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We analyze a notable class of states relevant to an immiscible bosonic binary mixture loaded in a rotating
boxlike circular trap, i.e., states where vortices in one species host the atoms of the other species, which thus
play the role of massive cores. Within a fully analytical framework, we calculate the equilibrium distance
distinguishing the motion of precession of two corotating massive vortices, the angular momentum of each
component, the vortices healing length, and the characteristic size of the cores. We then compare these previsions
with the measures extracted from the numerical solutions of the associated coupled Gross-Pitaevskii equations.
Interestingly, making use of a suitable change of reference frame, we show that vortices drag the massive cores
which they host thus conveying their same motion of precession, but that there is no evidence of tangential
entrainment between the two fluids, since the cores keep their orientation constant while orbiting.

DOI: 10.1103/PhysRevA.101.013630

I. INTRODUCTION

Vortices in quantum fluids are topological excitations char-
acterized by quantized circulation [1] which are present in
a number of nonlinear field theories and models [2], rang-
ing from superfluid media [3,4] and quantum optics [5,6]
to superconductivity theories [7,8] and Josephson-junction
arrays [9,10], and play a key role in fundamental effects
such as superfluid turbulence [11], the Berezinskii-Kosterlitz-
Thouless transition [12], fractional statistics [13], and in the
development of a fully quantized field theory for topologically
complex excitations [14–16]. Among the plethora of differ-
ent physical systems where vortices can be experimentally
investigated, ultracold quantum gases provide a particularly
controllable and versatile platform [17,18] for the study and
the observation of the rich phenomenology associated to
their formation [19,20], dynamics [21,22], and interactions
[23]. Vortices in Bose-Einstein condensates (BECs) were first
obtained by means of a phase-imprinting method involving
two hyperfine spin states of 87Rb [24] but, at present, can
be produced also by stirring the BEC above a certain critical
velocity [25–27], dragging barriers through the BEC itself
[28] or interfering multiple condensate fragments [29].

Solitons are a kind of localized excitations which, because
of the competition between dispersion and nonlinearity, prop-
agate keeping their shape unaltered, even if a two-soliton
collision occurs [30]. Soon after the achievement of Bose-
Einstein condensation, different types of solitons have been
described and observed [18,31,32]. To our purposes, of par-
ticular importance are those systems where a bosonic binary

*Corresponding author: andrea.richaud@polito.it

mixture features dark-bright soliton configurations [33–35].
These structures, first predicted in Ref. [36], are frequently
termed as symbiotic solitons [37] because the bright compo-
nent, being endowed with repulsive intraspecies interaction,
could not exist if the dark component did not play the role of
an effective confining potential.

The same symbiotic relationship was shown to constitute
the mechanism underlying the robustness of vortex-bright
soliton complexes. First observed in 2000 by the JILA group
[38], they represent the topological extension of the dark-
bright soliton configuration to the case where a component
hosts one or more vortices [39]. The aforementioned study
paved the way to a series of further investigations which high-
lighted, among various aspects, the spontaneous generation of
vortex-bright soliton structures [40], the possibility, for the
effective potential well corresponding to the vortex core, to
support not only bound states [41], but also multiring excited
radial state complexes [42], the splitting of doubly quantized
composite vortices [43], and a rich dynamical scenario for the
bright-solitary component [44].

Within an analytical framework and by means of extensive
numerical simulations, our work aims at analyzing the static
and the dynamical properties of vortex-bright soliton com-
plexes, i.e., how the presence of massive solitons within the
cores of two corotating vortices affect the equilibrium distance
characterizing their motion of precession around the trap
center, the role of the interspecies repulsion as an antagonist
to the centrifugal force acting on the solitons, the functional
dependence of the angular momenta carried by two species,
of the vortex healing length, and of the characteristic radius of
the massive cores on the mass of the latter.

If one considers repulsive intraspecies (ga, gb) and in-
terspecies (gab) interactions such that the immiscibility
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condition gab >
√

gagb is fulfilled [45], the dynamical picture
of the mixture [in which the order-parameter fields of the
two species obey two coupled Gross-Pitaevskii equations
(GPEs)], indeed reduces to the much simpler equations of
two pointlike vortices with nonzero-mass cores. Noticeably,
the latter are found to exhibit an evident Lorentz-like form
since, in the presence of vortex cores occupied by a second
species, the vortex-motion equations are equivalent to those
of a pair of massive charges acted by a transverse magnetic
field. With negligible fractions of the minority component,
one recovers the Helmholtz-Kirchhoff equations for planar
pointlike vortices [46].

The outline of the paper is the following: in Sec. II, we
present an analytical model for the dynamics of massive
vortices in a confined system which incorporates the effect of
the virtual vortices resulting from the boundary condition of
vanishing normal velocity. In particular, we derive a formula
giving the equilibrium distance distinguishing the motion of
precession of two corotating massive vortices. Section III
is devoted to the presentation of the two coupled stationary
GPEs which provide a good description of the bosonic binary
mixture in the mean-field approximation. In Sec. IV, we
show how the presence of massive cores (i.e., species-b atoms
trapped within species-a vortices) affects the equilibrium dis-
tance of the pair of corotating vortices. We also show that the
interspecies repulsion tends to counterbalance the centrifugal
force acting on species-b atoms. In Sec. V, we address the
angular momenta of the two components and provide ana-
lytical formulas that well capture their functional dependence
on the number of species-b atoms (which, in turn, is directly
proportional to the mass of the cores). By means of a suitable
change of reference frame, we show that the cores, although
following the same motion of precession of the vortices, keep
their orientation constant while orbiting. This circumstance
witnesses the fact that there is no tangential entrainment
between the two fluids. In Sec. VI, we present an heuristic
but effective system of equations that well reproduces the
functional dependence of the vortex healing lengths and of the
cores’ characteristic radius on the number of species-b atoms.
Eventually, Sec. VII is devoted to concluding remarks.

II. POINTLIKE VORTICES IN A CIRCULAR BOX

In this section, we review some results concerning the
dynamics of pointlike vortices and we introduce a model for
the dynamics of vortices whose cores host pointlike masses
(hence the name massive vortices, as opposed to the tradi-
tional massless vortices).

A. Massless vortices

The Hamiltonian of N pointlike massless vortices in an
ideal unbounded fluid is given by [46]

H∞ = (z1, . . . , zN ) = − ρ∗
4π

N∑
i=1

∑
j �=i

kik j ln
|zi − z j |

λ
, (1)

where ρ∗ is the fluid planar density, z j = x j + iy j ∈ C is
the position of the jth vortex in the ambient plane, and k j =
n jh/m f is its strength (n j ∈ Z is the vortex quantization and

m f is the mass of the fluid particles). In the following, we will
specialize our discussion to the case of N = 2 vortices.

When one considers bounded systems, Hamiltonian (1)
modifies due to the presence of the confining potential. In the
case of a boxlike potential (this type of confinement is within
the reach of current experimental trapping techniques, see,
e.g., Refs. [47–49]), the presence of a boundary confining the
fluid is accounted for by means of the virtual charge method,
i.e., by introducing a suitable configuration of virtual vortices.
With this premise in mind, the Hamiltonian of N = 2 pointlike
massless vortices in an ideal fluid confined in a circular box
of radius R reads [50]

H = ρ∗
4π

{
k1k2ln

|R2 − z1z̄2|2
|R(z1 − z2)|2

+ k2
1 ln

(
1 − |z1|2

R2

)
+ k2

2 ln

(
1 − |z2|2

R2

)}
(2)

In this framework, the coordinates of each vortex constitute a
pair of canonically conjugate variables, and motion equations
can be obtained by means of the Poisson brackets,

{F, G} = 1

ρ∗k j

2∑
j=1

[
∂F

∂x j

∂G

∂y j
− ∂G

∂x j

∂F

∂y j

]
,

involving, in turn, the canonical brackets {xi, y j} = δi, j/(ρ∗k j )
(see, for example, Ref. [51]).

B. Massive vortices

If one wants to introduce into the model the fact that the
vortex cores host point masses, it is convenient to move to the
Lagrangian formalism, where the presence of massive cores
can be taken into account as follows:

L =
2∑

j=1

[
mj

2

(
ẋ2

j + ẏ2
j

) + k jρ∗
2

(y j ẋ j − x j ẏ j )

]
− H, (3)

where mj represents the pointlike mass hosted by the jth
vortex core and where q̇ j := dq j/dt (with q = x, y). Note
that, Lagrangian (3) is formally equivalent to that describing
charged particles in a planar domain subject to a transverse
magnetic field, where k js and ρ∗ play the roles of charges
and of magnetic field, respectively. As is well known, the
dynamics of the vortex cores is generated by the Euler-
Lagrange equations which, in the special but interesting case
of two equal vortices k1 = k2 = k, whose cores host two equal
masses m1 = m2 = m, take the form

m�̈r j = kρ∗�u3 ∧ �̇r j + ρ∗
k2

2π

[
�r j − �ri

|�r j − �ri|2 + �r j

R2 − r2
j

+ R2�ri − r2
i �r j

R4 − 2R2�ri�r j + r2
i r2

j

]

for i, j ∈ {1, 2} and i �= j [�u3 is the unit vector perpendicular
to the plane (x, y)].
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The resulting system of four differential equations admits
a notable solution,

x1(t ) = d

2
cos(�t ), y1(t ) = d

2
sin(�t )

x2(t ) = d

2
cos(�t + π ), y2(t ) = d

2
sin(�t + π ),

provided that the two vortices are placed symmetrically with
respect to the box-trap center and that their distance d and
the angular frequency � marking their motion of precession
fulfill the following equation:

πd6�(kρ∗ − m�) + 3d4k2ρ∗
d − 2R

= −16πd2R4�(m� − kρ∗) + 16k2ρ∗R4

d − 2R
. (4)

As expected, Eq. (4) shows a pathology when d → 2R,
meaning that the vortex pair is approaching the circular-box
boundary. Moreover, in the limit of infinite box radius (R →
+∞), one can retain only those terms ∝ R4 and the relation
d (�) can be expressed in closed form, i.e.,

d = k

√
ρ∗
π

1√
kρ∗� − m�2

. (5)

In Sec. IV A, the equilibrium distance d predicted by
Eq. (4) and relevant to two equal pointlike massive vortices in
a circular box will be compared to the one obtained by numer-
ically solving two coupled stationary GPEs. To conclude this
section, we would like to remark that the extension of model
(3) to the case of harmonic confinement is far from being
trivial, as the unavoidable curvature of the enveloping wave
function produces non-negligible effective forces acting on
the vortices’ centers, which distort the usual vortex dynamics
already in the case of zero species-b atoms. It is indeed the use
of a boxlike potential that allows one to bypass the influence
of the aforementioned non-negligible effective forces, thus
allowing for a cleaner emergence of the genuine phenomenol-
ogy characterizing vortex/bright-soliton complexes.

III. THE BOSONIC MIXTURE

We consider a bosonic mixture of 23Na and 39K [52,53].
Each atomic species is characterized by an order parameter,
ϕa = √

Naψa and ϕb = √
Nbψb, respectively. In a mean-field

treatment of the problem, we assume that the system is
effectively quasi-2D, as a result of a strong confinement along
the z direction. Because of this, it can be effectively modeled
by the following two coupled stationary GPEs:

− h̄2

2ma

[
∂2

∂x2
+ ∂2

∂y2

]
ψa + gaNa


z
|ψa|2ψa

+ gabNb


z
|ψb|2ψa + Vext,aψa = μaψa

− h̄2

2mb

[
∂2

∂x2
+ ∂2

∂y2

]
ψb + gbNb


z
|ψb|2ψb

+ gabNa


z
|ψa|2ψb + Vext,bψb = μbψb, (6)

where Na (Nb) corresponds to the number of species-a
(species-b) atoms, gc = 4π h̄2ac/mc, with c = a, b are the
intraspecies interaction strengths and gab = 2π h̄2aab/mab is
the interspecies coupling. Notice that ma (mb) is the atomic
mass of sodium (potassium), while mab = (m−1

a + m−1
b )−1 is

their reduced mass; similarly, aa and ab are the intraspecies
scattering lengths, while aab is the interspecies scattering
length. Parameter 
z is the effective thickness of the disklike
box trap and functions ψa and ψb are normalized to 1, since
ϕa and ϕb are, respectively, normalized to Na and Nb.

Vortical solutions of Eqs. (6) are found by moving to a
frame rotating with angular velocity � (this corresponds to
adding the term −�L̂z to the Hamiltonian, where L̂z is the
operator associated to the third component of the angular
momentum) and then employing the imaginary-time method
[41,54]. The starting condition for the imaginary-time dynam-
ics is such that species-a hosts a vortex pair while species-b
is localized (two narrow Gaussian distributions) at the vortex
cores. As the fictitious dynamics advances, the position of the
vortex cores, their healing length, together with the spatial
distribution of species-b atoms is iteratively self-consistently
refined, until convergence is reached. We conclude this section
by noticing that, for our purposes, solutions of Eqs. (6) of the
type vortex/bright-soliton pairs (see, e.g., Fig. 1) could be
either actual ground states or excited metastable states (i.e.,
either global or local minima in the energy landscape).

IV. MASSIVE VORTEX PAIRS IN A BINARY
MIXTURE OF BECS

Eigensystem (6) was solved sweeping model parameter Nb,
the number of species-b atoms, which constitute the massive
cores of species-a vortices. As explained in Sec. III, a suitable
ansatz for the starting condition of the imaginary-time dynam-
ics was chosen. In the whole range of Nb that we explored (i.e.,
Nb ∈ [5, 1000]), our numerical simulations [55] converged to
a stationary state of the type illustrated in Fig. 1.

Basically, condensate a is highly confined by the boxlike
potential (whose radius is R = 50 μm) and is marked by the
presence of two corotating vortices. The latter are symmetri-
cally positioned with respect to the center of the trap; they
are such that the density |ψa|2 goes to zero in the center
of the cores and features a quantized circulation. On the
other hand, component b occupies the vortex cores which, in
turn, constitute an effective double-well potential for species-b
atoms [44].

One can gain further insight into the discussed eigensolu-
tion by computing the mass current density

�Jc = − ih̄

2
(ψ∗

c ∇ψc − ψc∇ψ∗
c ), (7)

(with c = a, b) which also corresponds to the momentum-
per-particle distribution. As illustrated in the second row of
Fig. 1, both vortices in species a rotate anticlockwise, thus
determining a collective motion of precession which is anti-
clockwise too. As concerns species-b atoms, they are dragged
by condensate a and remain bound within the vortex cores,
thus featuring their same motion of precession around the
center of the trap. With reference to the middle right panel
of Fig. 1, one can appreciate that the left (right) peak of
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FIG. 1. Typical minimum-energy solution of eigensystem (6).
First (second) row corresponds to the square moduli [mass current
density (see Eq. 7)] of the eigensolutions ψa and ψb. In the first
row, yellow (blue) is associated to large (zero) values of the density
|ψ |2. Third row corresponds to the phase-field associated to ψa

and ψb [blue (yellow) color corresponds to −π (+π )]. Left (right)
column corresponds to species a (b). The following parameters have
been used: Na = 5 × 104, Nb = 103, � = 5 rad/s, R = 50 μm, ma =
3.82 × 10−26 kg, mb = 6.48 × 10−26 kg, ga = 52 × (4π h̄2a0)/ma,
gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 × (2π h̄2a0)/mab, 
z = 2 μm.

|ψb|2 is translating downward (upward), i.e., along a direction
tangential to the precession orbit.

Eventually, other important information that can be ex-
tracted from the eigensolutions ψa and ψb of equations (6)
concerns the phase fields. The latter, denoted by θa and θb,
and such that ψc =

√
|ψc|2eiθc (where c = a, b), have been

plotted in the lower panels of Fig. 1. As expected, θa features
singularities in correspondence of the vortices’ centers, while,
less expectedly, θb features singularities too. Nevertheless, the
latter are found far from the peaks of |ψb|2. According to the
basic properties of quantum fluids, the circulation

Cγ [�vc] =
∮

γ

�vc · d�r, (c = a, b)

FIG. 2. Density profile of the minimum-energy solutions of
eigensystem (6) along the axis y = 0 (we have plotted just the range
x > 0 because both |ψa|2 and |ψb|2 are symmetric with respect to
x = 0) for two different values of Nb. Upper panel: The position
of markers + corresponds to dvor/2, while the distance between
markers × corresponds to 2ξa. Lower panel: The position of markers
× corresponds to dpeak/2, while the distance between markers ∗ cor-
responds to 2σb. The following parameters have been used: Na = 5 ×
104, � = 5 rad/s, R = 50 μm, ma = 3.82 × 10−26 kg, mb = 6.48 ×
10−26 kg, ga = 52 × (4π h̄2a0 )/ma, gb = 7.6 × (4π h̄2a0)/mb, gab =
24.2 × (2π h̄2a0 )/mab, 
z = 2 μm.

of the velocity vector field associated to ψc, which means
�vc = h̄

mc
∇θc (with c = a, b), is zero if the closed path γ does

not encircle singularities of the phase field θc (with c = a, b).
Conversely, due to the Feynman-Onsager quantization rules, it
takes values n h/mc, where n ∈ Z, if one or more singularities
of the associated field θc are encircled by γ . This information
will be useful to better understand the discussion about the
angular momentum of species-b bosons (see Sec. V B).

A. Mass of the cores and equilibrium distance

Increasing the number of species-b atoms (within the inves-
tigated range Nb ∈ [5, 1000]), the distance dvor between the
centers of the vortices increases. Similarly, the distance be-
tween the two peaks of |ψb|2, dpeak, increases upon increasing
Nb. Figure 2 shows how the presence of massive cores deforms
and displaces the vortices. Notice that the position of the peaks
of |ψb|2 does not exactly match that of the minima of |ψa|2
due to the centrifugal force on species-b atoms and the finite
repulsive coupling (gab < +∞) between the two fluids which,
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FIG. 3. Equilibrium distance: comparison between numerical
(dvor and dpeak) and analytical (d) results. The following pa-
rameters have been used: Na = 5 × 104, Nb ∈ [5, 1000], � =
5 rad/s, R = 50 μm, ma = 3.82 × 10−26 kg, mb = 6.48 × 10−26 kg,
ga = 52 × (4π h̄2a0 )/ma, gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 ×
(2π h̄2a0 )/mab, 
z = 2 μm.

in turn, allows for a nonzero penetration of fluid b into fluid a.
Therefore, observables dvor and dpeak, which in the analytical
model based on pointlike vortices and pointlike massive cores
(see Sec. II) collapse on the same variable (d), when estimated
from the numerical solution of Eqs. (6), despite being closely
related, do not necessarily coincide.

The functional dependence of dvor and dpeak [extracted from
the numerical solutions of system (6)] on Nb is illustrated in
Fig. 3, together with the relation d (Nb), obtained, in turn, by
means of substitutions

k = h

ma
, ρ∗ = Nama

πR2
, m = Nbmb

2
(8)

into Eq. (4). Relations (8) allow one to match the analytical
model (4) based on pointlike vortices and pointlike massive
cores with the actual parameters used to model the quantum
fluids within the mean-field approach [see system (6)].

The agreement between the analytical prediction (yellow
dotted line) and numerical results (blue solid and red dashed
lines) is remarkably good, both qualitatively (same quasi-
linear functional dependence on Nb) and quantitatively (offset
<2%). Moreover, we would like to mention that numerical
results (namely, the slope and the vertical shift of the corre-
sponding lines of Fig. 3) can be shown to further approach the
analytical prediction upon increasing Na and/or diminishing
gb, two changes that result in narrower cores and, therefore, in
a scenario where Eq. (4), based on our pointlike approxima-
tion, reliably describes the mixture vortex state (see Appendix
for further details concerning the validity of the pointlike
approximation).

To conclude this section, we present Fig. 4, where we
illustrate the dependence of the equilibrium distance on the
rotating frequency �, in the case of Nb = 1000. As is visible,
there is a considerable agreement between the predictions
ensuing from the pointlike model (3) [more specifically, from
condition (4)] and the results extracted from the numerical
solutions of eigensystem (6), in a rather large range of rotating
frequencies. One can notice that the typical inverse propor-

FIG. 4. Equilibrium distance as a function of the rotating fre-
quency �: comparison between numerical (dvor and dpeak) and
analytical (d) results. The following parameters have been used:
Na = 5 × 104, Nb = 1000, � ∈ [4, 6] rad/s, R = 50 μm, ma =
3.82 × 10−26 kg, mb = 6.48 × 10−26 kg, ga = 52 × (4π h̄2a0 )/ma,
gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 × (2π h̄2a0)/mab, 
z = 2 μm.

tionality of the equilibrium distance on the rotating frequency
characterizing corotating massless vortices [17] is preserved
in the dyamical regimes that we have been able to access
by numerically solving eigensystem (6). In principle, as it
is visible from the observation of formula (5); this inverse
proportionality may be strongly altered by the presence of
inertial terms which possible determine a diverging behavior
when the two cores are so massive that m�2 → kρ∗�. Well
before reaching this limit, where the inertial term m�2 would
dominate over the standard term kρ∗�, the specific Bose-Bose
mixture that we chose to employ cannot sustain a ground state
where the mass m may get too large as the associated number
of species-b atoms [see mapping (8)], together with the set
of intra- and interspecies couplings would break the vortex-
bright soliton complexes and make other phase-separated
configurations more favorable (see Appendix).

B. Competition between centrifugal force
and interspecies repulsion

As already mentioned, dpeak, although closely related to
dvor, is always slightly bigger than the latter. The motion
of precession of the vortices around the center of the trap
is responsible, in fact, for a centrifugal force on species-b
atoms which are, therefore, pushed outward. This tendency is
only partially opposed by the repulsive interaction between
the two quantum fluids and it is the competition between
these two forces what determines the exact values of dvor and
dpeak. Increasing the interspecies repulsion gab, fluid a gets
more impenetrable to species-b atoms, which therefore prove
to be more tightly bound within the valleys of |ψa|2. As a
result of this increased reaction to the centrifugal force, the
difference dpeak − dvor is remarkably smaller, as illustrated in
Fig. 5 (where gab has been set 2.5 times bigger than the value
used for Fig. 3).

C. Stability beyond the immiscibility condition

We remark that the results illustrated in this paper are
obtained under the assumption that the two quantum fluids
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FIG. 5. Equilibrium distance: Comparison between numerical
(dvor and dpeak) and analytical (d) results. For these simulations,
parameter gab is 2.5 times bigger than the one used for Fig. 3, all
the others being unchanged.

are immiscible, meaning that their intra- and interspecies cou-
pling parameters are such that gab/

√
gagb > 1. Actually, we

should mention that vortex/bright-soliton complexes prove to
be rather robust composite objects, as their stability extends
also beyond the immiscible regime. We have verified this
by numerically solving Eqs. (6), thus extending the results
of Ref. [34], derived in the context of dark-bright soliton
complexes, to the case of vortex/bright-soliton complexes.
The obtained density distributions, |ψa|2 and |ψb|2, are quali-
tatively similar to the ones illustrated in Fig. 1 and obtained in
the case of immiscible components. Of course, the difference
between the miscible and the immiscible regime is that, in the
latter case, bright solitons are more tightly confined within the
vortex cores than in the former case. Moreover, due to the out-
ward shift of the bright soliton from the vortex center, ensuing
from the centrifugal force, the soliton itself, at a given time,
feels an effective elliptical potential which, in turn, deforms its
circular shape. Concerning our sample, which is immiscible,
the deviation of the shape of bright solitons from a perfectly
circular one can be neglected at first approximation, as the
associated ellipticity, although being a decreasing function of
Nb, is always ≈0.98 in the whole considered range of Nb.

When the two quantum fluids are miscible, in fact, bright
solitons manage to invade the majority component in a more
significant way. As a consequence, they play the role of less
rigid (i.e., softer) massive cores. If, on one hand, this circum-
stance extends the robustness of these composite objects to
the case of miscible quantum fluids, on the other hand, in
the miscible regime, our pointlike model (3) partially loses its
validity, as the mass of the bright solitons is not concentrated
in the vortices centers any more, but spreads and occupies
more extended spatial regions.

V. ANGULAR MOMENTUM OF VORTICES AND CORES

This section is devoted to the analysis of the angular
momentum of each component, an investigation that can offer
a deeper insight into the physics of the system. In particular,
we show that the two massive cores (made of species-b atoms)
orbit around the center of the trap, being dragged by the

FIG. 6. Angular momentum (per particle, in units of h̄) of con-
densate a: Comparison between numerical [see Eq. (9)] and analyti-
cal [see Eq. (10)] results. The following parameters have been used:
Na = 5 × 104, Nb ∈ [5, 1000], � = 5 rad/s, R = 50 μm, ma =
3.82 × 10−26 kg, mb = 6.48 × 10−26 kg, ga = 52 × (4π h̄2a0 )/ma,
gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 × (2π h̄2a0)/mab, 
z = 2 μm.

motion of precession of the vortices. Nevertheless, they do
not rotate, i.e., their orientation remains constant while they
revolve.

A. Angular momentum of condensate a

The angular momentum (per particle, in units of h̄) of
condensate a can be computed as

〈Lz,a〉
Nah̄

= −i
∫

ψ∗
a

(
x

∂

∂y
− y

∂

∂x

)
ψadx dy. (9)

This quantity can be evaluated numerically from the solution
of Eqs. (6).

On the other hand, it can also be estimated by means of
a fully analytical approach. Along the same lines discussed in
Ref. [56] (where the authors investigated the case of harmonic
confinement), in fact, it is possible to derive the following
expression:

L̃z,a

Nah̄
= 2

∫ R

rvor

2πr
1

πR2
dr = 2

[
1 −

( rvor

R

)2
]
, (10)

where rvor := dvor/2 constitutes the orbit radius.
As shown in Fig. 6, Eq. (10) well fits the numerical data

obtained by means of Eq. (9), the mismatch being <0.8%. In
this regard, it can be shown that the fitting accuracy further
increases if one increases Na and/or decreases gb, because,
in this case, the pointlike approximation of vortices and cores
gets increasingly valid (see Appendix).

B. Angular momentum of condensate b

The angular momentum (per particle, in units of h̄) of
component b can be analogously computed as

〈Lz,b〉
Nbh̄

= −i
∫

ψ∗
b

(
x

∂

∂y
− y

∂

∂x

)
ψbdx dy, (11)

a quantity that can be evaluated numerically on the basis of
the solution of Eqs. (6).
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As already mentioned, the two species-b cores orbit around
the center of the trap but they do not rotate around their own
centers of mass. To prove this statement, we proceed along
three different lines.

1. Mass current density in the rotating frame

In the laboratory frame, it is possible to compute the
mass current density �Jb associated to ψb [see Eq. (7)]. The
corresponding vector field is illustrated in the middle right
panel of Fig. 1. It is clear that the left (right) core is moving
downward (upward), dragged by the anticlockwise motion of
precession of the vortices. Due to the characteristic magnitude
of | �Jb|, this plot does not allow one to understand whether
the cores change their orientation or not along their orbit
around the center of the trap. To circumvent this limitation,
we have computed the species-b mass current density in a
(noninertial) frame rotating with the same angular velocity �

distinguishing the motion of precession of the vortices. More
specifically, in the rotating frame, �Jb,rot reads

�Jb,rot = mb|ψb|2�vb,rot, (12)

where �vb,rot = �vb − �V with �vb = �Jb
mb|ψb|2 and �V = �� ∧ �r. �Jb is

numerically computed through Eq. (7). Notice also that, at
t = 0, |ψb|2 ≡ |ψb,rot|2, thus justifying its use in Eq. (12). The
result of this procedure is illustrated in the upper panel of
Fig. 7 which shows that the two species-b cores, when ob-
served from the rotating frame, rotate around their respective
centers of mass, with angular velocity −� (the minus sign
being due to the clockwise direction).

On top of that, we have evidenced how these two cores
rotate almost as if they were rigid bodies, meaning that the
(absolute value of the) velocity field �vb,rot around each center
of mass linearly increases with the distance rC from the
respective center of mass (this is not in contrast with the
irrotational property of quantum gases, as the new reference
frame is not inertial). In view of the symmetry of the ground-
state configuration depicted in Fig. 1, we refer to the left
(right) center of mass when considering the velocity field in
the half-plane x < 0 (x > 0). The lower panel of Fig. 7 shows
the local angular velocity of species-b cores when observed
from the rotating frame. This quantity, defined as

�̃b,rot (x, y) = −|�vb,rot|
rC

, (13)

[where rC is the distance of point (x, y) from the left (right)
center of mass when x < 0 (x > 0)] and takes the (almost)
constant value ≈ −5 rad/s in the most part of the regions
where |ψb|2 is nonzero.

As an alternative indicator, to investigate the possible ro-
tational properties of bright solitons, one could employ the
vorticity distribution in the rotating frame �wb,rot = �∇ ∧ �vb,rot.
Apart from two Dirac-delta-like singularities exactly where
phase singularities are (see lower right panel of Fig. 1),
one would observe two quasiplateaus at | �wb,rot| = 2�̃b,rot ≈
−10 rad/s. This circumstance is in great agreement with the
fact that the vorticity distribution associated to a rigid body
rotating with angular frequency � is uniform and equal to 2�.

In conclusion, we have proved that, in the (noninertial)
rotating frame, the two species-b cores rotate around their

FIG. 7. Upper panel: Species-b mass current density in the ro-
tating frame [see Eq. (12) and the relevant explanation]: One can
appreciate that the two cores rotate clockwise. Lower panel: Species-
b local angular velocity, as defined by Eq. (13); The solid black
and red dashed lines correspond to �̃b,rot = −5 ± 0.5 rad/s and
have been drawn to illustrate that the two species-b cores indeed
rotate as two (almost) rigid bodies (see discussion in the main
text). The following parameters have been used: Na = 5 × 104, Nb =
103, � = 5 rad/s, R = 50 μm, ma = 3.82 × 10−26 kg, mb = 6.48 ×
10−26 kg, ga = 52 × (4π h̄2a0 )/ma, gb = 7.6 × (4π h̄2a0)/mb, gab =
24.2 × (2π h̄2a0 )/mab, 
z = 2 μm.

respective centers of mass with (almost uniform) angular
velocity −�. This allows us to conclude that they keep their
orientation fixed when observed from the laboratory frame.

2. Analytical estimate of the angular momentum

To corroborate what elucidated in the previous paragraph,
we show that the functional dependence of quantity (11) on
model parameter Nb can be well fitted by the semianalytical
model

L̃z,b

Nbh̄
≈ L̃O,b

Nbh̄
+ S̃CL,b

Nbh̄
+ S̃CR,b

Nbh̄
, (14)

where

L̃O,b

Nbh̄
= �

h̄

∫
mb|ψb|2r2 dx dy, (15)
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FIG. 8. Angular momentum (per particle, in units of h̄) of
component b: Comparison between numerical [solid blue line, as-
sociated to Eq. (11)] and semianalytical [red dashed line, cor-
responding to Eq. (14)] results [the yellow dotted line, asso-
ciated to Eq. (15) represents the angular momentum of the
system if its motion was a pure revolution around the cen-
ter of the trap O]. The following parameters have been used:
Na = 5 × 104, Nb ∈ [5, 1000], � = 5 rad/s, R = 50 μm, ma =
3.82 × 10−26 kg, mb = 6.48 × 10−26 kg, ga = 52 × (4π h̄2a0)/ma,
gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 × (2π h̄2a0)/mab, 
z = 2 μm.

and where terms

S̃CL,b

Nbh̄
= −�

h̄

∫
mb|ψb|2�(−x)r2

CL
dx dy, (16)

S̃CR,b

Nbh̄
= −�

h̄

∫
mb|ψb|2�(x)r2

CR
dx dy (17)

are introduced to take into account that, in the laboratory
frame, the two species-b cores revolve but keep their ori-
entation fixed [Heaviside functions �(−x) and �(x) allow
one to select the left and the right cores, respectively]. The
integrals in expressions (15)–(17) represent three moments
of inertia corresponding, respectively, to the anticlockwise
revolution of the whole system around the center of the trap O,
and to the effective clockwise rotation of the left (right) core
around its own center of mass CL (CR) [in this regard, r2 :=
x2 + y2, r2

Cα
:= (x − xCα

)2 + (y − yCα
)2, with α = L, R]. The

latter effective motions indeed compensate for the fact that
a pure motion of revolution [captured by Eq. (15)] would
determine a change in the orientation of the cores along the
circular orbit. Figure 8 shows a very good agreement between
Eq. (11) and formula (14), the error being always <4%.

3. Observation of the associated phase field

As illustrated in the lower right panel of Fig. 1, the phase
field associated to ψb, θb, features two singularities far from
the centers of bright solitons. If one considers a closed path γ

encircling one of the bright solitons, since no singularities of
θb are surrounded by it, the circulation Cγ [�vb] of the velocity
field �vb along γ must be zero (see Sec. III). This implies
that both bright solitons do not rotate around their own axes
(in the laboratory inertial frame). On the other hand, these
singularities in θb indeed play an important role because the

corresponding velocity field �vb = h̄
mb

∇θb is what determines
the collective precession motion of species-b bosons.

In summary, we notice that the interspecies repulsive
coupling gab is the interaction underlining the dragging of
species-b cores by species-a vortices, which therefore exhibit
the same motion of precession. In spite of this precession,
species-b cores keep their orientation constant (in the inertial
frame of the laboratory). Due to the irrotational properties
of quantum fluids, in fact, a solitonlike distribution cannot
be put in rotation around its own axis (as if it was a rigid
body) without creating a phase singularity at its center. On the
other hand, the creation of such a phase singularity would turn
the soliton-like original distribution into a vortical object. To
conclude this section, we would like to mention the possible
existence of the Andreev-Bashkin effect [57–60], according
to which, the mass current density �Ji (with i = a, b) in one
species will depend, in general, also on the velocity �v j (with
j = b, a) of the other species. In other words, the condensate
density ρi j is a nondiagonal matrix, a circumstance which
implies the relations

�Ja = ρaa�va + ρab�vb, �Jb = ρba�va + ρbb�vb.

At the microscopic scale, this drag between mass current
densities comes from the formation of quasiparticles with
nonzero content of mass for either of the two components
[60]. As a consequence, the transport properties of the two
quantum fluids turn out to be coupled: The flow of one species
influences the mass transport in the other species [57]. This
effect is known to be rather elusive [60] and, for our sample
condition, we expect it to be negligible, as the off-diagonal
matrix elements ρab and ρba, which depend on the the overlap
between ψa and ψb, should be small, given that the two
discussed fluids are immiscible. In view of its complexity,
the possible presence of this effect in the discussed system
of orbiting vortex/bright-soliton complexes will be analyzed
in a future work.

VI. VORTEX HEALING LENGTHS AND SIZE OF THE
MASSIVE CORES

The presence of species-b massive cores within species-
a vortices affects the healing length of the latter. The in-
traspecies repulsive interaction, in fact, tends to enlarge the
cores which, in turn, tend to swell (from the inside) the
profile of the vortices because of the interspecies repulsive
coupling. Flipping the perspective, the expansion of the cores
is dammed by the species-a fluid, which plays the role of an
effective confining potential for species-b atoms.

In the attempt to estimate the equilibrium healing length
ξa of species-a vortices and the equilibrium characteristic
size of species-b cores, σb, we present the following heuristic
equations:

h̄2

2ma

1

ξ 2
a

= +gana − gabnanbπ
(
σ 2

b − ξ 2
a

)

z,

h̄2

2mb

1

σ 2
b

= −gbnb + gabnanbπ
(
σ 2

b − ξ 2
a

)

z, (18)
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where

na = Na

πr2
box
z

, nb = Nb/2

πσ 2
b 
z

.

Notice that the the first equation of system (18) reduces, in the
case of no interspecies interaction, to

ξa,0 =
√

h̄2

2magana
,

the well-known formula derived in the context of single-
species vortices [61]. Similarly, the second equation, if gab =
0, gets structurally similar to formula

σb,0 =
√

h̄2

2mb|gb|nb,0
,

giving the characteristic size of a soliton in the case of attrac-
tive interactions [61] (of course, in this context, nb,0 represents
the central density). The extra term gabnanbπ (σ 2

b − ξ 2
a )
z is

introduced to take into account the interspecies repulsion,
an interaction that manifests only in those regions where ψa

and ψb overlap, i.e., only in the two annuli centered in the
vortices’ centers and whose outer and inner radii are σb and
ξa, respectively.

To compare the predictions provided by equations (18)
with the values extracted from the numerical solutions of
system (6), one has to give the operational definition of
vortex healing length and core characteristic size. From the
numerical side, with reference to Fig. 2, we agree to measure
the half width at half maximum of the valley of |ψa|2, λa,
and the half width at half maximum of the peak of |ψb|2,
λb. From the analytical side, the estimates of quantities λa

and λb are given by the solutions of system (18), ξa and
σb, multiplied by two suitable constant conversion factors,
1.30 and 1.15, respectively, which are determined from their
numerical counterpart in the case Nb = 1, that means in a
scenario where species-b cores have a negligible impact on
species-a vortices.

As illustrated in Fig. 9, Eqs. (18) well capture the func-
tional dependence of λa and of λb on Nb.

VII. CONCLUDING REMARKS

In this paper, we have investigated a notable class of
configurations exhibited by a bosonic immiscible binary mix-
ture loaded in a boxlike circular trap, namely, minimum-
energy states where species-b atoms are trapped within the
vortex cores of species-a fluid. Both within a fully analytical
framework and by means of a systematic analysis of the
numerical solutions of the associated two coupled GPEs, we
have shown that the presence of massive cores alters the
equilibrium distance distinguishing the motion of precession
of the vortex pair. Interestingly, for the considered choices
of model parameters (repulsive intra- and interspecies inter-
actions such that, in the homogeneous case, the miscibility
condition gab <

√
gagb is not met) the dynamical mean-field

picture of the mixture has been shown to reduce to much
simpler effective equations exhibiting an evident Lorentz-
like magnetic form, where massive vortices play the role of
massive charges confined on a plane and subject to a magnetic

FIG. 9. Upper (lower) panel: Comparison between the numeri-
cally determined and analytically estimated half width half maxi-
mum, λa, of species-a vortices (of species-b cores, λb). The following
parameters have been used: Na = 5 × 104, Nb ∈ [1, 1000], � =
5 rad/s, R = 50 μm, ma = 3.82 × 10−26 kg, mb = 6.48 × 10−26 kg,
ga = 52 × (4π h̄2a0 )/ma, gb = 7.6 × (4π h̄2a0)/mb, gab = 24.2 ×
(2π h̄2a0)/mab, 
z = 2 μm.

field. Species-b cores, in turn, are dragged by fluid a and thus
follow their same motion of precession around the trap center;
nevertheless, while orbiting, they keep their orientation con-
stant, meaning that there is no tangential entrainment between
the two fluids. We have also derived, in the context of the
Thomas-Fermi approximation, a simple formula to estimate
the angular momentum of condensate a and we have shown,
by means of a suitable change of reference frame, that species-
b cores effectively behave as two rigid bodies. Eventually, we
have introduced a system of heuristic but effective equations
to estimate the characteristic size of vortices and cores hosted
therein.
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FIG. 10. Minimum-energy solution of eigensystem (6) for the
same model parameters used in Fig. 1, except that the number of
species-b atoms is now Nb = 5000. Vortex cores and bright solitons
are considerably enlarged with respect to those ones shown in Fig. 1
and obtained for Nb = 1000.

APPENDIX

In this Appendix, we comment on the validity of the
presented pointlike model (3). The latter is based on the
assumption that the equilibrium healing length of species-a
vortices [variable ξa in formulas (18)] is much smaller than
the trap radius R. On the other hand, increasing the number of
species-b atoms, the two bright solitons get increasingly mas-
sive and increasingly wide (due to the fact that the intraspecies
coupling gb is repulsive). Therefore, the presence of massive
cores deforms the original shape of vortices (see Fig. 2), thus
increasing ξa (see Fig. 9).

Figure 10 shows the (square modulus of the) solutions of
eigensystem (6) in the case of Nb = 5000, a value which is five

FIG. 11. Equilibrium distance: comparison between numerical
(dvor and dpeak) and analytical (d) results. The same model parameters
used in Fig. 3 have been employed, except that the number of
species-b atoms is swept in the range Nb ∈ [5, 5000].

times bigger than the one used for Fig. 1. By comparing the
latter figures, one can appreciate the fact that neglecting the
finite size of vortex cores may be not fully justified when Nb

gets reasonably large. In this circumstance, in fact, the predic-
tions ensuing from the pointlike model (3) [more specifically,
from the solution of equation (4)] may deviate from the results
extracted from the numerical solutions of eigensystem (6) (see
Fig. 11). If one further increases Nb, the deforming effect of
bright solitons on the vortex profile will be so relevant that
symbiotic vortex-bright soliton complexes will cease to exist
and different phase-separated configurations will take over.
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