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Abstract: This work investigates minimum charging infrastructure size and cost for two typical
EU urban areas and given passenger car electric vehicle (EV) fleets. Published forecasts sources
were analyzed and compared with actual EU renewal fleet rate, deriving realistic EV growth figures.
An analytical model, accounting for battery electric vehicle-plug-in hybrid electric vehicle (BEV-PHEV)
fleets and publicly accessible and private residential charging stations (CS) were developed, with a
novel data sorting method and EV fleet forecasts. Through a discrete-time Markov chain, the average
daily distribution of charging events and related energy demand were estimated. The model was
applied to simulated Florence and Bruxelles scenarios between 2020 and 2030, with a 1-year timestep
resolution and a multiple scenario approach. EV fleet at 2030 ranged from 2.3% to 17.8% of total fleet
for Florence, 4.6% to 16.5% for Bruxelles. Up to 2053 CS could be deployed in Florence and 5537 CS in
Bruxelles, at estimated costs of ~8.3 and 21.4 M€ respectively. Maximum energy demand of 130 and
400 MWh was calculated for Florence and Bruxelles (10.3 MW and 31.7 MW respectively). The analysis
shows some policy implications, especially as regards the distribution of fast vs. slow/medium CS,
and the associated costs. The critical barrier for CS development in the two urban areas is thus likely
to become the time needed to install CS in the urban context, rather than the related additional electric
power and costs.

Keywords: electric vehicles EV; optimal sizing; charging infrastructure; Markov chain; EV fleet
forecasts; decarbonization

1. Introduction

Mitigating the effects of climate change through greenhouse gas (GHG) emissions reductions is one
of the key challenges of the 21st century. At the core is the issue of overall energy consumption as well
as the need for stronger decarbonization policies. Within this picture, transport sector plays a big role,
globally and at European level: EEA data shows that in 2016, it accounted for a 33.2% share of EU-28
final energy consumptions and for a 24.3% share of GHG emissions [1]. Road transport accounted for
72% of GHG emissions and, within that sector, cars accounted for 60.7%. Moreover, half of EU-28 NOx

emissions and at least 15% of PM10, PM2.5, SOx and CO emissions are transport-related [1,2]; finally,
European transport energy needs are fulfilled by fossil fuels use for more than a 94% share [1].
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Several alternative energy sources and renewable fuels are available—with different level of
technology readiness and market penetration—in order to reduce dependence on fossil fuels: among
them we find biofuels such as biodiesel and bioethanol, renewable hydrocarbons, ligno-cellulosic
ethanol, biomethane, renewable fuels of non-biological origin (RFNBO) recycled carbon fuels, renewable
e-fuels, renewable hydrogen, electricity, etc. None of these alternative fuels and sources alone will ever
completely substitute fossil fuels, at least in a short term, and most of the forecasts see them coexisting
in future fuel mixes [3]; in 2016, in EU-28, biofuels accounted for the bigger share, covering 4.6% of
total final fuel consumption [1].

Anyway, rapid cost reduction of solar and wind power technologies created strong prospects for
further electrification of end-use sectors. Within this framework, electric vehicles (EVs)—especially
passenger cars—are one of the most pursued solutions to achieve large-scale transport sector
decarbonization; anyway, they are not a “drop-in” solution, since they need a new and alternative
charging infrastructure. Official documents such as the Alternative Fuels Infrastructure (AFI)
Directive [4] and the National Plans for alternative fuels and EV charging infrastructure such as [5,6]
are of interest because they express governments forecasts about future EV fleet size and formal
recommendations on topics such as the minimum number of charging stations (CS) to be deployed
and the minimum EV/CS expected ratio.

It is expected that urban areas will be the place of a large-scale infrastructure deployment in
short to mid-term, since they are the most suitable for actual EV use and would receive maximum
benefit from noise and local polluting emission reductions that are related with the shift from internal
combustion engine vehicles (ICEV) to EV. To this regards, stakeholders and decision makers could
benefit from reliable predictions on the dimension and cost of a charging infrastructure suitable for, i.e.,
a municipality area.

Literature already presents several studies on EV charging infrastructures, which analyze the
topic from a multitude of points of view. Many of them evaluate the optimal positioning of a given
set of CS through geographic information system (GIS) procedures, such as [7,8] or through traffic
flows analysis such as [9]; they develop a model taking into account residential statistics, parking area
information, electric power distribution network position and other data to define the optimal position
for charging stations, but usually the input data about the number of CS to be deployed have little or
no connection with data on EV fleets circulating in the area or on forecasts about that. Other studies
focus on business and profitability analysis of a specific CS installation [10], while other analyze the
possible interactions between charging EV and RES electrical generation that could take place in urban
areas, such as the one from PV installations [11,12].

Finally, several papers analyze the topic of optimal sizing of EV charging infrastructures.
Unfortunately, reports that specifically evaluate cost and size of large-scale deployments, using
real data and forecasts (such as [13,14]) usually refer to national or international levels and give as
output highly aggregated information; this makes it difficult, afterwards, to scale them down to a
more local level. Several studies can be found, that address the problem at a regional and municipality
level: [15] analyzes the German region of Stuttgart, but it focuses its model on CS availability rate
and is not applied to a real scenario. The study [16] is related to the Italian province of Florence and
uses GPS real data from around 12,000 ICE vehicles, extracting driving and parking patterns to size
the charging infrastructure; anyway, it does not explicitly give as an output a number of CS and the
relative cost, and it does not consider a temporal evolution of the analyzed situation. Lastly, [17,18]
give as an output the forecast size of the charging infrastructure for two different Swiss municipalities,
but neither of them give a proper explanation on the methodology used.

Scope of this work is to define the optimal size of a minimum cost charging infrastructure,
suitable for deployment in an urban area and able to cope with the requests of a given passenger car
EV fleet. This study focuses only on EV passenger cars since they account for the vast majority of
EU-28 circulating road vehicles with an 87% share of total, while, in comparison, light commercial
vehicles accounted for 9.8% (authors elaboration on 2016 Eurostat data [19]). Moreover, this paper will
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investigate the impact of such infrastructure on the existing parking stalls and on the electrical network,
in terms of the average energy and power requests; finally, it will characterize the infrastructure using
performance indicators (PI) such as average daily charging events and global utilization rate.

In order to address these requests, an analytical model has been developed, separately accounting
for battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) fleets, as well as for
publicly accessible and private residential CS.

Given the primary importance of the inputs related to the size of the circulating EV fleet, an
extensive literature research for EV fleet growth forecasts has been carried out, focusing on reports
related to the two considered areas as well as to the analyzed timeframe. Since substantial differences
between the various forecasts emerged from the research, a novel method for data sorting and
conditioning has been developed, using circulating fleet turnover rate as threshold indicator.

The model has then been applied to the two geographical areas of Florence Municipality for Italy
and Bruxelles for Belgium, over the 2020–2030 period, with a 1-year timestep resolution. Within each
area nine scenarios have been evaluated; they are obtained as the combination of three different EV
circulating fleet forecasts with three possible user’s charging behaviors. The results from this study
could be used to provide further insights to policy makers and local authorities, in order to better
understand and manage the transition period toward a higher share of urban electrical mobility.

To the best of the authors’ knowledge, within the available studies, the one which shares the
closest similarities with present work’s purposes is [20]; anyway, it describes the charging infrastructure
with a lower level of details and it does not implement a model for the estimating of EV fleet growth,
using as input data coming from a single source.

This research article is structured as follows: in Section 2, the inputs needed by the model
together with the related procedures are first defined, whenever relevant; then, the model structure
and embedded algorithms are thoroughly presented. Finally, the outputs and the rationale for the
input scenarios implemented in this paper are reported. The first part of Section 3 reports details of
the numerical values of the inputs used in the various scenario, while the second part discusses the
obtained results, using also several PI. Finally, summary conclusions and closing remarks are given in
Section 4.

2. Model and Methodology

2.1. Model Definition

In order to define the optimal size of the EV charging infrastructure, the model needs as inputs, for
each timestep of the analysis, the number of daily charging events related to both BEV and PHEV fleets
and the corresponding energy requests; moreover, it needs a full characterization of the CS in terms of
expected performances and costs. An input pre-processing phase take place before the model’s core
steps execution, and a post-processing phase, delivering expected outputs is placed after them; this
leads to a four-parts conceptual architecture, thoroughly described in the following sections and also
briefly reported below and in Figure 1:

• The first part is dedicated to data collection and pre-processing.
• The second part performs a discrete-time Markov process to obtain as output the probability

distribution of the charging events over the average range (in days) of BEVs and PHEVs; to do
so it also considers users’ behavior and preferences. Several control criteria are implemented,
in order to assure coherence of the results.

• In the third part the outputs are used to define a constrained space of solutions where all the
possible charging infrastructures complying with EV fleet requests are defined; finally, CS costs
are applied, and the optimal charging infrastructure size and composition is chosen.

• In the fourth and last part the results are processed in order to obtain the desired outputs.
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The model structure has been conceived so to be flexible enough to capture the complexity of the
evaluated scenarios, while maintaining a simple and lean structure. These initial requirements led to
the following set of features:

• Modular architecture and additivity of the model: Each timestep of the analysis is considered
separately and the model is recursively operated. This approach is used as well within a single
timestep: as an example, BEV and PHEV impacts on infrastructure are separately calculated using
the same module. Partial outputs are collected at the end of each calculation step of and then
post-processed in a final step, in order to obtain the total outputs. This feature allows us to model
flexible and time-evolving scenarios, while remaining sufficiently simple. The downside of this
choice is that it does not allow any change in the operating parameters of the already deployed
infrastructure during the timespan of the analysis.

• Complete battery charge at every charging event: This simplifying assumption derives from the
fact that only few information is available on this specific charging behavior; moreover, it does
not affect the average quantity of energy requested from the charging infrastructure, since it only
depends on average EV fleet size and consumption.

• All vehicles are used every day: This simplifying assumption set vehicles usage pattern as constant
over time. This, together with the evaluation through the average daily travelled distance, allows
us to define an average usage of the charging infrastructure.

• Evaluation of both BEV and PHEV impacts on charging infrastructure: Given the difference in
battery capacities, thus in energy requests during the charging phase, the model takes them into
account separately. This choice allows us to better evaluate the impact on charging infrastructure,
thus, to dimension it more precisely.

• Implementation of publicly accessible and private residential charging infrastructure: Three
different CS power levels are considered within the model to define publicly accessible charging
infrastructure; the CS types used can also be changed through the evaluation time period.
Moreover, it is of primary importance to investigate also the possible extension and impact of a
residential charging infrastructure, since a high number of CS connected to residential distribution
feeders could possibly lead to line congestions and voltage issues [21]. In fact, several studies state
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that early EV adopters are likely to own garages or parking spaces [22] and, more generally, 25–40%
(depending on EU countries) of vehicles owners are also garages or parking owners [20,23].

2.2. Model Structure

2.2.1. Data Collection

This section describes all the necessary inputs, as well as the data collection methods, while
Section 3.1 reports the specific values of the actual data used during model implementation, together
with a description of the data sources. The data collected can be classified under five macro-categories,
spanning from BEV and PHEV fleets size forecast, to their average range and consumption; from parking
spaces availability to users’ behaviors and finally to CS characteristics and costs.

BEV and PHEV fleets forecast over the analysis timeframe:
As already specified in the introduction, only the M1 category light passenger car sector would

be considered in this paper. According to [24], M1 category vehicles are designed and constructed
for the carriage of passengers, comprising no more than eight seats in addition to the driver’s seat.
A literature research was then carried out for forecasts on BEV and PHEV car fleets size, over the
2020–2030 period, with a specific focus in years 2020, 2025 and 2030 and referring to the two evaluated
areas. Unfortunately, no municipality-level results were publicly available, thus the research was
further extended to forecasts evaluating single EU countries, as well as the EU-28 region as a whole.
Following this decision, a methodology to scale down National and EU-28-level data back to the
context of a municipality was then developed. In order to check dataset soundness for model’s scopes,
the methodology also compares the collected forecasts to the existing market conditions, using the
EU-28 global passenger car fleet turnover rate as a threshold for xEV fleet forecast growth rate.

Being the xEV market relatively new and still evolving, it presents different penetration levels
across EU countries; this situation can be related to local factors such as the current development of
the charging infrastructures and the existence (or the lack) of active support schemes and subsidies.
On the other hand, the total passenger vehicle market—mainly composed by ICEV—is well-developed
and with a relatively stable trend in terms of number of circulating vehicles. Following the previous
considerations, the methodology has been developed under two main assumptions:

• Within 2050, the xEV distribution across EU-28 countries will follow that of total passenger fleet.
• The forecasts downscaling is realized sequentially: from EU-28 level to national level, then from

the national level to municipality level.

As the first step of the process, a baseline of auxiliary information is defined for each of the three
geographical levels, to be used by the transfer formulas during dataset downscaling. It is composed by
an historical dataset, evaluated over the 2012–2017 period and composed by four specific entries:

• Total circulating fleet (ICEV, BEV and PHEV): TOT;
• Total circulating xEV (BEV and PHEV): xEV;
• Total new vehicles registrations (ICEV, BEV and PHEV): NRTOT;
• Total new xEV registrations: NREV.

The last two variables, namely new vehicles and new xEV registrations, were selected as control
parameter to check the soundness of the total circulating fleet and total circulating xEV data. Moreover,
the auxiliary baseline comprises a forecast value of 2050 total circulating fleet (TOT), obtained by
literature research.

After this preparation phase, the downscaling process of the xEV fleet forecasts was performed
with the following procedure (the ‘input’ subscript refers to the geographical area analyzed by the
forecast; the ‘output’ subscript refers to the geographical area to which the forecast was being scaled to):

• At the starting year, i.e., 2017, the historical value of
(

xEVoutput
xEVinput

)
2017

, which expresses the ratio

between the xEV fleet circulating in the two considered areas (i.e., EU-28 and Italy), was assumed.
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• At 2050,
(

xEVoutput
xEVinput

)
2050

was assumed equal to
(

TOToutput
TOTinput

)
2050

, which expresses the ratio between the

total circulating car fleets forecast in the two considered areas.

• Finally,
(

xEVoutput
xEVinput

)
Y

was related to the Y-th year of the considered time period and was calculated

under the assumption of a linear behavior, as described in Figure 2.

Appl. Sci. 2019, 9, x 6 of 31 

forecast; the ‘output’ subscript refers to the geographical area to which the forecast was being scaled 
to): 

• At the starting year, i.e., 2017, the historical value of 
2017

output

input

xEV
xEV

 
  
 

, which expresses the ratio 

between the xEV fleet circulating in the two considered areas (i.e., EU-28 and Italy), was 
assumed. 

• At 2050, 
2050

output

input

xEV
xEV

 
  
 

 was assumed equal to 
2050

output

input

TOT
TOT

 
  
 

, which expresses the ratio 

between the total circulating car fleets forecast in the two considered areas. 

• Finally, output

input Y

xEV
xEV

 
  
 

was related to the Y-th year of the considered time period and was 

calculated under the assumption of a linear behavior, as described in Figure 2. 

 
Figure 2. Scaling down process for the collected xEV fleet size forecast values. 

Once the forecasts for the xEV fleets size were scaled down to the municipality level, the 
resulting values were compared, for every year of the period, with a threshold value yTh , calculated 

as following: 

( )
1

* *
y

y xEV ii
i

Th To share TOT
=

 =   , (1) 

where To  is the average EU-28 car fleet yearly turnover, with a value of 5.4% [25,26] and 𝑠ℎ𝑎𝑟𝑒  is defined as the xEV share of the EU-28 yearly car turnover, variable over 2020–2030 
the period and assuming the values shown in Table 1. Currently, the share of xEV in the annual 
turnover equals 0.24% for Italy (2017 data) and stays below 4% for most of the European countries 
[13]; however, it has to be considered the impact that incentives and policies may have on the 

Figure 2. Scaling down process for the collected xEV fleet size forecast values.

Once the forecasts for the xEV fleets size were scaled down to the municipality level, the resulting
values were compared, for every year of the period, with a threshold value Thy, calculated as following:

Thy =

y∑
i=1

[To ∗ (sharexEV)i ∗ TOTi], (1)

where To is the average EU-28 car fleet yearly turnover, with a value of 5.4% [25,26] and (sharexEV)i is
defined as the xEV share of the EU-28 yearly car turnover, variable over 2020–2030 the period and
assuming the values shown in Table 1. Currently, the share of xEV in the annual turnover equals 0.24%
for Italy (2017 data) and stays below 4% for most of the European countries [13]; however, it has to be
considered the impact that incentives and policies may have on the development of the EV market and
the high probability of being activated in the period considered by this study, as highlighted by [13].

Table 1. Assumed xEV share of EU-28 yearly car turnover for the various years of the
analyzed timeframe.

2020 2025 2030

xEV share of EU-28
yearly car turnover 5% 15% 50%

Finally, TOTy defines the forecast total circulating fleet (ICEV, BEV and PHEV) on the y-th year
of period.
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A specific forecast was used in the following steps only if all its values were below the threshold,
otherwise it was discarded. The equation used for evaluation is described below:

xEVy ≤ Thy∀y ∈ (time period). (2)

Finally, the remaining municipality level forecasts were used to define three scenarios for each
municipality considered, using the following criteria:

• Low Scenario: it uses the lowest value of all the selected forecasts for every year of the time period.
• Medium Scenario: it uses an average value calculated from the values of all the selected forecasts

for every year of the time period.
• High Scenario: it uses the highest value of all the selected forecasts for every year of the time period.

Average BEV and PHEV energy consumption and batteries capacity:
Average xEV consumption (expressed in kWh km−1) and battery capacity (expressed in kWh)

has been considered as a variable, to reflect the inevitable technological advances that will take
place over the analyzed period. The values attributed for the year 2020 were obtained from the
analysis of the current BEV and PHEV fleet [27] average consumption—measured using WLTP cycle
estimations [28]—and capacity of the battery pack.

More specifically, the capacity of the battery pack assigned for the first year of analysis timeframe
has been defined as the average of the capacities of the 15 best-seller M1-class BEV (and PHEV),
weighted by sales volumes [29]. In order to consider the actual battery discharging capacity the obtained
values have been reduced by 30% [28], then assigned to variables (battPHEV)2020 and (battBEV)2020.

The same approach was also used to define the average mean BEV consumption (avcBEV)2020,
while to obtain the average mean PHEV consumption (avcPHEV)2020 a further step was required, since
their typical use involves the simultaneous operation of both thermal and electric motor. A literature
study shown that on average PHEVs cover about 32%–55% of their mileage using electric energy taken
from the grid [30]; another approach, presented in [31], suggests an electric load reduction of about
50% compared to BEV vehicles. With a view to make the model easier to implement, the approach
of [31] was chosen to define the (avcPHEV)2020 value, thus defined as the half of (avcBEV)2020.

On the upper end of the timeframe, namely 2030, these variables were estimated through literature
research ([32,33] for consumption and [31,34] for battery capacities). The figures for the remaining
years of the period were obtained as linear interpolation of the two extremes.

Public and private stalls availability:
The objective was to assess the availability of adequate space for the installation of private and

publicly accessible CS, with a view to define upper limits to the planned charging infrastructure and to
allow the evaluation of its impact on stalls occupation.

The following input variables were defined: public parking stalls available on Florence and
Bruxelles areas PPFI, PPBXL and private residential parking available on Florence and Bruxelles areas
PRFI, PRBXL. Data has been collected through research on an existing database; all these variables are
defined as constant during the evaluated period.

CS characteristics definition:
The proper functioning of the model requires the characterization of the charging infrastructure

in terms of:

• Charging power levels (Pk)y: the number of power levels and the related power outputs are defined
after literature research; private residential and publicly accessible CS are accounted separately.

• Capital costs of the various types of CS (Ck)y: they take into account CS cost, installation and grid
connection costs; operation and maintenance costs are not considered.

• Estimated utilization rate of the various types of CS
(
rk, j

)
y
: it is expressed in terms of the maximum

number of charging events manageable by the CS on an average daily basis. They depend on the
assumed daily usage timeframe hk, on the charging power level (Pk)y and on the energy request
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of the charging event E j; subscript k relates to the power level, while subscript j relates to the
charging energy request class. They are calculated by comparing the hours of assumed daily
availability with the time needed for a charge:

(
rk, j

)
=

hk(
E j

(Pk)y

) . (3)

The values assumed by these three variables can be updated during the analyzed period; within
this study the same values were used for each analyzed municipality.

Driving and charging behavior of users:
The driving and parking habits of users, together with the way they are expected to use the EV

charging infrastructure, have a great impact on its characterization, and thus on model outputs. A set
of three variables was implemented in order to describe this scenario:

• Average daily driven distance: A literature research focused on urban areas did not return
appropriate results, so national level values were used. Anyway, given the fact that urban travels
are shorter than the average, the data used was more conservative in terms of energy request to
the infrastructure. The values were considered as constant over the timeframe, but differentiated
within the two considered areas: avdFI and avdBXL.

• Use of publicly accessible or private residential CS: It is crucial to estimate the share of BEV and
PHEV that will weigh on average on the public charging infrastructure; therefore, a literature
research has been carried out in order to estimate the percentage of BEV and PHEV that will use
the public charging infrastructure over the y-th year of the period: (%BEVP)y and (%PHEVP)y.

• Charging events probability distribution over the estimated range of the vehicle: Usually xEV
driving range allows for more than one day of use so owners can decide to charge their vehicles
when state of charge (SOC) approaches the minimum level or before. This consideration, together
with the hypothesis of only complete recharges, leads to different possible energy requests for
the single charging event. Thus, it was necessary to develop a methodology to distribute the
probability of the charging events over the whole driving range allowed by the battery size.
Since this situation is strongly related to user behavior modeling, in order to cover the various
possibilities, three different scenarios have been developed, each with a specific probability
distribution over the timeframe. The independent variable is represented by the time elapsed since
the last charging event (normalized to the maximum autonomy) and is therefore included in an
interval [0,1]; the dependent variable p is the probability of a charge event at a given time, defined
as a monotonous increasing function with its values included in the interval [0,1]. Immediately
after a charging event p = 0, while at the end of the driving range p = 1, thus avoiding the
possibility that a xEV runs out of charge. Figure 3 shows the trends of the three functions defining
the different scenarios.
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2.2.2. I Step: Input Pre-Processing

Some of the inputs described in the previous section have direct use in the model, while others
need to be further processed. More specifically, the forecasts on BEV and PHEV fleets sizes through
the analyzed timeframe were collected as inputs; the model will evaluate separately the number of
BEV and PHEV charging using publicly accessible infrastructure from the ones that will use private
residential infrastructure, so the following new variables have to be defined:

(BEVP)y = (%BEVP)y ∗ (BEV)y

(BEVR)y =
[
1− (%BEVP)y

]
∗ (BEV)y

(PHEVP)y = (%PHEVP)y ∗ (PHEV)y

(PHEVR)y =
[
1− (%PHEVP)y

]
∗ (PHEV)y

, (4)

where (BEVP)y and (PHEVP)y refers to the shares charging on public infrastructure and (BEVR)y and
(PHEVR)y refers to the shares charging on private residential infrastructure, both over the y-th year of
the time period.

Finally, in order to define xEV range as the maximum allowable period of time (measured in days)
between two successive charging events, it has to be defined the new variable [(avrV)A]y as:

[(avrV)A]y =
(battV)y

(avcV)y ∗ avdA
, (5)

where subscript A refers to the geographical area, V to the type of vehicle (BEV or PHEV) and y
to the y-th year of the timeframe. This general notation will be used in the following sections of
this document.
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2.2.3. II Step: Calculation of Daily Charging Events on Publicly Available Infrastructure

In this step of the model the average number of daily charging events related to the BEV and PHEV
circulating fleet is calculated, together with the corresponding energy requests. To do so, the average
number of daily charging vehicles and their SOC at the beginning of the charge have to be estimated.
BEV and PHEV have different electric driving ranges, thus they are separately evaluated within the
model; anyway, since the operations are conceptually identical, in the followings of this section we
would simply refer to xEV without losing generality. A discrete-time Markov chain (DTMC), applied
to a countable, finite state-space was used to obtain the estimate of the average daily distribution of the
SOC levels within the xEV circulating fleet. The DTMC is defined by the transition matrix [A], which
values are obtained by applying the charging events probability distribution p over the specific driving
range considered, with a 1-day timestep:

[A] =



p1 (1− p1) 0 · · · 0
p2 0 (1− p2) · · · 0
...

...
...

. . .
...

pn−1 0 0 · · · (1− pn−1)

pn = 1 0 0 · · · 0


. (6)

The transition matrix defines the charging probability of a xEV for each day of the driving range;
once the driving range [(avrV)A]y is defined, also the dimension of the state-space and of the transition
matrix [A] are set accordingly. Figure 4 shows an example of DTMC graph, applied to a 4-days driving
range scenario.
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The evolution of the DTMC is calculated with an iterative process—highlighted by Figure 5—that
usually reached convergence within 15 steps. The final stationary probability distribution describes the
average distribution of SOC levels within the xEV circulating fleet. The application of the transition
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matrix [A] to this stationary distribution, finally allows us to stochastically define the average number
of xEV daily charging, for each SOC level.
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The horizontal axis represents timesteps “a”, which are inscribed within the interval
[
0, [(avrV)A]Y

]
,

while the vertical axis represents the iteration steps. A different SOC is associated to every timestep
“a”, thus a different charging energy request; taking into account the hypothesis of only complete
charges its value Ea can be calculated as:

[(Ea)V]y = [(avcV)A ∗ avdA]y ∗ a. (7)

The output is then a series of couples (xEVa, Ea), dividing the charging xEV in different groups in
terms of energy requests.

In order to check the stability of the iterative process and the quality of the results, two control
methods were implemented:

• The sum of the elements ai, j for each row of the transition matrix [A] must be equal to one, since
they define all the possible transition events completely:

j∑
j=1

ai, j = 1. (8)

• The total energy recharged by infrastructure (after convergence) must be equal to the average
energy consumed by the xEV fleet using public charging infrastructure (Figure 6):

[(xEVP)A]y ∗ [(avcV)A ∗ avdA]y =

[(amxEV)A]y∑
a=1

xEVa,t ∗ Ea, ∀t >
−

t , (9)

where t is the convergence iteration step.
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2.2.4. III Step: Publicly Available Infrastructure Solutions’ Space Definition and Costs Minimization

Single event charging energy requests Ea are related to specific consumption [(avcV)A]y and to
battery capacity (battV)y, thus they are different between BEV and PHEV; they also evolve during the
time period. The overall range of variation of Ea spans from zero to the maximum value of battery
capacity (battBEV)2030; in order to simplify the model structure, this range has been divided in 10
equally spaced classes, each one with a constant energy value E j, with: E j = j ∗ (Ea)max

10
E0 = 0

, 1 ≤ j ≤ 10. (10)

Then, every Ea value has been compared with E j, so that for every E j−1 ≤ Ea ≤ E j the model
apply the substitution Ea = E j. This way, several different values of energy requests Ea are reduced
to only ten values of E j; this assumption is safe since it always overestimates the energy requests.
The couples (BEVa, Ea) and (PHEVb, Eb) are transformed into

((
BEV j + PHEV j

)
, E j

)
, thus inscribing

BEV and PHEV energy requests into the same framework and allowing us to use the additive and
modular architecture that was one of the basic choices for the model.

Given the modular architecture of the model, infrastructure size is calculated for every j-th class of
energy requests and, after the cost optimization phase, the total value is obtained by summation. Since(
rk, j

)
y

already takes into account charging energy requests, all the public infrastructure compositions

that are able to satisfy the total number of daily charging events R j =
(
BEV j + PHEV j

)
are considered

as suitable. The space of the solutions, for every j-th class, is a triangular portion of a plane, as Figure 7
shows, described by the following equations:

R j = rs, j ∗ s j + rm, j ∗m j + r f , j ∗ f j
s j ≥ 0
m j ≥ 0
f j ≥ 0

, (11)
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where the triplets
(
s j, m j, f j

)
n

define all the n possible combinations of CS that satisfy total daily charging
requests R j.
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After all the technically possible solutions are found, CS costs are applied, in order to optimize the
system and find the least-cost solution for each energy level; this is done by searching the minimum
value of the

(
CTOT, j

)
n

term of the equation:(
CTOT, j

)
n
= Cs ∗ s j,n + Cm ∗m j,n + C f ∗ f j,n, ∀

(
s j, m j, f j

)
n
. (12)

The outputs of this step are the minimum cost of a charging infrastructure suitable for the j-th
class charging request and its composition in terms of CS: (CMIN) j

(sMIN, mMIN, fMIN)y
, j ∈ [1, 10]. (13)

2.2.5. IV Step: Output Definition

This final step is designed to aggregate the outputs coming from steps II and IV, and to post-process
them with some of the inputs in order to obtain the other PI for the specific charging infrastructure. In
this section the operations needed to accomplish the first goal will be described, while the results of
the latter will be discussed in the next section.

BEV and PHEV daily charging on publicly available infrastructure:
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The total number of xEV daily using the charging infrastructure during y-th year can be obtained
by summation of the values related to every j-th level:

(BEVP)y =
10∑

j=1

(
BEV j

)
y

(PHEVP)y =
10∑

j=1

(
PHEV j

)
y

. (14)

Energy and power demand from publicly available charging infrastructure:
Couples of values

(
E j, BEV j

)
y

and
(
E j, PHEV j

)
y

are sufficient for the calculation of total energy

provided by charging infrastructure during y-th year:

(ETOT)y =
10∑

j=1

(
E j ∗ BEV j

)
y
+

(
E j ∗ PHEV j

)
y
. (15)

In order to calculate the energy provided by each power level of the infrastructure, each of the j-th
level contributions must be evaluated separately and finally summed:

[(ETOT)k]y =
10∑

j=1

kMIN, j ∗ E j ∗ rk, j, k ∈ (s, m, f ). (16)

Publicly available charging infrastructure composition and cost:
The number of charging stations for the various CS power levels and their cost are provided as

output for each y-th year and each j-th energy class by the equations state da the end of Section 2.2.4;
total yearly values are obtained by a sum in j and total global values are the obtained by another sum
in i: 

(CMIN) =
∑

i
10∑

j=1

[
(CMIN) j

]
y

(sMIN, mMIN, fMIN) =
∑

i
10∑

j=1

[
(sMIN, mMIN, fMIN) j

]
y

. (17)

Energy and power demand from private residential charging infrastructure
The basic assumption regarding the use of private residential charging infrastructure is that each

vehicle is assumed to be used and charged every day. This simplifying assumption is related to the fact
that, being the stall private and related to the vehicle, this one will be parked there at least once in the
day, ready to be charged. The equation describing the total average daily energy request is:

[(Er)A]y =
∑

V

{[
1− (%xEVP)y

]
∗ (xEV)y ∗ (avcV)y ∗ avdA

}
. (18)

Private residential charging infrastructure cost:
The least cost for the private residential charging infrastructure is obtained using the following

equation:

[(Cr)A]y =

y∑
i=1

∑
V

{[
1− (%xEVP)y

]
∗ (xEV)y ∗ (Cr)y

}
. (19)

The least cost assumption derives from the fact that no overlap in the use of publicly accessible
and private residential charging infrastructure is modeled, while a certain share of it is expected.

2.3. Scenario Definition

A total of 18 working scenarios have been defined; they are the result of a three-step combination
of various assumptions, as described below.
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The first step is related to the two different geographical areas analyzed—here Florence and
Bruxelles—and affects the following input variables:

• Average daily travel avdFI and avdBXL.
• Publicly accessible stalls PPFI and PPBXL.
• Private residential parking PRFI and PRBXL.

The second step considers the three different xEV fleet forecast scenarios calculated for each
geographical area, here defined as low, medium and high; it affects the following inputs variables:

• BEV circulating fleet on y-th year (BEVFI)y and (BEVBXL)y.

• PHEV circulating fleet on y-th year (PHEVFI)y and (PHEVBXL)y.

The final step is related to user behavior modeling and specifically to the charging events
probability distribution over the estimated range of the vehicle p.

3. Results and Discussion

3.1. Input Values Definition for the Implemented Scenarios

In the following sections the specific input values used in the model for this study were described.
BEV and PHEV fleets forecast over analysis timeframe:
An historical dataset was needed as a baseline of auxiliary information for the development of the

transfer formulas for dataset downscaling; the main sources for data collection are shown in Table 2,
with a reference to the area considered.

Table 2. Data sources for historical baseline characterization (FI = Florence, BXL = Bruxelles).

Source EU-28 IT BE FI BXL Data

Centro Studi Continental A [35] - - - X - EVFI
EVIT

Comune di Firenze [36] - - - X - TOT
EAFO [26] X X X - - NREV

ECOSCORE B [37] - - X - X TOT, EV
ENEL e-mobility [14] - X - - - EV

Eurostat [19] X X X - - NTOT, NEV
IBSA [38] - - X X TOT, EV

UNRAE [39] - X - - - NRTOT, NREV
A: Author’s elaboration on ACI data; B: owned by Vito.be.

Table 3 highlights the sources used to collect the forecast data for xEV fleets growth. Since
only [13,26,39] reported separately the contribution of BEV and PHEV, an average value of the
allocation suggested by those papers has been used to divide the other forecast data between BEV and
PHEV contributions.

A total of 23 scenarios, from nine different studies was thus selected. Then these were compared
to the maximum assumed turnover for xEV, as described in Section 2.2.1 and only the ones that were
proposing forecasts lower than the maximum assumed turnover for xEV were used in the model. After
this step, 11 scenarios from seven sources remained; Figure 8 shows the results in terms of xEV shares
over the total circulating fleet, for Florence municipality. It also highlights the portion of scenarios
range that overcame the selecting threshold.
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Table 3. Data sources for xEV fleet size forecasts.

Source Paper Analyzed
Area

Release
Year

Proposed Scenarios

N. 2020 2025 2030

Eurelectric * Smart Charging: steering the charge,
driving the change [40] EU-27 2015 3 X X X

Delft-CE Impact analysis for market uptake
scenarios and policy implications [41] EU-27 2011 3 X X X

RSE Roadmap per una mobilità sostenibile [42] IT 2017 1 X X X
Start/CEI CIVES Libro Bianco EV [43] IT 2017 4 X - -

EAFO The transition to a Zero Emission fleet for
cars in the EU by 2050 [26] EU-28 2016 3 X X X

ENEL/Ambrosetti E-Mobility Revolution [14] IT 2017 4 - X X
PoliMi E-Mobility report 2018 [13] IT 2018 3 X X X

ENTSO-E TYNDP 2018 [44,45] IT, BE 2018 3 X X X
European

Commission Clean Power for Transport [46] IT, BE 2017 3 X X X

*: 2020 to 2030 data obtained by linear interpolation.
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Finally, Table 4 highlights the forecasts for BEV and PHEV circulating fleets during the considered
time period, used in the model as inputs for this research.

Table 4. Battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) fleet forecasts for the
area of Florence and Bruxelles municipalities—absolute figures.

Area Scenario
BEV PHEV

2020 2025 2030 2020 2025 2030

Florence
Low 73 441 2062 90 517 2544

Medium 202 1414 6344 584 2980 9886
High 672 3968 14,030 1141 6016 21,532

Bruxelles
Low 663 3482 10,334 984 3482 12,168

Medium 1283 6022 18,432 2655 10,266 25,451
High 2689 10,078 35,836 5152 17,591 45,337

Table 5 shows the same data but this time in terms of shares of the total circulating fleets in the
two selected areas.
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Table 5. BEV and PHEV fleet forecasts for the area of Florence and Bruxelles municipalities—shares of
total circulating fleet.

Area Scenario
BEV PHEV

2020 2025 2030 2020 2025 2030

Florence
Low 0.0% 0.2% 1.0% 0.0% 0.3% 1.3%

Medium 0.1% 0.7% 3.2% 0.3% 1.5% 5.0%
High 0.3% 2.0% 7.0% 0.6% 3.0% 10.8%

Bruxelles
Low 0.1% 0.7% 2.1% 0.2% 0.7% 2.5%

Medium 0.3% 1.2% 3.7% 0.5% 2.0% 5.2%
High 0.5% 2.0% 7.3% 1.0% 3.4% 9.2%

Average BEV and PHEV energy consumption and capacity of batteries:
Table 6 shows the results obtained by applying the methodology described in Section 2.2.1 and

subsequently applied in the model.

Table 6. xEV average consumption and capacity assumed forecast values.

2020 2030

BEV PHEV BEV PHEV

Average specific consumption (kWh km−1) (avcV)y 0.192 0.108 0.154 0.086
Average battery useful capacity (kWh) (battV)y 31.6 7.14 59.5 9.8

Public and private stalls availability:
In order to obtain the results highlighted in Table 7 the following sources were investigated:

• For the Florence area, open-data maps and databases developed by the municipality were used to
assess public parking spaces availability [47], while the results of the 2011 census [48] were used
to evaluate private residential parking spaces.

• With regards to the Bruxelles area, open-data databases were used to obtain the number of public
parking spaces available, together with an estimate of private parking spaces in the residential
area [49].

Table 7. Public and private stalls availability in the analyzed areas of Florence (2013 data) and Bruxelles
(2018 data).

Public Stalls (PPA) Private Residential Parkings (PRA)

Florence 65,000 55,800
Bruxelles 318,600 293,000

Definition of CS characteristics:
As a first step in choosing the implemented CS power level a research within existing National

Regulations and EU-28 Directives has been performed, in order to gather suggestions and any provided
prescription. The main sources consulted here were Directive 2014/94/EU [4] and the PNire [5].

Another research has then been performed to understand the current composition of publicly
accessible charging infrastructures in the study areas, using accessible databases such as official
open-data archives of municipalities [50], data from a service provider (Enel) [51] and other unofficial
archives (Opencharger) [52], to understand the current composition of the infrastructure in terms of
quantity, power levels and connection standards used.

The home charging sector has also been considered, evaluating the average installed power as
well as the maximum that can be installed by a European household, to define an upper limit value for
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the power of the recharging system [53]. In conclusion, a literature research was carried out in order to
evaluate the possible future developments of the infrastructure in terms of power levels and usage [34].

At the end of the research phase, the following power values were identified for the various
charging systems used in the model, and finally applied both to Florence and Bruxelles area:

• Private residential charging points Pr: 2 kW
• Publicly accessible charging points: Three power levels and corresponding charging systems,

called slow, medium and fast, have been implemented. The selected power values are listed in
the following Table 8:

Table 8. Charging power levels assumed in the model for this study.

Power Levels
Charging Power

2020–2024 2025–2030

Slow—(Ps)y 7 kW 22 kW
Medium—(Pm)y 22 kW 50 kW

Fast—
(
P f

)
y 50 kW 100 kW

An installation cost has been defined for each CS power level; this value includes the cost of the
charging station, including installation and grid connection costs. Operating costs were not considered,
as they were not part of the scope of the study, nor were maintenance costs; the latter were not
implemented in order maintain the model simple enough.

Learning curves were applied to capital, installation and connection costs, to take into account the
reduction of costs over time related to the effects of industrialization and rationalization of processes.
All the information derives from an extensive literature research (cfr. [10,31,41,46,54,55]) and brought
to the definition of (Cs)y, (Cm)y,

(
C f

)
y

and (Cr)y, related to the y-th year and described in Table 9.

Table 9. Charging station (CS) costs forecast for the various power levels.

2020 2025 2030

Private
Residential—2kW (Cs)y

900 € 810 € 729 €

Slow—7 kW (Cm)y 1783 € 1630 € 1630 €
Medium—22 kW

(
C f

)
y 4800 € 4264 € 4264 €

Fast—50/100 kW (Cr)y 44,000 € 38,798 € 32,564 €

A literature search was then carried out to verify the actual use ratios of existing charging
infrastructures [20,56]. The driving and parking behaviors and daily timeframes of an average user
were mainly derived from the study [23], which specifically analyses driving behavior in various
European countries, including Italy. The results of these evaluations, together with other usage
constraints and the energy request levels E j, brought to the maximum number of charging events for
level of energy requests reported in Table 10 for each power level of the CS:

Driving and charging behavior of users:
For what it concerns the average daily travelled distance, two different values have been

calculated, for Florence and Bruxelles, as shown in Table 11 the most recent data available (2015) have
been used, from:

• Odyssee-Mure Database [57]: Italy and EU-28.
• ACEA [58]: Belgium.
• ACI—CENSIS [59]: Italy.
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Table 10. Maximum number of charging events daily manageable by each level of energy requests, for
each Charging energy request class.

CS Power Levels
Charging Energy Request Classes—Ej (kWh)

6 12 18 24 30 36 42 48 54 60

2 kW rr, j 1 1 1 0 0 0 0 0 0 0
7 kW rs, j 3 3 3 2 2 2 2 2 2 0
22 kW rm, j 8 8 8 4 4 4 4 3 3 3
50 kW r f , j 12 12 12 12 8 8 8 8 4 4

100 kW r f , j 17 17 17 12 12 12 12 8 8 8

Table 11. Forecast average daily travelled distance by a passenger car over the analyzed areas.

Florence Bruxelles

Average daily travelled distance (km) (avdA) 23.5 30.5

The shares of PHEV and BEV, which are considered as using the publicly accessible charging
infrastructure, were calculated using data coming from [31,60]; the results are reported in Table 12:

Table 12. Share of PHEV and BEV expected to be using the publicly accessible charging infrastructure.

2020 2025 2030

Share of BEV using the publicly
accessible charging infrastructure

(%BEVP)y

56.5% 66.9% 75.8%

Share of PHEV using the publicly
accessible charging infrastructure

(%PHEVP)y

45.6% 58.6% 69.7%

Finally, the charging events probability distribution p over the estimated range of the vehicle, was
defined for three different scenarios (see Figure 3):

• Linear: assumes a linear correlation between the number of days since the last charging events
and the charging event probability.

• Regressive: assumes a correlation between the number of days since the last charging events and
the charging event probability of the kind y =

√
x.

• Progressive: assumes a correlation between the number of days since the last charging events and
the charging event probability of the kind y = x5/3.

3.2. Discussion

The analytical model described in this article was designed to capture the main complexities of the
selected scenarios, while maintaining a simple and lean structure. Therefore, some of the simplifying
assumptions implemented in the model could affect the outputs and the accuracy in some specific areas.

As already stated in Section 2.1, the model did not update the utilization ratio of the already
deployed charging infrastructure to take into account incremental improvement during the time
period. This could potentially lead to a sub-optimal use of the charging infrastructure. Overall,
infrastructure oversizing can be estimated in just a few percentage points from optimum, since it
is directly proportional to utilization ratio. On the other hand, the model evaluates the average
daily values, thus simulating an average use of the charging infrastructure; this could lead to an
underestimation of peak power demand from the grid, as well as to a possible underestimation of the
number of CS needed by the circulating xEV fleet. Finally, the model has to deal with the lack of real
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data related to charging behaviors of users, and with the uncertainty of the forecasts used as inputs;
this situation clearly leads to a corresponding range of variability of the outputs.

All the following outputs will be thus presented in a min–max format, given also the fact that
they will summarize nine different analyzed scenarios for each geographical area. Moreover, it must
be highlighted that the maximum values refer to a threshold situation related to the turnover trends
of passenger vehicles circulating fleet and thus have to be considered as an “upper limit”. That said,
the main results related to public charging infrastructure are reported in Table 13, while the main
results related to private charging infrastructure are highlighted in Table 14, both for Florence and
Bruxelles area.

Table 13. Model results for xEV fleet forecast and publicly accessible charging infrastructure for
Florence and Bruxelles area.

Publicly Accessible Charging Infrastructure

Florence Bruxelles

Output (Cumulative
Values) 2020 2025 2030 2020 2025 2030

EV fleet/Tot fleet (%) Min 0.1% 0.5% 2.3% 0.3% 1.4% 4.6%
Max 0.9% 5.0% 17.8% 1.5% 5.4% 16.5%

Total CS
Min 12 66 194 201 580 1210
Max 199 795 2053 1014 2538 5537

Total costs (k€) Min 24.4 169.6 743.7 369.2 1366.2 4496.5
Max 385.1 2309.5 8323.9 1959.1 6993.4 21,381.9

Average daily charged
energy (kWh)

Min 0.3 2.2 11.0 4.3 20.4 68.7
Max 3538 21,317 81,363 19,514 74,215 244,712

Global utilization rate
Min 10.61% 9.59% 8.88% 11.70% 10.77% 10.27%
Max 16.60% 14.77% 14.34% 14.69% 16.19% 14.44%

EV/CS ratio Min 10 12 18 8 11 15
Max 18 19 27 9 13 19

“Slow A” CS/“Fast” CS ratio
Min n.a. B 59 188 n.a. 166 31
Max n.a. n.a. n.a. n.a. n.a. 72

A Here 7kW and 22kW power levels are assumed as “Slow”; B “n.a.”, whenever present, means that the corresponding
charging infrastructure does not have 50 kW and 100 kW CS.

The average amount of daily energy required by xEV fleet charged on public infrastructure is
assumed to reach more than 80 MWh for Florence and almost 245 MWh for Bruxelles by 2030, for the
most demanding scenario. These values correspond to an average daily electricity consumption of
about 13,500 families in Florence, and about 35,000 families in Bruxelles [53]. Considering an average
delivery window of 20 h, compatible with the assumptions made in the study, this energy demand
theoretically corresponds to an average continuous power requirement of 4 MW for Florence and
12.3 MW for Bruxelles.

The same analysis, when applied to the private residential charging infrastructure, give as results
for the 2030 values of almost 50 MWh for the Florence and almost 155 MWh for Bruxelles for the
most demanding scenario. Considering an average delivery window of 8 h, compatible with the
assumptions made in the study of only night charges, this energy requests corresponds to an average
continuous power requirement of 6.3 MW for Florence and 19.4 MW for Bruxelles.

These outputs show that the share of total energy demands supplied by private residential
charging infrastructure ranged between slightly more than 50% on year 2020 to less than 40% at the
end of the time period, on year 2030. These results were strictly related with the assumption on the
share of xEV using private infrastructure defined in Table 12.
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Table 14. Model results for xEV fleet forecast and private residential charging infrastructure for Florence
and Bruxelles area.

Private Residential Charging Infrastructure

Florence Bruxelles

Output (Cumulative Values) 2020 2025 2030 2020 2025 2030

Total CS
Min 85 442 1676 877 3285 8559
Max 967 4694 13,401 4191 13,253 31,386

Total costs (k€) Min 76.5 367.8 1267.4 1078.2 3736.4 8917.4
Max 870.3 3910.2 10,257.6 3771.9 11,163.1 24,382.1

Average daily charged energy
(kWh)

Min 365 1828 6318 4778 18,033 42,722
Max 3962 18,739 49,524 22,047 67,663 154,527

Share of total charging energy Min 52.1% 45.6% 36.5% 52.9% 46.9% 38.3%
Max 52.8% 46.8% 37.8% 53.0% 47.7% 38.7%

Another interesting perspective for the comparison of both private and publicly accessible
infrastructure was the total cost of installation: private infrastructure results were always more
expensive, up to twice the cost for some scenarios. This poor performance was related to the lowest
EV/CS ratio of residential CS that was assumed to be equal to 1, so that basically for every xEV that
uses the private infrastructure a CS is needed.

Finally, with the aim of verifying the effort to be made to achieve the results described by the
model, the average number of charging stations to be installed each year and the related annual cost
were then calculated. The results were averaged over the two periods 2020–2025 and 2025–2030 for the
areas of Florence and Bruxelles and are shown in Table 15.

Table 15. Yearly steps to deploy the publicly accessible charging infrastructure as sized by the model.

Florence Bruxelles

Output (Annual Mean Values) 2020–2025 2025–2030 2020–2025 2025–2030

CS to be installed in a year Min 11 23 108 112
Max 143 223 464 536

Yearly deployment costs Min 25,387 € 102,789 € 238,265 € 550,855 €
Max 373,816 € 1,075,794 € 1,192,045 € 2,570,283 €

After this brief overall presentation of the results, in the following sections more in-depth analyses
would be presented on specific arguments.

Publicly accessible infrastructure composition:
The most important result obtained from the analysis of model outputs was that the higher the

power CS was the smaller share of the total, as Figure 9 shows. This was related to their worst charging
events/cost ratio rk, j/(Ck)y comparing to slow and medium ones. In other words, the high-power CS was
able to manage less daily charging events for the cost.

Moreover, an inversion trend between slow and medium ones was highlighted during the
timeframe of the analysis. This behavior was related to the shift to higher E j classes of the energy
requests moving through the time period. The energy distribution pattern between the various power
level also confirmed these findings, showing an even stronger predominance of the medium, 22 kW,
CS power level.

Number of daily charging xEV as a percentage of the total EV fleet:
A consequence of vehicle range and user behavior assumptions, only a share of xEV ranging

from 34% to 89% of theoretical total value
[
(BEVP)y + (PHEVP)y

]
used the charging infrastructure on

an average, daily basis, with the expected trend shown in Figure 10. This finding directly reflected
into less charging events with average higher energy requests. This could lead to a smaller than
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expected infrastructure but with the same average energy request thus, consequentially, possible higher
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The higher values calculated for Bruxelles area could be related to the higher circulating fleet,
thus to the higher number of PHEV; in fact, PHEV were modeled to a much smaller battery capacity,
so they usually charge more often.

EV/CS ratio:
This parameter describes the number of xEV virtually assigned to each existing CS of the

infrastructure. Higher EV/CS led to costs reduction for the infrastructure and higher revenues for each
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CS; anyway, also negative side effects could occur, such as a higher risk of finding the CS occupied by
other charging xEV. A balance between these aspects were thus found; AFI Directive suggests a 10:1
ratio [4], while Italian PNIRE suggest an average figure of 7:1 [5].

The following equation was used within the model to define this parameter:

(EV/CS)y =

y∑
i=1

 (BEVP)i + (PHEVP)i[∑
j(sMIN + mMIN + fMIN) j

]
i

. (20)

A rising trend is shown in Figure 11, going through the timespan of the analysis; this is due to
a growing path in the installation of higher power CS—such as medium and fast ones—capable of
higher numbers of daily charging event. Figure 11 shows also that EV/CS ratio figures were spread
over a broader range and were also higher on average for Florence, when compared to Bruxelles.
This again was related to the higher number of PHEV expected to be circulating in Bruxelles, given the
fact that their lower energy requests were optimally fulfilled by the CS of the lowest power level, which
were also the one with the lowest EV/CS ratio. The higher variability of the xEV fleet size forecast for
Florence probably affected also the variability of EV/CS ratio for this area.
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Global use ratio of infrastructure:
An important parameter for business and profitability evaluations is the global usage ratio u,

which is defined within this model using the following equation:

uy =

∑
k[(ETOT)k]y∑

k (kMIN)y ∗ hk ∗ (Pk)y
. (21)

Figure 12 shows that the global use ratio was quite low and rather constant during the whole
period; the results were in line with other researches findings, such as [20,22,56].
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Impact of infrastructure on private and public parking:
The impact on public stalls Iy for a given area is defined as following:

Iy =
CSy

xEVy
TOTY

∗ PP
. (22)

The resulting value was low and the trend decreasing in time, as highlighted by Figure 13; this was
the effect of the high value of EV/CS ratio, that also increased in the second part of the period given the
higher share of medium and fast CS.
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The impact on the private infrastructure was higher, given the fact that the probability of an xEV
owner being also a parking owner was twice as high than with an ICEV owner; anyway, the result was
still compatible with the existing situation.

As summarized in the following conclusions, the analysis carried out in this research work clearly
identified elements impacting on policy at different governance levels. The central government layer, in
charge of accelerating the transition to a cleaner transport system and implementing the EU Directives,
will have to allocate the financial resources in the best possible way to allow local governments to
maximize the fast deployment of charging infrastructure “on the ground”. In this respect, the analysis
here carried out about the optimal ratio between slow and medium CS to fast CS is a key element:
results of our analysis did not seem to fully support the widely adopted idea (at the higher centralized
policy level) of favoring fast CS versus slow and medium ones, in regards to cost optimization.

4. Conclusions

This work investigated a lean methodology to estimate the optimal size of a minimum cost
charging infrastructure for passenger vehicles, suitable for deployment in an urban area. An analytical
model was therefore developed to simulate different scenarios, accounting separately for BEV and
PHEV fleets, as well as for publicly accessible and private residential CS. The model needs as inputs,
for each timestep of the analysis, the number of daily charging events related to both BEV and PHEV
fleets and the corresponding energy requests; moreover, it needs a full characterization of the CS
in terms of expected performances and costs. A discrete-time Markov chain (DTMC), applied to
a countable, finite state-space was used to obtain the estimate of the average daily distribution of
the charging events within the circulating fleet, and the corresponding energy requests. Due to the
primary importance of the inputs related to the size of the circulating EV fleet and since substantial
differences between the various forecasts emerged from the research, a novel method for data sorting
and conditioning of EV fleets forecasts was developed, using circulating fleet turnover rate as a
threshold indicator.

The model was then applied to the two selected case studies of Florence Municipality for Italy
and Bruxelles for Belgium, over the 2020–2030 period, with a 1-year timestep resolution; nine inputs
scenarios and three outputs scenarios were defined for each area. The xEV fleet forecasts used as inputs
for this work were presented with a broad range of variability: on 2030 they spanned between 2.3% and
17.8% of the total circulating fleet for the Florentine area, and between 4.6% and 16.5% for Bruxelles.
In absolute terms, this translated to 194 to 2053 passenger cars for Florence and to 1210 to 5536 for
Bruxelles. As a consequence of vehicle range and user behavior assumptions, only a share of xEV
ranging from 34% to 89% of the theoretical total value was expected to use the charging infrastructure
on an average day; this could lead to a smaller than expected infrastructure having the same average
energy request thus, consequentially, a possibly higher power request.

The optimal size for the publicly accessible charging infrastructure, to be reached on 2030, was
estimated in about 194 to 2053 CS for Florence and 1210 to 5537 CS for Bruxelles; these numbers
corresponded to about 0.75 to 8.3 M€ on deployment cost for Florence and to 4.5 to 21.4 M€ for Bruxelles.
On average, it was estimated that 10 to 200 CS has to be installed every year in Florence to comply with
the deployment trend, with the yearly cost of deployment spanning between 25 k€ and 1 M€; these
figures depended on the evaluated scenario and on the selected year of the time period. The same
analysis, projected on Bruxelles, returned an estimate of 100 to 530 CS to be installed every year, for a
cost ranging between 230 k€ and 2.6 M€ per year. The narrower range of values related to Bruxelles
could be explained by the higher minimum level of xEV forecasted in comparison to Florence. Notably,
the higher power CS results to be the smaller share of the total and this is clearly related to their
worst charging events/cost ratio comparing to slow and medium CS. The private residential charging
infrastructure size on 2030 was then estimated in 1700 to 13,400 CS and in 8600 to 31,400, respectively
for Florence and Bruxelles, with deployment costs ranging from 1.3 M€ to 10.3 M€ and from 8.9 M€
and 24.4 M€.
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These higher figures in terms of costs and number of CS are related to the lower EV/CS ratio
of residential CS, that is assumed equal to be 1; moreover, these figures suggest the relevance of a
possible implementation of support schemes for the installation of residential CS, since this could help
to unlock the potential related to households with off-street private parking.

Within the publicly accessible infrastructure, EV/CS ratio results into higher values, spanning
from 8:1 to 27:1 depending on scenarios and time period; these values were also higher than AFI
Directive suggestions for a 10:1 ratio and Italian PNIRE suggestions for an average figure of a 7:1 ratio.
Even with these high EV/CS ratios, the global use ratio of the infrastructure did not rise over 17% of its
theoretical maximum potential, showing an almost constant trend over the period, thus highlighting
the possible need for policies supporting CS profitability, at least during the first transition period.
The impact of the planned infrastructure on the available public stalls results were less pronounced
than that of the ICEV and showed a decreasing trend over the period, as a result of the increasing
EV/CS ratio.

From a grid perspective, the average amount of daily energy required by xEV fleet charged on
public infrastructure was expected to reach more than 80 MWh for Florence and almost 245 MWh for
Bruxelles by 2030, for the most demanding scenario. As a comparison, the private residential charging
infrastructure, was expected to reach 50 MWh for Florence and 155 MWh for Bruxelles; these results
were strictly related with the assumptions on the share of xEV using private infrastructure, as defined
in the model. Based on the assumptions made for the daily charging windows duration, energy
requests translate into average continuous power requirements for the public infrastructure of 4 MW
in Florence and 12.3 MW in Bruxelles; the same analysis made on the private residential charging
infrastructure, gave as a result 6.3 MW for Florence and 19.4 MW for Bruxelles.

Finally, results shown in Section 3.2 made evident that optimal charging infrastructure
configuration was obtained with a higher share—well beyond 90% of the total at 2020—of slow
and medium CS, compared to fast ones. This situation was due to the worst charging events/cost ratio
of the fast CS—if compared to the slow and medium ones—that is obtained from the input used in this
study. It is worth noting that this result was quite different from the suggestion given by PNIRE of a
25% to 50% share of fast CS over the total on year 2020 [5].

Overall, therefore, more than the additional power demand by EV and the associated costs,
the critical issue for developing a charging infrastructure able to meet the EV fleet on the coming
years will most likely lie on the actual implementation of the civil works at urban level, and the
ability to implement these vis-à-vis the EV fleet growth, so to achieve comparable development rates.
This assuming a reasonable incremental rate of EVs in the next decades, thus excluding unrealistic and
excessively optimist or pessimistic assumptions about car renewal rates.
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Glossary

AFI Alternative Fuels Infrastructure GIS Geographic Information System
ACI Automobile Club d’Italia ICEV Internal Combustion Engine Vehicle
BEV Battery Electric Vehicle PHEV Plug-in Hybrid Electric Vehicle
CS Charging Station PI Performance Indicators

DTMC Discrete Time Markov Chain PNIRE
Piano Nazionale Infrastrutturale per la Ricarica
dei veicoli alimentati ad energia Elettrica

EEA European Environment Agency RES Renewable Energy Source
EU European Union RFNBO Renewable Fuels of Non-Biological Origin
EV Electric Vehicle SOC State Of Charge
GHG Greenhouse Gases xEV BEV and PHEV
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