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ABSTRACT 
 
 This paper describes the results of a study 
comparing the performance of three different 
approaches for the fault tolerant flight control system of 
the F-15 aircraft within the Gen 2 NASA IFCS project. 
The common feature of the 3 methods is that they are 
all based on neural algorithms, however neural 
networks (NN) are used in different ways. The first 
approach features a Non Linear Dynamic Inversion 
(NLDI) technique augmented with a neural network to 
cancel the dynamic inversion errors. The second 
approach is based on a robust controller using both the 
Stochastic Optimal Feedforward and Feedback 
Technique (SOFFT) and a neural network to 
compensate errors. Finally, the third approach performs 
a neural network controller based on an adaptive 
predictor-corrector control strategy. The comparison 
study has been carried out using the WVU IFCS F-15 
simulation environment. The results are given in terms 
of performance comparison and control activity 
evaluation for different maneuvers. 
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1. Introduction 
 

In recent years, adaptive control systems have been 
taken advantages of artificial intelligence 
techniques1,2,3,4,5 and high performance on-line system 
identification algorithms6,7 using especially neural 
networks (NN). These new methods  provide 
alternatives to gain scheduling approaches as well as to 
handle a variety of primary control surface failures. In 
order to pursue these features, the main objective of the 
NASA Intelligent Flight Control System (IFCS) F-15 
program8 is to investigate and develop through flight 
tests innovative and promising control approaches. The 
purpose of this paper is to show a comparison among 
three different fault tolerant control law schemes within 
the NASA IFCS F-15 program using the WVU IFCS F-
15 Simulator developed at WVU. 

The first approach is based on an adaptive flight 
controller using a Non Linear Dynamic Inversion 
(NLDI) augmented with a neural network to 
compensate inversion errors and changes in aircraft 
dynamics due to damage or failures on primary control 
surfaces. Moreover, this scheme uses an additional pre-
trained neural network (PTNN) providing updated 
values of the aerodynamic and stability derivatives, 
required by the dynamic inversion, within the whole 
flight envelope. 

The second approach combines conventional 
robust control schemes with neural networks to 
improve the performance of the flight control system. 
This robust controller is based on the Stochastic 
Optimal Feedforward and Feedback Technique 
(SOFFT), which belongs to the class of  State Feedback 

Linear Quadratic Optimal Control approaches. In 
addition, the SOFFT controller is augmented with a 
neural network to compensate errors due to system 
uncertainties and/or failures on primary control 
surfaces. 

The third approach takes advantages of the NN 
capabilities in performing system identification. 
Precisely, it features two adaptive neural entities which 
identify the forward and the inverse F-15 model and are 
connected according to the predictor-corrector scheme.  

These three schemes are used to implement a 
Multi-Input-Multi-Output (MIMO) Control 
Augmentation System (CAS) with the tracking task of 
the same reference model in order to directly compare 
their features. The performance are evaluated in terms 
of trajectory tracking error and control activity for 
simple maneuvers at different  flight conditions and 
with failures involving different primary control 
surfaces. 
 
 
2. Aircraft Model and Simulation Environment 
 

 A simulation environment based on a nonlinear 
approximate model of the F-15 aircraft has been 
developed by the WVU researchers9. This model is 
derived from a Fortran code of a high performance 
military aircraft distributed by NASA to academic 
institutions within the 1990 AIAA GNC Design 
Challenge10. The aerodynamic and thrust characteristics 
are provided through 42 look-up tables, that is 16 tables 
for the longitudinal dynamics as functions of Mach 
number, angle of attack and stabilator deflections; 20 
tables for the lateral-directional dynamics as functions 
of Mach number, angle of attack, sideslip angle and 
rudder; 2 tables for engine thrust and fuel flow as 
functions of Mach number and altitude. Additional 
look-up tables have been added for the modeling of the 
canard surfaces on the IFCS F-15 aircraft. The look-up 
tables have been subdivided to isolate the contribution 
of individual control surfaces in order to be able to 
simulate control surface failures11. 

A failure modeling strategy has been developed 
and applied for longitudinal, lateral and directional 
control surface blockage and partial destruction4,11. The 
method is based on the assumption that when a control 
device failure occurs, there is an alteration of the 
aerodynamic forces and moments, which is equivalent 
to a net loss of “aerodynamic efficiency”. The 
contribution of each individual control device to the 
total external forces and moments is isolated and 
expressed in terms of a single parameter which can be 
varied during the simulation. 

The simulation package is based on the Flight 
Dynamics and Control (FDC) toolbox12 within 
Matlab/Simulink environment. For graphic display and 
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pilot interaction the dynamic model is interfaced with 
the Aviator Visual Design Simulator (AVDS) 
simulation package13. Particularly, the aircraft dynamic 
model is flown through a joystick device; however, pre-
loading of command histories is also possible. In the 
open loop mode, the inputs given through the joystick 
are supplied directly to the stabilators, ailerons and 
rudders actuators, while the collective canard deflection 
is scheduled as a function of the Mach number and the 
angle of attack. 
 
 

3. Controllers Description 
 
3.1 Method #1: Non Linear Dynamic Inversion 
(NLDI) Scheme      
 
 The general scheme of this adaptive neural 
controller is shown in Figure 1. An on-line neural 
network algorithm (Sigma-Pi) is used to cancel the 
errors associated with the dynamic inversion of the 
model1,2,3 and provide consistent handling qualities 
without requiring computational effort in gain-
scheduling. In addition, a pre-trained neural network 
(PTNN) is employed to supply updated values of the 
aerodynamic and stability derivatives required by the 
dynamic inversion calculations, as the aircraft moves 
throughout its flight envelope. Finally, desired handling 
qualities are achieved with ad hoc reference models. 
 
 

Dynamic 

control 
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correction 
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Figure 1. General Block Diagram of the NLDI scheme 

 
Flight commands are generated by the pilot 

through longitudinal/lateral stick and pedals (
sticklonδ , 

sticklatδ , 
pedaldirδ ), then these displacement commands 

are converted5,14 into corresponding roll, pitch and yaw 
rate commands ( , , ). The reference 
model provides filtered rate commands ( , , 

) and acceleration commands ( , , ) 

using first order roll rate and second order pitch and 
yaw rate transfer functions. 

comp comq comr

rep

refq
f refq

refrrefr refp

 The inputs to dynamic inversion ( , , ) 
are computed using the expression: 

cp cq cr
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where (U , , ) are augmentation 
commands generated by adaptive NNs in order to 
compensate for the estimated errors , ,  from 
the difference between reference and plant angular 
rates. Furthermore, the pseudo control acceleration 
commands (U , , ) are computed using the 
following expressions: 

adp
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                                                                          (2) 
where pK  and iK  are proportional and integrative 
constants. 

The dynamic inversion is used to determine the 
necessary control surface deflections ( aδ , sδ , rδ ). 
These values will be reallocated to obtain actual 
collective and differential stabilator, differential canard, 
aileron and rudder deflections. Initially, control surface 
commands ( , , ) are obtained with the 
following equation: 

comaδ
comsδ

comrδ
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where B is the state-space system control matrix and the 
terms ( −c 1p L , −c 1q M , ) are the differences 
between input acceleration commands and actual plant 
acceleration contributions (L

−cr N

coaδ

1

1, M1, N1). These plant 
contributions are function of inertial and geometric 
characteristics, aerodynamic derivatives, angular rates 
and aerodynamic angles. Finally, the control surface 
deflections are computed from ,  and  
in order to consider the modeling of the actuator 
dynamics (first and second order transfer functions). 

m comsδ
comrδ

Inversion errors and changes in aircraft dynamics 
are compensated through a neural algorithm based on a 
two-layer Sigma-Pi NN5,14,15 for each angular 
acceleration ( , , ). These NNs use proportional and 
integral acceleration errors (U , , 

p q r

_p error _q errorU
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_r errorU

p q

) for on-line learning purpose. Inputs to the 
networks are pseudo control acceleration commands 
(U , U , U ) described above, bias terms and sensor 
feedback. For each channel three terms C

r

=U W

1, C2 and C3 
are computed as functions of input variables and 
previous-step network outputs (U , U , U ). All 
the neuron outputs are summed and multiplied to each 
other - hence the name of the network. The outputs of 
the neural networks are the control augmentation 
commands defined as: 

adp

)

adq adr

ad

)= −W G errorU W

 

                       (4) ( 1 2 3, ,T f C C C
 

where f is computed from each signal inputs using a 
nested Kronecker product and the network weights W 
are determined by an adaptation law: 
 

 ( ⋅ +errorU f L            (5) 
 

where G and L are user selected specific gains. 
In addition, the Pseudo-Control Hedging (PCH)1,2,3 

has been added into the control system to prevent or 
relieve control saturation problems occurring when an 
actuator is commanded beyond its limit. The 
differences between control surface commands and 
control surface deflections are used to evaluate angular 
acceleration corrections that are then fed to the 
reference model in order to modify reference angular 
rates and reduce the possibility of control saturation. 
 
 
3.2 Method #2: SOFFT Controller 
 

 The second approach is based on the so-called 
Stochastic Optimal Feedforward and Feedback 
Technique (SOFFT) descending from optimal control 
techniques and in particular from Explicit Model 
Following Control (EMFC)16. In addition, the robust 
SOFFT controller is augmented with a neural network 
to compensate errors due to system uncertainties, 
unknown disturbances, inexact inversion of the plant 
dynamics and failures on primary control surfaces. 

Differently from EMFC, the SOFFT approach8,17,18 
decouples the feedforward and feedback control design 
process avoiding conflicting demands on the control 
laws. In other words, there is not just the optimization 
of a single criterion in which the performance of the 
feedforward and feedback control laws are jointly 
evaluated with some compromises but a separate 
optimization of the feedforward and feedback control 
objectives is carried out. 

The SOFFT control scheme can be considered both 
as an Adaptive Control System and a Gain Scheduling 
Approach since as the aircraft moves throughout the 
flight envelope, the matrices describing its linearized 

model are continuously updated and Algebraic Riccati 
Equations (ARE) are solved to yield the most updated 
control gains. The general structure of SOFFT 
controller is shown in Figure 2 with one feedback 
matrix (Ky) and three feedforward matrices (Ku, Kx, Kz) 
as result of the design process. 
 

 
Figure 2. SOFFT Controller Scheme 

 
 A peculiar characteristic of this approach is the 

fact that, for the design of the feedforward control laws, 
two models are used: a command model and a reference 
plant model. The reference plant model is then forced to 
follow the signals coming from the command model by 
designing a control law that minimizes the error 
between the dynamics of the two models. There are two 
different methods in order to compute the feedforward 
gains Ku, Kx, Kz : EMFC and Perfect Tracking. 
According to the EMFC approach: 
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where Ax Bx Cx Dx Hx is the reference plant model and  
Az Bz Cz Dz Hz is the command model. The state and 
input variables represent deviations from a reference 
trajectory that can usually be a set point condition (i.e 

x zH x H z∗ ∗= ): 
 

        ∗−= xxx~ , ∗−= zzz~ , u u , u uu∗= − z z uz
∗= −  

         (8) 
where: 
 

     and           (9) ∗−∗ −= zzz uBAz 1 ∗−∗ −= uBAx xx
1

 

The feedforward part of the control law can be defined 
as: 
 

           (10) u z x zu K u K x K z∗= − −
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The three feedforward matrices Ku, Kx, Kz are computed 
by solving two ARE’s and one Lyapunov equation. If 
this is to be done in real time, the computational cost 
can easily become prohibitive and another way of 
computing the feedforward gains can be carried out 
through the Perfect Tracking control method based on 
Dynamic Inversion control approaches19. Defining the 
error to be minimized as: 
 

                                               (11) zHxHe zx −=
∆

 

the Perfect Tracking method consists in calculating the 
three feedforward matrices Ku, Kx, Kz by forcing the 
time derivative of the error to remain zero: 
 

     (12) 
0

x z

x x x x z z z z z

e H x H z
H A x H B u H A z H B u
= − =

+ − − =

)

)

 

If HxBx is full column rank, the control law: 
 

( ) ( zzzzzxxxx uBHzAHxAHBHu −+−= +          (13) 
 

is such that the error remains at zero and the three 
feedforward gains can be written as: 
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The price to pay for this gain in computational 
resources is that the perfect tracking approach, as any 
inverting control law, works only for minimum phase 
plants. 

The design of the feedback control is performed 
independently from the feedforward control design by 
using a standard output feedback LQR synthesis on the 
feedforward plant model A, B, C, D. The real plant is 
forced to follow the dynamics of the reference plant 
model: 

                        (15) ( dtuRuyQyu TT∫
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where the input, state and output variables are 
deviations from a reference trajectory u , ,  
supplied by the reference plant model: 

∗ ∗x ∗y

 

 ∗−= xxx~ ,  ∗−= uuu~ ,  ∗−= yyy~               (17) 
 

The feedback matrix Ky  is obtained by solving the ARE 
involving the matrices A, B, C, D, Q and R. 

The SOFFT scheme augmented through an on-line 
neural network provides further benefits of adaptation 
without requiring substantial modifications to the 
existing linear control architecture20. In this setting, the 
neural network extends the operational range of the 
aircraft beyond the capacity of the linear controller 
maintaining command tracking and stable flight 
conditions. This neural augmentation is accomplished 
through a single hidden layer NN trained on-line by the 
EMRAN (Extended Minimal Resource Allocating 
Network) algorithm21. The network output is composed 
of two vectors: the adaptive term which aims to 
compensate for the uncertainties and the robustifying 
term which ensures that the network weights remain 
bounded during training phase. 
 
 
3.3 Method #3: Predictor-Corrector Control 
Strategy 
 

 This adaptive neural network controller takes 
advantage of the NN capabilities in performing system 
identification. The control activity is handled by two 
adaptive neural entities which identify the forward and 
the inverse F-15 model and are connected according to 
the predictor-corrector scheme22, 23. The identification 
of the forward dynamics of the plant is accomplished to 
estimate on-line the plant Jacobian, which is then used 
in the inverse model adaptation process to implement 
the back propagation through the model. 

The control scheme is based on the reference 
model direct inverse scheme (also known as predictor-
corrector) shown in Figure 3.  
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Figure 3.  Predictor-Corrector scheme 

 
Desired handling qualities are achieved through a 

reference model that is fed by pilot flight commands 
(

sticklonδ , 
sticklatδ , 

pedaldirδ ) and provides filtered 

angular rate ( , , ) and angular acceleration 

commands ( , , ) as describe in the 
subsection 3.1. These reference signals are processed 
by the neural controller, which calculates the required 

refp

refp
refq refr

refq rref
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control signals, reallocates them and feeds the 
actuators. In particular, the pitch control channel signal 
moves the collective stabilators, the roll channel 
commands the differential ailerons and the differential 
stabilators, the yaw control channel acts on the 
collective rudder and the differential canards. 
Collective canard deflections are scheduled as functions 
of Mach number and angle of attack. 

 As shown in Figure 3, the plant emulator 
represents the forward model while the controller action 
is carried out by the inverse model. The forward and the 
inverse models have both three input variables and 
three outputs as they identify the direct dynamic 
response of angular rates (p, q, r) to command inputs 
( latδ , lonδ , dirδ ) and viceversa. The forward model is 
based on three Multi-Input-Single-Output (MISO) 
networks connected in a parallel structure, whereas the 
inverse model employs a SISO network for the 
longitudinal channel (q) and two MISO networks for 
the lateral and directional channels (p, r).  Each neural 
network features a Multi Layer Perceptron (MLP) with 
a single hidden layer which implements the 
identification of NARX (Neural Auto Regressive with 
external inputs) systems according to the following 
scheme: 
 

 
)(f

)(f

invNNinv

fwrNNfwr

φ

φ

=

=

u

y
           (18) 

 

where φ is the regressor vector whose structure is 
shown in detail in Table 1 for both forward and inverse 
model. The blocks pointed out by the dashed lines are 
repeated in sequence depending on the number of 
inputs of the neural system. 
 

φfwr φinv 

y(k) 
: 

yi ref (k+1) 
yi(k) 

  
y(k-n+1) yi (k-n+1) 
ui (k-1) u(k-1) 

  
ui (k-n) u(k-n+1) 

Table 1. Regressor vector structure 

 
 In this implementation the input vector of the 

inverse NN is independent from the calculated output, 
that is the inverse model has no direct feedback. 
Avoiding this direct feedback of the NN output 
decreases the risk of oscillations during transient phases 
and allows greater time steps with a more real 
simulation time. The input signals u(k-1), u(k-2), …, 
u(k-n+1) (with n = network order) are provided by a 
linear inverse model which feeds the neural entity with 

an estimation of the plant input at the previous time 
steps ( , , )

comaδ
comsδ

comrδ lin according to the Eq. (3). 
Successively the NN inverse model can filter the 
signals and compensate for nonlinearities, modeling 
errors, model uncertainties and changes in dynamics 
due to failures and non-nominal flight conditions. 

Initially, the forward and the inverse models are 
pre-trained using the back-propagation technique 
featuring the Levenberg-Marquardt method24. In 
addition the two models are trained on-line in order to 
achieve adaptive and fault tolerant characteristics. The 
error functions which are minimized for the forward 
and the inverse model on-line training are respectively: 
 

 ( ) (1
2

ˆ
m

T
m p )ˆ= − −E y y K y y          (19) 

 ( ) (1
2 c

T
c ref p ref )= − −E y y K y y         (20) 

 
The on-line training algorithm belongs to the Recursive 
Identification methods category and it is an extension of 
the Recursive Pseudolinear Regression (RPLR) 
algorithm25. This technique is based on the step by step 
updating of the Θfwr and Θinv  vectors, which group in 
vector shape respectively the couples of  weight 
matrices W1fwr, W2fwr  and W1inv, W2inv. Omitting 
subscripts for simplicity, the equations below represent 
the kth time step of the RPLR algorithm: 
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P
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applied according to the constant-trace technique. The 
Ψ matrix determines the gradient descent direction; for 
the forward model it is simply: 
 

( ) ( )ˆ ˆ
m fwr m fwrm mfwr y mk k= − ∇ =∇Θ ΘΨ e ( )ky         (22) 

 

with m = 1,...,3, while for the inverse model it is: 
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with m = 1,...,3 and where the generic (j,i) element can 
be written as follows: 
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4. Results of the Comparative Study 
 

 The performance comparison of the neural 
controllers has been carried out through three different 
maneuvers of 200 seconds each involving nominal 
flight conditions as well as stabilator and canard 
failures. Particularly, each maneuver consists of three 
phases: 
- starting from a steady level flight at 6000 m and Mach 
= 0.75, there are three short doublets on the roll, pitch 
and yaw channels, respectively; 
- after 45 seconds there is a descent to about 1500 m 
and Mach = 0.5 which must be over within 80 s; 
- after the trim into the new flight condition, the set of 
doublets on the three channels are repeated as described 
above. 

The first maneuver (Man #1) has been conducted 
in nominal flight conditions (no failures), whereas the 
second and the third maneuvers (Man #2 and Man #3) 
present a failure respectively on the right stabilator 
(jammed at – 5 deg.) and on the right canard (jammed 
at – 5 deg.), both occurring in the first phase after 30 s. 

The performance of the different approaches have 
been illustrated by comparing the following parameters: 
- tracking performance, in terms of mean value, 
maximum value and standard deviation of the errors 
between reference model angular rates and actual 
aircraft angular rates; 
- control activity (ICA), in terms of the integral of the 
absolute value of the primary control surface 
deflections (collective and differential stabilators, 
differential ailerons, collective and differential canards, 
rudders). 

Results listed in Table 2 and Table 3 show the 
performance of the three methods for Man #1 in non 
failure condition; Table 4 and Table 5 present the 
tracking error and the ICA for Man #2 with right 
stabilator failure while Table 6 and Table 7 concern 
Man #3, with right canard failure. The best results 
among the three methods are pointed out by grey-
colored cells in the tables mentioned above. Figures 4, 
6 and 8 show the comparison between Method #1 and 
Method #3 in terms of tracking error for the three 
channels (roll, pitch and yaw); whereas Figures 5, 7 and 
9 represent the reference and the actual signal of 
angular rates for Method #2. Figures from 10 to 13 
show the deflections of the control surfaces exposed to 
failure (stabilators and canards) for the three methods in 
non failure (Man #1) and failure condition (Man #2 and 
Man #3). 

Man #1 has been accomplished with the same pre-
recorded time history of command inputs for all the 
three methods: this maneuver presents a substantial 
change of the operative flight condition and 
consequently the state variables vary within a wide 
portion of the flight envelope. Table 2 and Table 3 

show that both Method #1 and Method #3 provide 
valuable and comparable performance in terms of 
tracking error (Figure 4), adaptation and control activity 
(Figures 10 and 12) but Method #3 requires more 
computational efforts with higher simulation time 
(about up to 14 times). On the other hand, Method #2 
achieves poor results especially in terms of tracking 
error on the roll channel as it can be seen in Table 2 and 
Figure 5. Man #2 and Man #3 have been performed 
with the pilot-in-the-loop and show up the combined 
effects of the failure and of the operative condition 
change (in terms of altitude and ground speed). The 
relative results presented in Table 4 to Table 7 highlight 
that tracking errors slightly increase, in particular for 
the pitch channel in Man #2 and for the roll channel in 
Man #3, as failures affect the aerodynamic surfaces that 
contribute, respectively, to the pitch and roll angular 
rate. In addition the control activity increases for all the 
control surfaces, apart from the surface directly affected 
by the failure: this is due to the asymmetry of the 
failure which may introduce dynamic coupling effects 
and alteration of both force and moment setting up. 

In failure conditions, it can be noticed that Method 
#1 is more adaptive and achieves better results than 
Method #2 both in terms of tracking errors (Figures 7 
and 9) and control activity (Figures 11 and 13). 
Furthermore, Method #1 provides even better 
performance than Method #3 in terms of tracking 
errors, except for the roll channel (Figures 6 and 8), and 
above all in terms of control activity (Figures 11 and 
13). In fact, Method #3 with the RPLR algorithm 
requires a large computational effort because of the 
covariance matrices , whose dimensions grow with 
the square of the dimension of each NN. Obviously, 
higher simulation time leads the pilot to increase 
remarkably his/her control action through the joystick 
device with the drawback of an intensive control 
activity during the maneuvers performed with the pilot-
in-the-loop. However, as shown in Figure 14 and Figure 
15, Method #1 presents some oscillations on the control 
surface deflections that may damage the structure of the 
primary control surfaces. 

P

 
 

5. Conclusions 
 
 Performance analisys of three adaptive neural 
control schemes has been carried out in different flight 
conditions and control surface failures. Results show 
the capability of the neural controllers of adapting to 
operative flight condition changes and of accomodating 
various damages with a very short transient. Both 
Method #1 and Method #3 performs remarkable results 
in all the considered maneuvers, while Method #2 
achieves poor results. However, Method #3 requires a 
large amount of CPU and the simulation time is rather 
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high, therefore when the maneuvers are performed with 
the pilot-in-the-loop (Man #2 and Man #3), the control 
activity increases significantly with respect to the other 
methods. 
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Figure 4. Tracking errors of Method #1 and Method #3 

(Man #1 = no failure) 
 
 

 
 
Figure 6. Tracking errors of Method #1 and Method #3 

(Man #2 = stabilator failure) 
 
 

 
 
Figure 8. Tracking errors of Method #1 and Method #3 

(Man #3 = canard failure) 

 
 

 
 

Figure 5. Reference and actual signals of Method #2 
(Man #1 = no failure) 

 
 

 
 

Figure 7. Reference and actual signals of Method #2 
(Man #2 = stabilator failure) 

 
 

 
 

Figure 9. Reference and actual signals of Method #2 
(Man #3 = canard failure) 
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Figure 10. Left/Right Stabilator deflections (Man #1 = 

no failure) 
 
 
 

 
 
Figure 12. Left/Right Canard deflections (Man #1 = no 

failure) 
 
 
 

 
 

Figure 14. Method #1: stabilators and ailerons 
deflection (Man #3 = canard failure) 

 

 
 
Figure 11. Left/Right Stabilator deflections (Man #2 = 

stabilator failure) 
 
 
 

 
 

Figure 13. Left/Right Canard deflections (Man #3 = 
canard failure) 

 
 
 

 
 
Figure 15. Method #1: rudders and canards deflection 

(Man #3 = canard failure) 
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Mean error  [rad/sec] Std error  [rad/sec] Max  error  [rad/sec] Tracking 

error roll pitch yaw roll pitch yaw roll pitch yaw 
Method #1 -3.218E-5 4.751E-5 -1.081E-5 1.429E-2 1.954E-3 8.971E-4  9.667E-2  1.320E-2  4.257E-3
Method #2  2.477E-3 1.248E-3 -7.739E-3 4.843E-1 4.116E-2 1.153E-1  3.195E+0  2.590E-1  6.733E-1
Method #3  1.496E-5 8.364E-4  1.570E-5 1.319E-3 4.235E-3 1.320E-3  9.349E-3  2.340E-2  8.067E-3

 
Table 2. Tracking performance (Man #1 = no failure) 

 
 

Stabilators Ailerons Rudders Canards Integral Control 
Activity (ICA) collective differential differential collective collective differential

Method #1 2.371E+00 1.209E+00 2.412E+00 1.117E+00 2.314E+00 1.211E+00
Method #2 4.857E+00  5.596E+00 6.791E+00 5.930E+00  1.224E+01 5.828E+00
Method #3 2.763E+00 1.904E+00 3.808E+00 2.123E+00 5.382E+00 1.806E+00

 
Table 3. NN Control Activity (Man #1 = no failure) 

 
 

Mean error  [rad/sec] Std error  [rad/sec] Max  error  [rad/sec] Tracking 
error roll pitch yaw roll pitch yaw roll pitch yaw 

Method #1 -4.718E-4 -1.603E-4 -1.696E-4 4.560E-2 1.601E-2 5.615E-3 4.505E-1 1.131E-1 3.294E-2
Method #2 -5.204E-1  -1.328E-3  -2.255E-2 5.633E-1  5.717E-2  1.156E-1 3.210E+0 2.838E-1  6.518E-1
Method #3  1.551E-3 -1.784E-3  5.945E-3 3.912E-2 1.231E-2 2.559E-2 1.984E-1 1.061E-1 1.248E-1

 
Table 4. Tracking performance (Man #2 = stabilator failure) 

 
 

Stabilators Ailerons Rudders Canards Integral Control 
Activity (ICA) collective differential differential collective collective differential

Method #1 2.656E+00 1.814E+01 1.799E+01 3.742E+00 2.290E+00 3.397E+00
Method #2 5.284E+00 3.449E+01 2.636E+01 7.084E+00 9.056E+00 6.323E+00
Method #3 9.946E+00 2.235E+01 3.259E+01 1.445E+01 1.859E+01 1.540E+01

 
Table 5. NN Control Activity (Man #2 = stabilator failure) 

 
 

Mean error  [rad/sec] Std error  [rad/sec] Max  error  [rad/sec] Tracking 
error roll pitch yaw roll pitch yaw roll pitch yaw 

Method #1 -1.928E-4 1.010E-4  -3.335E-5 4.867E-2  8.037E-3 3.980E-3  4.013E-1 6.986E-2  2.589E-2
Method #2 -7.961E-2 9.922E-4  -7.312E-3 3.811E-1  4.111E-2  1.024E-1 3.355E+0 2.194E-1    6.859E-1
Method #3  1.551E-3 -1.784E-3  5.945E-3 3.912E-2  1.231E-2 2.559E-2  1.984E-1 1.061E-1  1.248E-1

 
Table 6. Tracking performance (Man #3 = canard failure) 

 
 

Stabilators Ailerons Rudders Canards Integral Control 
Activity (ICA) collective differential differential collective collective differential

Method #1 3.466E+00 2.771E+00 5.534E+00 4.372E+00 6.267E+00 4.527E+00
Method #2 8.213E+00 1.050E+01 1.275E+01 8.005E+00 1.433E+01 1.327E+01
Method #3 9.946E+00 2.235E+01 3.259E+01 1.445E+01 1.859E+01 1.540E+01

 
Table 7. NN Control Activity (Man #3 = canard failure) 
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