while, as already explained, in the regions
SM and M, D takes the values three and one, respectively. The fact that purple and yellow stripes have
different widths will be explained by the simple analytic framework presented in Section 4.2.

The discussed mechanism of jerky interwell boson transfer is present not only at T = 0, but it
persists also for finite values of tunnelings. To better illustrate this circumstance, we refer to Figure 9,
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where we plot the second derivative of the ground-state energy (11) with respect to control parameter
α (left panel) and the entropy:

S = −∑
~N

∑
~M

|c(~N, ~M)|2 log |c(~N, ~M)|2 (15)

of the probability distribution associated with coefficients (10) (right panel). Both plots, which are
referred to the (α, T/Ua) plane, clearly show the presence of lobes for small values of T/Ua and for
−2.4 < α < −1. More specifically, as regards the left plot, one can appreciate a sequence of six lobes
(depicted in green), which correspond to a sequence of Fock states of the type:

|ψ0〉6 ≈
1√
6
[|Na − N2 − N3, N2, N3, Nb, 0, 0〉+ |Na − N2 − N3, N3, N2, Nb, 0, 0〉 +

+|N2, Na − N2 − N3, N3, 0, Nb, 0〉+ |N3, Na − N2 − N3, N2, 0, Nb, 0〉+

+|N2, N3, Na − N2 − N3, 0, 0, Nb〉+ |N3, N2, Na − N2 − N3, 0, 0, Nb〉] (16)

for N2 6= N3, and of the type:

|ψ0〉3 ≈
1√
3
[|Na − N2 − N3, N2, N3, Nb, 0, 0〉+ |N2, Na − N2 − N3, N3, 0 Nb, 0〉+

+|N2, N3, Na − N2 − N3, 0, 0, Nb〉] + (17)

for N2 = N3, where the symbol “≈” was used to recall that, when T > 0, many other Fock states |~N, ~M〉
enter into the expression of |ψ0〉, but their weights |c(~N, ~M)|2 (see (10)) in the linear combination
|ψ0〉 = ∑~N ∑ ~M c(~N, ~M)|~N, ~M〉 are very small if the ratio T/Ua is, in turn, small. Going from left to
right in both plots of Figure 9, for small enough values of T/Ua, the quantum number Na − N2 − N3,
which correspond to the number of species-a bosons in the supermixed soliton, takes the value of 15 for
α < −2.4 (SM configuration) and the value of five for α > −1. More interestingly, for −2.4 < α < −1,
it takes the sequence of values 14, 13, 12, 11, 10, 9. Accordingly, the system ground state alternately
takes the form of the state (16) and state (17). This sequence of six different ground states corresponds
to that of the six green lobe-like domains in the bottom part of the left panel of Figure 9 and to that
of the blue lobe-like domains in the bottom part of the right panel of Figure 9. Notice, in this regard,
that the domains corresponding to the cases N2 = N3 are bigger, i.e., they are wider and persist for
bigger values of T/Ua. Conversely, the lobes corresponding to the cases N2 6= N3 are narrower and
are more easily disrupted by tunneling. The different widths of the lobes for N2 = N3 and of those for
N2 6= N3 will be explained in Section 4.2 (by means of a simple analytical model), while their different
heights can be explained by means of an analogy with the superfluid-Mott insulator transition. Note
that, also, these two kinds of lobes visible in the right panel of Figure 9 alternately take the values of
S ≈ log 6 and S ≈ log 3, in that the number of macroscopic components present in the non-degenerate
Schrödinger-cat-like states of the type (16) and (17) bears memory of the degeneracy D(E0) of the
ground state if the tunneling T was suppressed.

In order to highlight the analogy with the superfluid-Mott insulator transition, we start by looking
at the trimer system as if it were made up of two parts. One corresponds to the site where the
supermixed soliton is emerging: it includes Na − N2 − N3 species-a bosons and Nb species-b bosons.
The other part corresponds to the remaining two sites, hosting, in total, N2 + N3 species-a bosons
and zero species-b bosons. As Na − N2 − N3 can be much bigger than N2 + N3, the macroscopically
occupied site can be thought of as a reservoir of species-a bosons, and the remaining two sites can
be regarded as a two-well system including just one bosonic species (instead of a binary mixture),
which is in contact with a particle reservoir. In this perspective, the interspecies attraction W and hence
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effective control parameter α (see Formula (4)), plays the role of an effective chemical potential, as it
can control the release/absorption of species-a bosons from/to the particle reservoir.

(a) (b)

Figure 9. The mechanism of jerky interwell boson transfer is present provided that tunneling T is small
enough. (a): second derivative of the ground-state energy (11) with respect to control parameter α. (b):
entropy (15) of the probability distribution associated with coefficients |c(~N, ~M)|2 (see Formula (10)).
The black line corresponds to the border of the stability region (20) of the mixed configuration. Notice
that, unlike Figures 3 and 4, these plots are referred to the (α, T/Ua) plane, instead of the (α, β)

plane. Model parameters Na = Nb = 15, Ua = 1, Ub = 0.16 ⇒ β = 0.4, Ta = Tb =: T ∈ [0, 0.5],
and α ∈ [−3, 0] were used. Each plot includes more than 75k points [41], corresponding to as many
numerical diagonalizations of Hamiltonian (1).

Notice that there is a profound difference between states (17) and states (16). Concerning the
effective two-well potential resulting from the exclusion of the macroscopically occupied site (which
plays the role of particle reservoir), the former are marked by a commensurate filling, while the second
feature an incommensurate filling. As a consequence, lobes corresponding to the case of N2 = N3 play
the role of Mott lobes, while those corresponding to the case N2 6= N3 correspond to superfluid lobes,
as one species-a boson is shared between the sites of the effective two-well potential.

Interestingly, both states (17) and states (16) seem to undergo a deep change when T exceeds
a certain threshold, which is different in the two cases (T/Ua ≈ 0.02 and ≈ 0.01, respectively). In the
first case, as N2 = N3 (commensurate filling), the analogy with the superfluid-Mott insulator transition
suggests that, increasing the ratio T/Ua, bosons tend to be delocalized, and the system switches from
the Mott to the superfluid phase. Concerning the other family of states, (16), featuring N2 6= N3,
the interpretation is more delicate. This is because they are already endowed with a superfluid
character, as one boson is shared by the two sites of the resulting effective system. Although this
property deserves further investigation (we expect that an increasingly rich structure of “superfluid
lobes” necessarily emerges when the number of lattice sites increases), it is possible to conjecture that,
crossing the border of such a lobe, the system switches from a weaker to a stronger type of superfluidity.
In fact, the states (16) are forcefully superfluid, even for T → 0+, because of the extra boson expelled by
the supermixed soliton and injected into the effective two-well potential. Nevertheless, the superfluid
character of state (16) is strongly dammed by the fact that it includes just six Fock states (actually two,
if one neglects the possible ways to permute the position of the particle reservoir), and therefore, it is
far from being of the type:

|ψ0〉 ∝ (A†
2 + A†

3)
N2+N3 |0, 0〉, (18)

the latter representing the exact ground state of a two-well BH Hamiltonian featuring U/T → 0
and hosting N2 + N3 species-a bosons. This circumstance would reasonably explain the presence
of small lobes in both panels of Figure 9. In the same spirit of [44], where suitable squeezing
indicators were introduced to detect lobe-like structures in an asymmetric BH-dimer Hamiltonian, we
introduce indicator:
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∆n =
1
2
(
2Nmax − Ni − Nj

)
, (19)

where Nmax := maxk∈{1,2,3}{Nk} and Ni, Nj ∈ {N1, N2, N3} − {Nmax}, which corresponds to the
average species-a bosons imbalance between the site hosting the supermixed soliton and the sites of the
remaining two-well system. As is visible in Figure 10, where the expectation value 〈∆n〉 = 〈ψ0|∆n|ψ0〉
is plotted, when T/Ua is small enough, a sequence of lobe-like domains is present, which corresponds
to the sequence of values 15 (SM configuration), 13.5 (first superfluid-like lobe), 12 (first Mott-like
lobe), 10.5, and so on.

We conclude this section by recalling that it is possible to find, either within the CV picture [21] or
by means of the dynamical-algebra method [31], the region of the parameters space where the mixed
configuration (the one sketched in the leftmost panel of Figure 1) is stable. It is given by inequality:

α > −

√(
1 +

9
2

Ta

UaNa

)(
1 +

9
2

Tb
UbNb

)
(20)

whose border, in the (α, T/Ua) plane, corresponds to the black line in the right panel of Figure 9.
Interestingly, one can notice that, while approaching this border from the right, the entropy (15)
associated with the ground state significantly increases and takes the maximum value exactly at the
value of α where the mixed configuration gives way to a configuration of the type (14).

Figure 10. Expectation value 〈∆n〉 = 〈ψ0|∆n|ψ0〉 of operator imbalance operator ∆n (see Formula (19))
as a function of α and T/Ua. The mechanism of jerky interwell boson transfer is present provided that
tunneling T is small enough (compare the staircase-like structure for T/Ua → 0 with the slide-like
appearance for T/Ua ≈ 0.2). Notice that, unlike Figures 3 and 4, these plots are referred to the
(α, T/Ua) plane, instead of the (α, β) plane. Notice also that, unlike Figure 9, the range of T/Ua is
[0, 0.2] in order to better appreciate the presence of lobe-like regions. Model parameters Na = Nb = 15,
Ua = 1, Ub = 0.16 ⇒ β = 0.4, Ta = Tb =: T ∈ [0, 0.5], and α ∈ [−3, 0] were used. The plot includes
more than 60k points [41], corresponding to as many numerical diagonalizations of Hamiltonian (1).
Color is used to better emphasize the features of the surface: blue (red) corresponds to 〈∆n〉 = 0
(〈∆n〉 = 15).

4.2. Analytic Treatment

We present a simple, but effective analytical treatment, capable of capturing the presence of the
staircase-like structure in the central region of the (α, β) plane (see Figure 4). By means of fully-analytic
computations, we derive, for T = 0, a set of inequalities giving the stability region not only of the
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mixed and of the supermixed configurations, but also of each intermediate configuration of the
type (14). The graphical representation of these inequalities is shown in Figure 7, which effectively
mimics the scenario illustrated in Figure 4, obtained, in turn, by sweeping model parameters and
numerically diagonalizing Hamiltonian (1).

Let us consider a supermixed-soliton configuration. The associated energy, for T = 0, reads:

E(SM) =
Ua

2
Na(Na − 1) +

Ub
2

Nb(Nb − 1) + WNaNb. (21)

The first state belonging to the staircase-like structure differs from a supermixed-soliton state
because one species-a boson has left the macroscopically occupied site and has moved to the remaining
two-well system. The energy of this configuration reads:

E(SM− 1a) =
Ua

2
(Na − 1)(Na − 2) +

Ub
2

Nb(Nb − 1) + W(Na − 1)Nb. (22)

By solving the inequality E(SM) < E(SM− 1a), one obtains that the supermixed configuration
ceases to be the energetically favorable one for:

α >
1
β

(
1

Na
− 1
)

. (23)

This condition corresponds to the solid black line in Figure 7 and allows one to recognize the
border between the region of SM states and the first element of the staircase-like structure. It is
worth mentioning the fact that it would be energetically unfavorable to remove a species-b (instead of
a species-a) boson from the supermixed soliton. The condition E(SM− 1a) < E(SM− 1b) is indeed
always verified in the chosen range β ∈ [0, 1] because of the asymmetric role of species-a and species-b
parameters in the definition of β (see Formula (4)). State |Na − 1, 1, 0, Nb, 0, 0〉 is the actual system
ground state provided that the condition (23) is satisfied and that E(SM− 1a) < E(SM− 2a). The latter
inequality corresponds to the border between the upper purple stripe and its neighboring yellow stripe
in Figure 7.

One can easily generalize this reasoning in order to find the condition under which a state of
the type (14) and such that Ka = N2 + N3 species-a bosons have left the supermixed soliton is the
actual system’s ground state. One needs to distinguish two cases: Ka odd and Ka even. After some
straightforward algebra, it turns out that the aforementioned state, whose energy is E(SM− Ka), is
the actual ground state provided that:

1
β

(
3(Ka − 1)/2 + 1

Na
− 1
)

< α <
1
β

(
3(Ka − 1)/2 + 2

Na
− 1
)

if Ka is odd, (24)

1
β

(
3Ka/2− 1

Na
− 1
)

< α <
1
β

(
3Ka/2 + 1

Na
− 1
)

if Ka is even. (25)

With reference to Figure 7, the former (latter) set of inequalities corresponds to the set of purple
(yellow) stripes. Notice also that these simple analytical expressions perfectly capture the fact that
yellow stripes are two times wider than purple stripes or, in other words, that, in Figure 8, the pulses
with degeneracy D(E0) = 6 are two times narrower than those with degeneracy D(E0) = 3. The same
reasoning, of course, accounts for the different widths of the superfluid-like and Mott-insulator-like
lobes of Figure 9 (see the relevant discussion in Section 4.1).

It is known from the theory developed in [21] and reviewed in Section 3 that, when α approaches
the value ≈ −1, the system ground state sharply switches to the uniform and mixed (M) configuration,
featuring Na/3 species-a and Nb/3 species-b bosons in each well. This dramatic change in the structure
of the ground state corresponds, in the thermodynamic limit, to the transition M-PL (see Section 3).
To derive the condition under which the mixed configuration, featuring energy:
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E(M) = 3
Ua

2
Na

3

(
Na

3
− 1
)
+ 3

Ub
2

Nb
3

(
Nb
3
− 1
)
+ 3W

Na

3
Nb
3

, (26)

becomes energetically favorable, one needs to solve the inequality E(M) < E(SM− Ka), giving:

α >

(
3Ka

4Na
− 1

2

)
1
β
− Naβ

2Na − 3Ka
, (27)

and then impose that the critical value of α falls exactly where the lobe with energy E(SM− Ka) would
give way to the lobe with energy E(SM− Ka − 1). As a result, one obtains relation:

α∗ = −
√

β2N2
a + 1

βNa
(28)

giving the border between region M and the staircase-like structure (see black dashed line in Figure 7)
and relation:

Ka,max =
2
3

(
Na − 1−

√
β2N2

a + 1
)

(29)

giving, for a certain value of β, the maximum number of species-a bosons that can be subtracted from
the supermixed soliton before abruptly switching to the uniform and mixed configuration (of course,
as Ka,max must be an integer number, the use of the floor function is implicitly needed).

It is important to remark that the presence of the staircase-like structure that is observed for small
values of T and finite boson populations, Na and Nb, is not in contrast with the analysis developed
within the CV picture (see [21] and its brief review in Section 3), but it is complementary to it. In fact, in
the limit of large boson populations, one loses track of the quantum-granularity, which is responsible for
the sequence of superfluid-like and Mott-insulator-like lobes, and one re-obtains the same expressions
that were obtained by approximating boson populations with continuous variables. For example,
one has that:

lim
Na→+∞

α∗ = −1,

which corresponds to the M-PL border in the phase diagram illustrated in Figure 2, and also:

lim
Na→+∞

Ka,max

Na
=

2(1− β)

3
,

which perfectly matches the results obtained within the CV picture (see Table 1 at the M-PL transition).

5. Conclusions

In this work, we investigated the quantum-granularity effect characterizing the formation of
supermixed solitons in ring lattices. It occurred for small values of the tunneling parameters and
consisted of a jerky transfer of bosons from/to the site hosting the supermixed soliton. Interestingly,
we showed that it is possible to draw an analogy between the physics of a mixture trapped in a few
well potential and that of the superfluid-Mott insulator transition. More specifically, we showed that,
in certain regimes, the interspecies attraction played the role of an effective chemical potential and
therefore controlled the release of bosons from a macroscopically occupied site, which, in turn, played
the role of the particle reservoir.

In Section 2, we introduced the model, highlighting the fact that we considered a bosonic
binary mixture featuring repulsive intraspecies and attractive interspecies couplings. In Section 3.1,
we presented the system phase diagram, which was shown to be spanned by just two effective
parameters, accounting for the ratio between inter- and intra-species couplings, and incorporating
the possible asymmetry between bosonic species. Section 3.2 was devoted to the presentation of
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several quantum indicators, which were conveniently used to quantify the degree of localization
and mixing of the two bosonic species, and the amount of quantum correlation (entanglement)
between them. In Section 4, we pointed out that small hopping amplitudes were responsible for
a discrete interwell boson exchange and hence for the emergence of a staircase-like structure in the
central region of the phase diagram. For this purpose, in Section 4.1, we showed the behavior of
different quantum indicators including, but not limited to the energy spectrum, various types of
entropy, and the degree of degeneracy of the ground-state level. The interesting analogy with the
mechanism of the superfluid-Mott insulator transition was also discussed. Eventually, in Section 4.2,
we presented a simple, but effective analytic framework capable of capturing the emergence of
the quantum-granularity effect and the ensuing properties. The rich sequence of Mott-like and
superfluid-like lobes revealed for the ring trimer is expected to be present in larger sizes lattices. This
aspect deserves further investigation, which we shall develop elsewhere.
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