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Abstract Wediscuss channel surfaces in the context of Lie sphere geometry and char-
acterise them as certain �0-surfaces. Since �0-surfaces possess a rich transformation
theory, we study the behaviour of channel surfaces under these transformations. Fur-
thermore, by using certain Dupin cyclide congruences, we characterise Ribaucour
pairs of channel surfaces.

Keywords Channel surface · Lie sphere geometry · Ribaucour transformation ·
Legendre immersion · Integrable system · Polynomial conserved quantity

Mathematics Subject Classification 53A40 · 53B25 · 37K25 · 37K35

1 Introduction

Channel surfaces, that is, envelopes of one-parameter families of spheres, have been
intensively studied for many years. Although these surfaces are a classical notion
(e.g., Blaschke 1929; Lie 1872; Monge 1850), they are also a subject of interest in
recent research. For example, in Bernstein (2001), Hertrich-Jeromin (2003), Hertrich-
Jeromin et al. (2001), Jensen et al. (2016) and Musso and Nicolodi (1999, 2002)
channel surfaces were studied in the context of Möbius geometry and in Musso
and Nicolodi (1995) and Peternell and Pottmann (1998) they were given a Laguerre
geometric treatment. Furthermore, the subclasses of channel linear Weingarten sur-
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faces (Hertrich-Jeromin et al. 2015) and Willmore channel surfaces (Musso and
Nicolodi 1999) were recently discussed. Moreover, a novel application of channel sur-
faces to semi-discrete curvature line netswas explored inBurstall et al. (2017).Channel
surfaces are also widely used in Computer Aided Geometric Design and the existence
of a rational parametrisation was investigated in Peternell and Pottmann (1997).

In this paper, we discuss various aspects of channel surfaces in the context of Lie
sphere geometry. Following the example ofBlaschke (1929) andmore recently (Jensen
et al. 2016), we exploit the hexaspherical coordinate model introduced by Lie (1872).
In Sect. 3, by applying the gauge theoretic approach of Burstall et al. (2018), Clarke
(2012) and Pember (2018), we show that Legendre immersions parametrising channel
surfaces are�0-surfaces that admit linear conservedquantities. Furthermore,weobtain
the somewhat surprising result that �0-surfaces possessing a polynomial conserved
quantity are channel surfaces. In Musso and Nicolodi (2006) it was shown that �0-
surfaces are deformable surfaces inLie sphere geometry. This induces a transformation
of �0-surfaces called the Calapso transformation. We prove that this transformation
preserves the class of channel surfaces.

In Sect. 4 we characterise Ribaucour pairs of umbilic-free Legendre immersions
in terms of a special pair of Dupin cyclide congruences enveloping both surfaces. We
investigate the behaviour of these Dupin cyclide congruences when both Legendre
immersions participating in this Ribaucour pair parametrise channel surfaces. In a
similar vein, given a pair of sphere curves, we construct two 1-parameter families of
Dupin cyclideswhose coincidence determineswhen the envelopes of the sphere curves
form a Ribaucour pair (with corresponding circular curvature lines). We then consider
the Lie-Darboux transformation of �0-surfaces, a particular Ribaucour transforma-
tion. We show that any Lie-Darboux transform of a channel surface is again a channel
surface. Furthermore, any Ribaucour pair of channel surfaces (with corresponding
circular curvature lines) can be arranged as a Lie-Darboux pair.

In Sect. 5 we apply our theory of channel surfaces to the special case of curves
in conformal geometry. We recover a result of Burstall and Hertrich-Jeromin (2006),
showing how the classical notion of Ribaucour transforms of curves is related to the
Ribaucour transforms of Legendre immersions parametrising these curves.

2 Preliminaries

Given a vector space V and a manifold �, we shall denote by V the trivial bundle
� ×V . Given a vector subbundleW of V , we define the derived bundle ofW , denoted
W (1), to be the subset of V consisting of the images of sections of W and derivatives
of sections of W with respect to the trivial connection on V . In this paper, most of
the derived bundles that appear will be vector subbundles of the trivial bundle, but in
general this is not always the case as, for example, the rank of the derived bundle may
not be constant over �.

Throughout this paperwe shall be considering thepseudo-Euclidean spaceR4,2, i.e.,
a 6-dimensional vector space equippedwith a non-degenerate symmetric bilinear form
( , ) of signature (4, 2). Let L denote the lightcone of R4,2. According to Lie’s (1872)
correspondence, points in the projective lightcone P(L) correspond to spheres in any
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three dimensional space form. A detailed modern account of this is given in Cecil
(2008). Given a manifold � we then have that any smooth map s : � → P(L)

corresponds to a sphere congruence in any space form. We shall thus refer to s as
a sphere congruence. Such a map can also be identified as a smooth rank 1 null
subbundle of the trivial bundle R4,2.

The orthogonal group O(4, 2) acts transitively on L and thus acts transitively on
P(L). In Cecil (2008) it is shown that O(4, 2) is a double cover for the group of
Lie sphere transformations. The Lie algebra o(4, 2) of O(4, 2) is well known to be
isomorphic to the exterior algebra ∧2

R
4,2 via the identification

a ∧ b (c) = (a, c)b − (b, c)a,

for a, b, c ∈ R
4,2. We shall frequently use this fact throughout this paper.

Given a manifold �, we define the following product of two vector-valued 1-forms
ω1, ω2 ∈ �1(R4,2):

ω1 � ω2(X,Y ) := ω1(X) ∧ ω2(Y ) − ω1(Y ) ∧ ω2(X),

for X,Y ∈ �T�. Hence, ω1 � ω2 is a 2-form taking values in ∧2
R
4,2. Notice that

ω1 � ω2 = ω2 � ω1.
Recall that we also have the following product for two so(4, 2)-valued 1-forms

A, B ∈ �1(so(4, 2)):

[A ∧ B](X,Y ) = [A(X), B(Y )] − [A(Y ), B(X)],

for X,Y ∈ �T�.

2.1 Legendre maps

LetZ denote theGrassmannian of isotropic 2-dimensional subspaces ofR4,2. Suppose
that � is a 2-dimensional manifold and let f : � → Z be a smooth map. By viewing
f as a 2-dimensional subbundle of the trivial bundle R

4,2, we may define a tensor,
analogous to the solder form defined in Burstall and Calderbank (2004) and Burstall
and Rawnsley (1990),

β : T� → Hom( f, f (1)/ f ), X �→ (σ �→ dXσ mod f ).

In accordance with (Cecil 2008, Theorem 4.3) we have the following definition:

Definition 2.1 A map f : � → Z is a Legendre map if it satisfies the contact
condition, f (1) ≤ f ⊥, and the immersion condition, ker β = {0}.
Remark 2.2 The contact and immersion conditions together imply that f (1) = f ⊥
(see Pinkall 1985).

Note that f ⊥/ f is a rank 2 subbundle of R4,2/ f that inherits a positive definite
metric from R

4,2.
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Definition 2.3 Let p ∈ �. Then a 1-dimensional subspace s(p) ≤ f (p) is a cur-
vature sphere of f at p if there exists a non-zero subspace Ts(p) ≤ Tp� such that
β(Ts(p))s(p) = 0. We call the maximal such Ts(p) the curvature space of s(p).

Itwas shown inPinkall (1985) that at each point p there is either one or two curvature
spheres. We say that p is an umbilic point of f if there is exactly one curvature sphere
s(p) at p and in that case Ts(p) = Tp�.

Away from umbilic points we have that the curvature spheres form two rank 1
subbundles s1, s2 ≤ f with respective curvature subbundles T1 = ⋃

p∈� Ts1(p) and
T2 = ⋃

p∈� Ts2(p). We then have that f = s1 ⊕ s2 and T� = T1 ⊕ T2. A conformal
structure c is induced on T� as the set of all indefinite metrics whose null lines are
T1 and T2. This conformal structure induces a Hodge-star operator � that acts as id on
T ∗
1 and −id on T ∗

2 .
Suppose that f is umbilic-free. Then for each curvature subbundle Ti wemay define

a rank 3 subbundle fi ≤ f ⊥ as the set of sections of f and derivatives of sections
of f along Ti . One can check that given any non-zero section σ ∈ � f such that
〈σ 〉 ∩ si = {0} we have that

fi = f ⊕ dσ(Ti ).

Furthermore,

f ⊥/ f = f1/ f ⊕⊥ f2/ f,

and each fi/ f inherits a positive definite metric from that of R4,2.

Lemma 2.4 Let X ∈ �T1 and Y ∈ �T2 be nowhere zero. Then for any sections
σ, σ̃ ∈ � f , (dXσ, dX σ̃ ) = 0 (or, (dYσ, dY σ̃ ) = 0) if and only if either σ ∈ �s1 or
σ̃ ∈ �s1 (respectively, σ ∈ �s2 or σ̃ ∈ �s2).

Proof Let σ1 ∈ �s1 and σ2 ∈ �s2 be lifts of the curvature sphere congruences. Then
we may write σ = ασ1 + βσ2 and σ̃ = γ σ1 + δσ2, for some smooth functions
α, β, γ, δ. Then

(dXσ, dX σ̃ ) = βδ(dXσ2, dXσ2),

since dXσ1 ∈ � f . Since f2/ f inherits a positive definite metric from R
4,2, we have

that (dXσ2, dXσ2) is nowhere zero. Thus, (dXσ, dX σ̃ ) = 0 if and only if β = 0 or
δ = 0, i.e., σ ∈ �s1 or σ̃1 ∈ �s1. 
�

2.2 Dupin cyclides

After spheres, Dupin cyclides are the next simplest object in Lie sphere geometry. One
constructs them as follows: let D be a 3-dimensional subspace of R4,2 which inherits
an inner product of signature (2, 1) from R

4,2. Then we have a splitting of R4,2 as

R
4,2 = D ⊕ D⊥.
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One may then regularly parametrise the projective lightcones of D and D⊥ by maps
L : S1 → P(D) and L⊥ : S1 → P(D⊥). Then one obtains a Legendre map

X : S1 × S1 → Z, X (u, v) = L(u) ⊕ L⊥(v).

The projection of X to any space form yields a parametrisation of a Dupin cyclide.
Moreover, L and L⊥ are the curvature sphere congruences of X .

Dupin cyclides were originally defined by Dupin (1822) as the envelope of a 1-
parameter family of spheres tangent to three given spheres. In this way a Dupin cyclide
is determined by these three spheres. This can be seen by letting a, b, c ∈ P(L) such
that their span has signature (2, 1). Then letting D = a ⊕ b ⊕ c, one can construct
a Dupin cyclide as above. Furthermore, a, b and c belong to one family of curvature
spheres of the resulting Dupin cyclide and every curvature sphere in the other family
is simultaneously tangent to a, b and c.

Now suppose that f : � → Z is an umbilic-free Legendre map with curvature
sphere congruences s1 and s2 and respective curvature subbundles T1 and T2. Let
σ1 ∈ �s1 and σ2 ∈ �s2 be lifts of the curvature sphere congruences and let X ∈ �T1
and Y ∈ �T2. Then from Definition 2.3 it follows immediately that

dXσ1, dYσ2 ∈ � f.

Let

S1 := 〈σ1, dYσ1, dY dYσ1〉 and S2 := 〈σ2, dXσ2, dXdXσ2〉 .

It was shown in Blaschke (1929) that S1 and S2 are orthogonal rank 3 subbundles
of R4,2 and the restriction of the metric on R

4,2 to each Si has signature (2, 1).
Furthermore, S1 and S2 do not depend on choices andwe have the following orthogonal
splitting

R
4,2 = S1 ⊕⊥ S2

of the trivial bundle. We refer to this splitting as the Lie cyclide splitting of R
4,2

because it can be identified with the Lie cyclides of f , i.e., a special congruence of
Dupin cyclides making second order contact with f (see Blaschke 1929, Sect. 86).

This splitting now yields a splitting of the trivial connection d on R
4,2:

d = D + N ,

where D is the direct sum of the induced connections on S1 and S2 and

N = d − D ∈ �1((Hom(S1, S2) ⊕ Hom(S2, S1)) ∩ o(4, 2)). (1)

Since S1 and S2 are orthogonal, we have thatD is a metric connection on R4,2 andN
is a skew-symmetric endomorphism. Hence, N ∈ �1(S1 ∧ S2).
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3 Channel surfaces in Lie sphere geometry

Channel surfaces have been a rich area of interest for many years. Examples of such
surfaces include surfaces of revolution, tubular surfaces and Dupin cyclides. They are
given simply by the following well-known definition:

Definition 3.1 A channel surface is the envelope of a 1-parameter family of spheres.

There are several characterisations of these surfaces, for example, in Euclidean
geometry they are the surfaces for which one family of curvature lines are circular or,
equivalently, one of the principal curvatures is constant along the corresponding family
of curvature lines, i.e., in terms of local curvature line coordinates (u, v), κ1,u = 0
or κ2,v = 0. To begin with, we shall recall some facts about channel surfaces (cf.
Blaschke 1929; Jensen et al. 2016) in the Lie geometric setup.

A sphere curve can be realised as a map s : I → P(L), where I is a 1-dimensional
manifold. We impose a regularity condition that ensures the existence of an envelope
of s: the induced metric on s(1)/s is positive definite. We now seek a parametrisation
of the envelope of this sphere curve. In order to do this we shall construct a Legendre
map enveloping s. Firstly, let V be a rank 3 subbundle of I × R

4,2 such that the
induced metric on V has signature (2, 1) and such that s(1) ≤ V . Then V⊥ is a rank
3 subbundle of I × R

4,2 and at each point t ∈ I we may parametrise the projective
light cone of V⊥ by a map s̃t : S1 → P(L). Without loss of generality, we make the
assumption that this is a regular parametrisation, i.e., the induced metric on s̃(1)

t /s̃t is
positive definite. We may extend this smoothly to all of I to obtain a map

s̃ : I × S1 → P(L).

We also extend the maps s and V trivially to maps on I × S1.

Lemma 3.2 f := s ⊕ s̃ is a Legendre map.

Proof Since s ≤ V and s̃ ≤ V⊥ we have that f := s⊕ s̃ is a map from I × S1 intoZ .
Furthermore, s(1) ≤ V ⊥ s̃. Hence, f satisfies the contact condition. The immersion
condition follows from the regularity conditions of s on I and s̃t on S1 for each t ∈ I .


�
Remark 3.3 Suppose that f = s ⊕ s̃ is a Legendre map arising from V . Suppose that
V is another rank 3 subbundle of I × R

4,2 such that the induced metric on V has
signature (2, 1) and such that s(1) ≤ V . Then

s̄ := f ∩ V
⊥ : I × S1 → P(L)

is well-defined, and since V only depends on I , s̄(t, .) parametrises the projective

lightcone of V
⊥
t , for each t ∈ I .

Since s only depends on I , one has that s is a curvature sphere congruence of f with
curvature subbundle T1 := T S1. If one chooses V = 〈σ, dYσ, dY dYσ 〉, where σ ∈ �s
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and Y ∈ �T I , then the resulting s̃ will be the other curvature sphere congruence of
f with curvature subbundle T2 := T I : this follows from the fact that for any lifts
σ ∈ �s and σ̃ ∈ �s̃,

0 = (dY dYσ, σ̃ ) = −(dYσ, dY σ̃ ).

Then by Lemma 2.4, one has that either σ ∈ �s2 or σ̃ ∈ �s2. However, our assumption
that s(1)/s is positive definite means that σ̃ ∈ �s2. In this case, the splitting of the
trivial bundle R4,2 = V ⊕ V⊥ is the Lie cyclide splitting of f .

Conversely, suppose that f : � → Z is an umbilic-free Legendre map such that
one of the curvature sphere congruence si is constant along the leaves of its curvature
subbundle Ti , i.e., dXσi ∈ �si for σi ∈ �si and X ∈ �Ti . Then f envelopes a sphere
congruence s := si that only depends on one parameter. Hence, f parametrises a
channel surface.

Proposition 3.4 An umbilic-free Legendre map f : � → Z parametrises a channel
surface if and only if one of the curvature sphere congruences si is constant along the
leaves of its curvature subbundle Ti .

In view of Proposition 3.4 we have the following definition:

Definition 3.5 Ti is called a circular curvature direction of f if si is constant along
the leaves of Ti .

Since the Lie cyclides of a Legendre map are given by

S1 = 〈σ1, dYσ1, dY dYσ1〉 and S2 = 〈σ2, dXσ2, dXdXσ2〉,

where σ1 ∈ �s1, σ2 ∈ �s2, X ∈ �T1 and Y ∈ �T2, one deduces the following
corollary:

Corollary 3.6 An umbilic-free Legendre map f : � → Z parametrises a channel
surface if and only if the Lie cyclides of f are constant along the leaves of one of the
curvature subbundles Ti , i.e., N (Ti ) = 0.

3.1 Channel surfaces as �0-surfaces

In Musso and Nicolodi (2006) a class of surfaces, called Lie applicable surfaces,
are shown to be the only surfaces in Lie sphere geometry that admit second order
deformations. It is shown that this class of surfaces naturally splits into two subclasses,
�-surfaces and �0-surfaces. This is the Lie sphere geometric analogue of R- and
R0-surfaces in projective geometry. Although �0-surfaces are objects of Lie sphere
geometry, they were classically defined (Demoulin 1911a, b, c) as those surfaces in
space forms which satisfy

(
V

U

√
E√
G

κ1,u

κ1 − κ2

)

v

= 0 or

(
U

V

√
G√
E

κ2,v

κ1 − κ2

)

u

= 0, (2)
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for some functions U of u and V of v, in terms of curvature line coordinates (u, v),
where E and G denote the usual coefficients of the first fundamental form and κ1 and
κ2 denote the principal curvatures. Since channel surfaces in space forms are those that
satisfy either κ1,u = 0 or κ2,v = 0, it is immediate that these surfaces are �0-surfaces
and in fact any choice of functions U and V will satisfy (2).

We shall use the following gauge-theoretic definition of �0-surfaces:

Definition 3.7 (Pember 2018, Definition 3.1) A Legendre map f : � → Z is an
�0-surface if there exists a closed 1-form η ∈ �1( f ∧ f ⊥) such that [η ∧ η] = 0 and

q(X,Y ) = tr(σ �→ η(X)dYσ : f → f )

is a non-zero degenerate quadratic differential.

In fact, given a closed 1-form η ∈ �1( f ∧ f ⊥), one obtains a family of such closed
1-forms called the gauge orbit of η by defining η̃ := η − dτ , for any τ ∈ �(∧2 f ).
Furthermore, the quadratic differential is well defined on this gauge orbit, i.e., q̃ = q,
where q̃ denotes the quadratic differential of η̃. It was shown in Pember (2018) that
for �0-surfaces there exists a special member of this gauge orbit called the middle
potential satisfying η ∈ �1(si ∧ f ⊥) for one of the curvature sphere congruences si ,
namely,

η = σi ∧ �dσi

for some lift σi ∈ �si . In this case we say that si is an isothermic curvature sphere
congruence.

Now suppose that a Legendre map f parametrises a channel surface. Then by
Proposition 3.4 one of the curvature spheres, say s1, is constant along the leaves of
T1. We may choose a lift σ1 of s1 so that d|T1σ1 = 0. Such a lift is determined up to
multiplication by a function μ : � → R such that d|T1μ = 0. Now consider d(�dσ1).
If we let X ∈ �T1 and Y ∈ �T2, then

d(�dσ1)(X,Y ) = dX (�dYσ1) − dY (�dXσ1) − �d[X,Y ]σ1
= −dXdYσ1 − dY dXσ1 − d�[X,Y ]σ1
= −2dY dXσ1 − d[X,Y ]+�[X,Y ]σ1
= 0,

since d|T1σ1 = 0 and [X,Y ] + �[X,Y ] ∈ �T1. Hence, d(�dσ1) = 0. This implies
that the f ∧ f ⊥ valued 1-form

η = σ1 ∧ �dσ1 (3)

is closed. Since η(T1) = 0, it follows trivially that [η ∧ η] = 0. Furthermore, the
quadratic differential

q(X,Y ) = tr(σ �→ η(X)dYσ) = −(�dXσ1, dYσ1),

is non-zero, taking values in (T ∗
2 )2. Hence, f is an �0-surface.
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In summary, we have seen in two different ways that:

Proposition 3.8 Channel surfaces are �0-surfaces.

Given a function μ : � → R such that d|T1μ = 0, by defining σ̃1 = μσ1 we have
that

η̃ = σ̃1 ∧ �dσ̃1

is a closed 1-form with values in f ∧ f ⊥. We then have that the quadratic differential
q̃ satisfies q̃ = μ2q. Therefore, since the quadratic differentials do not coincide we
have that η and η̃ do not belong to the same gauge orbit.

It is well known that �0-surfaces, and more generally Lie applicable surfaces,
constitute an integrable system, stemming from the presence of a 1-parameter family
of flat connections:

Lemma 3.9 (Clarke 2012, Lemma 4.2.6) Suppose that η ∈ �1( f ∧ f ⊥) is closed
and [η ∧ η] = 0. Then {d + tη}t∈R is a 1-parameter family of flat connections.

It was shown inBurstall et al. (2018) that onemay distinguish subclasses of surfaces
amongst �-surfaces by using polynomial conserved quantities of the aforementioned
family of flat connections. Furthermore, it was shown in Burstall et al. (2012) that
�0-surfaces possessing a constant conserved quantity project to tubular surfaces in
certain space forms.We shall now investigate general polynomial conserved quantities
of �0-surfaces. Firstly, let us recall the definition of a polynomial conserved quantity:

Definition 3.10 A non-zero polynomial p = p(t) ∈ �R4,2[t] is called a polynomial
conserved quantity of {d + tη}t∈R if p(t) is a parallel section of d + tη for all t ∈ R.

It was shown in Burstall et al. (2018, Lemma 3.2) that if {d + tη}t∈R admits a
polynomial conserved quantity, then for any other member η̃ in the gauge orbit of η,
{d + t η̃}t∈R admits a polynomial conserved quantity.

The following theorem shows that we may distinguish channel surfaces from gen-
eral �0-surfaces by the presence of a polynomial conserved quantity:

Theorem 3.11 Channel surfaces admit gauge orbits with linear conserved quantities.
On the other hand, any �0-surface with a polynomial conserved quantity is a channel
surface.

Proof Suppose that f = s1 ⊕ s2 is a channel surface with s1 constant along the leaves
of T1. Let σ1 ∈ �s1 be a lift of s1 such that d|T1σ1 = 0 and let p be a non-zero vector
in R

4,2. Then the lift σ̃1 := − 1
(σ1,p)

σ1 satisfies d|T1 σ̃1 = 0 and (σ̃1, p) = −1. Now if
we let η̃ := σ̃1 ∧ �dσ̃1 then η̃ is closed and p + t σ̃1 is a linear conserved quantity of
d + t η̃.

Now suppose that f is an�0-surface with a closed 1-form η = σ1∧�dσ1. Suppose
further that d+tη admits a polynomial conserved quantity p(t) = p0+tp1+...+td pd
with pd �= 0. For a contradiction, let us assume that f is not a channel surface. This
implies that s(1)

1 = f ⊕ dσ1(T2). Now,

0 = ηpd = (σ1 ∧ �dσ1)pd = (σ1, pd) � dσ1 − (�dσ1, pd)σ1.
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Thus, (σ1, pd) = 0 and (�dσ1, pd) = 0. Hence, pd ∈ �(s(1)
1 )⊥. Thus, we may write

pd = a σ1 + b σ2 + c dXσ2,

where σ2 ∈ �s2 and X ∈ �T1. Since dpd = −ηpd−1, one has that dpd ∈ �1(s(1)
1 ).

This implies that

0 = dX pd mod s(1)
1 = dXc dXσ2 + c dXdXσ2 + b dXσ2 mod s(1)

1 .

Since dXσ2 and dXdXσ2 are linearly independent, one has that c = b = 0. Now,

a dσ1 mod s1 = −(σ1, pd−1) � dσ1 mod s1.

This can only hold if a = (σ1, pd−1) = 0, which contradicts that pd �= 0. 
�

3.2 Calapso transforms of channel surfaces

As previously mentioned, �0-surfaces have a rich transformation theory. One trans-
formation that arises for these surfaces is the Calapso transformation. Suppose that
η ∈ �1( f ∧ f ⊥) is closed and [η∧η] = 0. Let {d+tη}t∈R be the resulting 1-parameter
family of flat connections. For each t ∈ R, there exists a local orthogonal trivialising
gauge transformation T (t) : � → O(4, 2), that is,

T (t) · (d + tη) = d.

Definition 3.12 f t := T (t) f is called a Calapso transform of f .

In Pember (2018) it was shown that f t is again a Lie applicable surface whose
quadratic differential satisfies qt = q. Furthermore, the curvature spheres of f t are
given by st1 = T (t)s1 and st2 = T (t)s2 with respective curvature subbundles T t

1 = T1
and T t

2 = T2.
Suppose that f is a channel surface and, without loss of generality, suppose that

T1 is the circular curvature direction of f . Then the closed 1-form η ∈ �1( f ∧ f ⊥)

constructed in (3) satisfies η(T1) = 0. Now if σ t
1 ∈ �st1, then σ t

1 = T (t)σ1, for some
σ1 ∈ �s1. Hence, for X ∈ �T1,

dXσ t
1 = T (t)(dX + tη(X))σ1 = T (t)dXσ1 ∈ �st1,

since dXσ1 ∈ �s1. Therefore, st1 is constant along the leaves of T1 and thus f t is a
channel surface with circular direction T1.

Theorem 3.13 The Calapso transforms of channel surfaces are channel surfaces with
the same circular curvature direction.
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4 Ribaucour transforms of channel surfaces

Blaschke (1929) proved that the Ribaucour transforms of a channel surface have
one family of spherical curvature lines. In this section we consider the Ribaucour
transforms of channel surfaces that are again channel surfaces. To begin with we
recall some facts about the Ribaucour transformation and associate to each Ribaucour
pair of surfaces a novel pair of Dupin cyclide congruences.

4.1 Ribaucour transforms

Suppose that f, f̂ : � → Z are pointwise distinct Legendre immersions enveloping
a common sphere congruence s0 := f ∩ f̂ . Assume that f and f̂ are umbilic-free
with respective curvature sphere congruences s1, s2 and ŝ1, ŝ2, and let T1, T2 ≤ T�

and T̂1, T̂2 ≤ T� denote their respective rank 1 curvature subbundles. Classically
two surfaces are Ribaucour transforms of each other if they are the envelopes of a
sphere congruence such that the curvature directions of the surfaces are preserved.
Interpreting this in the context of umbilic-free Legendre maps we have the following
definition:

Definition 4.1 Two umbilic-free Legendre maps f, f̂ : � → Z are Ribaucour trans-
forms of each other if f and f̂ envelope a common sphere congruence s0 and T̂1 = T1
and T̂2 = T2. We then say that f and f̂ are a Ribaucour pair.

In Burstall and Hertrich-Jeromin (2006), the condition that two Legendre maps be
Ribaucour transforms of each other was equated to the flatness of a certain normal
bundle. In Pember (2018, Corollary 2.11, Remark 2.12) this definition was shown to
be equivalent to the following:

Lemma 4.2 f and f̂ are Ribaucour transforms of each other if and only if for any
sphere congruences s ≤ f and ŝ ≤ f̂ such that s0 ∩ s = s0 ∩ ŝ = {0} one may choose
lifts σ ∈ �s and σ̂ ∈ �ŝ such that dσ, dσ̂ ∈ �1((s ⊕ ŝ)⊥).

We now show that a Ribaucour pair is equipped with a special pair of Dupin cyclide
congruences.

Proposition 4.3 Suppose that s0 nowhere coincides with the curvature sphere con-
gruences s1, s2 and ŝ1, ŝ2 of f and f̂ , respectively. Then f and f̂ are Ribaucour
transforms of each other if and only if

dσ̂1(T̂2) ≤ s1 ⊕ ŝ1 ⊕ dσ1(T2) and dσ̂2(T̂1) ≤ s2 ⊕ ŝ2 ⊕ dσ2(T1), (4)

where σi ∈ �si and σ̂i ∈ �ŝi .

Proof Suppose that f and f̂ are Ribaucour transforms of each other and thus T̂1 = T1
and T̂2 = T2. Then dXσ1 ∈ � f and dX σ̂1 ∈ � f̂ , for X ∈ �T1, σ1 ∈ �s1 and σ̂1 ∈ �ŝ1.
One then deduces that

s1 ⊕ ŝ1 ⊕ dσ1(T2) = s1 ⊕ ŝ1 ⊕ dσ̂1(T2) = 〈σ0, dXσ0, dXdXσ0〉⊥,
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for σ0 ∈ �s0. Similarly, one has that

s2 ⊕ ŝ2 ⊕ dσ2(T1) = s2 ⊕ ŝ2 ⊕ dσ̂2(T1) = 〈σ0, dYσ0, dY dYσ0〉⊥,

for Y ∈ �T2.
Conversely, suppose that (4) holds. Now for σ0 ∈ �s0 and X ∈ �T1, one has that

dXσ0 ⊥ s1 ⊕ ŝ1 ⊕ dσ1(T2). Thus, 0 = (dXσ0, dŶ σ̂1), for any σ̂1 ∈ �ŝ1 and Ŷ ∈ �T̂2.

Writing X = X̂ + μŶ , for some X̂ ∈ �T̂1 and smooth function μ, one has that

0 = (dX̂σ0, dŶ σ̂1) + μ(dŶσ0, dŶ σ̂1) = μ(dŶσ0, dŶ σ̂1),

since dX̂ σ̂1 ∈ � f̂ . By Lemma 2.4, (dŶσ0, dŶ σ̂1) �= 0, and thus μ = 0. Hence,

T̂1 = T1. A similar argument shows that T̂2 = T2. Hence, f and f̂ are Ribaucour
transforms of each other. 
�

We now seek a geometric interpretation of the conditions in (4). Suppose that (u, v)

are local curvature line coordinates of f about a point p = (u0, v0) and consider the
Dupin cyclide for which s1(u0, v0), s1(u0, v0 + ε) and ŝ1(u0, v0) are contained in
one family of curvature spheres, for sufficiently small ε �= 0. One obtains a Dupin
cyclide D1(p) by taking the limit as ε tends to zero. In this way one obtains a smooth
congruence D1 of Dupin cyclides over � and in fact this is represented as

D1 = s1 ⊕ ŝ1 ⊕ dσ1(T2).

On the other hand, suppose that (û, v̂) are curvature line coordinates for f̂ around
p = (û0, v̂0). One can consider the Dupin cyclide D̂1(û0, v̂0) formed by taking the
limit s1(û0, v̂0), ŝ1(û0, v̂0) and ŝ1(û0, v̂0 + ε) as ε tends to zero. We then obtain a
second smooth congruence D̂1 of Dupin cyclides over �:

D̂1 = s1 ⊕ ŝ1 ⊕ dσ̂1(T̂2).

One then deduces that the first condition of (4) is equivalent to asking that the two
Dupin cyclide congruences D1 and D̂1 coincide. The second condition of (4) can be
interpreted in terms of s2 and ŝ2 in an analogous way.

Therefore, if f and f̂ are a Ribaucour pair of umbilic-free Legendre immersions,
one obtains two special Dupin cyclide congruences enveloping f and f̂ :

Definition 4.4 The Dupin cyclide congruences

D1 := s1 ⊕ ŝ1 ⊕ dσ1(T2) = s1 ⊕ ŝ1 ⊕ dσ̂1(T2)

and

D2 := s2 ⊕ ŝ2 ⊕ dσ2(T1) = s2 ⊕ ŝ2 ⊕ dσ̂2(T1)

will be called the Ribaucour cyclide congruences of the Ribaucour pair f and f̂ .
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As shown in the proof of Proposition 4.3, one has that

D⊥
1 = 〈σ0, dXσ0, dXdXσ0〉 and D⊥

2 = 〈σ0, dYσ0, dY dYσ0〉,

where σ0 ∈ �s0, X ∈ �T1 and Y ∈ �T2.

4.2 Ribaucour transforms of channel surfaces

We now focus on the case of Ribaucour transforms between channel surfaces. Firstly,
we characterise when a Ribaucour pair consists of channel surfaces in terms of the
Ribaucour cyclide congruences:

Theorem 4.5 Suppose that f, f̂ : � → Z are a Ribaucour pair of umbilic-free
Legendre immersions. Then f and f̂ are channel surfaces with corresponding circular
curvature direction Ti if and only if one of the Ribaucour cyclide congruences Di is
constant along the leaves of Ti .

Proof Suppose that f and f̂ are channel surfaces with corresponding circular curva-
ture direction Ti . Without loss of generality, suppose that i = 1. Then we may choose
lifts σ1 ∈ �s1 and σ̂1 ∈ �ŝ1 such that dXσ1 = dX σ̂1 = 0 for any X ∈ �T1. Then for
any Y ∈ �T2,

dXdYσ1 = dY dXσ1 + d[X,Y ]σ1 = d[X,Y ]σ1.

Since dσ1(T1) = 0, d[X,Y ]σ1 ∈ �dσ1(T2). Thus, any ν ∈ �D1 satisfies dXν ∈ �D1.
Hence, D1 is constant along the leaves of T1.

Conversely, suppose that D1 is constant along the leaves of T1. Then for any lift
σ1 ∈ �s1, dσ1(T1) ≤ D1. On the other hand, dσ1(T1) ⊥ dσ1(T2) and dσ1(T1) ≤ f ⊥.
Thus dσ1(T1) ≤ s1 and s1 is constant along the leaves of T1. An analogous argument
shows that ŝ1 is constant along the leaves of T1, proving the result. 
�

We now change our viewpoint and seek a characterisation of the pairs of regular
sphere curves whose envelopes form a Ribaucour pair:

Theorem 4.6 Suppose that s, ŝ : I → P(L) are two regular sphere curves that never
span a contact element, i.e., s is nowhere orthogonal to ŝ. Then the envelopes of s
and ŝ are Ribaucour transforms1 of each other, with corresponding circular curvature
directions, if and only if s(1) ⊕ ŝ = ŝ(1) ⊕ s.

Proof Using the parametrisation of Sect. 3, let f, f̂ : I × S1 → Z be Legendre maps
enveloping s and ŝ, respectively, such that f and f̂ are Ribaucour transforms of each
other. Let s0 := f ∩ f̂ . Assuming that the circular curvature directions of f and f̂
correspond, one has that s1 = s and ŝ1 = ŝ. It then follows by Proposition 4.3 that

s(1) ⊕ ŝ = s1 ⊕ ŝ1 ⊕ dσ1(T2) = s1 ⊕ ŝ1 ⊕ dσ̂1(T2) = ŝ(1) ⊕ s,

1 That is, one can parametrise the envelopes of s and ŝ such that they are Ribaucour transforms of each
other in the sense of Definition 4.1.
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where T2 = T I .
Conversely, suppose that s(1) ⊕ ŝ = ŝ(1) ⊕ s =: V . Since V⊥ has signature (2, 1),

we may at each point of I parametrise the elements of the projective lightcone along
S1, i.e., we have s0 : I × S1 → V⊥. Then let f := s0 ⊕ s and f̂ := s0 ⊕ ŝ. f and f̂
are Legendre maps by Lemma 3.2 and are Ribaucour transforms of each other because
T1 = T̂1 = T S1 and T2 = T̂2 = T I . 
�

We can interpret the result of Theorem 4.6 geometrically as follows. For t ∈ I and
sufficiently small non-zero ε, s(t), s(t + ε) and ŝ(t) belong to one family of curvature
spheres of a Dupin cyclide. By allowing ε to tend to zero, we obtain a unique Dupin
cyclide at t . On the other hand by repeating the same process with s(t), ŝ(t) and
ŝ(t + ε), we obtain another Dupin cyclide at t . By doing this for all t ∈ I , we obtain
two 1-parameter families of Dupin cyclides. The theorem states that the envelopes of s
and ŝ are a Ribaucour pair if and only if these two families of Dupin cyclides coincide.

4.3 Darboux transforms

We shall now recall the construction of Darboux transforms of �0-surfaces.
Suppose that f is an �0-surface with isothermic curvature sphere congruence s1.

Let η ∈ �1(s1 ∧ f ⊥) be the middle potential of f . We then have that {d + tη}t∈R is a
1-parameter family of flat connections. The flatness of these connections implies that
they admit many parallel sections. Suppose that ŝ is a parallel subbundle of d+mη for
m ∈ R\{0}. Let s0 := f ∩ ŝ⊥ and f̂ := s0 ⊕ ŝ. Then it was shown in Pember (2018)
that f̂ is a Legendre map and furthermore an �0-surface with isothermic curvature
sphere congruence ŝ. We call f̂ a Lie-Darboux transform of f with parameter m.

Theorem 4.7 Any Lie-Darboux transformation of a channel surface is a channel sur-
face with the same circular curvature direction. On the other hand, given a Ribaucour
pair of channel surfaces with corresponding circular curvature directions, we may
choose gauge orbits so that this is a Lie-Darboux pair.

Proof Suppose that f is a channel surface with circular direction T1. Then, as we
learned in Sect. 3.1, f is an �0-surface and for any lift σ1 ∈ �s1 with d|T1σ1 = 0,
η = σ1 ∧ �dσ1 is closed. Suppose that ŝ is a parallel subbundle of d + mη, i.e., for
some σ̂ ∈ �ŝ, dσ̂ = −mησ̂ . Then since f is a channel surface with circular direction
T1, one has that η(T1) = 0. Thus, d|T1 σ̂ = 0. Hence, ŝ is constant along the leaves of
T1 and thus, f̂ is a channel surface with circular direction T1.

Suppose now that f and f̂ are a Ribaucour pair of channel surfaces with circular
curvature direction T1. By Lemma 4.2, since f and f̂ are a Ribaucour pair, we may
choose lifts σ1 ∈ �s1 and σ̂1 ∈ �ŝ1 such that

dσ1, dσ̂1 ∈ �1((s1 ⊕ ŝ1)
⊥).

Without loss of generality, we may assume that (σ1, σ̂1) = −1. Since f and f̂ are
channel surfaces with circular direction T1, we must also have that d|T1σ1 = d|T1 σ̂1 =
0. Now let
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η := σ1 ∧ dσ̂1.

Then

dη = dσ1 � dσ̂1 = d|T1σ1 � d|T2 σ̂ + d|T2σ1 � d|T1 σ̂ = 0.

Hence, η defines an �0-structure on f . Furthermore,

dσ̂1 + ησ̂1 = dσ̂1 + (σ1, σ̂1)dσ̂1 = 0.

Thus, f̂ is a Lie-Darboux transform of f . 
�

5 Ribaucour transforms of curves

In Burstall and Hertrich-Jeromin (2006) a definition of Ribaucour pairs of k-
dimensional submanifolds in the conformal n-sphere is given. It is shown that for
appropriately constructed Legendre lifts, two k-dimensional submanifolds are a Rib-
aucour pair if and only if there Legendre lifts form a Ribaucour pair. In this section,
using Theorem 4.6, we quickly recover this result in the case of curves in the confor-
mal 3-sphere. To do this, we break symmetry as explained in detail in Burstall et al.
(2018), Sect. 2.2.

Let p ∈ R
4,2 be a timelike vector. A curve in a conformal geometry 〈p〉⊥ can

be interpreted as a sphere curve s : I → P(L), which takes values in 〈p〉⊥. By the
construction of Sect. 3, one obtains a Legendre immersion parametrising this curve.
Furthermore, s is one of the curvature sphere congruences of this Legendre immersion.

Conversely, suppose that f is an umbilic-freeLegendremap such that one of the cur-
vature sphere congruences, say s1, satisfies s1 ⊥ p. Thus, s1 = f ∩〈p〉⊥. Now dXσ1 ∈
� f for all X ∈ �T1 and σ1 ∈ �s1. On the other hand, (dXσ1, p) = dX (σ1, p) = 0, and
thus dXσ1 ∈ �s1. Thus, s1 is constant along the leaves of T1 and projects to a curve in
the conformal geometry of 〈p〉⊥. We have thus arrived at the following proposition:

Proposition 5.1 An umbilic-free Legendre map parametrises a regular curve in the
conformal geometry 〈p〉⊥ if and only if one of the curvature sphere congruences si
satisfies si ⊥ p.

We now recall the definition of Ribaucour transforms of curves:

Definition 5.2 (Burstall et al. 2016; Hertrich-Jeromin 2003) Two curves form a Rib-
aucour pair if they envelop a circle congruence.

Theorem 5.3 Two non-intersecting regular curves are Ribaucour transforms of each
other if and only if there exists a Ribaucour pair of Legendre maps parametrising these
curves with corresponding circular curvature directions.

Proof Let s, ŝ : I → P(L) be the corresponding curves in 〈p〉⊥. ByTheorem4.6, there
exists a Ribaucour pair of Legendre maps parametrising s and ŝ with corresponding
circular curvature directions if and only if s(1) ⊕ ŝ = ŝ(1) ⊕ s. However, s(1) ⊕ ŝ and
ŝ(1) ⊕ s both belong to the conformal geometry 〈p〉⊥, and the condition s(1) ⊕ ŝ =
ŝ(1) ⊕s is exactly the condition that s and ŝ envelope a circle congruence (see, Burstall
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Fig. 1 Ribaucour transform of a
straight line and, after parallel
transformation, Ribaucour
transform of a cylinder

et al. 2016). In fact, the projective lightcone of s(1) ⊕ ŝ = ŝ(1) ⊕ s yields exactly this
circle congruence. 
�

We may interpret Theorem 5.3 in Euclidean geometry as follows: two curves are
Ribaucour transforms of each other if and only if tubes of the same radius over these
curves are Ribaucour transforms of each other with corresponding circular curvature
directions. We shall illustrate this with the following simple example. This example
is generated by taking a Ribaucour transform of a straight line. By performing a
parallel transformation, one obtains a Ribaucour transform of a cylinder. An explicit
parametrisation of this Ribaucour transform is given in Tenenblat (2002). The tangent
circles between the Ribaucour pair of curves become tori with the same radii as that
of the tubular surfaces. These tori form the Ribaucour cyclide congruence that only
depends on one parameter (see Theorem 4.5). Furthermore, the black circles in Fig. 1
illustrate how the circular curvature lines on the cylinder and its Ribaucour transform
coincide with circular curvature lines on the enveloping tori.

Remark 5.4 Theorem 4.7 applied to the particular case of curves recovers a result
given in Burstall et al. (2016): for any Ribaucour pair of curves we can choose a
polarization such that it becomes a Darboux pair.

In light of this section, we may reinterpret Theorem 4.6 in the following way.
Using isotropy projection [see for example Blaschke (1929) and Cecil (2008)], one
may view spheres as points in R3,1. Thus, sphere curves correspond to curves inR3,1.
One may also view R

4,2 as the conformal compactification of R3,1. The condition
s(1) ⊕ ŝ = ŝ(1) ⊕ s is then equivalent to the corresponding curves in R

3,1 being
Ribaucour transforms of each other.
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